1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/StringSet.h" 21 #include "llvm/Analysis/DependenceAnalysis.h" 22 #include "llvm/Analysis/LoopCacheAnalysis.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/LoopNestAnalysis.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 27 #include "llvm/Analysis/ScalarEvolution.h" 28 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar/LoopPassManager.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopUtils.h" 46 #include <cassert> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "loop-interchange" 53 54 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 55 56 static cl::opt<int> LoopInterchangeCostThreshold( 57 "loop-interchange-threshold", cl::init(0), cl::Hidden, 58 cl::desc("Interchange if you gain more than this number")); 59 60 // Maximum number of load-stores that can be handled in the dependency matrix. 61 static cl::opt<unsigned int> MaxMemInstrCount( 62 "loop-interchange-max-meminstr-count", cl::init(64), cl::Hidden, 63 cl::desc( 64 "Maximum number of load-store instructions that should be handled " 65 "in the dependency matrix. Higher value may lead to more interchanges " 66 "at the cost of compile-time")); 67 68 namespace { 69 70 using LoopVector = SmallVector<Loop *, 8>; 71 72 // TODO: Check if we can use a sparse matrix here. 73 using CharMatrix = std::vector<std::vector<char>>; 74 75 } // end anonymous namespace 76 77 // Minimum loop depth supported. 78 static cl::opt<unsigned int> MinLoopNestDepth( 79 "loop-interchange-min-loop-nest-depth", cl::init(2), cl::Hidden, 80 cl::desc("Minimum depth of loop nest considered for the transform")); 81 82 // Maximum loop depth supported. 83 static cl::opt<unsigned int> MaxLoopNestDepth( 84 "loop-interchange-max-loop-nest-depth", cl::init(10), cl::Hidden, 85 cl::desc("Maximum depth of loop nest considered for the transform")); 86 87 #ifndef NDEBUG 88 static void printDepMatrix(CharMatrix &DepMatrix) { 89 for (auto &Row : DepMatrix) { 90 for (auto D : Row) 91 LLVM_DEBUG(dbgs() << D << " "); 92 LLVM_DEBUG(dbgs() << "\n"); 93 } 94 } 95 #endif 96 97 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 98 Loop *L, DependenceInfo *DI, 99 ScalarEvolution *SE, 100 OptimizationRemarkEmitter *ORE) { 101 using ValueVector = SmallVector<Value *, 16>; 102 103 ValueVector MemInstr; 104 105 // For each block. 106 for (BasicBlock *BB : L->blocks()) { 107 // Scan the BB and collect legal loads and stores. 108 for (Instruction &I : *BB) { 109 if (!isa<Instruction>(I)) 110 return false; 111 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 112 if (!Ld->isSimple()) 113 return false; 114 MemInstr.push_back(&I); 115 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 116 if (!St->isSimple()) 117 return false; 118 MemInstr.push_back(&I); 119 } 120 } 121 } 122 123 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 124 << " Loads and Stores to analyze\n"); 125 if (MemInstr.size() > MaxMemInstrCount) { 126 LLVM_DEBUG(dbgs() << "The transform doesn't support more than " 127 << MaxMemInstrCount << " load/stores in a loop\n"); 128 ORE->emit([&]() { 129 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedLoop", 130 L->getStartLoc(), L->getHeader()) 131 << "Number of loads/stores exceeded, the supported maximum " 132 "can be increased with option " 133 "-loop-interchange-maxmeminstr-count."; 134 }); 135 return false; 136 } 137 ValueVector::iterator I, IE, J, JE; 138 StringSet<> Seen; 139 140 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 141 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 142 std::vector<char> Dep; 143 Instruction *Src = cast<Instruction>(*I); 144 Instruction *Dst = cast<Instruction>(*J); 145 // Ignore Input dependencies. 146 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 147 continue; 148 // Track Output, Flow, and Anti dependencies. 149 if (auto D = DI->depends(Src, Dst, true)) { 150 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 151 // If the direction vector is negative, normalize it to 152 // make it non-negative. 153 if (D->normalize(SE)) 154 LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n"); 155 LLVM_DEBUG(StringRef DepType = 156 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 157 dbgs() << "Found " << DepType 158 << " dependency between Src and Dst\n" 159 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 160 unsigned Levels = D->getLevels(); 161 char Direction; 162 for (unsigned II = 1; II <= Levels; ++II) { 163 // `DVEntry::LE` is converted to `*`. This is because `LE` means `<` 164 // or `=`, for which we don't have an equivalent representation, so 165 // that the conservative approximation is necessary. The same goes for 166 // `DVEntry::GE`. 167 // TODO: Use of fine-grained expressions allows for more accurate 168 // analysis. 169 unsigned Dir = D->getDirection(II); 170 if (Dir == Dependence::DVEntry::LT) 171 Direction = '<'; 172 else if (Dir == Dependence::DVEntry::GT) 173 Direction = '>'; 174 else if (Dir == Dependence::DVEntry::EQ) 175 Direction = '='; 176 else 177 Direction = '*'; 178 Dep.push_back(Direction); 179 } 180 while (Dep.size() != Level) { 181 Dep.push_back('I'); 182 } 183 184 // Make sure we only add unique entries to the dependency matrix. 185 if (Seen.insert(StringRef(Dep.data(), Dep.size())).second) 186 DepMatrix.push_back(Dep); 187 } 188 } 189 } 190 191 return true; 192 } 193 194 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 195 // matrix by exchanging the two columns. 196 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 197 unsigned ToIndx) { 198 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 199 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 200 } 201 202 // After interchanging, check if the direction vector is valid. 203 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 204 // if the direction matrix, after the same permutation is applied to its 205 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 206 static bool isLexicographicallyPositive(std::vector<char> &DV) { 207 for (unsigned char Direction : DV) { 208 if (Direction == '<') 209 return true; 210 if (Direction == '>' || Direction == '*') 211 return false; 212 } 213 return true; 214 } 215 216 // Checks if it is legal to interchange 2 loops. 217 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 218 unsigned InnerLoopId, 219 unsigned OuterLoopId) { 220 unsigned NumRows = DepMatrix.size(); 221 std::vector<char> Cur; 222 // For each row check if it is valid to interchange. 223 for (unsigned Row = 0; Row < NumRows; ++Row) { 224 // Create temporary DepVector check its lexicographical order 225 // before and after swapping OuterLoop vs InnerLoop 226 Cur = DepMatrix[Row]; 227 if (!isLexicographicallyPositive(Cur)) 228 return false; 229 std::swap(Cur[InnerLoopId], Cur[OuterLoopId]); 230 if (!isLexicographicallyPositive(Cur)) 231 return false; 232 } 233 return true; 234 } 235 236 static void populateWorklist(Loop &L, LoopVector &LoopList) { 237 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 238 << L.getHeader()->getParent()->getName() << " Loop: %" 239 << L.getHeader()->getName() << '\n'); 240 assert(LoopList.empty() && "LoopList should initially be empty!"); 241 Loop *CurrentLoop = &L; 242 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 243 while (!Vec->empty()) { 244 // The current loop has multiple subloops in it hence it is not tightly 245 // nested. 246 // Discard all loops above it added into Worklist. 247 if (Vec->size() != 1) { 248 LoopList = {}; 249 return; 250 } 251 252 LoopList.push_back(CurrentLoop); 253 CurrentLoop = Vec->front(); 254 Vec = &CurrentLoop->getSubLoops(); 255 } 256 LoopList.push_back(CurrentLoop); 257 } 258 259 static bool hasSupportedLoopDepth(SmallVectorImpl<Loop *> &LoopList, 260 OptimizationRemarkEmitter &ORE) { 261 unsigned LoopNestDepth = LoopList.size(); 262 if (LoopNestDepth < MinLoopNestDepth || LoopNestDepth > MaxLoopNestDepth) { 263 LLVM_DEBUG(dbgs() << "Unsupported depth of loop nest " << LoopNestDepth 264 << ", the supported range is [" << MinLoopNestDepth 265 << ", " << MaxLoopNestDepth << "].\n"); 266 Loop **OuterLoop = LoopList.begin(); 267 ORE.emit([&]() { 268 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedLoopNestDepth", 269 (*OuterLoop)->getStartLoc(), 270 (*OuterLoop)->getHeader()) 271 << "Unsupported depth of loop nest, the supported range is [" 272 << std::to_string(MinLoopNestDepth) << ", " 273 << std::to_string(MaxLoopNestDepth) << "].\n"; 274 }); 275 return false; 276 } 277 return true; 278 } 279 namespace { 280 281 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 282 class LoopInterchangeLegality { 283 public: 284 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 285 OptimizationRemarkEmitter *ORE) 286 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 287 288 /// Check if the loops can be interchanged. 289 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 290 CharMatrix &DepMatrix); 291 292 /// Discover induction PHIs in the header of \p L. Induction 293 /// PHIs are added to \p Inductions. 294 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 295 296 /// Check if the loop structure is understood. We do not handle triangular 297 /// loops for now. 298 bool isLoopStructureUnderstood(); 299 300 bool currentLimitations(); 301 302 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 303 return OuterInnerReductions; 304 } 305 306 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 307 return InnerLoopInductions; 308 } 309 310 private: 311 bool tightlyNested(Loop *Outer, Loop *Inner); 312 bool containsUnsafeInstructions(BasicBlock *BB); 313 314 /// Discover induction and reduction PHIs in the header of \p L. Induction 315 /// PHIs are added to \p Inductions, reductions are added to 316 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 317 /// to be passed as \p InnerLoop. 318 bool findInductionAndReductions(Loop *L, 319 SmallVector<PHINode *, 8> &Inductions, 320 Loop *InnerLoop); 321 322 Loop *OuterLoop; 323 Loop *InnerLoop; 324 325 ScalarEvolution *SE; 326 327 /// Interface to emit optimization remarks. 328 OptimizationRemarkEmitter *ORE; 329 330 /// Set of reduction PHIs taking part of a reduction across the inner and 331 /// outer loop. 332 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 333 334 /// Set of inner loop induction PHIs 335 SmallVector<PHINode *, 8> InnerLoopInductions; 336 }; 337 338 /// LoopInterchangeProfitability checks if it is profitable to interchange the 339 /// loop. 340 class LoopInterchangeProfitability { 341 public: 342 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 343 OptimizationRemarkEmitter *ORE) 344 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 345 346 /// Check if the loop interchange is profitable. 347 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, 348 unsigned InnerLoopId, unsigned OuterLoopId, 349 CharMatrix &DepMatrix, 350 const DenseMap<const Loop *, unsigned> &CostMap, 351 std::unique_ptr<CacheCost> &CC); 352 353 private: 354 int getInstrOrderCost(); 355 std::optional<bool> isProfitablePerLoopCacheAnalysis( 356 const DenseMap<const Loop *, unsigned> &CostMap, 357 std::unique_ptr<CacheCost> &CC); 358 std::optional<bool> isProfitablePerInstrOrderCost(); 359 std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId, 360 unsigned OuterLoopId, 361 CharMatrix &DepMatrix); 362 Loop *OuterLoop; 363 Loop *InnerLoop; 364 365 /// Scev analysis. 366 ScalarEvolution *SE; 367 368 /// Interface to emit optimization remarks. 369 OptimizationRemarkEmitter *ORE; 370 }; 371 372 /// LoopInterchangeTransform interchanges the loop. 373 class LoopInterchangeTransform { 374 public: 375 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 376 LoopInfo *LI, DominatorTree *DT, 377 const LoopInterchangeLegality &LIL) 378 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 379 380 /// Interchange OuterLoop and InnerLoop. 381 bool transform(); 382 void restructureLoops(Loop *NewInner, Loop *NewOuter, 383 BasicBlock *OrigInnerPreHeader, 384 BasicBlock *OrigOuterPreHeader); 385 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 386 387 private: 388 bool adjustLoopLinks(); 389 bool adjustLoopBranches(); 390 391 Loop *OuterLoop; 392 Loop *InnerLoop; 393 394 /// Scev analysis. 395 ScalarEvolution *SE; 396 397 LoopInfo *LI; 398 DominatorTree *DT; 399 400 const LoopInterchangeLegality &LIL; 401 }; 402 403 struct LoopInterchange { 404 ScalarEvolution *SE = nullptr; 405 LoopInfo *LI = nullptr; 406 DependenceInfo *DI = nullptr; 407 DominatorTree *DT = nullptr; 408 std::unique_ptr<CacheCost> CC = nullptr; 409 410 /// Interface to emit optimization remarks. 411 OptimizationRemarkEmitter *ORE; 412 413 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 414 DominatorTree *DT, std::unique_ptr<CacheCost> &CC, 415 OptimizationRemarkEmitter *ORE) 416 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} 417 418 bool run(Loop *L) { 419 if (L->getParentLoop()) 420 return false; 421 SmallVector<Loop *, 8> LoopList; 422 populateWorklist(*L, LoopList); 423 return processLoopList(LoopList); 424 } 425 426 bool run(LoopNest &LN) { 427 SmallVector<Loop *, 8> LoopList(LN.getLoops()); 428 for (unsigned I = 1; I < LoopList.size(); ++I) 429 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 430 return false; 431 return processLoopList(LoopList); 432 } 433 434 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 435 for (Loop *L : LoopList) { 436 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 437 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 438 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 439 return false; 440 } 441 if (L->getNumBackEdges() != 1) { 442 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 443 return false; 444 } 445 if (!L->getExitingBlock()) { 446 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 447 return false; 448 } 449 } 450 return true; 451 } 452 453 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 454 // TODO: Add a better heuristic to select the loop to be interchanged based 455 // on the dependence matrix. Currently we select the innermost loop. 456 return LoopList.size() - 1; 457 } 458 459 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) { 460 bool Changed = false; 461 462 // Ensure proper loop nest depth. 463 assert(hasSupportedLoopDepth(LoopList, *ORE) && 464 "Unsupported depth of loop nest."); 465 466 unsigned LoopNestDepth = LoopList.size(); 467 if (!isComputableLoopNest(LoopList)) { 468 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 469 return false; 470 } 471 472 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 473 << "\n"); 474 475 CharMatrix DependencyMatrix; 476 Loop *OuterMostLoop = *(LoopList.begin()); 477 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 478 OuterMostLoop, DI, SE, ORE)) { 479 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 480 return false; 481 } 482 483 LLVM_DEBUG(dbgs() << "Dependency matrix before interchange:\n"; 484 printDepMatrix(DependencyMatrix)); 485 486 // Get the Outermost loop exit. 487 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 488 if (!LoopNestExit) { 489 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 490 return false; 491 } 492 493 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 494 // Obtain the loop vector returned from loop cache analysis beforehand, 495 // and put each <Loop, index> pair into a map for constant time query 496 // later. Indices in loop vector reprsent the optimal order of the 497 // corresponding loop, e.g., given a loopnest with depth N, index 0 498 // indicates the loop should be placed as the outermost loop and index N 499 // indicates the loop should be placed as the innermost loop. 500 // 501 // For the old pass manager CacheCost would be null. 502 DenseMap<const Loop *, unsigned> CostMap; 503 if (CC != nullptr) { 504 const auto &LoopCosts = CC->getLoopCosts(); 505 for (unsigned i = 0; i < LoopCosts.size(); i++) { 506 CostMap[LoopCosts[i].first] = i; 507 } 508 } 509 // We try to achieve the globally optimal memory access for the loopnest, 510 // and do interchange based on a bubble-sort fasion. We start from 511 // the innermost loop, move it outwards to the best possible position 512 // and repeat this process. 513 for (unsigned j = SelecLoopId; j > 0; j--) { 514 bool ChangedPerIter = false; 515 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { 516 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 517 DependencyMatrix, CostMap); 518 if (!Interchanged) 519 continue; 520 // Loops interchanged, update LoopList accordingly. 521 std::swap(LoopList[i - 1], LoopList[i]); 522 // Update the DependencyMatrix 523 interChangeDependencies(DependencyMatrix, i, i - 1); 524 525 LLVM_DEBUG(dbgs() << "Dependency matrix after interchange:\n"; 526 printDepMatrix(DependencyMatrix)); 527 528 ChangedPerIter |= Interchanged; 529 Changed |= Interchanged; 530 } 531 // Early abort if there was no interchange during an entire round of 532 // moving loops outwards. 533 if (!ChangedPerIter) 534 break; 535 } 536 return Changed; 537 } 538 539 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 540 unsigned OuterLoopId, 541 std::vector<std::vector<char>> &DependencyMatrix, 542 const DenseMap<const Loop *, unsigned> &CostMap) { 543 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 544 << " and OuterLoopId = " << OuterLoopId << "\n"); 545 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 546 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 547 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 548 return false; 549 } 550 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 551 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 552 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, 553 DependencyMatrix, CostMap, CC)) { 554 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 555 return false; 556 } 557 558 ORE->emit([&]() { 559 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 560 InnerLoop->getStartLoc(), 561 InnerLoop->getHeader()) 562 << "Loop interchanged with enclosing loop."; 563 }); 564 565 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 566 LIT.transform(); 567 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 568 LoopsInterchanged++; 569 570 llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE); 571 return true; 572 } 573 }; 574 575 } // end anonymous namespace 576 577 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 578 return any_of(*BB, [](const Instruction &I) { 579 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 580 }); 581 } 582 583 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 584 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 585 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 586 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 587 588 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 589 590 // A perfectly nested loop will not have any branch in between the outer and 591 // inner block i.e. outer header will branch to either inner preheader and 592 // outerloop latch. 593 BranchInst *OuterLoopHeaderBI = 594 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 595 if (!OuterLoopHeaderBI) 596 return false; 597 598 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 599 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 600 Succ != OuterLoopLatch) 601 return false; 602 603 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 604 // We do not have any basic block in between now make sure the outer header 605 // and outer loop latch doesn't contain any unsafe instructions. 606 if (containsUnsafeInstructions(OuterLoopHeader) || 607 containsUnsafeInstructions(OuterLoopLatch)) 608 return false; 609 610 // Also make sure the inner loop preheader does not contain any unsafe 611 // instructions. Note that all instructions in the preheader will be moved to 612 // the outer loop header when interchanging. 613 if (InnerLoopPreHeader != OuterLoopHeader && 614 containsUnsafeInstructions(InnerLoopPreHeader)) 615 return false; 616 617 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 618 // Ensure the inner loop exit block flows to the outer loop latch possibly 619 // through empty blocks. 620 const BasicBlock &SuccInner = 621 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 622 if (&SuccInner != OuterLoopLatch) { 623 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 624 << " does not lead to the outer loop latch.\n";); 625 return false; 626 } 627 // The inner loop exit block does flow to the outer loop latch and not some 628 // other BBs, now make sure it contains safe instructions, since it will be 629 // moved into the (new) inner loop after interchange. 630 if (containsUnsafeInstructions(InnerLoopExit)) 631 return false; 632 633 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 634 // We have a perfect loop nest. 635 return true; 636 } 637 638 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 639 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 640 for (PHINode *InnerInduction : InnerLoopInductions) { 641 unsigned Num = InnerInduction->getNumOperands(); 642 for (unsigned i = 0; i < Num; ++i) { 643 Value *Val = InnerInduction->getOperand(i); 644 if (isa<Constant>(Val)) 645 continue; 646 Instruction *I = dyn_cast<Instruction>(Val); 647 if (!I) 648 return false; 649 // TODO: Handle triangular loops. 650 // e.g. for(int i=0;i<N;i++) 651 // for(int j=i;j<N;j++) 652 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 653 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 654 InnerLoopPreheader && 655 !OuterLoop->isLoopInvariant(I)) { 656 return false; 657 } 658 } 659 } 660 661 // TODO: Handle triangular loops of another form. 662 // e.g. for(int i=0;i<N;i++) 663 // for(int j=0;j<i;j++) 664 // or, 665 // for(int i=0;i<N;i++) 666 // for(int j=0;j*i<N;j++) 667 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 668 BranchInst *InnerLoopLatchBI = 669 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 670 if (!InnerLoopLatchBI->isConditional()) 671 return false; 672 if (CmpInst *InnerLoopCmp = 673 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 674 Value *Op0 = InnerLoopCmp->getOperand(0); 675 Value *Op1 = InnerLoopCmp->getOperand(1); 676 677 // LHS and RHS of the inner loop exit condition, e.g., 678 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 679 Value *Left = nullptr; 680 Value *Right = nullptr; 681 682 // Check if V only involves inner loop induction variable. 683 // Return true if V is InnerInduction, or a cast from 684 // InnerInduction, or a binary operator that involves 685 // InnerInduction and a constant. 686 std::function<bool(Value *)> IsPathToInnerIndVar; 687 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 688 if (llvm::is_contained(InnerLoopInductions, V)) 689 return true; 690 if (isa<Constant>(V)) 691 return true; 692 const Instruction *I = dyn_cast<Instruction>(V); 693 if (!I) 694 return false; 695 if (isa<CastInst>(I)) 696 return IsPathToInnerIndVar(I->getOperand(0)); 697 if (isa<BinaryOperator>(I)) 698 return IsPathToInnerIndVar(I->getOperand(0)) && 699 IsPathToInnerIndVar(I->getOperand(1)); 700 return false; 701 }; 702 703 // In case of multiple inner loop indvars, it is okay if LHS and RHS 704 // are both inner indvar related variables. 705 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 706 return true; 707 708 // Otherwise we check if the cmp instruction compares an inner indvar 709 // related variable (Left) with a outer loop invariant (Right). 710 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 711 Left = Op0; 712 Right = Op1; 713 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 714 Left = Op1; 715 Right = Op0; 716 } 717 718 if (Left == nullptr) 719 return false; 720 721 const SCEV *S = SE->getSCEV(Right); 722 if (!SE->isLoopInvariant(S, OuterLoop)) 723 return false; 724 } 725 726 return true; 727 } 728 729 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 730 // value. 731 static Value *followLCSSA(Value *SV) { 732 PHINode *PHI = dyn_cast<PHINode>(SV); 733 if (!PHI) 734 return SV; 735 736 if (PHI->getNumIncomingValues() != 1) 737 return SV; 738 return followLCSSA(PHI->getIncomingValue(0)); 739 } 740 741 // Check V's users to see if it is involved in a reduction in L. 742 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 743 // Reduction variables cannot be constants. 744 if (isa<Constant>(V)) 745 return nullptr; 746 747 for (Value *User : V->users()) { 748 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 749 if (PHI->getNumIncomingValues() == 1) 750 continue; 751 RecurrenceDescriptor RD; 752 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 753 // Detect floating point reduction only when it can be reordered. 754 if (RD.getExactFPMathInst() != nullptr) 755 return nullptr; 756 return PHI; 757 } 758 return nullptr; 759 } 760 } 761 762 return nullptr; 763 } 764 765 bool LoopInterchangeLegality::findInductionAndReductions( 766 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 767 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 768 return false; 769 for (PHINode &PHI : L->getHeader()->phis()) { 770 InductionDescriptor ID; 771 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 772 Inductions.push_back(&PHI); 773 else { 774 // PHIs in inner loops need to be part of a reduction in the outer loop, 775 // discovered when checking the PHIs of the outer loop earlier. 776 if (!InnerLoop) { 777 if (!OuterInnerReductions.count(&PHI)) { 778 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 779 "across the outer loop.\n"); 780 return false; 781 } 782 } else { 783 assert(PHI.getNumIncomingValues() == 2 && 784 "Phis in loop header should have exactly 2 incoming values"); 785 // Check if we have a PHI node in the outer loop that has a reduction 786 // result from the inner loop as an incoming value. 787 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 788 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 789 if (!InnerRedPhi || 790 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 791 LLVM_DEBUG( 792 dbgs() 793 << "Failed to recognize PHI as an induction or reduction.\n"); 794 return false; 795 } 796 OuterInnerReductions.insert(&PHI); 797 OuterInnerReductions.insert(InnerRedPhi); 798 } 799 } 800 } 801 return true; 802 } 803 804 // This function indicates the current limitations in the transform as a result 805 // of which we do not proceed. 806 bool LoopInterchangeLegality::currentLimitations() { 807 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 808 809 // transform currently expects the loop latches to also be the exiting 810 // blocks. 811 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 812 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 813 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 814 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 815 LLVM_DEBUG( 816 dbgs() << "Loops where the latch is not the exiting block are not" 817 << " supported currently.\n"); 818 ORE->emit([&]() { 819 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 820 OuterLoop->getStartLoc(), 821 OuterLoop->getHeader()) 822 << "Loops where the latch is not the exiting block cannot be" 823 " interchange currently."; 824 }); 825 return true; 826 } 827 828 SmallVector<PHINode *, 8> Inductions; 829 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 830 LLVM_DEBUG( 831 dbgs() << "Only outer loops with induction or reduction PHI nodes " 832 << "are supported currently.\n"); 833 ORE->emit([&]() { 834 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 835 OuterLoop->getStartLoc(), 836 OuterLoop->getHeader()) 837 << "Only outer loops with induction or reduction PHI nodes can be" 838 " interchanged currently."; 839 }); 840 return true; 841 } 842 843 Inductions.clear(); 844 // For multi-level loop nests, make sure that all phi nodes for inner loops 845 // at all levels can be recognized as a induction or reduction phi. Bail out 846 // if a phi node at a certain nesting level cannot be properly recognized. 847 Loop *CurLevelLoop = OuterLoop; 848 while (!CurLevelLoop->getSubLoops().empty()) { 849 // We already made sure that the loop nest is tightly nested. 850 CurLevelLoop = CurLevelLoop->getSubLoops().front(); 851 if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) { 852 LLVM_DEBUG( 853 dbgs() << "Only inner loops with induction or reduction PHI nodes " 854 << "are supported currently.\n"); 855 ORE->emit([&]() { 856 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 857 CurLevelLoop->getStartLoc(), 858 CurLevelLoop->getHeader()) 859 << "Only inner loops with induction or reduction PHI nodes can be" 860 " interchange currently."; 861 }); 862 return true; 863 } 864 } 865 866 // TODO: Triangular loops are not handled for now. 867 if (!isLoopStructureUnderstood()) { 868 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 869 ORE->emit([&]() { 870 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 871 InnerLoop->getStartLoc(), 872 InnerLoop->getHeader()) 873 << "Inner loop structure not understood currently."; 874 }); 875 return true; 876 } 877 878 return false; 879 } 880 881 bool LoopInterchangeLegality::findInductions( 882 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 883 for (PHINode &PHI : L->getHeader()->phis()) { 884 InductionDescriptor ID; 885 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 886 Inductions.push_back(&PHI); 887 } 888 return !Inductions.empty(); 889 } 890 891 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 892 // users are either reduction PHIs or PHIs outside the outer loop (which means 893 // the we are only interested in the final value after the loop). 894 static bool 895 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 896 SmallPtrSetImpl<PHINode *> &Reductions) { 897 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 898 for (PHINode &PHI : InnerExit->phis()) { 899 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 900 if (PHI.getNumIncomingValues() > 1) 901 return false; 902 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 903 PHINode *PN = dyn_cast<PHINode>(U); 904 return !PN || 905 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 906 })) { 907 return false; 908 } 909 } 910 return true; 911 } 912 913 // We currently support LCSSA PHI nodes in the outer loop exit, if their 914 // incoming values do not come from the outer loop latch or if the 915 // outer loop latch has a single predecessor. In that case, the value will 916 // be available if both the inner and outer loop conditions are true, which 917 // will still be true after interchanging. If we have multiple predecessor, 918 // that may not be the case, e.g. because the outer loop latch may be executed 919 // if the inner loop is not executed. 920 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 921 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 922 for (PHINode &PHI : LoopNestExit->phis()) { 923 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 924 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 925 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 926 continue; 927 928 // The incoming value is defined in the outer loop latch. Currently we 929 // only support that in case the outer loop latch has a single predecessor. 930 // This guarantees that the outer loop latch is executed if and only if 931 // the inner loop is executed (because tightlyNested() guarantees that the 932 // outer loop header only branches to the inner loop or the outer loop 933 // latch). 934 // FIXME: We could weaken this logic and allow multiple predecessors, 935 // if the values are produced outside the loop latch. We would need 936 // additional logic to update the PHI nodes in the exit block as 937 // well. 938 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 939 return false; 940 } 941 } 942 return true; 943 } 944 945 // In case of multi-level nested loops, it may occur that lcssa phis exist in 946 // the latch of InnerLoop, i.e., when defs of the incoming values are further 947 // inside the loopnest. Sometimes those incoming values are not available 948 // after interchange, since the original inner latch will become the new outer 949 // latch which may have predecessor paths that do not include those incoming 950 // values. 951 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 952 // multi-level loop nests. 953 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 954 if (InnerLoop->getSubLoops().empty()) 955 return true; 956 // If the original outer latch has only one predecessor, then values defined 957 // further inside the looploop, e.g., in the innermost loop, will be available 958 // at the new outer latch after interchange. 959 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 960 return true; 961 962 // The outer latch has more than one predecessors, i.e., the inner 963 // exit and the inner header. 964 // PHI nodes in the inner latch are lcssa phis where the incoming values 965 // are defined further inside the loopnest. Check if those phis are used 966 // in the original inner latch. If that is the case then bail out since 967 // those incoming values may not be available at the new outer latch. 968 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 969 for (PHINode &PHI : InnerLoopLatch->phis()) { 970 for (auto *U : PHI.users()) { 971 Instruction *UI = cast<Instruction>(U); 972 if (InnerLoopLatch == UI->getParent()) 973 return false; 974 } 975 } 976 return true; 977 } 978 979 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 980 unsigned OuterLoopId, 981 CharMatrix &DepMatrix) { 982 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 983 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 984 << " and OuterLoopId = " << OuterLoopId 985 << " due to dependence\n"); 986 ORE->emit([&]() { 987 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 988 InnerLoop->getStartLoc(), 989 InnerLoop->getHeader()) 990 << "Cannot interchange loops due to dependences."; 991 }); 992 return false; 993 } 994 // Check if outer and inner loop contain legal instructions only. 995 for (auto *BB : OuterLoop->blocks()) 996 for (Instruction &I : BB->instructionsWithoutDebug()) 997 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 998 // readnone functions do not prevent interchanging. 999 if (CI->onlyWritesMemory()) 1000 continue; 1001 LLVM_DEBUG( 1002 dbgs() << "Loops with call instructions cannot be interchanged " 1003 << "safely."); 1004 ORE->emit([&]() { 1005 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 1006 CI->getDebugLoc(), 1007 CI->getParent()) 1008 << "Cannot interchange loops due to call instruction."; 1009 }); 1010 1011 return false; 1012 } 1013 1014 if (!findInductions(InnerLoop, InnerLoopInductions)) { 1015 LLVM_DEBUG(dbgs() << "Could not find inner loop induction variables.\n"); 1016 return false; 1017 } 1018 1019 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 1020 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 1021 ORE->emit([&]() { 1022 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 1023 InnerLoop->getStartLoc(), 1024 InnerLoop->getHeader()) 1025 << "Cannot interchange loops because unsupported PHI nodes found " 1026 "in inner loop latch."; 1027 }); 1028 return false; 1029 } 1030 1031 // TODO: The loops could not be interchanged due to current limitations in the 1032 // transform module. 1033 if (currentLimitations()) { 1034 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1035 return false; 1036 } 1037 1038 // Check if the loops are tightly nested. 1039 if (!tightlyNested(OuterLoop, InnerLoop)) { 1040 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1041 ORE->emit([&]() { 1042 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1043 InnerLoop->getStartLoc(), 1044 InnerLoop->getHeader()) 1045 << "Cannot interchange loops because they are not tightly " 1046 "nested."; 1047 }); 1048 return false; 1049 } 1050 1051 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1052 OuterInnerReductions)) { 1053 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1054 ORE->emit([&]() { 1055 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1056 InnerLoop->getStartLoc(), 1057 InnerLoop->getHeader()) 1058 << "Found unsupported PHI node in loop exit."; 1059 }); 1060 return false; 1061 } 1062 1063 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1064 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1065 ORE->emit([&]() { 1066 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1067 OuterLoop->getStartLoc(), 1068 OuterLoop->getHeader()) 1069 << "Found unsupported PHI node in loop exit."; 1070 }); 1071 return false; 1072 } 1073 1074 return true; 1075 } 1076 1077 int LoopInterchangeProfitability::getInstrOrderCost() { 1078 unsigned GoodOrder, BadOrder; 1079 BadOrder = GoodOrder = 0; 1080 for (BasicBlock *BB : InnerLoop->blocks()) { 1081 for (Instruction &Ins : *BB) { 1082 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1083 unsigned NumOp = GEP->getNumOperands(); 1084 bool FoundInnerInduction = false; 1085 bool FoundOuterInduction = false; 1086 for (unsigned i = 0; i < NumOp; ++i) { 1087 // Skip operands that are not SCEV-able. 1088 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1089 continue; 1090 1091 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1092 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1093 if (!AR) 1094 continue; 1095 1096 // If we find the inner induction after an outer induction e.g. 1097 // for(int i=0;i<N;i++) 1098 // for(int j=0;j<N;j++) 1099 // A[i][j] = A[i-1][j-1]+k; 1100 // then it is a good order. 1101 if (AR->getLoop() == InnerLoop) { 1102 // We found an InnerLoop induction after OuterLoop induction. It is 1103 // a good order. 1104 FoundInnerInduction = true; 1105 if (FoundOuterInduction) { 1106 GoodOrder++; 1107 break; 1108 } 1109 } 1110 // If we find the outer induction after an inner induction e.g. 1111 // for(int i=0;i<N;i++) 1112 // for(int j=0;j<N;j++) 1113 // A[j][i] = A[j-1][i-1]+k; 1114 // then it is a bad order. 1115 if (AR->getLoop() == OuterLoop) { 1116 // We found an OuterLoop induction after InnerLoop induction. It is 1117 // a bad order. 1118 FoundOuterInduction = true; 1119 if (FoundInnerInduction) { 1120 BadOrder++; 1121 break; 1122 } 1123 } 1124 } 1125 } 1126 } 1127 } 1128 return GoodOrder - BadOrder; 1129 } 1130 1131 std::optional<bool> 1132 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis( 1133 const DenseMap<const Loop *, unsigned> &CostMap, 1134 std::unique_ptr<CacheCost> &CC) { 1135 // This is the new cost model returned from loop cache analysis. 1136 // A smaller index means the loop should be placed an outer loop, and vice 1137 // versa. 1138 if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) { 1139 unsigned InnerIndex = 0, OuterIndex = 0; 1140 InnerIndex = CostMap.find(InnerLoop)->second; 1141 OuterIndex = CostMap.find(OuterLoop)->second; 1142 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex 1143 << ", OuterIndex = " << OuterIndex << "\n"); 1144 if (InnerIndex < OuterIndex) 1145 return std::optional<bool>(true); 1146 assert(InnerIndex != OuterIndex && "CostMap should assign unique " 1147 "numbers to each loop"); 1148 if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop)) 1149 return std::nullopt; 1150 return std::optional<bool>(false); 1151 } 1152 return std::nullopt; 1153 } 1154 1155 std::optional<bool> 1156 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() { 1157 // Legacy cost model: this is rough cost estimation algorithm. It counts the 1158 // good and bad order of induction variables in the instruction and allows 1159 // reordering if number of bad orders is more than good. 1160 int Cost = getInstrOrderCost(); 1161 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1162 if (Cost < 0 && Cost < LoopInterchangeCostThreshold) 1163 return std::optional<bool>(true); 1164 1165 return std::nullopt; 1166 } 1167 1168 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization( 1169 unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { 1170 for (auto &Row : DepMatrix) { 1171 // If the inner loop is loop independent or doesn't carry any dependency 1172 // it is not profitable to move this to outer position, since we are 1173 // likely able to do inner loop vectorization already. 1174 if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=') 1175 return std::optional<bool>(false); 1176 1177 // If the outer loop is not loop independent it is not profitable to move 1178 // this to inner position, since doing so would not enable inner loop 1179 // parallelism. 1180 if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=') 1181 return std::optional<bool>(false); 1182 } 1183 // If inner loop has dependence and outer loop is loop independent then it 1184 // is/ profitable to interchange to enable inner loop parallelism. 1185 // If there are no dependences, interchanging will not improve anything. 1186 return std::optional<bool>(!DepMatrix.empty()); 1187 } 1188 1189 bool LoopInterchangeProfitability::isProfitable( 1190 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, 1191 unsigned OuterLoopId, CharMatrix &DepMatrix, 1192 const DenseMap<const Loop *, unsigned> &CostMap, 1193 std::unique_ptr<CacheCost> &CC) { 1194 // isProfitable() is structured to avoid endless loop interchange. 1195 // If loop cache analysis could decide the profitability then, 1196 // profitability check will stop and return the analysis result. 1197 // If cache analysis failed to analyze the loopnest (e.g., 1198 // due to delinearization issues) then only check whether it is 1199 // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to 1200 // analysis the profitability then only, isProfitableForVectorization 1201 // will decide. 1202 std::optional<bool> shouldInterchange = 1203 isProfitablePerLoopCacheAnalysis(CostMap, CC); 1204 if (!shouldInterchange.has_value()) { 1205 shouldInterchange = isProfitablePerInstrOrderCost(); 1206 if (!shouldInterchange.has_value()) 1207 shouldInterchange = 1208 isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix); 1209 } 1210 if (!shouldInterchange.has_value()) { 1211 ORE->emit([&]() { 1212 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1213 InnerLoop->getStartLoc(), 1214 InnerLoop->getHeader()) 1215 << "Insufficient information to calculate the cost of loop for " 1216 "interchange."; 1217 }); 1218 return false; 1219 } else if (!shouldInterchange.value()) { 1220 ORE->emit([&]() { 1221 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1222 InnerLoop->getStartLoc(), 1223 InnerLoop->getHeader()) 1224 << "Interchanging loops is not considered to improve cache " 1225 "locality nor vectorization."; 1226 }); 1227 return false; 1228 } 1229 return true; 1230 } 1231 1232 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1233 Loop *InnerLoop) { 1234 for (Loop *L : *OuterLoop) 1235 if (L == InnerLoop) { 1236 OuterLoop->removeChildLoop(L); 1237 return; 1238 } 1239 llvm_unreachable("Couldn't find loop"); 1240 } 1241 1242 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1243 /// new inner and outer loop after interchanging: NewInner is the original 1244 /// outer loop and NewOuter is the original inner loop. 1245 /// 1246 /// Before interchanging, we have the following structure 1247 /// Outer preheader 1248 // Outer header 1249 // Inner preheader 1250 // Inner header 1251 // Inner body 1252 // Inner latch 1253 // outer bbs 1254 // Outer latch 1255 // 1256 // After interchanging: 1257 // Inner preheader 1258 // Inner header 1259 // Outer preheader 1260 // Outer header 1261 // Inner body 1262 // outer bbs 1263 // Outer latch 1264 // Inner latch 1265 void LoopInterchangeTransform::restructureLoops( 1266 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1267 BasicBlock *OrigOuterPreHeader) { 1268 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1269 // The original inner loop preheader moves from the new inner loop to 1270 // the parent loop, if there is one. 1271 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1272 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1273 1274 // Switch the loop levels. 1275 if (OuterLoopParent) { 1276 // Remove the loop from its parent loop. 1277 removeChildLoop(OuterLoopParent, NewInner); 1278 removeChildLoop(NewInner, NewOuter); 1279 OuterLoopParent->addChildLoop(NewOuter); 1280 } else { 1281 removeChildLoop(NewInner, NewOuter); 1282 LI->changeTopLevelLoop(NewInner, NewOuter); 1283 } 1284 while (!NewOuter->isInnermost()) 1285 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1286 NewOuter->addChildLoop(NewInner); 1287 1288 // BBs from the original inner loop. 1289 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1290 1291 // Add BBs from the original outer loop to the original inner loop (excluding 1292 // BBs already in inner loop) 1293 for (BasicBlock *BB : NewInner->blocks()) 1294 if (LI->getLoopFor(BB) == NewInner) 1295 NewOuter->addBlockEntry(BB); 1296 1297 // Now remove inner loop header and latch from the new inner loop and move 1298 // other BBs (the loop body) to the new inner loop. 1299 BasicBlock *OuterHeader = NewOuter->getHeader(); 1300 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1301 for (BasicBlock *BB : OrigInnerBBs) { 1302 // Nothing will change for BBs in child loops. 1303 if (LI->getLoopFor(BB) != NewOuter) 1304 continue; 1305 // Remove the new outer loop header and latch from the new inner loop. 1306 if (BB == OuterHeader || BB == OuterLatch) 1307 NewInner->removeBlockFromLoop(BB); 1308 else 1309 LI->changeLoopFor(BB, NewInner); 1310 } 1311 1312 // The preheader of the original outer loop becomes part of the new 1313 // outer loop. 1314 NewOuter->addBlockEntry(OrigOuterPreHeader); 1315 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1316 1317 // Tell SE that we move the loops around. 1318 SE->forgetLoop(NewOuter); 1319 } 1320 1321 bool LoopInterchangeTransform::transform() { 1322 bool Transformed = false; 1323 1324 if (InnerLoop->getSubLoops().empty()) { 1325 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1326 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1327 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1328 if (InductionPHIs.empty()) { 1329 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1330 return false; 1331 } 1332 1333 SmallVector<Instruction *, 8> InnerIndexVarList; 1334 for (PHINode *CurInductionPHI : InductionPHIs) { 1335 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1336 InnerIndexVarList.push_back( 1337 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1338 else 1339 InnerIndexVarList.push_back( 1340 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1341 } 1342 1343 // Create a new latch block for the inner loop. We split at the 1344 // current latch's terminator and then move the condition and all 1345 // operands that are not either loop-invariant or the induction PHI into the 1346 // new latch block. 1347 BasicBlock *NewLatch = 1348 SplitBlock(InnerLoop->getLoopLatch(), 1349 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1350 1351 SmallSetVector<Instruction *, 4> WorkList; 1352 unsigned i = 0; 1353 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1354 for (; i < WorkList.size(); i++) { 1355 // Duplicate instruction and move it the new latch. Update uses that 1356 // have been moved. 1357 Instruction *NewI = WorkList[i]->clone(); 1358 NewI->insertBefore(NewLatch->getFirstNonPHIIt()); 1359 assert(!NewI->mayHaveSideEffects() && 1360 "Moving instructions with side-effects may change behavior of " 1361 "the loop nest!"); 1362 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1363 Instruction *UserI = cast<Instruction>(U.getUser()); 1364 if (!InnerLoop->contains(UserI->getParent()) || 1365 UserI->getParent() == NewLatch || 1366 llvm::is_contained(InductionPHIs, UserI)) 1367 U.set(NewI); 1368 } 1369 // Add operands of moved instruction to the worklist, except if they are 1370 // outside the inner loop or are the induction PHI. 1371 for (Value *Op : WorkList[i]->operands()) { 1372 Instruction *OpI = dyn_cast<Instruction>(Op); 1373 if (!OpI || 1374 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1375 llvm::is_contained(InductionPHIs, OpI)) 1376 continue; 1377 WorkList.insert(OpI); 1378 } 1379 } 1380 }; 1381 1382 // FIXME: Should we interchange when we have a constant condition? 1383 Instruction *CondI = dyn_cast<Instruction>( 1384 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1385 ->getCondition()); 1386 if (CondI) 1387 WorkList.insert(CondI); 1388 MoveInstructions(); 1389 for (Instruction *InnerIndexVar : InnerIndexVarList) 1390 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1391 MoveInstructions(); 1392 } 1393 1394 // Ensure the inner loop phi nodes have a separate basic block. 1395 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1396 if (&*InnerLoopHeader->getFirstNonPHIIt() != 1397 InnerLoopHeader->getTerminator()) { 1398 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHIIt(), DT, LI); 1399 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1400 } 1401 1402 // Instructions in the original inner loop preheader may depend on values 1403 // defined in the outer loop header. Move them there, because the original 1404 // inner loop preheader will become the entry into the interchanged loop nest. 1405 // Currently we move all instructions and rely on LICM to move invariant 1406 // instructions outside the loop nest. 1407 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1408 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1409 if (InnerLoopPreHeader != OuterLoopHeader) { 1410 SmallPtrSet<Instruction *, 4> NeedsMoving; 1411 for (Instruction &I : 1412 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1413 std::prev(InnerLoopPreHeader->end())))) 1414 I.moveBeforePreserving(OuterLoopHeader->getTerminator()->getIterator()); 1415 } 1416 1417 Transformed |= adjustLoopLinks(); 1418 if (!Transformed) { 1419 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1420 return false; 1421 } 1422 1423 return true; 1424 } 1425 1426 /// \brief Move all instructions except the terminator from FromBB right before 1427 /// InsertBefore 1428 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1429 BasicBlock *ToBB = InsertBefore->getParent(); 1430 1431 ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(), 1432 FromBB->getTerminator()->getIterator()); 1433 } 1434 1435 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1436 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1437 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1438 // from BB1 afterwards. 1439 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1440 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1441 for (Instruction *I : TempInstrs) 1442 I->removeFromParent(); 1443 1444 // Move instructions from BB2 to BB1. 1445 moveBBContents(BB2, BB1->getTerminator()); 1446 1447 // Move instructions from TempInstrs to BB2. 1448 for (Instruction *I : TempInstrs) 1449 I->insertBefore(BB2->getTerminator()->getIterator()); 1450 } 1451 1452 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1453 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1454 // \p OldBB is exactly once in BI's successor list. 1455 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1456 BasicBlock *NewBB, 1457 std::vector<DominatorTree::UpdateType> &DTUpdates, 1458 bool MustUpdateOnce = true) { 1459 assert((!MustUpdateOnce || 1460 llvm::count_if(successors(BI), 1461 [OldBB](BasicBlock *BB) { 1462 return BB == OldBB; 1463 }) == 1) && "BI must jump to OldBB exactly once."); 1464 bool Changed = false; 1465 for (Use &Op : BI->operands()) 1466 if (Op == OldBB) { 1467 Op.set(NewBB); 1468 Changed = true; 1469 } 1470 1471 if (Changed) { 1472 DTUpdates.push_back( 1473 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1474 DTUpdates.push_back( 1475 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1476 } 1477 assert(Changed && "Expected a successor to be updated"); 1478 } 1479 1480 // Move Lcssa PHIs to the right place. 1481 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1482 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1483 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1484 Loop *InnerLoop, LoopInfo *LI) { 1485 1486 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1487 // defined either in the header or latch. Those blocks will become header and 1488 // latch of the new outer loop, and the only possible users can PHI nodes 1489 // in the exit block of the loop nest or the outer loop header (reduction 1490 // PHIs, in that case, the incoming value must be defined in the inner loop 1491 // header). We can just substitute the user with the incoming value and remove 1492 // the PHI. 1493 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1494 assert(P.getNumIncomingValues() == 1 && 1495 "Only loops with a single exit are supported!"); 1496 1497 // Incoming values are guaranteed be instructions currently. 1498 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1499 // In case of multi-level nested loops, follow LCSSA to find the incoming 1500 // value defined from the innermost loop. 1501 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI)); 1502 // Skip phis with incoming values from the inner loop body, excluding the 1503 // header and latch. 1504 if (IncIInnerMost->getParent() != InnerLatch && 1505 IncIInnerMost->getParent() != InnerHeader) 1506 continue; 1507 1508 assert(all_of(P.users(), 1509 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1510 return (cast<PHINode>(U)->getParent() == OuterHeader && 1511 IncI->getParent() == InnerHeader) || 1512 cast<PHINode>(U)->getParent() == OuterExit; 1513 }) && 1514 "Can only replace phis iff the uses are in the loop nest exit or " 1515 "the incoming value is defined in the inner header (it will " 1516 "dominate all loop blocks after interchanging)"); 1517 P.replaceAllUsesWith(IncI); 1518 P.eraseFromParent(); 1519 } 1520 1521 SmallVector<PHINode *, 8> LcssaInnerExit; 1522 for (PHINode &P : InnerExit->phis()) 1523 LcssaInnerExit.push_back(&P); 1524 1525 SmallVector<PHINode *, 8> LcssaInnerLatch; 1526 for (PHINode &P : InnerLatch->phis()) 1527 LcssaInnerLatch.push_back(&P); 1528 1529 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1530 // If a PHI node has users outside of InnerExit, it has a use outside the 1531 // interchanged loop and we have to preserve it. We move these to 1532 // InnerLatch, which will become the new exit block for the innermost 1533 // loop after interchanging. 1534 for (PHINode *P : LcssaInnerExit) 1535 P->moveBefore(InnerLatch->getFirstNonPHIIt()); 1536 1537 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1538 // and we have to move them to the new inner latch. 1539 for (PHINode *P : LcssaInnerLatch) 1540 P->moveBefore(InnerExit->getFirstNonPHIIt()); 1541 1542 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1543 // incoming values defined in the outer loop, we have to add a new PHI 1544 // in the inner loop latch, which became the exit block of the outer loop, 1545 // after interchanging. 1546 if (OuterExit) { 1547 for (PHINode &P : OuterExit->phis()) { 1548 if (P.getNumIncomingValues() != 1) 1549 continue; 1550 // Skip Phis with incoming values defined in the inner loop. Those should 1551 // already have been updated. 1552 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1553 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1554 continue; 1555 1556 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1557 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1558 NewPhi->setIncomingBlock(0, OuterLatch); 1559 // We might have incoming edges from other BBs, i.e., the original outer 1560 // header. 1561 for (auto *Pred : predecessors(InnerLatch)) { 1562 if (Pred == OuterLatch) 1563 continue; 1564 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1565 } 1566 NewPhi->insertBefore(InnerLatch->getFirstNonPHIIt()); 1567 P.setIncomingValue(0, NewPhi); 1568 } 1569 } 1570 1571 // Now adjust the incoming blocks for the LCSSA PHIs. 1572 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1573 // with the new latch. 1574 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1575 } 1576 1577 bool LoopInterchangeTransform::adjustLoopBranches() { 1578 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1579 std::vector<DominatorTree::UpdateType> DTUpdates; 1580 1581 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1582 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1583 1584 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1585 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1586 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1587 // Ensure that both preheaders do not contain PHI nodes and have single 1588 // predecessors. This allows us to move them easily. We use 1589 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1590 // preheaders do not satisfy those conditions. 1591 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1592 !OuterLoopPreHeader->getUniquePredecessor()) 1593 OuterLoopPreHeader = 1594 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1595 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1596 InnerLoopPreHeader = 1597 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1598 1599 // Adjust the loop preheader 1600 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1601 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1602 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1603 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1604 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1605 BasicBlock *InnerLoopLatchPredecessor = 1606 InnerLoopLatch->getUniquePredecessor(); 1607 BasicBlock *InnerLoopLatchSuccessor; 1608 BasicBlock *OuterLoopLatchSuccessor; 1609 1610 BranchInst *OuterLoopLatchBI = 1611 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1612 BranchInst *InnerLoopLatchBI = 1613 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1614 BranchInst *OuterLoopHeaderBI = 1615 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1616 BranchInst *InnerLoopHeaderBI = 1617 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1618 1619 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1620 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1621 !InnerLoopHeaderBI) 1622 return false; 1623 1624 BranchInst *InnerLoopLatchPredecessorBI = 1625 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1626 BranchInst *OuterLoopPredecessorBI = 1627 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1628 1629 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1630 return false; 1631 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1632 if (!InnerLoopHeaderSuccessor) 1633 return false; 1634 1635 // Adjust Loop Preheader and headers. 1636 // The branches in the outer loop predecessor and the outer loop header can 1637 // be unconditional branches or conditional branches with duplicates. Consider 1638 // this when updating the successors. 1639 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1640 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1641 // The outer loop header might or might not branch to the outer latch. 1642 // We are guaranteed to branch to the inner loop preheader. 1643 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1644 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1645 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1646 DTUpdates, 1647 /*MustUpdateOnce=*/false); 1648 } 1649 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1650 InnerLoopHeaderSuccessor, DTUpdates, 1651 /*MustUpdateOnce=*/false); 1652 1653 // Adjust reduction PHI's now that the incoming block has changed. 1654 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1655 OuterLoopHeader); 1656 1657 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1658 OuterLoopPreHeader, DTUpdates); 1659 1660 // -------------Adjust loop latches----------- 1661 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1662 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1663 else 1664 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1665 1666 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1667 InnerLoopLatchSuccessor, DTUpdates); 1668 1669 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1670 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1671 else 1672 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1673 1674 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1675 OuterLoopLatchSuccessor, DTUpdates); 1676 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1677 DTUpdates); 1678 1679 DT->applyUpdates(DTUpdates); 1680 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1681 OuterLoopPreHeader); 1682 1683 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1684 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1685 InnerLoop, LI); 1686 // For PHIs in the exit block of the outer loop, outer's latch has been 1687 // replaced by Inners'. 1688 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1689 1690 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1691 // Now update the reduction PHIs in the inner and outer loop headers. 1692 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1693 for (PHINode &PHI : InnerLoopHeader->phis()) 1694 if (OuterInnerReductions.contains(&PHI)) 1695 InnerLoopPHIs.push_back(&PHI); 1696 1697 for (PHINode &PHI : OuterLoopHeader->phis()) 1698 if (OuterInnerReductions.contains(&PHI)) 1699 OuterLoopPHIs.push_back(&PHI); 1700 1701 // Now move the remaining reduction PHIs from outer to inner loop header and 1702 // vice versa. The PHI nodes must be part of a reduction across the inner and 1703 // outer loop and all the remains to do is and updating the incoming blocks. 1704 for (PHINode *PHI : OuterLoopPHIs) { 1705 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1706 PHI->moveBefore(InnerLoopHeader->getFirstNonPHIIt()); 1707 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1708 } 1709 for (PHINode *PHI : InnerLoopPHIs) { 1710 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1711 PHI->moveBefore(OuterLoopHeader->getFirstNonPHIIt()); 1712 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1713 } 1714 1715 // Update the incoming blocks for moved PHI nodes. 1716 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1717 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1718 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1719 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1720 1721 // Values defined in the outer loop header could be used in the inner loop 1722 // latch. In that case, we need to create LCSSA phis for them, because after 1723 // interchanging they will be defined in the new inner loop and used in the 1724 // new outer loop. 1725 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1726 for (Instruction &I : 1727 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1728 MayNeedLCSSAPhis.push_back(&I); 1729 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE); 1730 1731 return true; 1732 } 1733 1734 bool LoopInterchangeTransform::adjustLoopLinks() { 1735 // Adjust all branches in the inner and outer loop. 1736 bool Changed = adjustLoopBranches(); 1737 if (Changed) { 1738 // We have interchanged the preheaders so we need to interchange the data in 1739 // the preheaders as well. This is because the content of the inner 1740 // preheader was previously executed inside the outer loop. 1741 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1742 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1743 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1744 } 1745 return Changed; 1746 } 1747 1748 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1749 LoopAnalysisManager &AM, 1750 LoopStandardAnalysisResults &AR, 1751 LPMUpdater &U) { 1752 Function &F = *LN.getParent(); 1753 SmallVector<Loop *, 8> LoopList(LN.getLoops()); 1754 1755 if (MaxMemInstrCount < 1) { 1756 LLVM_DEBUG(dbgs() << "MaxMemInstrCount should be at least 1"); 1757 return PreservedAnalyses::all(); 1758 } 1759 OptimizationRemarkEmitter ORE(&F); 1760 1761 // Ensure minimum depth of the loop nest to do the interchange. 1762 if (!hasSupportedLoopDepth(LoopList, ORE)) 1763 return PreservedAnalyses::all(); 1764 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1765 std::unique_ptr<CacheCost> CC = 1766 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); 1767 1768 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) 1769 return PreservedAnalyses::all(); 1770 U.markLoopNestChanged(true); 1771 return getLoopPassPreservedAnalyses(); 1772 } 1773