xref: /llvm-project/llvm/lib/Transforms/Scalar/LoopSink.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
14 //
15 // * It only handles sinking of instructions from the loop's preheader to the
16 //   loop's body
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
19 //
20 // Overall algorithm:
21 //
22 // For I in Preheader:
23 //   InsertBBs = BBs that uses I
24 //   For BB in sorted(LoopBBs):
25 //     DomBBs = BBs in InsertBBs that are dominated by BB
26 //     if freq(DomBBs) > freq(BB)
27 //       InsertBBs = UseBBs - DomBBs + BB
28 //   For BB in InsertBBs:
29 //     Insert I at BB's beginning
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/SetOperations.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/BlockFrequencyInfo.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/Support/BranchProbability.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "loopsink"
52 
53 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
54 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
55 
56 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
57     "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
58     cl::desc("Do not sink instructions that require cloning unless they "
59              "execute less than this percent of the time."));
60 
61 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
62     "max-uses-for-sinking", cl::Hidden, cl::init(30),
63     cl::desc("Do not sink instructions that have too many uses."));
64 
65 /// Return adjusted total frequency of \p BBs.
66 ///
67 /// * If there is only one BB, sinking instruction will not introduce code
68 ///   size increase. Thus there is no need to adjust the frequency.
69 /// * If there are more than one BB, sinking would lead to code size increase.
70 ///   In this case, we add some "tax" to the total frequency to make it harder
71 ///   to sink. E.g.
72 ///     Freq(Preheader) = 100
73 ///     Freq(BBs) = sum(50, 49) = 99
74 ///   Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
75 ///   BBs as the difference is too small to justify the code size increase.
76 ///   To model this, The adjusted Freq(BBs) will be:
77 ///     AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
78 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
79                                       BlockFrequencyInfo &BFI) {
80   BlockFrequency T(0);
81   for (BasicBlock *B : BBs)
82     T += BFI.getBlockFreq(B);
83   if (BBs.size() > 1)
84     T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
85   return T;
86 }
87 
88 /// Return a set of basic blocks to insert sinked instructions.
89 ///
90 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
91 ///
92 /// * Inside the loop \p L
93 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
94 ///   that domintates the UseBB
95 /// * Has minimum total frequency that is no greater than preheader frequency
96 ///
97 /// The purpose of the function is to find the optimal sinking points to
98 /// minimize execution cost, which is defined as "sum of frequency of
99 /// BBsToSinkInto".
100 /// As a result, the returned BBsToSinkInto needs to have minimum total
101 /// frequency.
102 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
103 /// frequency, the optimal solution is not sinking (return empty set).
104 ///
105 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
106 /// It stores a list of BBs that is:
107 ///
108 /// * Inside the loop \p L
109 /// * Has a frequency no larger than the loop's preheader
110 /// * Sorted by BB frequency
111 ///
112 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
113 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
114 /// caller.
115 static SmallPtrSet<BasicBlock *, 2>
116 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
117                   const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
118                   DominatorTree &DT, BlockFrequencyInfo &BFI) {
119   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
120   if (UseBBs.size() == 0)
121     return BBsToSinkInto;
122 
123   BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
124   SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
125 
126   // For every iteration:
127   //   * Pick the ColdestBB from ColdLoopBBs
128   //   * Find the set BBsDominatedByColdestBB that satisfy:
129   //     - BBsDominatedByColdestBB is a subset of BBsToSinkInto
130   //     - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
131   //   * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
132   //     BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
133   //     BBsToSinkInto
134   for (BasicBlock *ColdestBB : ColdLoopBBs) {
135     BBsDominatedByColdestBB.clear();
136     for (BasicBlock *SinkedBB : BBsToSinkInto)
137       if (DT.dominates(ColdestBB, SinkedBB))
138         BBsDominatedByColdestBB.insert(SinkedBB);
139     if (BBsDominatedByColdestBB.size() == 0)
140       continue;
141     if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
142         BFI.getBlockFreq(ColdestBB)) {
143       for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
144         BBsToSinkInto.erase(DominatedBB);
145       }
146       BBsToSinkInto.insert(ColdestBB);
147       continue;
148     }
149     // Otherwise, see if we can stop the search through the cold BBs early.
150     // Since the ColdLoopBBs list is sorted in increasing magnitude of
151     // frequency the cold BB frequencies can only get larger. The
152     // BBsToSinkInto set can only get smaller and have a smaller
153     // adjustedSumFreq, due to the earlier checking. So once we find a cold BB
154     // with a frequency at least as large as the adjustedSumFreq of the
155     // current BBsToSinkInto set, the earlier frequency check can never be
156     // true for a future iteration. Note we could do check this more
157     // aggressively earlier, but in practice this ended up being more
158     // expensive overall (added checking to the critical path through the loop
159     // that often ended up continuing early due to an empty
160     // BBsDominatedByColdestBB set, and the frequency check there was false
161     // most of the time anyway).
162     if (adjustedSumFreq(BBsToSinkInto, BFI) <= BFI.getBlockFreq(ColdestBB))
163       break;
164   }
165 
166   // Can't sink into blocks that have no valid insertion point.
167   for (BasicBlock *BB : BBsToSinkInto) {
168     if (BB->getFirstInsertionPt() == BB->end()) {
169       BBsToSinkInto.clear();
170       break;
171     }
172   }
173 
174   // If the total frequency of BBsToSinkInto is larger than preheader frequency,
175   // do not sink.
176   if (adjustedSumFreq(BBsToSinkInto, BFI) >
177       BFI.getBlockFreq(L.getLoopPreheader()))
178     BBsToSinkInto.clear();
179   return BBsToSinkInto;
180 }
181 
182 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
183 // sinking is successful.
184 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
185 // determinism.
186 static bool sinkInstruction(
187     Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
188     const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
189     DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
190   // Compute the set of blocks in loop L which contain a use of I.
191   SmallPtrSet<BasicBlock *, 2> BBs;
192   for (auto &U : I.uses()) {
193     Instruction *UI = cast<Instruction>(U.getUser());
194 
195     // We cannot sink I if it has uses outside of the loop.
196     if (!L.contains(LI.getLoopFor(UI->getParent())))
197       return false;
198 
199     if (!isa<PHINode>(UI)) {
200       BBs.insert(UI->getParent());
201       continue;
202     }
203 
204     // We cannot sink I to PHI-uses, try to look through PHI to find the incoming
205     // block of the value being used.
206     PHINode *PN = dyn_cast<PHINode>(UI);
207     BasicBlock *PhiBB = PN->getIncomingBlock(U);
208 
209     // If value's incoming block is from loop preheader directly, there's no
210     // place to sink to, bailout.
211     if (L.getLoopPreheader() == PhiBB)
212       return false;
213 
214     BBs.insert(PhiBB);
215   }
216 
217   // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
218   // BBs.size() to avoid expensive computation.
219   // FIXME: Handle code size growth for min_size and opt_size.
220   if (BBs.size() > MaxNumberOfUseBBsForSinking)
221     return false;
222 
223   // Find the set of BBs that we should insert a copy of I.
224   SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
225       findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
226   if (BBsToSinkInto.empty())
227     return false;
228 
229   // Return if any of the candidate blocks to sink into is non-cold.
230   if (BBsToSinkInto.size() > 1 &&
231       !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber))
232     return false;
233 
234   // Copy the final BBs into a vector and sort them using the total ordering
235   // of the loop block numbers as iterating the set doesn't give a useful
236   // order. No need to stable sort as the block numbers are a total ordering.
237   SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
238   llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
239   if (SortedBBsToSinkInto.size() > 1) {
240     llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
241       return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
242     });
243   }
244 
245   BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
246   // FIXME: Optimize the efficiency for cloned value replacement. The current
247   //        implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
248   for (BasicBlock *N : ArrayRef(SortedBBsToSinkInto).drop_front(1)) {
249     assert(LoopBlockNumber.find(N)->second >
250                LoopBlockNumber.find(MoveBB)->second &&
251            "BBs not sorted!");
252     // Clone I and replace its uses.
253     Instruction *IC = I.clone();
254     IC->setName(I.getName());
255     IC->insertBefore(N->getFirstInsertionPt());
256 
257     if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
258       // Create a new MemoryAccess and let MemorySSA set its defining access.
259       MemoryAccess *NewMemAcc =
260           MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
261       if (NewMemAcc) {
262         if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
263           MSSAU->insertDef(MemDef, /*RenameUses=*/true);
264         else {
265           auto *MemUse = cast<MemoryUse>(NewMemAcc);
266           MSSAU->insertUse(MemUse, /*RenameUses=*/true);
267         }
268       }
269     }
270 
271     // Replaces uses of I with IC in N, except PHI-use which is being taken
272     // care of by defs in PHI's incoming blocks.
273     I.replaceUsesWithIf(IC, [N](Use &U) {
274       Instruction *UIToReplace = cast<Instruction>(U.getUser());
275       return UIToReplace->getParent() == N && !isa<PHINode>(UIToReplace);
276     });
277     // Replaces uses of I with IC in blocks dominated by N
278     replaceDominatedUsesWith(&I, IC, DT, N);
279     LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
280                       << '\n');
281     NumLoopSunkCloned++;
282   }
283   LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
284   NumLoopSunk++;
285   I.moveBefore(MoveBB->getFirstInsertionPt());
286 
287   if (MSSAU)
288     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
289             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
290       MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
291 
292   return true;
293 }
294 
295 /// Sinks instructions from loop's preheader to the loop body if the
296 /// sum frequency of inserted copy is smaller than preheader's frequency.
297 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
298                                           DominatorTree &DT,
299                                           BlockFrequencyInfo &BFI,
300                                           MemorySSA &MSSA,
301                                           ScalarEvolution *SE) {
302   BasicBlock *Preheader = L.getLoopPreheader();
303   assert(Preheader && "Expected loop to have preheader");
304 
305   assert(Preheader->getParent()->hasProfileData() &&
306          "Unexpected call when profile data unavailable.");
307 
308   const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
309   // If there are no basic blocks with lower frequency than the preheader then
310   // we can avoid the detailed analysis as we will never find profitable sinking
311   // opportunities.
312   if (all_of(L.blocks(), [&](const BasicBlock *BB) {
313         return BFI.getBlockFreq(BB) > PreheaderFreq;
314       }))
315     return false;
316 
317   MemorySSAUpdater MSSAU(&MSSA);
318   SinkAndHoistLICMFlags LICMFlags(/*IsSink=*/true, L, MSSA);
319 
320   bool Changed = false;
321 
322   // Sort loop's basic blocks by frequency
323   SmallVector<BasicBlock *, 10> ColdLoopBBs;
324   SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
325   int i = 0;
326   for (BasicBlock *B : L.blocks())
327     if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
328       ColdLoopBBs.push_back(B);
329       LoopBlockNumber[B] = ++i;
330     }
331   llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
332     return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
333   });
334 
335   // Traverse preheader's instructions in reverse order because if A depends
336   // on B (A appears after B), A needs to be sunk first before B can be
337   // sinked.
338   for (Instruction &I : llvm::make_early_inc_range(llvm::reverse(*Preheader))) {
339     if (isa<PHINode>(&I))
340       continue;
341     // No need to check for instruction's operands are loop invariant.
342     assert(L.hasLoopInvariantOperands(&I) &&
343            "Insts in a loop's preheader should have loop invariant operands!");
344     if (!canSinkOrHoistInst(I, &AA, &DT, &L, MSSAU, false, LICMFlags))
345       continue;
346     if (sinkInstruction(L, I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
347                         &MSSAU)) {
348       Changed = true;
349       if (SE)
350         SE->forgetBlockAndLoopDispositions(&I);
351     }
352   }
353 
354   return Changed;
355 }
356 
357 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
358   // Enable LoopSink only when runtime profile is available.
359   // With static profile, the sinking decision may be sub-optimal.
360   if (!F.hasProfileData())
361     return PreservedAnalyses::all();
362 
363   LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
364   // Nothing to do if there are no loops.
365   if (LI.empty())
366     return PreservedAnalyses::all();
367 
368   AAResults &AA = FAM.getResult<AAManager>(F);
369   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
370   BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
371   MemorySSA &MSSA = FAM.getResult<MemorySSAAnalysis>(F).getMSSA();
372 
373   // We want to do a postorder walk over the loops. Since loops are a tree this
374   // is equivalent to a reversed preorder walk and preorder is easy to compute
375   // without recursion. Since we reverse the preorder, we will visit siblings
376   // in reverse program order. This isn't expected to matter at all but is more
377   // consistent with sinking algorithms which generally work bottom-up.
378   SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
379 
380   bool Changed = false;
381   do {
382     Loop &L = *PreorderLoops.pop_back_val();
383 
384     BasicBlock *Preheader = L.getLoopPreheader();
385     if (!Preheader)
386       continue;
387 
388     // Note that we don't pass SCEV here because it is only used to invalidate
389     // loops in SCEV and we don't preserve (or request) SCEV at all making that
390     // unnecessary.
391     Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI, MSSA,
392                                              /*ScalarEvolution*/ nullptr);
393   } while (!PreorderLoops.empty());
394 
395   if (!Changed)
396     return PreservedAnalyses::all();
397 
398   PreservedAnalyses PA;
399   PA.preserveSet<CFGAnalyses>();
400   PA.preserve<MemorySSAAnalysis>();
401 
402   if (VerifyMemorySSA)
403     MSSA.verifyMemorySSA();
404 
405   return PA;
406 }
407