xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp (revision ad9da92cf6f735747ef04fd56937e1d76819e503)
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
12 //
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0.  When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
16 //
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/DomTreeUpdater.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 #include "llvm/Analysis/ScalarEvolution.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ProfDataUtils.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Cloning.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
42 #include "llvm/Transforms/Utils/UnrollLoop.h"
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "loop-unroll"
47 
48 STATISTIC(NumRuntimeUnrolled,
49           "Number of loops unrolled with run-time trip counts");
50 static cl::opt<bool> UnrollRuntimeMultiExit(
51     "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
52     cl::desc("Allow runtime unrolling for loops with multiple exits, when "
53              "epilog is generated"));
54 static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
55     "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
56     cl::desc("Assume the non latch exit block to be predictable"));
57 
58 // Probability that the loop trip count is so small that after the prolog
59 // we do not enter the unrolled loop at all.
60 // It is unlikely that the loop trip count is smaller than the unroll factor;
61 // other than that, the choice of constant is not tuned yet.
62 static const uint32_t UnrolledLoopHeaderWeights[] = {1, 127};
63 // Probability that the loop trip count is so small that we skip the unrolled
64 // loop completely and immediately enter the epilogue loop.
65 // It is unlikely that the loop trip count is smaller than the unroll factor;
66 // other than that, the choice of constant is not tuned yet.
67 static const uint32_t EpilogHeaderWeights[] = {1, 127};
68 
69 /// Connect the unrolling prolog code to the original loop.
70 /// The unrolling prolog code contains code to execute the
71 /// 'extra' iterations if the run-time trip count modulo the
72 /// unroll count is non-zero.
73 ///
74 /// This function performs the following:
75 /// - Create PHI nodes at prolog end block to combine values
76 ///   that exit the prolog code and jump around the prolog.
77 /// - Add a PHI operand to a PHI node at the loop exit block
78 ///   for values that exit the prolog and go around the loop.
79 /// - Branch around the original loop if the trip count is less
80 ///   than the unroll factor.
81 ///
82 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
83                           BasicBlock *PrologExit,
84                           BasicBlock *OriginalLoopLatchExit,
85                           BasicBlock *PreHeader, BasicBlock *NewPreHeader,
86                           ValueToValueMapTy &VMap, DominatorTree *DT,
87                           LoopInfo *LI, bool PreserveLCSSA,
88                           ScalarEvolution &SE) {
89   // Loop structure should be the following:
90   // Preheader
91   //  PrologHeader
92   //  ...
93   //  PrologLatch
94   //  PrologExit
95   //   NewPreheader
96   //    Header
97   //    ...
98   //    Latch
99   //      LatchExit
100   BasicBlock *Latch = L->getLoopLatch();
101   assert(Latch && "Loop must have a latch");
102   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
103 
104   // Create a PHI node for each outgoing value from the original loop
105   // (which means it is an outgoing value from the prolog code too).
106   // The new PHI node is inserted in the prolog end basic block.
107   // The new PHI node value is added as an operand of a PHI node in either
108   // the loop header or the loop exit block.
109   for (BasicBlock *Succ : successors(Latch)) {
110     for (PHINode &PN : Succ->phis()) {
111       // Add a new PHI node to the prolog end block and add the
112       // appropriate incoming values.
113       // TODO: This code assumes that the PrologExit (or the LatchExit block for
114       // prolog loop) contains only one predecessor from the loop, i.e. the
115       // PrologLatch. When supporting multiple-exiting block loops, we can have
116       // two or more blocks that have the LatchExit as the target in the
117       // original loop.
118       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr");
119       NewPN->insertBefore(PrologExit->getFirstNonPHIIt());
120       // Adding a value to the new PHI node from the original loop preheader.
121       // This is the value that skips all the prolog code.
122       if (L->contains(&PN)) {
123         // Succ is loop header.
124         NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
125                            PreHeader);
126       } else {
127         // Succ is LatchExit.
128         NewPN->addIncoming(PoisonValue::get(PN.getType()), PreHeader);
129       }
130 
131       Value *V = PN.getIncomingValueForBlock(Latch);
132       if (Instruction *I = dyn_cast<Instruction>(V)) {
133         if (L->contains(I)) {
134           V = VMap.lookup(I);
135         }
136       }
137       // Adding a value to the new PHI node from the last prolog block
138       // that was created.
139       NewPN->addIncoming(V, PrologLatch);
140 
141       // Update the existing PHI node operand with the value from the
142       // new PHI node.  How this is done depends on if the existing
143       // PHI node is in the original loop block, or the exit block.
144       if (L->contains(&PN))
145         PN.setIncomingValueForBlock(NewPreHeader, NewPN);
146       else
147         PN.addIncoming(NewPN, PrologExit);
148       SE.forgetLcssaPhiWithNewPredecessor(L, &PN);
149     }
150   }
151 
152   // Make sure that created prolog loop is in simplified form
153   SmallVector<BasicBlock *, 4> PrologExitPreds;
154   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
155   if (PrologLoop) {
156     for (BasicBlock *PredBB : predecessors(PrologExit))
157       if (PrologLoop->contains(PredBB))
158         PrologExitPreds.push_back(PredBB);
159 
160     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
161                            nullptr, PreserveLCSSA);
162   }
163 
164   // Create a branch around the original loop, which is taken if there are no
165   // iterations remaining to be executed after running the prologue.
166   Instruction *InsertPt = PrologExit->getTerminator();
167   IRBuilder<> B(InsertPt);
168 
169   assert(Count != 0 && "nonsensical Count!");
170 
171   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
172   // This means %xtraiter is (BECount + 1) and all of the iterations of this
173   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
174   // then (BECount + 1) cannot unsigned-overflow.
175   Value *BrLoopExit =
176       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
177   // Split the exit to maintain loop canonicalization guarantees
178   SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
179   SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
180                          nullptr, PreserveLCSSA);
181   // Add the branch to the exit block (around the unrolled loop)
182   MDNode *BranchWeights = nullptr;
183   if (hasBranchWeightMD(*Latch->getTerminator())) {
184     // Assume loop is nearly always entered.
185     MDBuilder MDB(B.getContext());
186     BranchWeights = MDB.createBranchWeights(UnrolledLoopHeaderWeights);
187   }
188   B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader,
189                  BranchWeights);
190   InsertPt->eraseFromParent();
191   if (DT) {
192     auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
193                                                   PrologExit);
194     DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
195   }
196 }
197 
198 /// Connect the unrolling epilog code to the original loop.
199 /// The unrolling epilog code contains code to execute the
200 /// 'extra' iterations if the run-time trip count modulo the
201 /// unroll count is non-zero.
202 ///
203 /// This function performs the following:
204 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
205 /// - Create PHI nodes at the unrolling loop exit to combine
206 ///   values that exit the unrolling loop code and jump around it.
207 /// - Update PHI operands in the epilog loop by the new PHI nodes
208 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
209 ///
210 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
211                           BasicBlock *Exit, BasicBlock *PreHeader,
212                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
213                           ValueToValueMapTy &VMap, DominatorTree *DT,
214                           LoopInfo *LI, bool PreserveLCSSA, ScalarEvolution &SE,
215                           unsigned Count) {
216   BasicBlock *Latch = L->getLoopLatch();
217   assert(Latch && "Loop must have a latch");
218   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
219 
220   // Loop structure should be the following:
221   //
222   // PreHeader
223   // NewPreHeader
224   //   Header
225   //   ...
226   //   Latch
227   // NewExit (PN)
228   // EpilogPreHeader
229   //   EpilogHeader
230   //   ...
231   //   EpilogLatch
232   // Exit (EpilogPN)
233 
234   // Update PHI nodes at NewExit and Exit.
235   for (PHINode &PN : NewExit->phis()) {
236     // PN should be used in another PHI located in Exit block as
237     // Exit was split by SplitBlockPredecessors into Exit and NewExit
238     // Basically it should look like:
239     // NewExit:
240     //   PN = PHI [I, Latch]
241     // ...
242     // Exit:
243     //   EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
244     //
245     // Exits from non-latch blocks point to the original exit block and the
246     // epilogue edges have already been added.
247     //
248     // There is EpilogPreHeader incoming block instead of NewExit as
249     // NewExit was spilt 1 more time to get EpilogPreHeader.
250     assert(PN.hasOneUse() && "The phi should have 1 use");
251     PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
252     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
253 
254     // Add incoming PreHeader from branch around the Loop
255     PN.addIncoming(PoisonValue::get(PN.getType()), PreHeader);
256     SE.forgetValue(&PN);
257 
258     Value *V = PN.getIncomingValueForBlock(Latch);
259     Instruction *I = dyn_cast<Instruction>(V);
260     if (I && L->contains(I))
261       // If value comes from an instruction in the loop add VMap value.
262       V = VMap.lookup(I);
263     // For the instruction out of the loop, constant or undefined value
264     // insert value itself.
265     EpilogPN->addIncoming(V, EpilogLatch);
266 
267     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
268           "EpilogPN should have EpilogPreHeader incoming block");
269     // Change EpilogPreHeader incoming block to NewExit.
270     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
271                                NewExit);
272     // Now PHIs should look like:
273     // NewExit:
274     //   PN = PHI [I, Latch], [poison, PreHeader]
275     // ...
276     // Exit:
277     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
278   }
279 
280   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
281   // Update corresponding PHI nodes in epilog loop.
282   for (BasicBlock *Succ : successors(Latch)) {
283     // Skip this as we already updated phis in exit blocks.
284     if (!L->contains(Succ))
285       continue;
286     for (PHINode &PN : Succ->phis()) {
287       // Add new PHI nodes to the loop exit block and update epilog
288       // PHIs with the new PHI values.
289       PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr");
290       NewPN->insertBefore(NewExit->getFirstNonPHIIt());
291       // Adding a value to the new PHI node from the unrolling loop preheader.
292       NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
293       // Adding a value to the new PHI node from the unrolling loop latch.
294       NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
295 
296       // Update the existing PHI node operand with the value from the new PHI
297       // node.  Corresponding instruction in epilog loop should be PHI.
298       PHINode *VPN = cast<PHINode>(VMap[&PN]);
299       VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
300     }
301   }
302 
303   Instruction *InsertPt = NewExit->getTerminator();
304   IRBuilder<> B(InsertPt);
305   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
306   assert(Exit && "Loop must have a single exit block only");
307   // Split the epilogue exit to maintain loop canonicalization guarantees
308   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
309   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
310                          PreserveLCSSA);
311   // Add the branch to the exit block (around the unrolling loop)
312   MDNode *BranchWeights = nullptr;
313   if (hasBranchWeightMD(*Latch->getTerminator())) {
314     // Assume equal distribution in interval [0, Count).
315     MDBuilder MDB(B.getContext());
316     BranchWeights = MDB.createBranchWeights(1, Count - 1);
317   }
318   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit, BranchWeights);
319   InsertPt->eraseFromParent();
320   if (DT) {
321     auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
322     DT->changeImmediateDominator(Exit, NewDom);
323   }
324 
325   // Split the main loop exit to maintain canonicalization guarantees.
326   SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
327   SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
328                          PreserveLCSSA);
329 }
330 
331 /// Create a clone of the blocks in a loop and connect them together. A new
332 /// loop will be created including all cloned blocks, and the iterator of the
333 /// new loop switched to count NewIter down to 0.
334 /// The cloned blocks should be inserted between InsertTop and InsertBot.
335 /// InsertTop should be new preheader, InsertBot new loop exit.
336 /// Returns the new cloned loop that is created.
337 static Loop *
338 CloneLoopBlocks(Loop *L, Value *NewIter, const bool UseEpilogRemainder,
339                 const bool UnrollRemainder,
340                 BasicBlock *InsertTop,
341                 BasicBlock *InsertBot, BasicBlock *Preheader,
342                              std::vector<BasicBlock *> &NewBlocks,
343                              LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
344                              DominatorTree *DT, LoopInfo *LI, unsigned Count) {
345   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
346   BasicBlock *Header = L->getHeader();
347   BasicBlock *Latch = L->getLoopLatch();
348   Function *F = Header->getParent();
349   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
350   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
351   Loop *ParentLoop = L->getParentLoop();
352   NewLoopsMap NewLoops;
353   NewLoops[ParentLoop] = ParentLoop;
354 
355   // For each block in the original loop, create a new copy,
356   // and update the value map with the newly created values.
357   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
358     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
359     NewBlocks.push_back(NewBB);
360 
361     addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
362 
363     VMap[*BB] = NewBB;
364     if (Header == *BB) {
365       // For the first block, add a CFG connection to this newly
366       // created block.
367       InsertTop->getTerminator()->setSuccessor(0, NewBB);
368     }
369 
370     if (DT) {
371       if (Header == *BB) {
372         // The header is dominated by the preheader.
373         DT->addNewBlock(NewBB, InsertTop);
374       } else {
375         // Copy information from original loop to unrolled loop.
376         BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
377         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
378       }
379     }
380 
381     if (Latch == *BB) {
382       // For the last block, create a loop back to cloned head.
383       VMap.erase((*BB)->getTerminator());
384       // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
385       // Subtle: NewIter can be 0 if we wrapped when computing the trip count,
386       // thus we must compare the post-increment (wrapping) value.
387       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
388       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
389       IRBuilder<> Builder(LatchBR);
390       PHINode *NewIdx =
391           PHINode::Create(NewIter->getType(), 2, suffix + ".iter");
392       NewIdx->insertBefore(FirstLoopBB->getFirstNonPHIIt());
393       auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
394       auto *One = ConstantInt::get(NewIdx->getType(), 1);
395       Value *IdxNext =
396           Builder.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
397       Value *IdxCmp = Builder.CreateICmpNE(IdxNext, NewIter, NewIdx->getName() + ".cmp");
398       MDNode *BranchWeights = nullptr;
399       if (hasBranchWeightMD(*LatchBR)) {
400         uint32_t ExitWeight;
401         uint32_t BackEdgeWeight;
402         if (Count >= 3) {
403           // Note: We do not enter this loop for zero-remainders. The check
404           // is at the end of the loop. We assume equal distribution between
405           // possible remainders in [1, Count).
406           ExitWeight = 1;
407           BackEdgeWeight = (Count - 2) / 2;
408         } else {
409           // Unnecessary backedge, should never be taken. The conditional
410           // jump should be optimized away later.
411           ExitWeight = 1;
412           BackEdgeWeight = 0;
413         }
414         MDBuilder MDB(Builder.getContext());
415         BranchWeights = MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
416       }
417       Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot, BranchWeights);
418       NewIdx->addIncoming(Zero, InsertTop);
419       NewIdx->addIncoming(IdxNext, NewBB);
420       LatchBR->eraseFromParent();
421     }
422   }
423 
424   // Change the incoming values to the ones defined in the preheader or
425   // cloned loop.
426   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
427     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
428     unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
429     NewPHI->setIncomingBlock(idx, InsertTop);
430     BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
431     idx = NewPHI->getBasicBlockIndex(Latch);
432     Value *InVal = NewPHI->getIncomingValue(idx);
433     NewPHI->setIncomingBlock(idx, NewLatch);
434     if (Value *V = VMap.lookup(InVal))
435       NewPHI->setIncomingValue(idx, V);
436   }
437 
438   Loop *NewLoop = NewLoops[L];
439   assert(NewLoop && "L should have been cloned");
440   MDNode *LoopID = NewLoop->getLoopID();
441 
442   // Only add loop metadata if the loop is not going to be completely
443   // unrolled.
444   if (UnrollRemainder)
445     return NewLoop;
446 
447   std::optional<MDNode *> NewLoopID = makeFollowupLoopID(
448       LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
449   if (NewLoopID) {
450     NewLoop->setLoopID(*NewLoopID);
451 
452     // Do not setLoopAlreadyUnrolled if loop attributes have been defined
453     // explicitly.
454     return NewLoop;
455   }
456 
457   // Add unroll disable metadata to disable future unrolling for this loop.
458   NewLoop->setLoopAlreadyUnrolled();
459   return NewLoop;
460 }
461 
462 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
463 /// we return true only if UnrollRuntimeMultiExit is set to true.
464 static bool canProfitablyRuntimeUnrollMultiExitLoop(
465     Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
466     bool UseEpilogRemainder) {
467 
468   // Priority goes to UnrollRuntimeMultiExit if it's supplied.
469   if (UnrollRuntimeMultiExit.getNumOccurrences())
470     return UnrollRuntimeMultiExit;
471 
472   // The main pain point with multi-exit loop unrolling is that once unrolled,
473   // we will not be able to merge all blocks into a straight line code.
474   // There are branches within the unrolled loop that go to the OtherExits.
475   // The second point is the increase in code size, but this is true
476   // irrespective of multiple exits.
477 
478   // Note: Both the heuristics below are coarse grained. We are essentially
479   // enabling unrolling of loops that have a single side exit other than the
480   // normal LatchExit (i.e. exiting into a deoptimize block).
481   // The heuristics considered are:
482   // 1. low number of branches in the unrolled version.
483   // 2. high predictability of these extra branches.
484   // We avoid unrolling loops that have more than two exiting blocks. This
485   // limits the total number of branches in the unrolled loop to be atmost
486   // the unroll factor (since one of the exiting blocks is the latch block).
487   SmallVector<BasicBlock*, 4> ExitingBlocks;
488   L->getExitingBlocks(ExitingBlocks);
489   if (ExitingBlocks.size() > 2)
490     return false;
491 
492   // Allow unrolling of loops with no non latch exit blocks.
493   if (OtherExits.size() == 0)
494     return true;
495 
496   // The second heuristic is that L has one exit other than the latchexit and
497   // that exit is a deoptimize block. We know that deoptimize blocks are rarely
498   // taken, which also implies the branch leading to the deoptimize block is
499   // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
500   // assume the other exit branch is predictable even if it has no deoptimize
501   // call.
502   return (OtherExits.size() == 1 &&
503           (UnrollRuntimeOtherExitPredictable ||
504            OtherExits[0]->getPostdominatingDeoptimizeCall()));
505   // TODO: These can be fine-tuned further to consider code size or deopt states
506   // that are captured by the deoptimize exit block.
507   // Also, we can extend this to support more cases, if we actually
508   // know of kinds of multiexit loops that would benefit from unrolling.
509 }
510 
511 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
512 /// accounting for the possibility of unsigned overflow in the 2s complement
513 /// domain. Preconditions:
514 /// 1) TripCount = BECount + 1 (allowing overflow)
515 /// 2) Log2(Count) <= BitWidth(BECount)
516 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
517                                   Value *TripCount, unsigned Count) {
518   // Note that TripCount is BECount + 1.
519   if (isPowerOf2_32(Count))
520     // If the expression is zero, then either:
521     //  1. There are no iterations to be run in the prolog/epilog loop.
522     // OR
523     //  2. The addition computing TripCount overflowed.
524     //
525     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
526     // the number of iterations that remain to be run in the original loop is a
527     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
528     // precondition of this method).
529     return B.CreateAnd(TripCount, Count - 1, "xtraiter");
530 
531   // As (BECount + 1) can potentially unsigned overflow we count
532   // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
533   Constant *CountC = ConstantInt::get(BECount->getType(), Count);
534   Value *ModValTmp = B.CreateURem(BECount, CountC);
535   Value *ModValAdd = B.CreateAdd(ModValTmp,
536                                  ConstantInt::get(ModValTmp->getType(), 1));
537   // At that point (BECount % Count) + 1 could be equal to Count.
538   // To handle this case we need to take mod by Count one more time.
539   return B.CreateURem(ModValAdd, CountC, "xtraiter");
540 }
541 
542 
543 /// Insert code in the prolog/epilog code when unrolling a loop with a
544 /// run-time trip-count.
545 ///
546 /// This method assumes that the loop unroll factor is total number
547 /// of loop bodies in the loop after unrolling. (Some folks refer
548 /// to the unroll factor as the number of *extra* copies added).
549 /// We assume also that the loop unroll factor is a power-of-two. So, after
550 /// unrolling the loop, the number of loop bodies executed is 2,
551 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
552 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
553 /// the switch instruction is generated.
554 ///
555 /// ***Prolog case***
556 ///        extraiters = tripcount % loopfactor
557 ///        if (extraiters == 0) jump Loop:
558 ///        else jump Prol:
559 /// Prol:  LoopBody;
560 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
561 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
562 ///        if (tripcount < loopfactor) jump End:
563 /// Loop:
564 /// ...
565 /// End:
566 ///
567 /// ***Epilog case***
568 ///        extraiters = tripcount % loopfactor
569 ///        if (tripcount < loopfactor) jump LoopExit:
570 ///        unroll_iters = tripcount - extraiters
571 /// Loop:  LoopBody; (executes unroll_iter times);
572 ///        unroll_iter -= 1
573 ///        if (unroll_iter != 0) jump Loop:
574 /// LoopExit:
575 ///        if (extraiters == 0) jump EpilExit:
576 /// Epil:  LoopBody; (executes extraiters times)
577 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
578 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
579 /// EpilExit:
580 
581 bool llvm::UnrollRuntimeLoopRemainder(
582     Loop *L, unsigned Count, bool AllowExpensiveTripCount,
583     bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
584     LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
585     const TargetTransformInfo *TTI, bool PreserveLCSSA,
586     unsigned SCEVExpansionBudget, bool RuntimeUnrollMultiExit,
587     Loop **ResultLoop) {
588   LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
589   LLVM_DEBUG(L->dump());
590   LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
591                                 : dbgs() << "Using prolog remainder.\n");
592 
593   // Make sure the loop is in canonical form.
594   if (!L->isLoopSimplifyForm()) {
595     LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
596     return false;
597   }
598 
599   // Guaranteed by LoopSimplifyForm.
600   BasicBlock *Latch = L->getLoopLatch();
601   BasicBlock *Header = L->getHeader();
602 
603   BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
604 
605   if (!LatchBR || LatchBR->isUnconditional()) {
606     // The loop-rotate pass can be helpful to avoid this in many cases.
607     LLVM_DEBUG(
608         dbgs()
609         << "Loop latch not terminated by a conditional branch.\n");
610     return false;
611   }
612 
613   unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
614   BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
615 
616   if (L->contains(LatchExit)) {
617     // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
618     // targets of the Latch be an exit block out of the loop.
619     LLVM_DEBUG(
620         dbgs()
621         << "One of the loop latch successors must be the exit block.\n");
622     return false;
623   }
624 
625   // These are exit blocks other than the target of the latch exiting block.
626   SmallVector<BasicBlock *, 4> OtherExits;
627   L->getUniqueNonLatchExitBlocks(OtherExits);
628   // Support only single exit and exiting block unless multi-exit loop
629   // unrolling is enabled.
630   if (!L->getExitingBlock() || OtherExits.size()) {
631     // We rely on LCSSA form being preserved when the exit blocks are transformed.
632     // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
633     if (!PreserveLCSSA)
634       return false;
635 
636     if (!RuntimeUnrollMultiExit &&
637         !canProfitablyRuntimeUnrollMultiExitLoop(L, OtherExits, LatchExit,
638                                                  UseEpilogRemainder)) {
639       LLVM_DEBUG(
640           dbgs()
641           << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
642              "enabled!\n");
643       return false;
644     }
645   }
646   // Use Scalar Evolution to compute the trip count. This allows more loops to
647   // be unrolled than relying on induction var simplification.
648   if (!SE)
649     return false;
650 
651   // Only unroll loops with a computable trip count.
652   // We calculate the backedge count by using getExitCount on the Latch block,
653   // which is proven to be the only exiting block in this loop. This is same as
654   // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
655   // exiting blocks).
656   const SCEV *BECountSC = SE->getExitCount(L, Latch);
657   if (isa<SCEVCouldNotCompute>(BECountSC)) {
658     LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
659     return false;
660   }
661 
662   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
663 
664   // Add 1 since the backedge count doesn't include the first loop iteration.
665   // (Note that overflow can occur, this is handled explicitly below)
666   const SCEV *TripCountSC =
667       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
668   if (isa<SCEVCouldNotCompute>(TripCountSC)) {
669     LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
670     return false;
671   }
672 
673   BasicBlock *PreHeader = L->getLoopPreheader();
674   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
675   const DataLayout &DL = Header->getDataLayout();
676   SCEVExpander Expander(*SE, DL, "loop-unroll");
677   if (!AllowExpensiveTripCount &&
678       Expander.isHighCostExpansion(TripCountSC, L, SCEVExpansionBudget, TTI,
679                                    PreHeaderBR)) {
680     LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
681     return false;
682   }
683 
684   // This constraint lets us deal with an overflowing trip count easily; see the
685   // comment on ModVal below.
686   if (Log2_32(Count) > BEWidth) {
687     LLVM_DEBUG(
688         dbgs()
689         << "Count failed constraint on overflow trip count calculation.\n");
690     return false;
691   }
692 
693   // Loop structure is the following:
694   //
695   // PreHeader
696   //   Header
697   //   ...
698   //   Latch
699   // LatchExit
700 
701   BasicBlock *NewPreHeader;
702   BasicBlock *NewExit = nullptr;
703   BasicBlock *PrologExit = nullptr;
704   BasicBlock *EpilogPreHeader = nullptr;
705   BasicBlock *PrologPreHeader = nullptr;
706 
707   if (UseEpilogRemainder) {
708     // If epilog remainder
709     // Split PreHeader to insert a branch around loop for unrolling.
710     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
711     NewPreHeader->setName(PreHeader->getName() + ".new");
712     // Split LatchExit to create phi nodes from branch above.
713     NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
714                                      nullptr, PreserveLCSSA);
715     // NewExit gets its DebugLoc from LatchExit, which is not part of the
716     // original Loop.
717     // Fix this by setting Loop's DebugLoc to NewExit.
718     auto *NewExitTerminator = NewExit->getTerminator();
719     NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
720     // Split NewExit to insert epilog remainder loop.
721     EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
722     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
723 
724     // If the latch exits from multiple level of nested loops, then
725     // by assumption there must be another loop exit which branches to the
726     // outer loop and we must adjust the loop for the newly inserted blocks
727     // to account for the fact that our epilogue is still in the same outer
728     // loop. Note that this leaves loopinfo temporarily out of sync with the
729     // CFG until the actual epilogue loop is inserted.
730     if (auto *ParentL = L->getParentLoop())
731       if (LI->getLoopFor(LatchExit) != ParentL) {
732         LI->removeBlock(NewExit);
733         ParentL->addBasicBlockToLoop(NewExit, *LI);
734         LI->removeBlock(EpilogPreHeader);
735         ParentL->addBasicBlockToLoop(EpilogPreHeader, *LI);
736       }
737 
738   } else {
739     // If prolog remainder
740     // Split the original preheader twice to insert prolog remainder loop
741     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
742     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
743     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
744                             DT, LI);
745     PrologExit->setName(Header->getName() + ".prol.loopexit");
746     // Split PrologExit to get NewPreHeader.
747     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
748     NewPreHeader->setName(PreHeader->getName() + ".new");
749   }
750   // Loop structure should be the following:
751   //  Epilog             Prolog
752   //
753   // PreHeader         PreHeader
754   // *NewPreHeader     *PrologPreHeader
755   //   Header          *PrologExit
756   //   ...             *NewPreHeader
757   //   Latch             Header
758   // *NewExit            ...
759   // *EpilogPreHeader    Latch
760   // LatchExit              LatchExit
761 
762   // Calculate conditions for branch around loop for unrolling
763   // in epilog case and around prolog remainder loop in prolog case.
764   // Compute the number of extra iterations required, which is:
765   //  extra iterations = run-time trip count % loop unroll factor
766   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
767   IRBuilder<> B(PreHeaderBR);
768   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
769                                             PreHeaderBR);
770   Value *BECount;
771   // If there are other exits before the latch, that may cause the latch exit
772   // branch to never be executed, and the latch exit count may be poison.
773   // In this case, freeze the TripCount and base BECount on the frozen
774   // TripCount. We will introduce two branches using these values, and it's
775   // important that they see a consistent value (which would not be guaranteed
776   // if were frozen independently.)
777   if ((!OtherExits.empty() || !SE->loopHasNoAbnormalExits(L)) &&
778       !isGuaranteedNotToBeUndefOrPoison(TripCount, AC, PreHeaderBR, DT)) {
779     TripCount = B.CreateFreeze(TripCount);
780     BECount =
781         B.CreateAdd(TripCount, Constant::getAllOnesValue(TripCount->getType()));
782   } else {
783     // If we don't need to freeze, use SCEVExpander for BECount as well, to
784     // allow slightly better value reuse.
785     BECount =
786         Expander.expandCodeFor(BECountSC, BECountSC->getType(), PreHeaderBR);
787   }
788 
789   Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
790 
791   Value *BranchVal =
792       UseEpilogRemainder ? B.CreateICmpULT(BECount,
793                                            ConstantInt::get(BECount->getType(),
794                                                             Count - 1)) :
795                            B.CreateIsNotNull(ModVal, "lcmp.mod");
796   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
797   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
798   // Branch to either remainder (extra iterations) loop or unrolling loop.
799   MDNode *BranchWeights = nullptr;
800   if (hasBranchWeightMD(*Latch->getTerminator())) {
801     // Assume loop is nearly always entered.
802     MDBuilder MDB(B.getContext());
803     BranchWeights = MDB.createBranchWeights(EpilogHeaderWeights);
804   }
805   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop, BranchWeights);
806   PreHeaderBR->eraseFromParent();
807   if (DT) {
808     if (UseEpilogRemainder)
809       DT->changeImmediateDominator(NewExit, PreHeader);
810     else
811       DT->changeImmediateDominator(PrologExit, PreHeader);
812   }
813   Function *F = Header->getParent();
814   // Get an ordered list of blocks in the loop to help with the ordering of the
815   // cloned blocks in the prolog/epilog code
816   LoopBlocksDFS LoopBlocks(L);
817   LoopBlocks.perform(LI);
818 
819   //
820   // For each extra loop iteration, create a copy of the loop's basic blocks
821   // and generate a condition that branches to the copy depending on the
822   // number of 'left over' iterations.
823   //
824   std::vector<BasicBlock *> NewBlocks;
825   ValueToValueMapTy VMap;
826 
827   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
828   // the loop, otherwise we create a cloned loop to execute the extra
829   // iterations. This function adds the appropriate CFG connections.
830   BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
831   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
832   Loop *remainderLoop = CloneLoopBlocks(
833       L, ModVal, UseEpilogRemainder, UnrollRemainder, InsertTop, InsertBot,
834       NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI, Count);
835 
836   // Insert the cloned blocks into the function.
837   F->splice(InsertBot->getIterator(), F, NewBlocks[0]->getIterator(), F->end());
838 
839   // Now the loop blocks are cloned and the other exiting blocks from the
840   // remainder are connected to the original Loop's exit blocks. The remaining
841   // work is to update the phi nodes in the original loop, and take in the
842   // values from the cloned region.
843   for (auto *BB : OtherExits) {
844     // Given we preserve LCSSA form, we know that the values used outside the
845     // loop will be used through these phi nodes at the exit blocks that are
846     // transformed below.
847     for (PHINode &PN : BB->phis()) {
848      unsigned oldNumOperands = PN.getNumIncomingValues();
849      // Add the incoming values from the remainder code to the end of the phi
850      // node.
851      for (unsigned i = 0; i < oldNumOperands; i++){
852        auto *PredBB =PN.getIncomingBlock(i);
853        if (PredBB == Latch)
854          // The latch exit is handled separately, see connectX
855          continue;
856        if (!L->contains(PredBB))
857          // Even if we had dedicated exits, the code above inserted an
858          // extra branch which can reach the latch exit.
859          continue;
860 
861        auto *V = PN.getIncomingValue(i);
862        if (Instruction *I = dyn_cast<Instruction>(V))
863          if (L->contains(I))
864            V = VMap.lookup(I);
865        PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
866      }
867    }
868 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
869     for (BasicBlock *SuccBB : successors(BB)) {
870       assert(!(llvm::is_contained(OtherExits, SuccBB) || SuccBB == LatchExit) &&
871              "Breaks the definition of dedicated exits!");
872     }
873 #endif
874   }
875 
876   // Update the immediate dominator of the exit blocks and blocks that are
877   // reachable from the exit blocks. This is needed because we now have paths
878   // from both the original loop and the remainder code reaching the exit
879   // blocks. While the IDom of these exit blocks were from the original loop,
880   // now the IDom is the preheader (which decides whether the original loop or
881   // remainder code should run).
882   if (DT && !L->getExitingBlock()) {
883     SmallVector<BasicBlock *, 16> ChildrenToUpdate;
884     // NB! We have to examine the dom children of all loop blocks, not just
885     // those which are the IDom of the exit blocks. This is because blocks
886     // reachable from the exit blocks can have their IDom as the nearest common
887     // dominator of the exit blocks.
888     for (auto *BB : L->blocks()) {
889       auto *DomNodeBB = DT->getNode(BB);
890       for (auto *DomChild : DomNodeBB->children()) {
891         auto *DomChildBB = DomChild->getBlock();
892         if (!L->contains(LI->getLoopFor(DomChildBB)))
893           ChildrenToUpdate.push_back(DomChildBB);
894       }
895     }
896     for (auto *BB : ChildrenToUpdate)
897       DT->changeImmediateDominator(BB, PreHeader);
898   }
899 
900   // Loop structure should be the following:
901   //  Epilog             Prolog
902   //
903   // PreHeader         PreHeader
904   // NewPreHeader      PrologPreHeader
905   //   Header            PrologHeader
906   //   ...               ...
907   //   Latch             PrologLatch
908   // NewExit           PrologExit
909   // EpilogPreHeader   NewPreHeader
910   //   EpilogHeader      Header
911   //   ...               ...
912   //   EpilogLatch       Latch
913   // LatchExit              LatchExit
914 
915   // Rewrite the cloned instruction operands to use the values created when the
916   // clone is created.
917   for (BasicBlock *BB : NewBlocks) {
918     Module *M = BB->getModule();
919     for (Instruction &I : *BB) {
920       RemapInstruction(&I, VMap,
921                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
922       RemapDbgRecordRange(M, I.getDbgRecordRange(), VMap,
923                           RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
924     }
925   }
926 
927   if (UseEpilogRemainder) {
928     // Connect the epilog code to the original loop and update the
929     // PHI functions.
930     ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader, EpilogPreHeader,
931                   NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE, Count);
932 
933     // Update counter in loop for unrolling.
934     // Use an incrementing IV.  Pre-incr/post-incr is backedge/trip count.
935     // Subtle: TestVal can be 0 if we wrapped when computing the trip count,
936     // thus we must compare the post-increment (wrapping) value.
937     IRBuilder<> B2(NewPreHeader->getTerminator());
938     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
939     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
940     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter");
941     NewIdx->insertBefore(Header->getFirstNonPHIIt());
942     B2.SetInsertPoint(LatchBR);
943     auto *Zero = ConstantInt::get(NewIdx->getType(), 0);
944     auto *One = ConstantInt::get(NewIdx->getType(), 1);
945     Value *IdxNext = B2.CreateAdd(NewIdx, One, NewIdx->getName() + ".next");
946     auto Pred = LatchBR->getSuccessor(0) == Header ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
947     Value *IdxCmp = B2.CreateICmp(Pred, IdxNext, TestVal, NewIdx->getName() + ".ncmp");
948     NewIdx->addIncoming(Zero, NewPreHeader);
949     NewIdx->addIncoming(IdxNext, Latch);
950     LatchBR->setCondition(IdxCmp);
951   } else {
952     // Connect the prolog code to the original loop and update the
953     // PHI functions.
954     ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
955                   NewPreHeader, VMap, DT, LI, PreserveLCSSA, *SE);
956   }
957 
958   // If this loop is nested, then the loop unroller changes the code in the any
959   // of its parent loops, so the Scalar Evolution pass needs to be run again.
960   SE->forgetTopmostLoop(L);
961 
962   // Verify that the Dom Tree and Loop Info are correct.
963 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
964   if (DT) {
965     assert(DT->verify(DominatorTree::VerificationLevel::Full));
966     LI->verify(*DT);
967   }
968 #endif
969 
970   // For unroll factor 2 remainder loop will have 1 iteration.
971   if (Count == 2 && DT && LI && SE) {
972     // TODO: This code could probably be pulled out into a helper function
973     // (e.g. breakLoopBackedgeAndSimplify) and reused in loop-deletion.
974     BasicBlock *RemainderLatch = remainderLoop->getLoopLatch();
975     assert(RemainderLatch);
976     SmallVector<BasicBlock *> RemainderBlocks(remainderLoop->getBlocks());
977     breakLoopBackedge(remainderLoop, *DT, *SE, *LI, nullptr);
978     remainderLoop = nullptr;
979 
980     // Simplify loop values after breaking the backedge
981     const DataLayout &DL = L->getHeader()->getDataLayout();
982     SmallVector<WeakTrackingVH, 16> DeadInsts;
983     for (BasicBlock *BB : RemainderBlocks) {
984       for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
985         if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
986           if (LI->replacementPreservesLCSSAForm(&Inst, V))
987             Inst.replaceAllUsesWith(V);
988         if (isInstructionTriviallyDead(&Inst))
989           DeadInsts.emplace_back(&Inst);
990       }
991       // We can't do recursive deletion until we're done iterating, as we might
992       // have a phi which (potentially indirectly) uses instructions later in
993       // the block we're iterating through.
994       RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
995     }
996 
997     // Merge latch into exit block.
998     auto *ExitBB = RemainderLatch->getSingleSuccessor();
999     assert(ExitBB && "required after breaking cond br backedge");
1000     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
1001     MergeBlockIntoPredecessor(ExitBB, &DTU, LI);
1002   }
1003 
1004   // Canonicalize to LoopSimplifyForm both original and remainder loops. We
1005   // cannot rely on the LoopUnrollPass to do this because it only does
1006   // canonicalization for parent/subloops and not the sibling loops.
1007   if (OtherExits.size() > 0) {
1008     // Generate dedicated exit blocks for the original loop, to preserve
1009     // LoopSimplifyForm.
1010     formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
1011     // Generate dedicated exit blocks for the remainder loop if one exists, to
1012     // preserve LoopSimplifyForm.
1013     if (remainderLoop)
1014       formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
1015   }
1016 
1017   auto UnrollResult = LoopUnrollResult::Unmodified;
1018   if (remainderLoop && UnrollRemainder) {
1019     LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
1020     UnrollLoopOptions ULO;
1021     ULO.Count = Count - 1;
1022     ULO.Force = false;
1023     ULO.Runtime = false;
1024     ULO.AllowExpensiveTripCount = false;
1025     ULO.UnrollRemainder = false;
1026     ULO.ForgetAllSCEV = ForgetAllSCEV;
1027     assert(!getLoopConvergenceHeart(L) &&
1028            "A loop with a convergence heart does not allow runtime unrolling.");
1029     UnrollResult = UnrollLoop(remainderLoop, ULO, LI, SE, DT, AC, TTI,
1030                               /*ORE*/ nullptr, PreserveLCSSA);
1031   }
1032 
1033   if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1034     *ResultLoop = remainderLoop;
1035   NumRuntimeUnrolled++;
1036   return true;
1037 }
1038