1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LowerSwitch transformation rewrites switch instructions with a sequence
11 // of branches, which allows targets to get away with not implementing the
12 // switch instruction until it is convenient.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
29 #include <algorithm>
30 using namespace llvm;
31
32 #define DEBUG_TYPE "lower-switch"
33
34 namespace {
35 /// LowerSwitch Pass - Replace all SwitchInst instructions with chained branch
36 /// instructions.
37 class LowerSwitch : public FunctionPass {
38 public:
39 static char ID; // Pass identification, replacement for typeid
LowerSwitch()40 LowerSwitch() : FunctionPass(ID) {
41 initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
42 }
43
44 bool runOnFunction(Function &F) override;
45
getAnalysisUsage(AnalysisUsage & AU) const46 void getAnalysisUsage(AnalysisUsage &AU) const override {
47 // This is a cluster of orthogonal Transforms
48 AU.addPreserved<UnifyFunctionExitNodes>();
49 AU.addPreservedID(LowerInvokePassID);
50 }
51
52 struct CaseRange {
53 Constant* Low;
54 Constant* High;
55 BasicBlock* BB;
56
CaseRange__anon2cb2ae1c0111::LowerSwitch::CaseRange57 CaseRange(Constant *low = nullptr, Constant *high = nullptr,
58 BasicBlock *bb = nullptr) :
59 Low(low), High(high), BB(bb) { }
60 };
61
62 typedef std::vector<CaseRange> CaseVector;
63 typedef std::vector<CaseRange>::iterator CaseItr;
64 private:
65 void processSwitchInst(SwitchInst *SI);
66
67 BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
68 ConstantInt *LowerBound, ConstantInt *UpperBound,
69 Value *Val, BasicBlock *Predecessor,
70 BasicBlock *OrigBlock, BasicBlock *Default);
71 BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
72 BasicBlock *Default);
73 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
74 };
75
76 /// The comparison function for sorting the switch case values in the vector.
77 /// WARNING: Case ranges should be disjoint!
78 struct CaseCmp {
operator ()__anon2cb2ae1c0111::CaseCmp79 bool operator () (const LowerSwitch::CaseRange& C1,
80 const LowerSwitch::CaseRange& C2) {
81
82 const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
83 const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
84 return CI1->getValue().slt(CI2->getValue());
85 }
86 };
87 }
88
89 char LowerSwitch::ID = 0;
90 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
91 "Lower SwitchInst's to branches", false, false)
92
93 // Publicly exposed interface to pass...
94 char &llvm::LowerSwitchID = LowerSwitch::ID;
95 // createLowerSwitchPass - Interface to this file...
createLowerSwitchPass()96 FunctionPass *llvm::createLowerSwitchPass() {
97 return new LowerSwitch();
98 }
99
runOnFunction(Function & F)100 bool LowerSwitch::runOnFunction(Function &F) {
101 bool Changed = false;
102
103 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
104 BasicBlock *Cur = I++; // Advance over block so we don't traverse new blocks
105
106 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
107 Changed = true;
108 processSwitchInst(SI);
109 }
110 }
111
112 return Changed;
113 }
114
115 // operator<< - Used for debugging purposes.
116 //
117 static raw_ostream& operator<<(raw_ostream &O,
118 const LowerSwitch::CaseVector &C)
119 LLVM_ATTRIBUTE_USED;
operator <<(raw_ostream & O,const LowerSwitch::CaseVector & C)120 static raw_ostream& operator<<(raw_ostream &O,
121 const LowerSwitch::CaseVector &C) {
122 O << "[";
123
124 for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
125 E = C.end(); B != E; ) {
126 O << *B->Low << " -" << *B->High;
127 if (++B != E) O << ", ";
128 }
129
130 return O << "]";
131 }
132
133 // \brief Update the first occurrence of the "switch statement" BB in the PHI
134 // node with the "new" BB. The other occurrences will:
135 //
136 // 1) Be updated by subsequent calls to this function. Switch statements may
137 // have more than one outcoming edge into the same BB if they all have the same
138 // value. When the switch statement is converted these incoming edges are now
139 // coming from multiple BBs.
140 // 2) Removed if subsequent incoming values now share the same case, i.e.,
141 // multiple outcome edges are condensed into one. This is necessary to keep the
142 // number of phi values equal to the number of branches to SuccBB.
fixPhis(BasicBlock * SuccBB,BasicBlock * OrigBB,BasicBlock * NewBB,unsigned NumMergedCases)143 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
144 unsigned NumMergedCases) {
145 for (BasicBlock::iterator I = SuccBB->begin(), IE = SuccBB->getFirstNonPHI();
146 I != IE; ++I) {
147 PHINode *PN = cast<PHINode>(I);
148
149 // Only update the first occurence.
150 unsigned Idx = 0, E = PN->getNumIncomingValues();
151 unsigned LocalNumMergedCases = NumMergedCases;
152 for (; Idx != E; ++Idx) {
153 if (PN->getIncomingBlock(Idx) == OrigBB) {
154 PN->setIncomingBlock(Idx, NewBB);
155 break;
156 }
157 }
158
159 // Remove additional occurences coming from condensed cases and keep the
160 // number of incoming values equal to the number of branches to SuccBB.
161 for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
162 if (PN->getIncomingBlock(Idx) == OrigBB) {
163 PN->removeIncomingValue(Idx);
164 LocalNumMergedCases--;
165 }
166 }
167 }
168
169 // switchConvert - Convert the switch statement into a binary lookup of
170 // the case values. The function recursively builds this tree.
171 // LowerBound and UpperBound are used to keep track of the bounds for Val
172 // that have already been checked by a block emitted by one of the previous
173 // calls to switchConvert in the call stack.
switchConvert(CaseItr Begin,CaseItr End,ConstantInt * LowerBound,ConstantInt * UpperBound,Value * Val,BasicBlock * Predecessor,BasicBlock * OrigBlock,BasicBlock * Default)174 BasicBlock *LowerSwitch::switchConvert(CaseItr Begin, CaseItr End,
175 ConstantInt *LowerBound,
176 ConstantInt *UpperBound, Value *Val,
177 BasicBlock *Predecessor,
178 BasicBlock *OrigBlock,
179 BasicBlock *Default) {
180 unsigned Size = End - Begin;
181
182 if (Size == 1) {
183 // Check if the Case Range is perfectly squeezed in between
184 // already checked Upper and Lower bounds. If it is then we can avoid
185 // emitting the code that checks if the value actually falls in the range
186 // because the bounds already tell us so.
187 if (Begin->Low == LowerBound && Begin->High == UpperBound) {
188 unsigned NumMergedCases = 0;
189 if (LowerBound && UpperBound)
190 NumMergedCases =
191 UpperBound->getSExtValue() - LowerBound->getSExtValue();
192 fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
193 return Begin->BB;
194 }
195 return newLeafBlock(*Begin, Val, OrigBlock, Default);
196 }
197
198 unsigned Mid = Size / 2;
199 std::vector<CaseRange> LHS(Begin, Begin + Mid);
200 DEBUG(dbgs() << "LHS: " << LHS << "\n");
201 std::vector<CaseRange> RHS(Begin + Mid, End);
202 DEBUG(dbgs() << "RHS: " << RHS << "\n");
203
204 CaseRange &Pivot = *(Begin + Mid);
205 DEBUG(dbgs() << "Pivot ==> "
206 << cast<ConstantInt>(Pivot.Low)->getValue()
207 << " -" << cast<ConstantInt>(Pivot.High)->getValue() << "\n");
208
209 // NewLowerBound here should never be the integer minimal value.
210 // This is because it is computed from a case range that is never
211 // the smallest, so there is always a case range that has at least
212 // a smaller value.
213 ConstantInt *NewLowerBound = cast<ConstantInt>(Pivot.Low);
214 ConstantInt *NewUpperBound;
215
216 // If we don't have a Default block then it means that we can never
217 // have a value outside of a case range, so set the UpperBound to the highest
218 // value in the LHS part of the case ranges.
219 if (Default != nullptr) {
220 // Because NewLowerBound is never the smallest representable integer
221 // it is safe here to subtract one.
222 NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
223 NewLowerBound->getValue() - 1);
224 } else {
225 CaseItr LastLHS = LHS.begin() + LHS.size() - 1;
226 NewUpperBound = cast<ConstantInt>(LastLHS->High);
227 }
228
229 DEBUG(dbgs() << "LHS Bounds ==> ";
230 if (LowerBound) {
231 dbgs() << cast<ConstantInt>(LowerBound)->getSExtValue();
232 } else {
233 dbgs() << "NONE";
234 }
235 dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
236 dbgs() << "RHS Bounds ==> ";
237 dbgs() << NewLowerBound->getSExtValue() << " - ";
238 if (UpperBound) {
239 dbgs() << cast<ConstantInt>(UpperBound)->getSExtValue() << "\n";
240 } else {
241 dbgs() << "NONE\n";
242 });
243
244 // Create a new node that checks if the value is < pivot. Go to the
245 // left branch if it is and right branch if not.
246 Function* F = OrigBlock->getParent();
247 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
248
249 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
250 Val, Pivot.Low, "Pivot");
251
252 BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
253 NewUpperBound, Val, NewNode, OrigBlock,
254 Default);
255 BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
256 UpperBound, Val, NewNode, OrigBlock,
257 Default);
258
259 Function::iterator FI = OrigBlock;
260 F->getBasicBlockList().insert(++FI, NewNode);
261 NewNode->getInstList().push_back(Comp);
262
263 BranchInst::Create(LBranch, RBranch, Comp, NewNode);
264 return NewNode;
265 }
266
267 // newLeafBlock - Create a new leaf block for the binary lookup tree. It
268 // checks if the switch's value == the case's value. If not, then it
269 // jumps to the default branch. At this point in the tree, the value
270 // can't be another valid case value, so the jump to the "default" branch
271 // is warranted.
272 //
newLeafBlock(CaseRange & Leaf,Value * Val,BasicBlock * OrigBlock,BasicBlock * Default)273 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
274 BasicBlock* OrigBlock,
275 BasicBlock* Default)
276 {
277 Function* F = OrigBlock->getParent();
278 BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
279 Function::iterator FI = OrigBlock;
280 F->getBasicBlockList().insert(++FI, NewLeaf);
281
282 // Emit comparison
283 ICmpInst* Comp = nullptr;
284 if (Leaf.Low == Leaf.High) {
285 // Make the seteq instruction...
286 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
287 Leaf.Low, "SwitchLeaf");
288 } else {
289 // Make range comparison
290 if (cast<ConstantInt>(Leaf.Low)->isMinValue(true /*isSigned*/)) {
291 // Val >= Min && Val <= Hi --> Val <= Hi
292 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
293 "SwitchLeaf");
294 } else if (cast<ConstantInt>(Leaf.Low)->isZero()) {
295 // Val >= 0 && Val <= Hi --> Val <=u Hi
296 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
297 "SwitchLeaf");
298 } else {
299 // Emit V-Lo <=u Hi-Lo
300 Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
301 Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
302 Val->getName()+".off",
303 NewLeaf);
304 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
305 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
306 "SwitchLeaf");
307 }
308 }
309
310 // Make the conditional branch...
311 BasicBlock* Succ = Leaf.BB;
312 BranchInst::Create(Succ, Default, Comp, NewLeaf);
313
314 // If there were any PHI nodes in this successor, rewrite one entry
315 // from OrigBlock to come from NewLeaf.
316 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
317 PHINode* PN = cast<PHINode>(I);
318 // Remove all but one incoming entries from the cluster
319 uint64_t Range = cast<ConstantInt>(Leaf.High)->getSExtValue() -
320 cast<ConstantInt>(Leaf.Low)->getSExtValue();
321 for (uint64_t j = 0; j < Range; ++j) {
322 PN->removeIncomingValue(OrigBlock);
323 }
324
325 int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
326 assert(BlockIdx != -1 && "Switch didn't go to this successor??");
327 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
328 }
329
330 return NewLeaf;
331 }
332
333 // Clusterify - Transform simple list of Cases into list of CaseRange's
Clusterify(CaseVector & Cases,SwitchInst * SI)334 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
335 unsigned numCmps = 0;
336
337 // Start with "simple" cases
338 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
339 Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
340 i.getCaseSuccessor()));
341
342 std::sort(Cases.begin(), Cases.end(), CaseCmp());
343
344 // Merge case into clusters
345 if (Cases.size()>=2)
346 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
347 J != Cases.end();) {
348 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
349 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
350 BasicBlock* nextBB = J->BB;
351 BasicBlock* currentBB = I->BB;
352
353 // If the two neighboring cases go to the same destination, merge them
354 // into a single case.
355 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
356 I->High = J->High;
357 J = Cases.erase(J);
358 } else {
359 I = J++;
360 }
361 }
362
363 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
364 if (I->Low != I->High)
365 // A range counts double, since it requires two compares.
366 ++numCmps;
367 }
368
369 return numCmps;
370 }
371
372 // processSwitchInst - Replace the specified switch instruction with a sequence
373 // of chained if-then insts in a balanced binary search.
374 //
processSwitchInst(SwitchInst * SI)375 void LowerSwitch::processSwitchInst(SwitchInst *SI) {
376 BasicBlock *CurBlock = SI->getParent();
377 BasicBlock *OrigBlock = CurBlock;
378 Function *F = CurBlock->getParent();
379 Value *Val = SI->getCondition(); // The value we are switching on...
380 BasicBlock* Default = SI->getDefaultDest();
381
382 // If there is only the default destination, don't bother with the code below.
383 if (!SI->getNumCases()) {
384 BranchInst::Create(SI->getDefaultDest(), CurBlock);
385 CurBlock->getInstList().erase(SI);
386 return;
387 }
388
389 const bool DefaultIsUnreachable =
390 Default->size() == 1 && isa<UnreachableInst>(Default->getTerminator());
391 // Create a new, empty default block so that the new hierarchy of
392 // if-then statements go to this and the PHI nodes are happy.
393 // if the default block is set as an unreachable we avoid creating one
394 // because will never be a valid target.
395 BasicBlock *NewDefault = nullptr;
396 if (!DefaultIsUnreachable) {
397 NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
398 F->getBasicBlockList().insert(Default, NewDefault);
399
400 BranchInst::Create(Default, NewDefault);
401 }
402 // If there is an entry in any PHI nodes for the default edge, make sure
403 // to update them as well.
404 for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
405 PHINode *PN = cast<PHINode>(I);
406 int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
407 assert(BlockIdx != -1 && "Switch didn't go to this successor??");
408 PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
409 }
410
411 // Prepare cases vector.
412 CaseVector Cases;
413 unsigned numCmps = Clusterify(Cases, SI);
414
415 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
416 << ". Total compares: " << numCmps << "\n");
417 DEBUG(dbgs() << "Cases: " << Cases << "\n");
418 (void)numCmps;
419
420 ConstantInt *UpperBound = nullptr;
421 ConstantInt *LowerBound = nullptr;
422
423 // Optimize the condition where Default is an unreachable block. In this case
424 // we can make the bounds tightly fitted around the case value ranges,
425 // because we know that the value passed to the switch should always be
426 // exactly one of the case values.
427 if (DefaultIsUnreachable) {
428 CaseItr LastCase = Cases.begin() + Cases.size() - 1;
429 UpperBound = cast<ConstantInt>(LastCase->High);
430 LowerBound = cast<ConstantInt>(Cases.begin()->Low);
431 }
432 BasicBlock *SwitchBlock =
433 switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
434 OrigBlock, OrigBlock, NewDefault);
435
436 // Branch to our shiny new if-then stuff...
437 BranchInst::Create(SwitchBlock, OrigBlock);
438
439 // We are now done with the switch instruction, delete it.
440 CurBlock->getInstList().erase(SI);
441
442 pred_iterator PI = pred_begin(Default), E = pred_end(Default);
443 // If the Default block has no more predecessors just remove it
444 if (PI == E) {
445 DeleteDeadBlock(Default);
446 }
447 }
448