xref: /llvm-project/llvm/lib/Transforms/Utils/LoopSimplify.cpp (revision 6292a808b3524d9ba6f4ce55bc5b9e547b088dd8)
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs several transformations to transform natural loops into a
10 // simpler form, which makes subsequent analyses and transformations simpler and
11 // more effective.
12 //
13 // Loop pre-header insertion guarantees that there is a single, non-critical
14 // entry edge from outside of the loop to the loop header.  This simplifies a
15 // number of analyses and transformations, such as LICM.
16 //
17 // Loop exit-block insertion guarantees that all exit blocks from the loop
18 // (blocks which are outside of the loop that have predecessors inside of the
19 // loop) only have predecessors from inside of the loop (and are thus dominated
20 // by the loop header).  This simplifies transformations such as store-sinking
21 // that are built into LICM.
22 //
23 // This pass also guarantees that loops will have exactly one backedge.
24 //
25 // Indirectbr instructions introduce several complications. If the loop
26 // contains or is entered by an indirectbr instruction, it may not be possible
27 // to transform the loop and make these guarantees. Client code should check
28 // that these conditions are true before relying on them.
29 //
30 // Similar complications arise from callbr instructions, particularly in
31 // asm-goto where blockaddress expressions are used.
32 //
33 // Note that the simplifycfg pass will clean up blocks which are split out but
34 // end up being unnecessary, so usage of this pass should not pessimize
35 // generated code.
36 //
37 // This pass obviously modifies the CFG, but updates loop information and
38 // dominator information.
39 //
40 //===----------------------------------------------------------------------===//
41 
42 #include "llvm/Transforms/Utils/LoopSimplify.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BranchProbabilityInfo.h"
50 #include "llvm/Analysis/GlobalsModRef.h"
51 #include "llvm/Analysis/InstructionSimplify.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/MemorySSA.h"
54 #include "llvm/Analysis/MemorySSAUpdater.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
57 #include "llvm/IR/CFG.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/LoopUtils.h"
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-simplify"
74 
75 STATISTIC(NumNested  , "Number of nested loops split out");
76 
77 // If the block isn't already, move the new block to right after some 'outside
78 // block' block.  This prevents the preheader from being placed inside the loop
79 // body, e.g. when the loop hasn't been rotated.
80 static void placeSplitBlockCarefully(BasicBlock *NewBB,
81                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
82                                      Loop *L) {
83   // Check to see if NewBB is already well placed.
84   Function::iterator BBI = --NewBB->getIterator();
85   if (llvm::is_contained(SplitPreds, &*BBI))
86     return;
87 
88   // If it isn't already after an outside block, move it after one.  This is
89   // always good as it makes the uncond branch from the outside block into a
90   // fall-through.
91 
92   // Figure out *which* outside block to put this after.  Prefer an outside
93   // block that neighbors a BB actually in the loop.
94   BasicBlock *FoundBB = nullptr;
95   for (BasicBlock *Pred : SplitPreds) {
96     Function::iterator BBI = Pred->getIterator();
97     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
98       FoundBB = Pred;
99       break;
100     }
101   }
102 
103   // If our heuristic for a *good* bb to place this after doesn't find
104   // anything, just pick something.  It's likely better than leaving it within
105   // the loop.
106   if (!FoundBB)
107     FoundBB = SplitPreds[0];
108   NewBB->moveAfter(FoundBB);
109 }
110 
111 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
112 /// preheader, this method is called to insert one.  This method has two phases:
113 /// preheader insertion and analysis updating.
114 ///
115 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
116                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
117                                          bool PreserveLCSSA) {
118   BasicBlock *Header = L->getHeader();
119 
120   // Compute the set of predecessors of the loop that are not in the loop.
121   SmallVector<BasicBlock*, 8> OutsideBlocks;
122   for (BasicBlock *P : predecessors(Header)) {
123     if (!L->contains(P)) {         // Coming in from outside the loop?
124       // If the loop is branched to from an indirect terminator, we won't
125       // be able to fully transform the loop, because it prohibits
126       // edge splitting.
127       if (isa<IndirectBrInst>(P->getTerminator()))
128         return nullptr;
129 
130       // Keep track of it.
131       OutsideBlocks.push_back(P);
132     }
133   }
134 
135   // Split out the loop pre-header.
136   BasicBlock *PreheaderBB;
137   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
138                                        LI, MSSAU, PreserveLCSSA);
139   if (!PreheaderBB)
140     return nullptr;
141 
142   LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
143                     << PreheaderBB->getName() << "\n");
144 
145   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
146   // code layout too horribly.
147   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
148 
149   return PreheaderBB;
150 }
151 
152 /// Add the specified block, and all of its predecessors, to the specified set,
153 /// if it's not already in there.  Stop predecessor traversal when we reach
154 /// StopBlock.
155 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
156                                   SmallPtrSetImpl<BasicBlock *> &Blocks) {
157   SmallVector<BasicBlock *, 8> Worklist;
158   Worklist.push_back(InputBB);
159   do {
160     BasicBlock *BB = Worklist.pop_back_val();
161     if (Blocks.insert(BB).second && BB != StopBlock)
162       // If BB is not already processed and it is not a stop block then
163       // insert its predecessor in the work list
164       append_range(Worklist, predecessors(BB));
165   } while (!Worklist.empty());
166 }
167 
168 /// The first part of loop-nestification is to find a PHI node that tells
169 /// us how to partition the loops.
170 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
171                                         AssumptionCache *AC) {
172   const DataLayout &DL = L->getHeader()->getDataLayout();
173   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
174     PHINode *PN = cast<PHINode>(I);
175     ++I;
176     if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) {
177       // This is a degenerate PHI already, don't modify it!
178       PN->replaceAllUsesWith(V);
179       PN->eraseFromParent();
180       continue;
181     }
182 
183     // Scan this PHI node looking for a use of the PHI node by itself.
184     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
185       if (PN->getIncomingValue(i) == PN &&
186           L->contains(PN->getIncomingBlock(i)))
187         // We found something tasty to remove.
188         return PN;
189   }
190   return nullptr;
191 }
192 
193 /// If this loop has multiple backedges, try to pull one of them out into
194 /// a nested loop.
195 ///
196 /// This is important for code that looks like
197 /// this:
198 ///
199 ///  Loop:
200 ///     ...
201 ///     br cond, Loop, Next
202 ///     ...
203 ///     br cond2, Loop, Out
204 ///
205 /// To identify this common case, we look at the PHI nodes in the header of the
206 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
207 /// that change in the "outer" loop, but not in the "inner" loop.
208 ///
209 /// If we are able to separate out a loop, return the new outer loop that was
210 /// created.
211 ///
212 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
213                                 DominatorTree *DT, LoopInfo *LI,
214                                 ScalarEvolution *SE, bool PreserveLCSSA,
215                                 AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
216   // Don't try to separate loops without a preheader.
217   if (!Preheader)
218     return nullptr;
219 
220   // Treat the presence of convergent functions conservatively. The
221   // transformation is invalid if calls to certain convergent
222   // functions (like an AMDGPU barrier) get included in the resulting
223   // inner loop. But blocks meant for the inner loop will be
224   // identified later at a point where it's too late to abort the
225   // transformation. Also, the convergent attribute is not really
226   // sufficient to express the semantics of functions that are
227   // affected by this transformation. So we choose to back off if such
228   // a function call is present until a better alternative becomes
229   // available. This is similar to the conservative treatment of
230   // convergent function calls in GVNHoist and JumpThreading.
231   for (auto *BB : L->blocks()) {
232     for (auto &II : *BB) {
233       if (auto CI = dyn_cast<CallBase>(&II)) {
234         if (CI->isConvergent()) {
235           return nullptr;
236         }
237       }
238     }
239   }
240 
241   // The header is not a landing pad; preheader insertion should ensure this.
242   BasicBlock *Header = L->getHeader();
243   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
244 
245   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
246   if (!PN) return nullptr;  // No known way to partition.
247 
248   // Pull out all predecessors that have varying values in the loop.  This
249   // handles the case when a PHI node has multiple instances of itself as
250   // arguments.
251   SmallVector<BasicBlock*, 8> OuterLoopPreds;
252   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
253     if (PN->getIncomingValue(i) != PN ||
254         !L->contains(PN->getIncomingBlock(i))) {
255       // We can't split indirect control flow edges.
256       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
257         return nullptr;
258       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
259     }
260   }
261   LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
262 
263   // If ScalarEvolution is around and knows anything about values in
264   // this loop, tell it to forget them, because we're about to
265   // substantially change it.
266   if (SE)
267     SE->forgetLoop(L);
268 
269   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
270                                              DT, LI, MSSAU, PreserveLCSSA);
271 
272   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
273   // code layout too horribly.
274   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
275 
276   // Create the new outer loop.
277   Loop *NewOuter = LI->AllocateLoop();
278 
279   // Change the parent loop to use the outer loop as its child now.
280   if (Loop *Parent = L->getParentLoop())
281     Parent->replaceChildLoopWith(L, NewOuter);
282   else
283     LI->changeTopLevelLoop(L, NewOuter);
284 
285   // L is now a subloop of our outer loop.
286   NewOuter->addChildLoop(L);
287 
288   for (BasicBlock *BB : L->blocks())
289     NewOuter->addBlockEntry(BB);
290 
291   // Now reset the header in L, which had been moved by
292   // SplitBlockPredecessors for the outer loop.
293   L->moveToHeader(Header);
294 
295   // Determine which blocks should stay in L and which should be moved out to
296   // the Outer loop now.
297   SmallPtrSet<BasicBlock *, 4> BlocksInL;
298   for (BasicBlock *P : predecessors(Header)) {
299     if (DT->dominates(Header, P))
300       addBlockAndPredsToSet(P, Header, BlocksInL);
301   }
302 
303   // Scan all of the loop children of L, moving them to OuterLoop if they are
304   // not part of the inner loop.
305   const std::vector<Loop*> &SubLoops = L->getSubLoops();
306   for (size_t I = 0; I != SubLoops.size(); )
307     if (BlocksInL.count(SubLoops[I]->getHeader()))
308       ++I;   // Loop remains in L
309     else
310       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
311 
312   SmallVector<BasicBlock *, 8> OuterLoopBlocks;
313   OuterLoopBlocks.push_back(NewBB);
314   // Now that we know which blocks are in L and which need to be moved to
315   // OuterLoop, move any blocks that need it.
316   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
317     BasicBlock *BB = L->getBlocks()[i];
318     if (!BlocksInL.count(BB)) {
319       // Move this block to the parent, updating the exit blocks sets
320       L->removeBlockFromLoop(BB);
321       if ((*LI)[BB] == L) {
322         LI->changeLoopFor(BB, NewOuter);
323         OuterLoopBlocks.push_back(BB);
324       }
325       --i;
326     }
327   }
328 
329   // Split edges to exit blocks from the inner loop, if they emerged in the
330   // process of separating the outer one.
331   formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
332 
333   if (PreserveLCSSA) {
334     // Fix LCSSA form for L. Some values, which previously were only used inside
335     // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
336     // in corresponding exit blocks.
337     // We don't need to form LCSSA recursively, because there cannot be uses
338     // inside a newly created loop of defs from inner loops as those would
339     // already be a use of an LCSSA phi node.
340     formLCSSA(*L, *DT, LI, SE);
341 
342     assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
343            "LCSSA is broken after separating nested loops!");
344   }
345 
346   return NewOuter;
347 }
348 
349 /// This method is called when the specified loop has more than one
350 /// backedge in it.
351 ///
352 /// If this occurs, revector all of these backedges to target a new basic block
353 /// and have that block branch to the loop header.  This ensures that loops
354 /// have exactly one backedge.
355 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
356                                              DominatorTree *DT, LoopInfo *LI,
357                                              MemorySSAUpdater *MSSAU) {
358   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
359 
360   // Get information about the loop
361   BasicBlock *Header = L->getHeader();
362   Function *F = Header->getParent();
363 
364   // Unique backedge insertion currently depends on having a preheader.
365   if (!Preheader)
366     return nullptr;
367 
368   // The header is not an EH pad; preheader insertion should ensure this.
369   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
370 
371   // Figure out which basic blocks contain back-edges to the loop header.
372   std::vector<BasicBlock*> BackedgeBlocks;
373   for (BasicBlock *P : predecessors(Header)) {
374     // Indirect edges cannot be split, so we must fail if we find one.
375     if (isa<IndirectBrInst>(P->getTerminator()))
376       return nullptr;
377 
378     if (P != Preheader) BackedgeBlocks.push_back(P);
379   }
380 
381   // Create and insert the new backedge block...
382   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
383                                            Header->getName() + ".backedge", F);
384   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
385   BETerminator->setDebugLoc(Header->getFirstNonPHIIt()->getDebugLoc());
386 
387   LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
388                     << BEBlock->getName() << "\n");
389 
390   // Move the new backedge block to right after the last backedge block.
391   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
392   F->splice(InsertPos, F, BEBlock->getIterator());
393 
394   // Now that the block has been inserted into the function, create PHI nodes in
395   // the backedge block which correspond to any PHI nodes in the header block.
396   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
397     PHINode *PN = cast<PHINode>(I);
398     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
399                                      PN->getName()+".be", BETerminator->getIterator());
400 
401     // Loop over the PHI node, moving all entries except the one for the
402     // preheader over to the new PHI node.
403     unsigned PreheaderIdx = ~0U;
404     bool HasUniqueIncomingValue = true;
405     Value *UniqueValue = nullptr;
406     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
407       BasicBlock *IBB = PN->getIncomingBlock(i);
408       Value *IV = PN->getIncomingValue(i);
409       if (IBB == Preheader) {
410         PreheaderIdx = i;
411       } else {
412         NewPN->addIncoming(IV, IBB);
413         if (HasUniqueIncomingValue) {
414           if (!UniqueValue)
415             UniqueValue = IV;
416           else if (UniqueValue != IV)
417             HasUniqueIncomingValue = false;
418         }
419       }
420     }
421 
422     // Delete all of the incoming values from the old PN except the preheader's
423     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
424     if (PreheaderIdx != 0) {
425       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
426       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
427     }
428     // Nuke all entries except the zero'th.
429     PN->removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
430                               /* DeletePHIIfEmpty */ false);
431 
432     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
433     PN->addIncoming(NewPN, BEBlock);
434 
435     // As an optimization, if all incoming values in the new PhiNode (which is a
436     // subset of the incoming values of the old PHI node) have the same value,
437     // eliminate the PHI Node.
438     if (HasUniqueIncomingValue) {
439       NewPN->replaceAllUsesWith(UniqueValue);
440       NewPN->eraseFromParent();
441     }
442   }
443 
444   // Now that all of the PHI nodes have been inserted and adjusted, modify the
445   // backedge blocks to jump to the BEBlock instead of the header.
446   // If one of the backedges has llvm.loop metadata attached, we remove
447   // it from the backedge and add it to BEBlock.
448   MDNode *LoopMD = nullptr;
449   for (BasicBlock *BB : BackedgeBlocks) {
450     Instruction *TI = BB->getTerminator();
451     if (!LoopMD)
452       LoopMD = TI->getMetadata(LLVMContext::MD_loop);
453     TI->setMetadata(LLVMContext::MD_loop, nullptr);
454     TI->replaceSuccessorWith(Header, BEBlock);
455   }
456   BEBlock->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD);
457 
458   //===--- Update all analyses which we must preserve now -----------------===//
459 
460   // Update Loop Information - we know that this block is now in the current
461   // loop and all parent loops.
462   L->addBasicBlockToLoop(BEBlock, *LI);
463 
464   // Update dominator information
465   DT->splitBlock(BEBlock);
466 
467   if (MSSAU)
468     MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
469                                                       BEBlock);
470 
471   return BEBlock;
472 }
473 
474 /// Simplify one loop and queue further loops for simplification.
475 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
476                             DominatorTree *DT, LoopInfo *LI,
477                             ScalarEvolution *SE, AssumptionCache *AC,
478                             MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
479   bool Changed = false;
480   if (MSSAU && VerifyMemorySSA)
481     MSSAU->getMemorySSA()->verifyMemorySSA();
482 
483 ReprocessLoop:
484 
485   // Check to see that no blocks (other than the header) in this loop have
486   // predecessors that are not in the loop.  This is not valid for natural
487   // loops, but can occur if the blocks are unreachable.  Since they are
488   // unreachable we can just shamelessly delete those CFG edges!
489   for (BasicBlock *BB : L->blocks()) {
490     if (BB == L->getHeader())
491       continue;
492 
493     SmallPtrSet<BasicBlock*, 4> BadPreds;
494     for (BasicBlock *P : predecessors(BB))
495       if (!L->contains(P))
496         BadPreds.insert(P);
497 
498     // Delete each unique out-of-loop (and thus dead) predecessor.
499     for (BasicBlock *P : BadPreds) {
500 
501       LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
502                         << P->getName() << "\n");
503 
504       // Zap the dead pred's terminator and replace it with unreachable.
505       Instruction *TI = P->getTerminator();
506       changeToUnreachable(TI, PreserveLCSSA,
507                           /*DTU=*/nullptr, MSSAU);
508       Changed = true;
509     }
510   }
511 
512   if (MSSAU && VerifyMemorySSA)
513     MSSAU->getMemorySSA()->verifyMemorySSA();
514 
515   // If there are exiting blocks with branches on undef, resolve the undef in
516   // the direction which will exit the loop. This will help simplify loop
517   // trip count computations.
518   SmallVector<BasicBlock*, 8> ExitingBlocks;
519   L->getExitingBlocks(ExitingBlocks);
520   for (BasicBlock *ExitingBlock : ExitingBlocks)
521     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
522       if (BI->isConditional()) {
523         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
524 
525           LLVM_DEBUG(dbgs()
526                      << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
527                      << ExitingBlock->getName() << "\n");
528 
529           BI->setCondition(ConstantInt::get(Cond->getType(),
530                                             !L->contains(BI->getSuccessor(0))));
531 
532           Changed = true;
533         }
534       }
535 
536   // Does the loop already have a preheader?  If so, don't insert one.
537   BasicBlock *Preheader = L->getLoopPreheader();
538   if (!Preheader) {
539     Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
540     if (Preheader)
541       Changed = true;
542   }
543 
544   // Next, check to make sure that all exit nodes of the loop only have
545   // predecessors that are inside of the loop.  This check guarantees that the
546   // loop preheader/header will dominate the exit blocks.  If the exit block has
547   // predecessors from outside of the loop, split the edge now.
548   if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
549     Changed = true;
550 
551   if (MSSAU && VerifyMemorySSA)
552     MSSAU->getMemorySSA()->verifyMemorySSA();
553 
554   // If the header has more than two predecessors at this point (from the
555   // preheader and from multiple backedges), we must adjust the loop.
556   BasicBlock *LoopLatch = L->getLoopLatch();
557   if (!LoopLatch) {
558     // If this is really a nested loop, rip it out into a child loop.  Don't do
559     // this for loops with a giant number of backedges, just factor them into a
560     // common backedge instead.
561     if (L->getNumBackEdges() < 8) {
562       if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
563                                             PreserveLCSSA, AC, MSSAU)) {
564         ++NumNested;
565         // Enqueue the outer loop as it should be processed next in our
566         // depth-first nest walk.
567         Worklist.push_back(OuterL);
568 
569         // This is a big restructuring change, reprocess the whole loop.
570         Changed = true;
571         // GCC doesn't tail recursion eliminate this.
572         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
573         goto ReprocessLoop;
574       }
575     }
576 
577     // If we either couldn't, or didn't want to, identify nesting of the loops,
578     // insert a new block that all backedges target, then make it jump to the
579     // loop header.
580     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
581     if (LoopLatch)
582       Changed = true;
583   }
584 
585   if (MSSAU && VerifyMemorySSA)
586     MSSAU->getMemorySSA()->verifyMemorySSA();
587 
588   const DataLayout &DL = L->getHeader()->getDataLayout();
589 
590   // Scan over the PHI nodes in the loop header.  Since they now have only two
591   // incoming values (the loop is canonicalized), we may have simplified the PHI
592   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
593   PHINode *PN;
594   for (BasicBlock::iterator I = L->getHeader()->begin();
595        (PN = dyn_cast<PHINode>(I++)); )
596     if (Value *V = simplifyInstruction(PN, {DL, nullptr, DT, AC})) {
597       if (SE) SE->forgetValue(PN);
598       if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
599         PN->replaceAllUsesWith(V);
600         PN->eraseFromParent();
601         Changed = true;
602       }
603     }
604 
605   // If this loop has multiple exits and the exits all go to the same
606   // block, attempt to merge the exits. This helps several passes, such
607   // as LoopRotation, which do not support loops with multiple exits.
608   // SimplifyCFG also does this (and this code uses the same utility
609   // function), however this code is loop-aware, where SimplifyCFG is
610   // not. That gives it the advantage of being able to hoist
611   // loop-invariant instructions out of the way to open up more
612   // opportunities, and the disadvantage of having the responsibility
613   // to preserve dominator information.
614   auto HasUniqueExitBlock = [&]() {
615     BasicBlock *UniqueExit = nullptr;
616     for (auto *ExitingBB : ExitingBlocks)
617       for (auto *SuccBB : successors(ExitingBB)) {
618         if (L->contains(SuccBB))
619           continue;
620 
621         if (!UniqueExit)
622           UniqueExit = SuccBB;
623         else if (UniqueExit != SuccBB)
624           return false;
625       }
626 
627     return true;
628   };
629   if (HasUniqueExitBlock()) {
630     for (BasicBlock *ExitingBlock : ExitingBlocks) {
631       if (!ExitingBlock->getSinglePredecessor()) continue;
632       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
633       if (!BI || !BI->isConditional()) continue;
634       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
635       if (!CI || CI->getParent() != ExitingBlock) continue;
636 
637       // Attempt to hoist out all instructions except for the
638       // comparison and the branch.
639       bool AllInvariant = true;
640       bool AnyInvariant = false;
641       for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
642         Instruction *Inst = &*I++;
643         if (Inst == CI)
644           continue;
645         if (!L->makeLoopInvariant(
646                 Inst, AnyInvariant,
647                 Preheader ? Preheader->getTerminator() : nullptr, MSSAU, SE)) {
648           AllInvariant = false;
649           break;
650         }
651       }
652       if (AnyInvariant)
653         Changed = true;
654       if (!AllInvariant) continue;
655 
656       // The block has now been cleared of all instructions except for
657       // a comparison and a conditional branch. SimplifyCFG may be able
658       // to fold it now.
659       if (!foldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU))
660         continue;
661 
662       // Success. The block is now dead, so remove it from the loop,
663       // update the dominator tree and delete it.
664       LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
665                         << ExitingBlock->getName() << "\n");
666 
667       assert(pred_empty(ExitingBlock));
668       Changed = true;
669       LI->removeBlock(ExitingBlock);
670 
671       DomTreeNode *Node = DT->getNode(ExitingBlock);
672       while (!Node->isLeaf()) {
673         DomTreeNode *Child = Node->back();
674         DT->changeImmediateDominator(Child, Node->getIDom());
675       }
676       DT->eraseNode(ExitingBlock);
677       if (MSSAU) {
678         SmallSetVector<BasicBlock *, 8> ExitBlockSet;
679         ExitBlockSet.insert(ExitingBlock);
680         MSSAU->removeBlocks(ExitBlockSet);
681       }
682 
683       BI->getSuccessor(0)->removePredecessor(
684           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
685       BI->getSuccessor(1)->removePredecessor(
686           ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
687       ExitingBlock->eraseFromParent();
688     }
689   }
690 
691   if (MSSAU && VerifyMemorySSA)
692     MSSAU->getMemorySSA()->verifyMemorySSA();
693 
694   return Changed;
695 }
696 
697 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
698                         ScalarEvolution *SE, AssumptionCache *AC,
699                         MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
700   bool Changed = false;
701 
702 #ifndef NDEBUG
703   // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
704   // form.
705   if (PreserveLCSSA) {
706     assert(DT && "DT not available.");
707     assert(LI && "LI not available.");
708     assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
709            "Requested to preserve LCSSA, but it's already broken.");
710   }
711 #endif
712 
713   // Worklist maintains our depth-first queue of loops in this nest to process.
714   SmallVector<Loop *, 4> Worklist;
715   Worklist.push_back(L);
716 
717   // Walk the worklist from front to back, pushing newly found sub loops onto
718   // the back. This will let us process loops from back to front in depth-first
719   // order. We can use this simple process because loops form a tree.
720   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
721     Loop *L2 = Worklist[Idx];
722     Worklist.append(L2->begin(), L2->end());
723   }
724 
725   while (!Worklist.empty())
726     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
727                                AC, MSSAU, PreserveLCSSA);
728 
729   // Changing exit conditions for blocks may affect exit counts of this loop and
730   // any of its parents, so we must invalidate the entire subtree if we've made
731   // any changes. Do this here rather than in simplifyOneLoop() as the top-most
732   // loop is going to be the same for all child loops.
733   if (Changed && SE)
734     SE->forgetTopmostLoop(L);
735 
736   return Changed;
737 }
738 
739 namespace {
740   struct LoopSimplify : public FunctionPass {
741     static char ID; // Pass identification, replacement for typeid
742     LoopSimplify() : FunctionPass(ID) {
743       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
744     }
745 
746     bool runOnFunction(Function &F) override;
747 
748     void getAnalysisUsage(AnalysisUsage &AU) const override {
749       AU.addRequired<AssumptionCacheTracker>();
750 
751       // We need loop information to identify the loops...
752       AU.addRequired<DominatorTreeWrapperPass>();
753       AU.addPreserved<DominatorTreeWrapperPass>();
754 
755       AU.addRequired<LoopInfoWrapperPass>();
756       AU.addPreserved<LoopInfoWrapperPass>();
757 
758       AU.addPreserved<BasicAAWrapperPass>();
759       AU.addPreserved<AAResultsWrapperPass>();
760       AU.addPreserved<GlobalsAAWrapperPass>();
761       AU.addPreserved<ScalarEvolutionWrapperPass>();
762       AU.addPreserved<SCEVAAWrapperPass>();
763       AU.addPreservedID(LCSSAID);
764       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
765       AU.addPreserved<BranchProbabilityInfoWrapperPass>();
766       AU.addPreserved<MemorySSAWrapperPass>();
767     }
768 
769     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
770     void verifyAnalysis() const override;
771   };
772 }
773 
774 char LoopSimplify::ID = 0;
775 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
776                 "Canonicalize natural loops", false, false)
777 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
778 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
779 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
780 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", "Canonicalize natural loops",
781                     false, false)
782 
783 // Publicly exposed interface to pass...
784 char &llvm::LoopSimplifyID = LoopSimplify::ID;
785 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
786 
787 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
788 /// it in any convenient order) inserting preheaders...
789 ///
790 bool LoopSimplify::runOnFunction(Function &F) {
791   bool Changed = false;
792   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
793   DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
794   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
795   ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
796   AssumptionCache *AC =
797       &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
798   MemorySSA *MSSA = nullptr;
799   std::unique_ptr<MemorySSAUpdater> MSSAU;
800   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
801   if (MSSAAnalysis) {
802     MSSA = &MSSAAnalysis->getMSSA();
803     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
804   }
805 
806   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
807 
808   // Simplify each loop nest in the function.
809   for (auto *L : *LI)
810     Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
811 
812 #ifndef NDEBUG
813   if (PreserveLCSSA) {
814     bool InLCSSA = all_of(
815         *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
816     assert(InLCSSA && "LCSSA is broken after loop-simplify.");
817   }
818 #endif
819   return Changed;
820 }
821 
822 PreservedAnalyses LoopSimplifyPass::run(Function &F,
823                                         FunctionAnalysisManager &AM) {
824   bool Changed = false;
825   LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
826   DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
827   ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
828   AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
829   auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
830   std::unique_ptr<MemorySSAUpdater> MSSAU;
831   if (MSSAAnalysis) {
832     auto *MSSA = &MSSAAnalysis->getMSSA();
833     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
834   }
835 
836 
837   // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
838   // after simplifying the loops. MemorySSA is preserved if it exists.
839   for (auto *L : *LI)
840     Changed |=
841         simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
842 
843   if (!Changed)
844     return PreservedAnalyses::all();
845 
846   PreservedAnalyses PA;
847   PA.preserve<DominatorTreeAnalysis>();
848   PA.preserve<LoopAnalysis>();
849   PA.preserve<ScalarEvolutionAnalysis>();
850   if (MSSAAnalysis)
851     PA.preserve<MemorySSAAnalysis>();
852   // BPI maps conditional terminators to probabilities, LoopSimplify can insert
853   // blocks, but it does so only by splitting existing blocks and edges. This
854   // results in the interesting property that all new terminators inserted are
855   // unconditional branches which do not appear in BPI. All deletions are
856   // handled via ValueHandle callbacks w/in BPI.
857   PA.preserve<BranchProbabilityAnalysis>();
858   return PA;
859 }
860 
861 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
862 // below.
863 #if 0
864 static void verifyLoop(Loop *L) {
865   // Verify subloops.
866   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
867     verifyLoop(*I);
868 
869   // It used to be possible to just assert L->isLoopSimplifyForm(), however
870   // with the introduction of indirectbr, there are now cases where it's
871   // not possible to transform a loop as necessary. We can at least check
872   // that there is an indirectbr near any time there's trouble.
873 
874   // Indirectbr can interfere with preheader and unique backedge insertion.
875   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
876     bool HasIndBrPred = false;
877     for (BasicBlock *Pred : predecessors(L->getHeader()))
878       if (isa<IndirectBrInst>(Pred->getTerminator())) {
879         HasIndBrPred = true;
880         break;
881       }
882     assert(HasIndBrPred &&
883            "LoopSimplify has no excuse for missing loop header info!");
884     (void)HasIndBrPred;
885   }
886 
887   // Indirectbr can interfere with exit block canonicalization.
888   if (!L->hasDedicatedExits()) {
889     bool HasIndBrExiting = false;
890     SmallVector<BasicBlock*, 8> ExitingBlocks;
891     L->getExitingBlocks(ExitingBlocks);
892     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
893       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
894         HasIndBrExiting = true;
895         break;
896       }
897     }
898 
899     assert(HasIndBrExiting &&
900            "LoopSimplify has no excuse for missing exit block info!");
901     (void)HasIndBrExiting;
902   }
903 }
904 #endif
905 
906 void LoopSimplify::verifyAnalysis() const {
907   // FIXME: This routine is being called mid-way through the loop pass manager
908   // as loop passes destroy this analysis. That's actually fine, but we have no
909   // way of expressing that here. Once all of the passes that destroy this are
910   // hoisted out of the loop pass manager we can add back verification here.
911 #if 0
912   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
913     verifyLoop(*I);
914 #endif
915 }
916