1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form. In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 // memcmp, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 // fpowi
27 // Future integer operation idioms to recognize:
28 // ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set. It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/CmpInstAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/MemorySSA.h"
56 #include "llvm/Analysis/MemorySSAUpdater.h"
57 #include "llvm/Analysis/MustExecute.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugLoc.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/GlobalValue.h"
72 #include "llvm/IR/GlobalVariable.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/IR/ValueHandle.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/Pass.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/InstructionCost.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Transforms/Scalar.h"
95 #include "llvm/Transforms/Utils/BuildLibCalls.h"
96 #include "llvm/Transforms/Utils/Local.h"
97 #include "llvm/Transforms/Utils/LoopUtils.h"
98 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
99 #include <algorithm>
100 #include <cassert>
101 #include <cstdint>
102 #include <utility>
103 #include <vector>
104
105 using namespace llvm;
106
107 #define DEBUG_TYPE "loop-idiom"
108
109 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
110 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
111 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
112 STATISTIC(
113 NumShiftUntilBitTest,
114 "Number of uncountable loops recognized as 'shift until bitttest' idiom");
115 STATISTIC(NumShiftUntilZero,
116 "Number of uncountable loops recognized as 'shift until zero' idiom");
117
118 bool DisableLIRP::All;
119 static cl::opt<bool, true>
120 DisableLIRPAll("disable-" DEBUG_TYPE "-all",
121 cl::desc("Options to disable Loop Idiom Recognize Pass."),
122 cl::location(DisableLIRP::All), cl::init(false),
123 cl::ReallyHidden);
124
125 bool DisableLIRP::Memset;
126 static cl::opt<bool, true>
127 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
128 cl::desc("Proceed with loop idiom recognize pass, but do "
129 "not convert loop(s) to memset."),
130 cl::location(DisableLIRP::Memset), cl::init(false),
131 cl::ReallyHidden);
132
133 bool DisableLIRP::Memcpy;
134 static cl::opt<bool, true>
135 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
136 cl::desc("Proceed with loop idiom recognize pass, but do "
137 "not convert loop(s) to memcpy."),
138 cl::location(DisableLIRP::Memcpy), cl::init(false),
139 cl::ReallyHidden);
140
141 static cl::opt<bool> UseLIRCodeSizeHeurs(
142 "use-lir-code-size-heurs",
143 cl::desc("Use loop idiom recognition code size heuristics when compiling"
144 "with -Os/-Oz"),
145 cl::init(true), cl::Hidden);
146
147 namespace {
148
149 class LoopIdiomRecognize {
150 Loop *CurLoop = nullptr;
151 AliasAnalysis *AA;
152 DominatorTree *DT;
153 LoopInfo *LI;
154 ScalarEvolution *SE;
155 TargetLibraryInfo *TLI;
156 const TargetTransformInfo *TTI;
157 const DataLayout *DL;
158 OptimizationRemarkEmitter &ORE;
159 bool ApplyCodeSizeHeuristics;
160 std::unique_ptr<MemorySSAUpdater> MSSAU;
161
162 public:
LoopIdiomRecognize(AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,MemorySSA * MSSA,const DataLayout * DL,OptimizationRemarkEmitter & ORE)163 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
164 LoopInfo *LI, ScalarEvolution *SE,
165 TargetLibraryInfo *TLI,
166 const TargetTransformInfo *TTI, MemorySSA *MSSA,
167 const DataLayout *DL,
168 OptimizationRemarkEmitter &ORE)
169 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
170 if (MSSA)
171 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
172 }
173
174 bool runOnLoop(Loop *L);
175
176 private:
177 using StoreList = SmallVector<StoreInst *, 8>;
178 using StoreListMap = MapVector<Value *, StoreList>;
179
180 StoreListMap StoreRefsForMemset;
181 StoreListMap StoreRefsForMemsetPattern;
182 StoreList StoreRefsForMemcpy;
183 bool HasMemset;
184 bool HasMemsetPattern;
185 bool HasMemcpy;
186
187 /// Return code for isLegalStore()
188 enum LegalStoreKind {
189 None = 0,
190 Memset,
191 MemsetPattern,
192 Memcpy,
193 UnorderedAtomicMemcpy,
194 DontUse // Dummy retval never to be used. Allows catching errors in retval
195 // handling.
196 };
197
198 /// \name Countable Loop Idiom Handling
199 /// @{
200
201 bool runOnCountableLoop();
202 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
203 SmallVectorImpl<BasicBlock *> &ExitBlocks);
204
205 void collectStores(BasicBlock *BB);
206 LegalStoreKind isLegalStore(StoreInst *SI);
207 enum class ForMemset { No, Yes };
208 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
209 ForMemset For);
210
211 template <typename MemInst>
212 bool processLoopMemIntrinsic(
213 BasicBlock *BB,
214 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
215 const SCEV *BECount);
216 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
217 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
218
219 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
220 MaybeAlign StoreAlignment, Value *StoredVal,
221 Instruction *TheStore,
222 SmallPtrSetImpl<Instruction *> &Stores,
223 const SCEVAddRecExpr *Ev, const SCEV *BECount,
224 bool IsNegStride, bool IsLoopMemset = false);
225 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
226 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
227 const SCEV *StoreSize, MaybeAlign StoreAlign,
228 MaybeAlign LoadAlign, Instruction *TheStore,
229 Instruction *TheLoad,
230 const SCEVAddRecExpr *StoreEv,
231 const SCEVAddRecExpr *LoadEv,
232 const SCEV *BECount);
233 bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
234 bool IsLoopMemset = false);
235
236 /// @}
237 /// \name Noncountable Loop Idiom Handling
238 /// @{
239
240 bool runOnNoncountableLoop();
241
242 bool recognizePopcount();
243 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
244 PHINode *CntPhi, Value *Var);
245 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
246 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
247 Instruction *CntInst, PHINode *CntPhi,
248 Value *Var, Instruction *DefX,
249 const DebugLoc &DL, bool ZeroCheck,
250 bool IsCntPhiUsedOutsideLoop);
251
252 bool recognizeShiftUntilBitTest();
253 bool recognizeShiftUntilZero();
254
255 /// @}
256 };
257
258 class LoopIdiomRecognizeLegacyPass : public LoopPass {
259 public:
260 static char ID;
261
LoopIdiomRecognizeLegacyPass()262 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
263 initializeLoopIdiomRecognizeLegacyPassPass(
264 *PassRegistry::getPassRegistry());
265 }
266
runOnLoop(Loop * L,LPPassManager & LPM)267 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
268 if (DisableLIRP::All)
269 return false;
270
271 if (skipLoop(L))
272 return false;
273
274 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
275 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
276 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
277 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
278 TargetLibraryInfo *TLI =
279 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
280 *L->getHeader()->getParent());
281 const TargetTransformInfo *TTI =
282 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
283 *L->getHeader()->getParent());
284 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
285 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
286 MemorySSA *MSSA = nullptr;
287 if (MSSAAnalysis)
288 MSSA = &MSSAAnalysis->getMSSA();
289
290 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
291 // pass. Function analyses need to be preserved across loop transformations
292 // but ORE cannot be preserved (see comment before the pass definition).
293 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
294
295 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
296 return LIR.runOnLoop(L);
297 }
298
299 /// This transformation requires natural loop information & requires that
300 /// loop preheaders be inserted into the CFG.
getAnalysisUsage(AnalysisUsage & AU) const301 void getAnalysisUsage(AnalysisUsage &AU) const override {
302 AU.addRequired<TargetLibraryInfoWrapperPass>();
303 AU.addRequired<TargetTransformInfoWrapperPass>();
304 AU.addPreserved<MemorySSAWrapperPass>();
305 getLoopAnalysisUsage(AU);
306 }
307 };
308
309 } // end anonymous namespace
310
311 char LoopIdiomRecognizeLegacyPass::ID = 0;
312
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)313 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
314 LoopStandardAnalysisResults &AR,
315 LPMUpdater &) {
316 if (DisableLIRP::All)
317 return PreservedAnalyses::all();
318
319 const auto *DL = &L.getHeader()->getModule()->getDataLayout();
320
321 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
322 // pass. Function analyses need to be preserved across loop transformations
323 // but ORE cannot be preserved (see comment before the pass definition).
324 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
325
326 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
327 AR.MSSA, DL, ORE);
328 if (!LIR.runOnLoop(&L))
329 return PreservedAnalyses::all();
330
331 auto PA = getLoopPassPreservedAnalyses();
332 if (AR.MSSA)
333 PA.preserve<MemorySSAAnalysis>();
334 return PA;
335 }
336
337 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
338 "Recognize loop idioms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)339 INITIALIZE_PASS_DEPENDENCY(LoopPass)
340 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
341 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
342 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
343 "Recognize loop idioms", false, false)
344
345 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
346
deleteDeadInstruction(Instruction * I)347 static void deleteDeadInstruction(Instruction *I) {
348 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
349 I->eraseFromParent();
350 }
351
352 //===----------------------------------------------------------------------===//
353 //
354 // Implementation of LoopIdiomRecognize
355 //
356 //===----------------------------------------------------------------------===//
357
runOnLoop(Loop * L)358 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
359 CurLoop = L;
360 // If the loop could not be converted to canonical form, it must have an
361 // indirectbr in it, just give up.
362 if (!L->getLoopPreheader())
363 return false;
364
365 // Disable loop idiom recognition if the function's name is a common idiom.
366 StringRef Name = L->getHeader()->getParent()->getName();
367 if (Name == "memset" || Name == "memcpy")
368 return false;
369 if (Name == "_libc_memset" || Name == "_libc_memcpy")
370 return false;
371
372 // Determine if code size heuristics need to be applied.
373 ApplyCodeSizeHeuristics =
374 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
375
376 HasMemset = TLI->has(LibFunc_memset);
377 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
378 HasMemcpy = TLI->has(LibFunc_memcpy);
379
380 if (HasMemset || HasMemsetPattern || HasMemcpy)
381 if (SE->hasLoopInvariantBackedgeTakenCount(L))
382 return runOnCountableLoop();
383
384 return runOnNoncountableLoop();
385 }
386
runOnCountableLoop()387 bool LoopIdiomRecognize::runOnCountableLoop() {
388 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
389 assert(!isa<SCEVCouldNotCompute>(BECount) &&
390 "runOnCountableLoop() called on a loop without a predictable"
391 "backedge-taken count");
392
393 // If this loop executes exactly one time, then it should be peeled, not
394 // optimized by this pass.
395 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
396 if (BECst->getAPInt() == 0)
397 return false;
398
399 SmallVector<BasicBlock *, 8> ExitBlocks;
400 CurLoop->getUniqueExitBlocks(ExitBlocks);
401
402 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
403 << CurLoop->getHeader()->getParent()->getName()
404 << "] Countable Loop %" << CurLoop->getHeader()->getName()
405 << "\n");
406
407 // The following transforms hoist stores/memsets into the loop pre-header.
408 // Give up if the loop has instructions that may throw.
409 SimpleLoopSafetyInfo SafetyInfo;
410 SafetyInfo.computeLoopSafetyInfo(CurLoop);
411 if (SafetyInfo.anyBlockMayThrow())
412 return false;
413
414 bool MadeChange = false;
415
416 // Scan all the blocks in the loop that are not in subloops.
417 for (auto *BB : CurLoop->getBlocks()) {
418 // Ignore blocks in subloops.
419 if (LI->getLoopFor(BB) != CurLoop)
420 continue;
421
422 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
423 }
424 return MadeChange;
425 }
426
getStoreStride(const SCEVAddRecExpr * StoreEv)427 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
428 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
429 return ConstStride->getAPInt();
430 }
431
432 /// getMemSetPatternValue - If a strided store of the specified value is safe to
433 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
434 /// be passed in. Otherwise, return null.
435 ///
436 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
437 /// just replicate their input array and then pass on to memset_pattern16.
getMemSetPatternValue(Value * V,const DataLayout * DL)438 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
439 // FIXME: This could check for UndefValue because it can be merged into any
440 // other valid pattern.
441
442 // If the value isn't a constant, we can't promote it to being in a constant
443 // array. We could theoretically do a store to an alloca or something, but
444 // that doesn't seem worthwhile.
445 Constant *C = dyn_cast<Constant>(V);
446 if (!C || isa<ConstantExpr>(C))
447 return nullptr;
448
449 // Only handle simple values that are a power of two bytes in size.
450 uint64_t Size = DL->getTypeSizeInBits(V->getType());
451 if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
452 return nullptr;
453
454 // Don't care enough about darwin/ppc to implement this.
455 if (DL->isBigEndian())
456 return nullptr;
457
458 // Convert to size in bytes.
459 Size /= 8;
460
461 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
462 // if the top and bottom are the same (e.g. for vectors and large integers).
463 if (Size > 16)
464 return nullptr;
465
466 // If the constant is exactly 16 bytes, just use it.
467 if (Size == 16)
468 return C;
469
470 // Otherwise, we'll use an array of the constants.
471 unsigned ArraySize = 16 / Size;
472 ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
473 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
474 }
475
476 LoopIdiomRecognize::LegalStoreKind
isLegalStore(StoreInst * SI)477 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
478 // Don't touch volatile stores.
479 if (SI->isVolatile())
480 return LegalStoreKind::None;
481 // We only want simple or unordered-atomic stores.
482 if (!SI->isUnordered())
483 return LegalStoreKind::None;
484
485 // Avoid merging nontemporal stores.
486 if (SI->getMetadata(LLVMContext::MD_nontemporal))
487 return LegalStoreKind::None;
488
489 Value *StoredVal = SI->getValueOperand();
490 Value *StorePtr = SI->getPointerOperand();
491
492 // Don't convert stores of non-integral pointer types to memsets (which stores
493 // integers).
494 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
495 return LegalStoreKind::None;
496
497 // Reject stores that are so large that they overflow an unsigned.
498 // When storing out scalable vectors we bail out for now, since the code
499 // below currently only works for constant strides.
500 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
501 if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) ||
502 (SizeInBits.getFixedValue() >> 32) != 0)
503 return LegalStoreKind::None;
504
505 // See if the pointer expression is an AddRec like {base,+,1} on the current
506 // loop, which indicates a strided store. If we have something else, it's a
507 // random store we can't handle.
508 const SCEVAddRecExpr *StoreEv =
509 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
510 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
511 return LegalStoreKind::None;
512
513 // Check to see if we have a constant stride.
514 if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
515 return LegalStoreKind::None;
516
517 // See if the store can be turned into a memset.
518
519 // If the stored value is a byte-wise value (like i32 -1), then it may be
520 // turned into a memset of i8 -1, assuming that all the consecutive bytes
521 // are stored. A store of i32 0x01020304 can never be turned into a memset,
522 // but it can be turned into memset_pattern if the target supports it.
523 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
524
525 // Note: memset and memset_pattern on unordered-atomic is yet not supported
526 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
527
528 // If we're allowed to form a memset, and the stored value would be
529 // acceptable for memset, use it.
530 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
531 // Verify that the stored value is loop invariant. If not, we can't
532 // promote the memset.
533 CurLoop->isLoopInvariant(SplatValue)) {
534 // It looks like we can use SplatValue.
535 return LegalStoreKind::Memset;
536 }
537 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
538 // Don't create memset_pattern16s with address spaces.
539 StorePtr->getType()->getPointerAddressSpace() == 0 &&
540 getMemSetPatternValue(StoredVal, DL)) {
541 // It looks like we can use PatternValue!
542 return LegalStoreKind::MemsetPattern;
543 }
544
545 // Otherwise, see if the store can be turned into a memcpy.
546 if (HasMemcpy && !DisableLIRP::Memcpy) {
547 // Check to see if the stride matches the size of the store. If so, then we
548 // know that every byte is touched in the loop.
549 APInt Stride = getStoreStride(StoreEv);
550 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
551 if (StoreSize != Stride && StoreSize != -Stride)
552 return LegalStoreKind::None;
553
554 // The store must be feeding a non-volatile load.
555 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
556
557 // Only allow non-volatile loads
558 if (!LI || LI->isVolatile())
559 return LegalStoreKind::None;
560 // Only allow simple or unordered-atomic loads
561 if (!LI->isUnordered())
562 return LegalStoreKind::None;
563
564 // See if the pointer expression is an AddRec like {base,+,1} on the current
565 // loop, which indicates a strided load. If we have something else, it's a
566 // random load we can't handle.
567 const SCEVAddRecExpr *LoadEv =
568 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
569 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
570 return LegalStoreKind::None;
571
572 // The store and load must share the same stride.
573 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
574 return LegalStoreKind::None;
575
576 // Success. This store can be converted into a memcpy.
577 UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
578 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
579 : LegalStoreKind::Memcpy;
580 }
581 // This store can't be transformed into a memset/memcpy.
582 return LegalStoreKind::None;
583 }
584
collectStores(BasicBlock * BB)585 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
586 StoreRefsForMemset.clear();
587 StoreRefsForMemsetPattern.clear();
588 StoreRefsForMemcpy.clear();
589 for (Instruction &I : *BB) {
590 StoreInst *SI = dyn_cast<StoreInst>(&I);
591 if (!SI)
592 continue;
593
594 // Make sure this is a strided store with a constant stride.
595 switch (isLegalStore(SI)) {
596 case LegalStoreKind::None:
597 // Nothing to do
598 break;
599 case LegalStoreKind::Memset: {
600 // Find the base pointer.
601 Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
602 StoreRefsForMemset[Ptr].push_back(SI);
603 } break;
604 case LegalStoreKind::MemsetPattern: {
605 // Find the base pointer.
606 Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
607 StoreRefsForMemsetPattern[Ptr].push_back(SI);
608 } break;
609 case LegalStoreKind::Memcpy:
610 case LegalStoreKind::UnorderedAtomicMemcpy:
611 StoreRefsForMemcpy.push_back(SI);
612 break;
613 default:
614 assert(false && "unhandled return value");
615 break;
616 }
617 }
618 }
619
620 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
621 /// with the specified backedge count. This block is known to be in the current
622 /// loop and not in any subloops.
runOnLoopBlock(BasicBlock * BB,const SCEV * BECount,SmallVectorImpl<BasicBlock * > & ExitBlocks)623 bool LoopIdiomRecognize::runOnLoopBlock(
624 BasicBlock *BB, const SCEV *BECount,
625 SmallVectorImpl<BasicBlock *> &ExitBlocks) {
626 // We can only promote stores in this block if they are unconditionally
627 // executed in the loop. For a block to be unconditionally executed, it has
628 // to dominate all the exit blocks of the loop. Verify this now.
629 for (BasicBlock *ExitBlock : ExitBlocks)
630 if (!DT->dominates(BB, ExitBlock))
631 return false;
632
633 bool MadeChange = false;
634 // Look for store instructions, which may be optimized to memset/memcpy.
635 collectStores(BB);
636
637 // Look for a single store or sets of stores with a common base, which can be
638 // optimized into a memset (memset_pattern). The latter most commonly happens
639 // with structs and handunrolled loops.
640 for (auto &SL : StoreRefsForMemset)
641 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
642
643 for (auto &SL : StoreRefsForMemsetPattern)
644 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
645
646 // Optimize the store into a memcpy, if it feeds an similarly strided load.
647 for (auto &SI : StoreRefsForMemcpy)
648 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
649
650 MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
651 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
652 MadeChange |= processLoopMemIntrinsic<MemSetInst>(
653 BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
654
655 return MadeChange;
656 }
657
658 /// See if this store(s) can be promoted to a memset.
processLoopStores(SmallVectorImpl<StoreInst * > & SL,const SCEV * BECount,ForMemset For)659 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
660 const SCEV *BECount, ForMemset For) {
661 // Try to find consecutive stores that can be transformed into memsets.
662 SetVector<StoreInst *> Heads, Tails;
663 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
664
665 // Do a quadratic search on all of the given stores and find
666 // all of the pairs of stores that follow each other.
667 SmallVector<unsigned, 16> IndexQueue;
668 for (unsigned i = 0, e = SL.size(); i < e; ++i) {
669 assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
670
671 Value *FirstStoredVal = SL[i]->getValueOperand();
672 Value *FirstStorePtr = SL[i]->getPointerOperand();
673 const SCEVAddRecExpr *FirstStoreEv =
674 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
675 APInt FirstStride = getStoreStride(FirstStoreEv);
676 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
677
678 // See if we can optimize just this store in isolation.
679 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
680 Heads.insert(SL[i]);
681 continue;
682 }
683
684 Value *FirstSplatValue = nullptr;
685 Constant *FirstPatternValue = nullptr;
686
687 if (For == ForMemset::Yes)
688 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
689 else
690 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
691
692 assert((FirstSplatValue || FirstPatternValue) &&
693 "Expected either splat value or pattern value.");
694
695 IndexQueue.clear();
696 // If a store has multiple consecutive store candidates, search Stores
697 // array according to the sequence: from i+1 to e, then from i-1 to 0.
698 // This is because usually pairing with immediate succeeding or preceding
699 // candidate create the best chance to find memset opportunity.
700 unsigned j = 0;
701 for (j = i + 1; j < e; ++j)
702 IndexQueue.push_back(j);
703 for (j = i; j > 0; --j)
704 IndexQueue.push_back(j - 1);
705
706 for (auto &k : IndexQueue) {
707 assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
708 Value *SecondStorePtr = SL[k]->getPointerOperand();
709 const SCEVAddRecExpr *SecondStoreEv =
710 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
711 APInt SecondStride = getStoreStride(SecondStoreEv);
712
713 if (FirstStride != SecondStride)
714 continue;
715
716 Value *SecondStoredVal = SL[k]->getValueOperand();
717 Value *SecondSplatValue = nullptr;
718 Constant *SecondPatternValue = nullptr;
719
720 if (For == ForMemset::Yes)
721 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
722 else
723 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
724
725 assert((SecondSplatValue || SecondPatternValue) &&
726 "Expected either splat value or pattern value.");
727
728 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
729 if (For == ForMemset::Yes) {
730 if (isa<UndefValue>(FirstSplatValue))
731 FirstSplatValue = SecondSplatValue;
732 if (FirstSplatValue != SecondSplatValue)
733 continue;
734 } else {
735 if (isa<UndefValue>(FirstPatternValue))
736 FirstPatternValue = SecondPatternValue;
737 if (FirstPatternValue != SecondPatternValue)
738 continue;
739 }
740 Tails.insert(SL[k]);
741 Heads.insert(SL[i]);
742 ConsecutiveChain[SL[i]] = SL[k];
743 break;
744 }
745 }
746 }
747
748 // We may run into multiple chains that merge into a single chain. We mark the
749 // stores that we transformed so that we don't visit the same store twice.
750 SmallPtrSet<Value *, 16> TransformedStores;
751 bool Changed = false;
752
753 // For stores that start but don't end a link in the chain:
754 for (StoreInst *I : Heads) {
755 if (Tails.count(I))
756 continue;
757
758 // We found a store instr that starts a chain. Now follow the chain and try
759 // to transform it.
760 SmallPtrSet<Instruction *, 8> AdjacentStores;
761 StoreInst *HeadStore = I;
762 unsigned StoreSize = 0;
763
764 // Collect the chain into a list.
765 while (Tails.count(I) || Heads.count(I)) {
766 if (TransformedStores.count(I))
767 break;
768 AdjacentStores.insert(I);
769
770 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
771 // Move to the next value in the chain.
772 I = ConsecutiveChain[I];
773 }
774
775 Value *StoredVal = HeadStore->getValueOperand();
776 Value *StorePtr = HeadStore->getPointerOperand();
777 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
778 APInt Stride = getStoreStride(StoreEv);
779
780 // Check to see if the stride matches the size of the stores. If so, then
781 // we know that every byte is touched in the loop.
782 if (StoreSize != Stride && StoreSize != -Stride)
783 continue;
784
785 bool IsNegStride = StoreSize == -Stride;
786
787 Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
788 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
789 if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
790 MaybeAlign(HeadStore->getAlign()), StoredVal,
791 HeadStore, AdjacentStores, StoreEv, BECount,
792 IsNegStride)) {
793 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
794 Changed = true;
795 }
796 }
797
798 return Changed;
799 }
800
801 /// processLoopMemIntrinsic - Template function for calling different processor
802 /// functions based on mem intrinsic type.
803 template <typename MemInst>
processLoopMemIntrinsic(BasicBlock * BB,bool (LoopIdiomRecognize::* Processor)(MemInst *,const SCEV *),const SCEV * BECount)804 bool LoopIdiomRecognize::processLoopMemIntrinsic(
805 BasicBlock *BB,
806 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
807 const SCEV *BECount) {
808 bool MadeChange = false;
809 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
810 Instruction *Inst = &*I++;
811 // Look for memory instructions, which may be optimized to a larger one.
812 if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
813 WeakTrackingVH InstPtr(&*I);
814 if (!(this->*Processor)(MI, BECount))
815 continue;
816 MadeChange = true;
817
818 // If processing the instruction invalidated our iterator, start over from
819 // the top of the block.
820 if (!InstPtr)
821 I = BB->begin();
822 }
823 }
824 return MadeChange;
825 }
826
827 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
processLoopMemCpy(MemCpyInst * MCI,const SCEV * BECount)828 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
829 const SCEV *BECount) {
830 // We can only handle non-volatile memcpys with a constant size.
831 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
832 return false;
833
834 // If we're not allowed to hack on memcpy, we fail.
835 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
836 return false;
837
838 Value *Dest = MCI->getDest();
839 Value *Source = MCI->getSource();
840 if (!Dest || !Source)
841 return false;
842
843 // See if the load and store pointer expressions are AddRec like {base,+,1} on
844 // the current loop, which indicates a strided load and store. If we have
845 // something else, it's a random load or store we can't handle.
846 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
847 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
848 return false;
849 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
850 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
851 return false;
852
853 // Reject memcpys that are so large that they overflow an unsigned.
854 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
855 if ((SizeInBytes >> 32) != 0)
856 return false;
857
858 // Check if the stride matches the size of the memcpy. If so, then we know
859 // that every byte is touched in the loop.
860 const SCEVConstant *ConstStoreStride =
861 dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
862 const SCEVConstant *ConstLoadStride =
863 dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
864 if (!ConstStoreStride || !ConstLoadStride)
865 return false;
866
867 APInt StoreStrideValue = ConstStoreStride->getAPInt();
868 APInt LoadStrideValue = ConstLoadStride->getAPInt();
869 // Huge stride value - give up
870 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
871 return false;
872
873 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
874 ORE.emit([&]() {
875 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
876 << ore::NV("Inst", "memcpy") << " in "
877 << ore::NV("Function", MCI->getFunction())
878 << " function will not be hoisted: "
879 << ore::NV("Reason", "memcpy size is not equal to stride");
880 });
881 return false;
882 }
883
884 int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
885 int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
886 // Check if the load stride matches the store stride.
887 if (StoreStrideInt != LoadStrideInt)
888 return false;
889
890 return processLoopStoreOfLoopLoad(
891 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
892 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
893 BECount);
894 }
895
896 /// processLoopMemSet - See if this memset can be promoted to a large memset.
processLoopMemSet(MemSetInst * MSI,const SCEV * BECount)897 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
898 const SCEV *BECount) {
899 // We can only handle non-volatile memsets.
900 if (MSI->isVolatile())
901 return false;
902
903 // If we're not allowed to hack on memset, we fail.
904 if (!HasMemset || DisableLIRP::Memset)
905 return false;
906
907 Value *Pointer = MSI->getDest();
908
909 // See if the pointer expression is an AddRec like {base,+,1} on the current
910 // loop, which indicates a strided store. If we have something else, it's a
911 // random store we can't handle.
912 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
913 if (!Ev || Ev->getLoop() != CurLoop)
914 return false;
915 if (!Ev->isAffine()) {
916 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n");
917 return false;
918 }
919
920 const SCEV *PointerStrideSCEV = Ev->getOperand(1);
921 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
922 if (!PointerStrideSCEV || !MemsetSizeSCEV)
923 return false;
924
925 bool IsNegStride = false;
926 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
927
928 if (IsConstantSize) {
929 // Memset size is constant.
930 // Check if the pointer stride matches the memset size. If so, then
931 // we know that every byte is touched in the loop.
932 LLVM_DEBUG(dbgs() << " memset size is constant\n");
933 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
934 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
935 if (!ConstStride)
936 return false;
937
938 APInt Stride = ConstStride->getAPInt();
939 if (SizeInBytes != Stride && SizeInBytes != -Stride)
940 return false;
941
942 IsNegStride = SizeInBytes == -Stride;
943 } else {
944 // Memset size is non-constant.
945 // Check if the pointer stride matches the memset size.
946 // To be conservative, the pass would not promote pointers that aren't in
947 // address space zero. Also, the pass only handles memset length and stride
948 // that are invariant for the top level loop.
949 LLVM_DEBUG(dbgs() << " memset size is non-constant\n");
950 if (Pointer->getType()->getPointerAddressSpace() != 0) {
951 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, "
952 << "abort\n");
953 return false;
954 }
955 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
956 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, "
957 << "abort\n");
958 return false;
959 }
960
961 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
962 IsNegStride = PointerStrideSCEV->isNonConstantNegative();
963 const SCEV *PositiveStrideSCEV =
964 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
965 : PointerStrideSCEV;
966 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
967 << " PositiveStrideSCEV: " << *PositiveStrideSCEV
968 << "\n");
969
970 if (PositiveStrideSCEV != MemsetSizeSCEV) {
971 // If an expression is covered by the loop guard, compare again and
972 // proceed with optimization if equal.
973 const SCEV *FoldedPositiveStride =
974 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
975 const SCEV *FoldedMemsetSize =
976 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
977
978 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n"
979 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
980 << " FoldedPositiveStride: " << *FoldedPositiveStride
981 << "\n");
982
983 if (FoldedPositiveStride != FoldedMemsetSize) {
984 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n");
985 return false;
986 }
987 }
988 }
989
990 // Verify that the memset value is loop invariant. If not, we can't promote
991 // the memset.
992 Value *SplatValue = MSI->getValue();
993 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
994 return false;
995
996 SmallPtrSet<Instruction *, 1> MSIs;
997 MSIs.insert(MSI);
998 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
999 MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev,
1000 BECount, IsNegStride, /*IsLoopMemset=*/true);
1001 }
1002
1003 /// mayLoopAccessLocation - Return true if the specified loop might access the
1004 /// specified pointer location, which is a loop-strided access. The 'Access'
1005 /// argument specifies what the verboten forms of access are (read or write).
1006 static bool
mayLoopAccessLocation(Value * Ptr,ModRefInfo Access,Loop * L,const SCEV * BECount,const SCEV * StoreSizeSCEV,AliasAnalysis & AA,SmallPtrSetImpl<Instruction * > & IgnoredInsts)1007 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
1008 const SCEV *BECount, const SCEV *StoreSizeSCEV,
1009 AliasAnalysis &AA,
1010 SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
1011 // Get the location that may be stored across the loop. Since the access is
1012 // strided positively through memory, we say that the modified location starts
1013 // at the pointer and has infinite size.
1014 LocationSize AccessSize = LocationSize::afterPointer();
1015
1016 // If the loop iterates a fixed number of times, we can refine the access size
1017 // to be exactly the size of the memset, which is (BECount+1)*StoreSize
1018 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
1019 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1020 if (BECst && ConstSize)
1021 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
1022 ConstSize->getValue()->getZExtValue());
1023
1024 // TODO: For this to be really effective, we have to dive into the pointer
1025 // operand in the store. Store to &A[i] of 100 will always return may alias
1026 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
1027 // which will then no-alias a store to &A[100].
1028 MemoryLocation StoreLoc(Ptr, AccessSize);
1029
1030 for (BasicBlock *B : L->blocks())
1031 for (Instruction &I : *B)
1032 if (!IgnoredInsts.contains(&I) &&
1033 isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access))
1034 return true;
1035 return false;
1036 }
1037
1038 // If we have a negative stride, Start refers to the end of the memory location
1039 // we're trying to memset. Therefore, we need to recompute the base pointer,
1040 // which is just Start - BECount*Size.
getStartForNegStride(const SCEV * Start,const SCEV * BECount,Type * IntPtr,const SCEV * StoreSizeSCEV,ScalarEvolution * SE)1041 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
1042 Type *IntPtr, const SCEV *StoreSizeSCEV,
1043 ScalarEvolution *SE) {
1044 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
1045 if (!StoreSizeSCEV->isOne()) {
1046 // index = back edge count * store size
1047 Index = SE->getMulExpr(Index,
1048 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1049 SCEV::FlagNUW);
1050 }
1051 // base pointer = start - index * store size
1052 return SE->getMinusSCEV(Start, Index);
1053 }
1054
1055 /// Compute trip count from the backedge taken count.
getTripCount(const SCEV * BECount,Type * IntPtr,Loop * CurLoop,const DataLayout * DL,ScalarEvolution * SE)1056 static const SCEV *getTripCount(const SCEV *BECount, Type *IntPtr,
1057 Loop *CurLoop, const DataLayout *DL,
1058 ScalarEvolution *SE) {
1059 const SCEV *TripCountS = nullptr;
1060 // The # stored bytes is (BECount+1). Expand the trip count out to
1061 // pointer size if it isn't already.
1062 //
1063 // If we're going to need to zero extend the BE count, check if we can add
1064 // one to it prior to zero extending without overflow. Provided this is safe,
1065 // it allows better simplification of the +1.
1066 if (DL->getTypeSizeInBits(BECount->getType()) <
1067 DL->getTypeSizeInBits(IntPtr) &&
1068 SE->isLoopEntryGuardedByCond(
1069 CurLoop, ICmpInst::ICMP_NE, BECount,
1070 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
1071 TripCountS = SE->getZeroExtendExpr(
1072 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
1073 IntPtr);
1074 } else {
1075 TripCountS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
1076 SE->getOne(IntPtr), SCEV::FlagNUW);
1077 }
1078
1079 return TripCountS;
1080 }
1081
1082 /// Compute the number of bytes as a SCEV from the backedge taken count.
1083 ///
1084 /// This also maps the SCEV into the provided type and tries to handle the
1085 /// computation in a way that will fold cleanly.
getNumBytes(const SCEV * BECount,Type * IntPtr,const SCEV * StoreSizeSCEV,Loop * CurLoop,const DataLayout * DL,ScalarEvolution * SE)1086 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
1087 const SCEV *StoreSizeSCEV, Loop *CurLoop,
1088 const DataLayout *DL, ScalarEvolution *SE) {
1089 const SCEV *TripCountSCEV = getTripCount(BECount, IntPtr, CurLoop, DL, SE);
1090
1091 return SE->getMulExpr(TripCountSCEV,
1092 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
1093 SCEV::FlagNUW);
1094 }
1095
1096 /// processLoopStridedStore - We see a strided store of some value. If we can
1097 /// transform this into a memset or memset_pattern in the loop preheader, do so.
processLoopStridedStore(Value * DestPtr,const SCEV * StoreSizeSCEV,MaybeAlign StoreAlignment,Value * StoredVal,Instruction * TheStore,SmallPtrSetImpl<Instruction * > & Stores,const SCEVAddRecExpr * Ev,const SCEV * BECount,bool IsNegStride,bool IsLoopMemset)1098 bool LoopIdiomRecognize::processLoopStridedStore(
1099 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1100 Value *StoredVal, Instruction *TheStore,
1101 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1102 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1103 Module *M = TheStore->getModule();
1104 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1105 Constant *PatternValue = nullptr;
1106
1107 if (!SplatValue)
1108 PatternValue = getMemSetPatternValue(StoredVal, DL);
1109
1110 assert((SplatValue || PatternValue) &&
1111 "Expected either splat value or pattern value.");
1112
1113 // The trip count of the loop and the base pointer of the addrec SCEV is
1114 // guaranteed to be loop invariant, which means that it should dominate the
1115 // header. This allows us to insert code for it in the preheader.
1116 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1117 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1118 IRBuilder<> Builder(Preheader->getTerminator());
1119 SCEVExpander Expander(*SE, *DL, "loop-idiom");
1120 SCEVExpanderCleaner ExpCleaner(Expander);
1121
1122 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
1123 Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1124
1125 bool Changed = false;
1126 const SCEV *Start = Ev->getStart();
1127 // Handle negative strided loops.
1128 if (IsNegStride)
1129 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1130
1131 // TODO: ideally we should still be able to generate memset if SCEV expander
1132 // is taught to generate the dependencies at the latest point.
1133 if (!Expander.isSafeToExpand(Start))
1134 return Changed;
1135
1136 // Okay, we have a strided store "p[i]" of a splattable value. We can turn
1137 // this into a memset in the loop preheader now if we want. However, this
1138 // would be unsafe to do if there is anything else in the loop that may read
1139 // or write to the aliased location. Check for any overlap by generating the
1140 // base pointer and checking the region.
1141 Value *BasePtr =
1142 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1143
1144 // From here on out, conservatively report to the pass manager that we've
1145 // changed the IR, even if we later clean up these added instructions. There
1146 // may be structural differences e.g. in the order of use lists not accounted
1147 // for in just a textual dump of the IR. This is written as a variable, even
1148 // though statically all the places this dominates could be replaced with
1149 // 'true', with the hope that anyone trying to be clever / "more precise" with
1150 // the return value will read this comment, and leave them alone.
1151 Changed = true;
1152
1153 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1154 StoreSizeSCEV, *AA, Stores))
1155 return Changed;
1156
1157 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1158 return Changed;
1159
1160 // Okay, everything looks good, insert the memset.
1161
1162 const SCEV *NumBytesS =
1163 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1164
1165 // TODO: ideally we should still be able to generate memset if SCEV expander
1166 // is taught to generate the dependencies at the latest point.
1167 if (!Expander.isSafeToExpand(NumBytesS))
1168 return Changed;
1169
1170 Value *NumBytes =
1171 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1172
1173 CallInst *NewCall;
1174 if (SplatValue) {
1175 AAMDNodes AATags = TheStore->getAAMetadata();
1176 for (Instruction *Store : Stores)
1177 AATags = AATags.merge(Store->getAAMetadata());
1178 if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1179 AATags = AATags.extendTo(CI->getZExtValue());
1180 else
1181 AATags = AATags.extendTo(-1);
1182
1183 NewCall = Builder.CreateMemSet(
1184 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
1185 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1186 } else if (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) {
1187 // Everything is emitted in default address space
1188 Type *Int8PtrTy = DestInt8PtrTy;
1189
1190 StringRef FuncName = "memset_pattern16";
1191 FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
1192 Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
1193 inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
1194
1195 // Otherwise we should form a memset_pattern16. PatternValue is known to be
1196 // an constant array of 16-bytes. Plop the value into a mergable global.
1197 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1198 GlobalValue::PrivateLinkage,
1199 PatternValue, ".memset_pattern");
1200 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1201 GV->setAlignment(Align(16));
1202 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1203 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1204 } else
1205 return Changed;
1206
1207 NewCall->setDebugLoc(TheStore->getDebugLoc());
1208
1209 if (MSSAU) {
1210 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1211 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1212 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1213 }
1214
1215 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
1216 << " from store to: " << *Ev << " at: " << *TheStore
1217 << "\n");
1218
1219 ORE.emit([&]() {
1220 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
1221 NewCall->getDebugLoc(), Preheader);
1222 R << "Transformed loop-strided store in "
1223 << ore::NV("Function", TheStore->getFunction())
1224 << " function into a call to "
1225 << ore::NV("NewFunction", NewCall->getCalledFunction())
1226 << "() intrinsic";
1227 if (!Stores.empty())
1228 R << ore::setExtraArgs();
1229 for (auto *I : Stores) {
1230 R << ore::NV("FromBlock", I->getParent()->getName())
1231 << ore::NV("ToBlock", Preheader->getName());
1232 }
1233 return R;
1234 });
1235
1236 // Okay, the memset has been formed. Zap the original store and anything that
1237 // feeds into it.
1238 for (auto *I : Stores) {
1239 if (MSSAU)
1240 MSSAU->removeMemoryAccess(I, true);
1241 deleteDeadInstruction(I);
1242 }
1243 if (MSSAU && VerifyMemorySSA)
1244 MSSAU->getMemorySSA()->verifyMemorySSA();
1245 ++NumMemSet;
1246 ExpCleaner.markResultUsed();
1247 return true;
1248 }
1249
1250 /// If the stored value is a strided load in the same loop with the same stride
1251 /// this may be transformable into a memcpy. This kicks in for stuff like
1252 /// for (i) A[i] = B[i];
processLoopStoreOfLoopLoad(StoreInst * SI,const SCEV * BECount)1253 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1254 const SCEV *BECount) {
1255 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1256
1257 Value *StorePtr = SI->getPointerOperand();
1258 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1259 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1260
1261 // The store must be feeding a non-volatile load.
1262 LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1263 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1264
1265 // See if the pointer expression is an AddRec like {base,+,1} on the current
1266 // loop, which indicates a strided load. If we have something else, it's a
1267 // random load we can't handle.
1268 Value *LoadPtr = LI->getPointerOperand();
1269 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1270
1271 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
1272 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1273 SI->getAlign(), LI->getAlign(), SI, LI,
1274 StoreEv, LoadEv, BECount);
1275 }
1276
1277 namespace {
1278 class MemmoveVerifier {
1279 public:
MemmoveVerifier(const Value & LoadBasePtr,const Value & StoreBasePtr,const DataLayout & DL)1280 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
1281 const DataLayout &DL)
1282 : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset(
1283 LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
1284 BP2(llvm::GetPointerBaseWithConstantOffset(
1285 StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
1286 IsSameObject(BP1 == BP2) {}
1287
loadAndStoreMayFormMemmove(unsigned StoreSize,bool IsNegStride,const Instruction & TheLoad,bool IsMemCpy) const1288 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
1289 const Instruction &TheLoad,
1290 bool IsMemCpy) const {
1291 if (IsMemCpy) {
1292 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1293 // for negative stride.
1294 if ((!IsNegStride && LoadOff <= StoreOff) ||
1295 (IsNegStride && LoadOff >= StoreOff))
1296 return false;
1297 } else {
1298 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1299 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1300 int64_t LoadSize =
1301 DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8;
1302 if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1303 return false;
1304 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1305 (IsNegStride && LoadOff + LoadSize > StoreOff))
1306 return false;
1307 }
1308 return true;
1309 }
1310
1311 private:
1312 const DataLayout &DL;
1313 int64_t LoadOff = 0;
1314 int64_t StoreOff = 0;
1315 const Value *BP1;
1316 const Value *BP2;
1317
1318 public:
1319 const bool IsSameObject;
1320 };
1321 } // namespace
1322
processLoopStoreOfLoopLoad(Value * DestPtr,Value * SourcePtr,const SCEV * StoreSizeSCEV,MaybeAlign StoreAlign,MaybeAlign LoadAlign,Instruction * TheStore,Instruction * TheLoad,const SCEVAddRecExpr * StoreEv,const SCEVAddRecExpr * LoadEv,const SCEV * BECount)1323 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1324 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
1325 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
1326 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
1327 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
1328
1329 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1330 // conservatively bail here, since otherwise we may have to transform
1331 // llvm.memcpy.inline into llvm.memcpy which is illegal.
1332 if (isa<MemCpyInlineInst>(TheStore))
1333 return false;
1334
1335 // The trip count of the loop and the base pointer of the addrec SCEV is
1336 // guaranteed to be loop invariant, which means that it should dominate the
1337 // header. This allows us to insert code for it in the preheader.
1338 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1339 IRBuilder<> Builder(Preheader->getTerminator());
1340 SCEVExpander Expander(*SE, *DL, "loop-idiom");
1341
1342 SCEVExpanderCleaner ExpCleaner(Expander);
1343
1344 bool Changed = false;
1345 const SCEV *StrStart = StoreEv->getStart();
1346 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1347 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1348
1349 APInt Stride = getStoreStride(StoreEv);
1350 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1351
1352 // TODO: Deal with non-constant size; Currently expect constant store size
1353 assert(ConstStoreSize && "store size is expected to be a constant");
1354
1355 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
1356 bool IsNegStride = StoreSize == -Stride;
1357
1358 // Handle negative strided loops.
1359 if (IsNegStride)
1360 StrStart =
1361 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1362
1363 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1364 // this into a memcpy in the loop preheader now if we want. However, this
1365 // would be unsafe to do if there is anything else in the loop that may read
1366 // or write the memory region we're storing to. This includes the load that
1367 // feeds the stores. Check for an alias by generating the base address and
1368 // checking everything.
1369 Value *StoreBasePtr = Expander.expandCodeFor(
1370 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1371
1372 // From here on out, conservatively report to the pass manager that we've
1373 // changed the IR, even if we later clean up these added instructions. There
1374 // may be structural differences e.g. in the order of use lists not accounted
1375 // for in just a textual dump of the IR. This is written as a variable, even
1376 // though statically all the places this dominates could be replaced with
1377 // 'true', with the hope that anyone trying to be clever / "more precise" with
1378 // the return value will read this comment, and leave them alone.
1379 Changed = true;
1380
1381 SmallPtrSet<Instruction *, 2> IgnoredInsts;
1382 IgnoredInsts.insert(TheStore);
1383
1384 bool IsMemCpy = isa<MemCpyInst>(TheStore);
1385 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1386
1387 bool LoopAccessStore =
1388 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1389 StoreSizeSCEV, *AA, IgnoredInsts);
1390 if (LoopAccessStore) {
1391 // For memmove case it's not enough to guarantee that loop doesn't access
1392 // TheStore and TheLoad. Additionally we need to make sure that TheStore is
1393 // the only user of TheLoad.
1394 if (!TheLoad->hasOneUse())
1395 return Changed;
1396 IgnoredInsts.insert(TheLoad);
1397 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1398 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
1399 ORE.emit([&]() {
1400 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1401 TheStore)
1402 << ore::NV("Inst", InstRemark) << " in "
1403 << ore::NV("Function", TheStore->getFunction())
1404 << " function will not be hoisted: "
1405 << ore::NV("Reason", "The loop may access store location");
1406 });
1407 return Changed;
1408 }
1409 IgnoredInsts.erase(TheLoad);
1410 }
1411
1412 const SCEV *LdStart = LoadEv->getStart();
1413 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1414
1415 // Handle negative strided loops.
1416 if (IsNegStride)
1417 LdStart =
1418 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1419
1420 // For a memcpy, we have to make sure that the input array is not being
1421 // mutated by the loop.
1422 Value *LoadBasePtr = Expander.expandCodeFor(
1423 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1424
1425 // If the store is a memcpy instruction, we must check if it will write to
1426 // the load memory locations. So remove it from the ignored stores.
1427 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
1428 if (IsMemCpy && !Verifier.IsSameObject)
1429 IgnoredInsts.erase(TheStore);
1430 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1431 StoreSizeSCEV, *AA, IgnoredInsts)) {
1432 ORE.emit([&]() {
1433 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
1434 << ore::NV("Inst", InstRemark) << " in "
1435 << ore::NV("Function", TheStore->getFunction())
1436 << " function will not be hoisted: "
1437 << ore::NV("Reason", "The loop may access load location");
1438 });
1439 return Changed;
1440 }
1441
1442 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
1443 if (UseMemMove)
1444 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1445 IsMemCpy))
1446 return Changed;
1447
1448 if (avoidLIRForMultiBlockLoop())
1449 return Changed;
1450
1451 // Okay, everything is safe, we can transform this!
1452
1453 const SCEV *NumBytesS =
1454 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1455
1456 Value *NumBytes =
1457 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1458
1459 AAMDNodes AATags = TheLoad->getAAMetadata();
1460 AAMDNodes StoreAATags = TheStore->getAAMetadata();
1461 AATags = AATags.merge(StoreAATags);
1462 if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1463 AATags = AATags.extendTo(CI->getZExtValue());
1464 else
1465 AATags = AATags.extendTo(-1);
1466
1467 CallInst *NewCall = nullptr;
1468 // Check whether to generate an unordered atomic memcpy:
1469 // If the load or store are atomic, then they must necessarily be unordered
1470 // by previous checks.
1471 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1472 if (UseMemMove)
1473 NewCall = Builder.CreateMemMove(
1474 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1475 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1476 else
1477 NewCall =
1478 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
1479 NumBytes, /*isVolatile=*/false, AATags.TBAA,
1480 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1481 } else {
1482 // For now don't support unordered atomic memmove.
1483 if (UseMemMove)
1484 return Changed;
1485 // We cannot allow unaligned ops for unordered load/store, so reject
1486 // anything where the alignment isn't at least the element size.
1487 assert((StoreAlign && LoadAlign) &&
1488 "Expect unordered load/store to have align.");
1489 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1490 return Changed;
1491
1492 // If the element.atomic memcpy is not lowered into explicit
1493 // loads/stores later, then it will be lowered into an element-size
1494 // specific lib call. If the lib call doesn't exist for our store size, then
1495 // we shouldn't generate the memcpy.
1496 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1497 return Changed;
1498
1499 // Create the call.
1500 // Note that unordered atomic loads/stores are *required* by the spec to
1501 // have an alignment but non-atomic loads/stores may not.
1502 NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1503 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize,
1504 AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1505 }
1506 NewCall->setDebugLoc(TheStore->getDebugLoc());
1507
1508 if (MSSAU) {
1509 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1510 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1511 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1512 }
1513
1514 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n"
1515 << " from load ptr=" << *LoadEv << " at: " << *TheLoad
1516 << "\n"
1517 << " from store ptr=" << *StoreEv << " at: " << *TheStore
1518 << "\n");
1519
1520 ORE.emit([&]() {
1521 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1522 NewCall->getDebugLoc(), Preheader)
1523 << "Formed a call to "
1524 << ore::NV("NewFunction", NewCall->getCalledFunction())
1525 << "() intrinsic from " << ore::NV("Inst", InstRemark)
1526 << " instruction in " << ore::NV("Function", TheStore->getFunction())
1527 << " function"
1528 << ore::setExtraArgs()
1529 << ore::NV("FromBlock", TheStore->getParent()->getName())
1530 << ore::NV("ToBlock", Preheader->getName());
1531 });
1532
1533 // Okay, a new call to memcpy/memmove has been formed. Zap the original store
1534 // and anything that feeds into it.
1535 if (MSSAU)
1536 MSSAU->removeMemoryAccess(TheStore, true);
1537 deleteDeadInstruction(TheStore);
1538 if (MSSAU && VerifyMemorySSA)
1539 MSSAU->getMemorySSA()->verifyMemorySSA();
1540 if (UseMemMove)
1541 ++NumMemMove;
1542 else
1543 ++NumMemCpy;
1544 ExpCleaner.markResultUsed();
1545 return true;
1546 }
1547
1548 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1549 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1550 //
avoidLIRForMultiBlockLoop(bool IsMemset,bool IsLoopMemset)1551 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1552 bool IsLoopMemset) {
1553 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1554 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1555 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()
1556 << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1557 << " avoided: multi-block top-level loop\n");
1558 return true;
1559 }
1560 }
1561
1562 return false;
1563 }
1564
runOnNoncountableLoop()1565 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1566 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1567 << CurLoop->getHeader()->getParent()->getName()
1568 << "] Noncountable Loop %"
1569 << CurLoop->getHeader()->getName() << "\n");
1570
1571 return recognizePopcount() || recognizeAndInsertFFS() ||
1572 recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
1573 }
1574
1575 /// Check if the given conditional branch is based on the comparison between
1576 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1577 /// true), the control yields to the loop entry. If the branch matches the
1578 /// behavior, the variable involved in the comparison is returned. This function
1579 /// will be called to see if the precondition and postcondition of the loop are
1580 /// in desirable form.
matchCondition(BranchInst * BI,BasicBlock * LoopEntry,bool JmpOnZero=false)1581 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1582 bool JmpOnZero = false) {
1583 if (!BI || !BI->isConditional())
1584 return nullptr;
1585
1586 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1587 if (!Cond)
1588 return nullptr;
1589
1590 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1591 if (!CmpZero || !CmpZero->isZero())
1592 return nullptr;
1593
1594 BasicBlock *TrueSucc = BI->getSuccessor(0);
1595 BasicBlock *FalseSucc = BI->getSuccessor(1);
1596 if (JmpOnZero)
1597 std::swap(TrueSucc, FalseSucc);
1598
1599 ICmpInst::Predicate Pred = Cond->getPredicate();
1600 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1601 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1602 return Cond->getOperand(0);
1603
1604 return nullptr;
1605 }
1606
1607 // Check if the recurrence variable `VarX` is in the right form to create
1608 // the idiom. Returns the value coerced to a PHINode if so.
getRecurrenceVar(Value * VarX,Instruction * DefX,BasicBlock * LoopEntry)1609 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1610 BasicBlock *LoopEntry) {
1611 auto *PhiX = dyn_cast<PHINode>(VarX);
1612 if (PhiX && PhiX->getParent() == LoopEntry &&
1613 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1614 return PhiX;
1615 return nullptr;
1616 }
1617
1618 /// Return true iff the idiom is detected in the loop.
1619 ///
1620 /// Additionally:
1621 /// 1) \p CntInst is set to the instruction counting the population bit.
1622 /// 2) \p CntPhi is set to the corresponding phi node.
1623 /// 3) \p Var is set to the value whose population bits are being counted.
1624 ///
1625 /// The core idiom we are trying to detect is:
1626 /// \code
1627 /// if (x0 != 0)
1628 /// goto loop-exit // the precondition of the loop
1629 /// cnt0 = init-val;
1630 /// do {
1631 /// x1 = phi (x0, x2);
1632 /// cnt1 = phi(cnt0, cnt2);
1633 ///
1634 /// cnt2 = cnt1 + 1;
1635 /// ...
1636 /// x2 = x1 & (x1 - 1);
1637 /// ...
1638 /// } while(x != 0);
1639 ///
1640 /// loop-exit:
1641 /// \endcode
detectPopcountIdiom(Loop * CurLoop,BasicBlock * PreCondBB,Instruction * & CntInst,PHINode * & CntPhi,Value * & Var)1642 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1643 Instruction *&CntInst, PHINode *&CntPhi,
1644 Value *&Var) {
1645 // step 1: Check to see if the look-back branch match this pattern:
1646 // "if (a!=0) goto loop-entry".
1647 BasicBlock *LoopEntry;
1648 Instruction *DefX2, *CountInst;
1649 Value *VarX1, *VarX0;
1650 PHINode *PhiX, *CountPhi;
1651
1652 DefX2 = CountInst = nullptr;
1653 VarX1 = VarX0 = nullptr;
1654 PhiX = CountPhi = nullptr;
1655 LoopEntry = *(CurLoop->block_begin());
1656
1657 // step 1: Check if the loop-back branch is in desirable form.
1658 {
1659 if (Value *T = matchCondition(
1660 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1661 DefX2 = dyn_cast<Instruction>(T);
1662 else
1663 return false;
1664 }
1665
1666 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1667 {
1668 if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1669 return false;
1670
1671 BinaryOperator *SubOneOp;
1672
1673 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1674 VarX1 = DefX2->getOperand(1);
1675 else {
1676 VarX1 = DefX2->getOperand(0);
1677 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1678 }
1679 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1680 return false;
1681
1682 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1683 if (!Dec ||
1684 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1685 (SubOneOp->getOpcode() == Instruction::Add &&
1686 Dec->isMinusOne()))) {
1687 return false;
1688 }
1689 }
1690
1691 // step 3: Check the recurrence of variable X
1692 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1693 if (!PhiX)
1694 return false;
1695
1696 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1697 {
1698 CountInst = nullptr;
1699 for (Instruction &Inst : llvm::make_range(
1700 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1701 if (Inst.getOpcode() != Instruction::Add)
1702 continue;
1703
1704 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1705 if (!Inc || !Inc->isOne())
1706 continue;
1707
1708 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1709 if (!Phi)
1710 continue;
1711
1712 // Check if the result of the instruction is live of the loop.
1713 bool LiveOutLoop = false;
1714 for (User *U : Inst.users()) {
1715 if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1716 LiveOutLoop = true;
1717 break;
1718 }
1719 }
1720
1721 if (LiveOutLoop) {
1722 CountInst = &Inst;
1723 CountPhi = Phi;
1724 break;
1725 }
1726 }
1727
1728 if (!CountInst)
1729 return false;
1730 }
1731
1732 // step 5: check if the precondition is in this form:
1733 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1734 {
1735 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1736 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1737 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1738 return false;
1739
1740 CntInst = CountInst;
1741 CntPhi = CountPhi;
1742 Var = T;
1743 }
1744
1745 return true;
1746 }
1747
1748 /// Return true if the idiom is detected in the loop.
1749 ///
1750 /// Additionally:
1751 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1752 /// or nullptr if there is no such.
1753 /// 2) \p CntPhi is set to the corresponding phi node
1754 /// or nullptr if there is no such.
1755 /// 3) \p Var is set to the value whose CTLZ could be used.
1756 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1757 ///
1758 /// The core idiom we are trying to detect is:
1759 /// \code
1760 /// if (x0 == 0)
1761 /// goto loop-exit // the precondition of the loop
1762 /// cnt0 = init-val;
1763 /// do {
1764 /// x = phi (x0, x.next); //PhiX
1765 /// cnt = phi(cnt0, cnt.next);
1766 ///
1767 /// cnt.next = cnt + 1;
1768 /// ...
1769 /// x.next = x >> 1; // DefX
1770 /// ...
1771 /// } while(x.next != 0);
1772 ///
1773 /// loop-exit:
1774 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,const DataLayout & DL,Intrinsic::ID & IntrinID,Value * & InitX,Instruction * & CntInst,PHINode * & CntPhi,Instruction * & DefX)1775 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1776 Intrinsic::ID &IntrinID, Value *&InitX,
1777 Instruction *&CntInst, PHINode *&CntPhi,
1778 Instruction *&DefX) {
1779 BasicBlock *LoopEntry;
1780 Value *VarX = nullptr;
1781
1782 DefX = nullptr;
1783 CntInst = nullptr;
1784 CntPhi = nullptr;
1785 LoopEntry = *(CurLoop->block_begin());
1786
1787 // step 1: Check if the loop-back branch is in desirable form.
1788 if (Value *T = matchCondition(
1789 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1790 DefX = dyn_cast<Instruction>(T);
1791 else
1792 return false;
1793
1794 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1795 if (!DefX || !DefX->isShift())
1796 return false;
1797 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1798 Intrinsic::ctlz;
1799 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1800 if (!Shft || !Shft->isOne())
1801 return false;
1802 VarX = DefX->getOperand(0);
1803
1804 // step 3: Check the recurrence of variable X
1805 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1806 if (!PhiX)
1807 return false;
1808
1809 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1810
1811 // Make sure the initial value can't be negative otherwise the ashr in the
1812 // loop might never reach zero which would make the loop infinite.
1813 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1814 return false;
1815
1816 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1817 // or cnt.next = cnt + -1.
1818 // TODO: We can skip the step. If loop trip count is known (CTLZ),
1819 // then all uses of "cnt.next" could be optimized to the trip count
1820 // plus "cnt0". Currently it is not optimized.
1821 // This step could be used to detect POPCNT instruction:
1822 // cnt.next = cnt + (x.next & 1)
1823 for (Instruction &Inst : llvm::make_range(
1824 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1825 if (Inst.getOpcode() != Instruction::Add)
1826 continue;
1827
1828 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1829 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1830 continue;
1831
1832 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1833 if (!Phi)
1834 continue;
1835
1836 CntInst = &Inst;
1837 CntPhi = Phi;
1838 break;
1839 }
1840 if (!CntInst)
1841 return false;
1842
1843 return true;
1844 }
1845
1846 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1847 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1848 /// trip count returns true; otherwise, returns false.
recognizeAndInsertFFS()1849 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1850 // Give up if the loop has multiple blocks or multiple backedges.
1851 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1852 return false;
1853
1854 Intrinsic::ID IntrinID;
1855 Value *InitX;
1856 Instruction *DefX = nullptr;
1857 PHINode *CntPhi = nullptr;
1858 Instruction *CntInst = nullptr;
1859 // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1860 // this is always 6.
1861 size_t IdiomCanonicalSize = 6;
1862
1863 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1864 CntInst, CntPhi, DefX))
1865 return false;
1866
1867 bool IsCntPhiUsedOutsideLoop = false;
1868 for (User *U : CntPhi->users())
1869 if (!CurLoop->contains(cast<Instruction>(U))) {
1870 IsCntPhiUsedOutsideLoop = true;
1871 break;
1872 }
1873 bool IsCntInstUsedOutsideLoop = false;
1874 for (User *U : CntInst->users())
1875 if (!CurLoop->contains(cast<Instruction>(U))) {
1876 IsCntInstUsedOutsideLoop = true;
1877 break;
1878 }
1879 // If both CntInst and CntPhi are used outside the loop the profitability
1880 // is questionable.
1881 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1882 return false;
1883
1884 // For some CPUs result of CTLZ(X) intrinsic is undefined
1885 // when X is 0. If we can not guarantee X != 0, we need to check this
1886 // when expand.
1887 bool ZeroCheck = false;
1888 // It is safe to assume Preheader exist as it was checked in
1889 // parent function RunOnLoop.
1890 BasicBlock *PH = CurLoop->getLoopPreheader();
1891
1892 // If we are using the count instruction outside the loop, make sure we
1893 // have a zero check as a precondition. Without the check the loop would run
1894 // one iteration for before any check of the input value. This means 0 and 1
1895 // would have identical behavior in the original loop and thus
1896 if (!IsCntPhiUsedOutsideLoop) {
1897 auto *PreCondBB = PH->getSinglePredecessor();
1898 if (!PreCondBB)
1899 return false;
1900 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1901 if (!PreCondBI)
1902 return false;
1903 if (matchCondition(PreCondBI, PH) != InitX)
1904 return false;
1905 ZeroCheck = true;
1906 }
1907
1908 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1909 // profitable if we delete the loop.
1910
1911 // the loop has only 6 instructions:
1912 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1913 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1914 // %shr = ashr %n.addr.0, 1
1915 // %tobool = icmp eq %shr, 0
1916 // %inc = add nsw %i.0, 1
1917 // br i1 %tobool
1918
1919 const Value *Args[] = {InitX,
1920 ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1921
1922 // @llvm.dbg doesn't count as they have no semantic effect.
1923 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1924 uint32_t HeaderSize =
1925 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1926
1927 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1928 InstructionCost Cost =
1929 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1930 if (HeaderSize != IdiomCanonicalSize &&
1931 Cost > TargetTransformInfo::TCC_Basic)
1932 return false;
1933
1934 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1935 DefX->getDebugLoc(), ZeroCheck,
1936 IsCntPhiUsedOutsideLoop);
1937 return true;
1938 }
1939
1940 /// Recognizes a population count idiom in a non-countable loop.
1941 ///
1942 /// If detected, transforms the relevant code to issue the popcount intrinsic
1943 /// function call, and returns true; otherwise, returns false.
recognizePopcount()1944 bool LoopIdiomRecognize::recognizePopcount() {
1945 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1946 return false;
1947
1948 // Counting population are usually conducted by few arithmetic instructions.
1949 // Such instructions can be easily "absorbed" by vacant slots in a
1950 // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1951 // in a compact loop.
1952
1953 // Give up if the loop has multiple blocks or multiple backedges.
1954 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1955 return false;
1956
1957 BasicBlock *LoopBody = *(CurLoop->block_begin());
1958 if (LoopBody->size() >= 20) {
1959 // The loop is too big, bail out.
1960 return false;
1961 }
1962
1963 // It should have a preheader containing nothing but an unconditional branch.
1964 BasicBlock *PH = CurLoop->getLoopPreheader();
1965 if (!PH || &PH->front() != PH->getTerminator())
1966 return false;
1967 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1968 if (!EntryBI || EntryBI->isConditional())
1969 return false;
1970
1971 // It should have a precondition block where the generated popcount intrinsic
1972 // function can be inserted.
1973 auto *PreCondBB = PH->getSinglePredecessor();
1974 if (!PreCondBB)
1975 return false;
1976 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1977 if (!PreCondBI || PreCondBI->isUnconditional())
1978 return false;
1979
1980 Instruction *CntInst;
1981 PHINode *CntPhi;
1982 Value *Val;
1983 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1984 return false;
1985
1986 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1987 return true;
1988 }
1989
createPopcntIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL)1990 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1991 const DebugLoc &DL) {
1992 Value *Ops[] = {Val};
1993 Type *Tys[] = {Val->getType()};
1994
1995 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1996 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1997 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1998 CI->setDebugLoc(DL);
1999
2000 return CI;
2001 }
2002
createFFSIntrinsic(IRBuilder<> & IRBuilder,Value * Val,const DebugLoc & DL,bool ZeroCheck,Intrinsic::ID IID)2003 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
2004 const DebugLoc &DL, bool ZeroCheck,
2005 Intrinsic::ID IID) {
2006 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
2007 Type *Tys[] = {Val->getType()};
2008
2009 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
2010 Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
2011 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
2012 CI->setDebugLoc(DL);
2013
2014 return CI;
2015 }
2016
2017 /// Transform the following loop (Using CTLZ, CTTZ is similar):
2018 /// loop:
2019 /// CntPhi = PHI [Cnt0, CntInst]
2020 /// PhiX = PHI [InitX, DefX]
2021 /// CntInst = CntPhi + 1
2022 /// DefX = PhiX >> 1
2023 /// LOOP_BODY
2024 /// Br: loop if (DefX != 0)
2025 /// Use(CntPhi) or Use(CntInst)
2026 ///
2027 /// Into:
2028 /// If CntPhi used outside the loop:
2029 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
2030 /// Count = CountPrev + 1
2031 /// else
2032 /// Count = BitWidth(InitX) - CTLZ(InitX)
2033 /// loop:
2034 /// CntPhi = PHI [Cnt0, CntInst]
2035 /// PhiX = PHI [InitX, DefX]
2036 /// PhiCount = PHI [Count, Dec]
2037 /// CntInst = CntPhi + 1
2038 /// DefX = PhiX >> 1
2039 /// Dec = PhiCount - 1
2040 /// LOOP_BODY
2041 /// Br: loop if (Dec != 0)
2042 /// Use(CountPrev + Cnt0) // Use(CntPhi)
2043 /// or
2044 /// Use(Count + Cnt0) // Use(CntInst)
2045 ///
2046 /// If LOOP_BODY is empty the loop will be deleted.
2047 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
transformLoopToCountable(Intrinsic::ID IntrinID,BasicBlock * Preheader,Instruction * CntInst,PHINode * CntPhi,Value * InitX,Instruction * DefX,const DebugLoc & DL,bool ZeroCheck,bool IsCntPhiUsedOutsideLoop)2048 void LoopIdiomRecognize::transformLoopToCountable(
2049 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
2050 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
2051 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
2052 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
2053
2054 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
2055 IRBuilder<> Builder(PreheaderBr);
2056 Builder.SetCurrentDebugLocation(DL);
2057
2058 // If there are no uses of CntPhi crate:
2059 // Count = BitWidth - CTLZ(InitX);
2060 // NewCount = Count;
2061 // If there are uses of CntPhi create:
2062 // NewCount = BitWidth - CTLZ(InitX >> 1);
2063 // Count = NewCount + 1;
2064 Value *InitXNext;
2065 if (IsCntPhiUsedOutsideLoop) {
2066 if (DefX->getOpcode() == Instruction::AShr)
2067 InitXNext = Builder.CreateAShr(InitX, 1);
2068 else if (DefX->getOpcode() == Instruction::LShr)
2069 InitXNext = Builder.CreateLShr(InitX, 1);
2070 else if (DefX->getOpcode() == Instruction::Shl) // cttz
2071 InitXNext = Builder.CreateShl(InitX, 1);
2072 else
2073 llvm_unreachable("Unexpected opcode!");
2074 } else
2075 InitXNext = InitX;
2076 Value *Count =
2077 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
2078 Type *CountTy = Count->getType();
2079 Count = Builder.CreateSub(
2080 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
2081 Value *NewCount = Count;
2082 if (IsCntPhiUsedOutsideLoop)
2083 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
2084
2085 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2086
2087 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2088 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2089 // If the counter was being incremented in the loop, add NewCount to the
2090 // counter's initial value, but only if the initial value is not zero.
2091 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2092 if (!InitConst || !InitConst->isZero())
2093 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2094 } else {
2095 // If the count was being decremented in the loop, subtract NewCount from
2096 // the counter's initial value.
2097 NewCount = Builder.CreateSub(CntInitVal, NewCount);
2098 }
2099
2100 // Step 2: Insert new IV and loop condition:
2101 // loop:
2102 // ...
2103 // PhiCount = PHI [Count, Dec]
2104 // ...
2105 // Dec = PhiCount - 1
2106 // ...
2107 // Br: loop if (Dec != 0)
2108 BasicBlock *Body = *(CurLoop->block_begin());
2109 auto *LbBr = cast<BranchInst>(Body->getTerminator());
2110 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2111
2112 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front());
2113
2114 Builder.SetInsertPoint(LbCond);
2115 Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2116 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2117
2118 TcPhi->addIncoming(Count, Preheader);
2119 TcPhi->addIncoming(TcDec, Body);
2120
2121 CmpInst::Predicate Pred =
2122 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2123 LbCond->setPredicate(Pred);
2124 LbCond->setOperand(0, TcDec);
2125 LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2126
2127 // Step 3: All the references to the original counter outside
2128 // the loop are replaced with the NewCount
2129 if (IsCntPhiUsedOutsideLoop)
2130 CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2131 else
2132 CntInst->replaceUsesOutsideBlock(NewCount, Body);
2133
2134 // step 4: Forget the "non-computable" trip-count SCEV associated with the
2135 // loop. The loop would otherwise not be deleted even if it becomes empty.
2136 SE->forgetLoop(CurLoop);
2137 }
2138
transformLoopToPopcount(BasicBlock * PreCondBB,Instruction * CntInst,PHINode * CntPhi,Value * Var)2139 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2140 Instruction *CntInst,
2141 PHINode *CntPhi, Value *Var) {
2142 BasicBlock *PreHead = CurLoop->getLoopPreheader();
2143 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2144 const DebugLoc &DL = CntInst->getDebugLoc();
2145
2146 // Assuming before transformation, the loop is following:
2147 // if (x) // the precondition
2148 // do { cnt++; x &= x - 1; } while(x);
2149
2150 // Step 1: Insert the ctpop instruction at the end of the precondition block
2151 IRBuilder<> Builder(PreCondBr);
2152 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2153 {
2154 PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2155 NewCount = PopCntZext =
2156 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2157
2158 if (NewCount != PopCnt)
2159 (cast<Instruction>(NewCount))->setDebugLoc(DL);
2160
2161 // TripCnt is exactly the number of iterations the loop has
2162 TripCnt = NewCount;
2163
2164 // If the population counter's initial value is not zero, insert Add Inst.
2165 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2166 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2167 if (!InitConst || !InitConst->isZero()) {
2168 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2169 (cast<Instruction>(NewCount))->setDebugLoc(DL);
2170 }
2171 }
2172
2173 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2174 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2175 // function would be partial dead code, and downstream passes will drag
2176 // it back from the precondition block to the preheader.
2177 {
2178 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2179
2180 Value *Opnd0 = PopCntZext;
2181 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2182 if (PreCond->getOperand(0) != Var)
2183 std::swap(Opnd0, Opnd1);
2184
2185 ICmpInst *NewPreCond = cast<ICmpInst>(
2186 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2187 PreCondBr->setCondition(NewPreCond);
2188
2189 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2190 }
2191
2192 // Step 3: Note that the population count is exactly the trip count of the
2193 // loop in question, which enable us to convert the loop from noncountable
2194 // loop into a countable one. The benefit is twofold:
2195 //
2196 // - If the loop only counts population, the entire loop becomes dead after
2197 // the transformation. It is a lot easier to prove a countable loop dead
2198 // than to prove a noncountable one. (In some C dialects, an infinite loop
2199 // isn't dead even if it computes nothing useful. In general, DCE needs
2200 // to prove a noncountable loop finite before safely delete it.)
2201 //
2202 // - If the loop also performs something else, it remains alive.
2203 // Since it is transformed to countable form, it can be aggressively
2204 // optimized by some optimizations which are in general not applicable
2205 // to a noncountable loop.
2206 //
2207 // After this step, this loop (conceptually) would look like following:
2208 // newcnt = __builtin_ctpop(x);
2209 // t = newcnt;
2210 // if (x)
2211 // do { cnt++; x &= x-1; t--) } while (t > 0);
2212 BasicBlock *Body = *(CurLoop->block_begin());
2213 {
2214 auto *LbBr = cast<BranchInst>(Body->getTerminator());
2215 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2216 Type *Ty = TripCnt->getType();
2217
2218 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
2219
2220 Builder.SetInsertPoint(LbCond);
2221 Instruction *TcDec = cast<Instruction>(
2222 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2223 "tcdec", false, true));
2224
2225 TcPhi->addIncoming(TripCnt, PreHead);
2226 TcPhi->addIncoming(TcDec, Body);
2227
2228 CmpInst::Predicate Pred =
2229 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2230 LbCond->setPredicate(Pred);
2231 LbCond->setOperand(0, TcDec);
2232 LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2233 }
2234
2235 // Step 4: All the references to the original population counter outside
2236 // the loop are replaced with the NewCount -- the value returned from
2237 // __builtin_ctpop().
2238 CntInst->replaceUsesOutsideBlock(NewCount, Body);
2239
2240 // step 5: Forget the "non-computable" trip-count SCEV associated with the
2241 // loop. The loop would otherwise not be deleted even if it becomes empty.
2242 SE->forgetLoop(CurLoop);
2243 }
2244
2245 /// Match loop-invariant value.
2246 template <typename SubPattern_t> struct match_LoopInvariant {
2247 SubPattern_t SubPattern;
2248 const Loop *L;
2249
match_LoopInvariantmatch_LoopInvariant2250 match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2251 : SubPattern(SP), L(L) {}
2252
matchmatch_LoopInvariant2253 template <typename ITy> bool match(ITy *V) {
2254 return L->isLoopInvariant(V) && SubPattern.match(V);
2255 }
2256 };
2257
2258 /// Matches if the value is loop-invariant.
2259 template <typename Ty>
m_LoopInvariant(const Ty & M,const Loop * L)2260 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2261 return match_LoopInvariant<Ty>(M, L);
2262 }
2263
2264 /// Return true if the idiom is detected in the loop.
2265 ///
2266 /// The core idiom we are trying to detect is:
2267 /// \code
2268 /// entry:
2269 /// <...>
2270 /// %bitmask = shl i32 1, %bitpos
2271 /// br label %loop
2272 ///
2273 /// loop:
2274 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2275 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask
2276 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2277 /// %x.next = shl i32 %x.curr, 1
2278 /// <...>
2279 /// br i1 %x.curr.isbitunset, label %loop, label %end
2280 ///
2281 /// end:
2282 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2283 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2284 /// <...>
2285 /// \endcode
detectShiftUntilBitTestIdiom(Loop * CurLoop,Value * & BaseX,Value * & BitMask,Value * & BitPos,Value * & CurrX,Instruction * & NextX)2286 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2287 Value *&BitMask, Value *&BitPos,
2288 Value *&CurrX, Instruction *&NextX) {
2289 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2290 " Performing shift-until-bittest idiom detection.\n");
2291
2292 // Give up if the loop has multiple blocks or multiple backedges.
2293 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2294 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2295 return false;
2296 }
2297
2298 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2299 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2300 assert(LoopPreheaderBB && "There is always a loop preheader.");
2301
2302 using namespace PatternMatch;
2303
2304 // Step 1: Check if the loop backedge is in desirable form.
2305
2306 ICmpInst::Predicate Pred;
2307 Value *CmpLHS, *CmpRHS;
2308 BasicBlock *TrueBB, *FalseBB;
2309 if (!match(LoopHeaderBB->getTerminator(),
2310 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2311 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2312 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2313 return false;
2314 }
2315
2316 // Step 2: Check if the backedge's condition is in desirable form.
2317
2318 auto MatchVariableBitMask = [&]() {
2319 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2320 match(CmpLHS,
2321 m_c_And(m_Value(CurrX),
2322 m_CombineAnd(
2323 m_Value(BitMask),
2324 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2325 CurLoop))));
2326 };
2327 auto MatchConstantBitMask = [&]() {
2328 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2329 match(CmpLHS, m_And(m_Value(CurrX),
2330 m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2331 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2332 };
2333 auto MatchDecomposableConstantBitMask = [&]() {
2334 APInt Mask;
2335 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2336 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2337 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2338 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2339 };
2340
2341 if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2342 !MatchDecomposableConstantBitMask()) {
2343 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2344 return false;
2345 }
2346
2347 // Step 3: Check if the recurrence is in desirable form.
2348 auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2349 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2350 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2351 return false;
2352 }
2353
2354 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2355 NextX =
2356 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2357
2358 assert(CurLoop->isLoopInvariant(BaseX) &&
2359 "Expected BaseX to be avaliable in the preheader!");
2360
2361 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2362 // FIXME: support right-shift?
2363 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2364 return false;
2365 }
2366
2367 // Step 4: Check if the backedge's destinations are in desirable form.
2368
2369 assert(ICmpInst::isEquality(Pred) &&
2370 "Should only get equality predicates here.");
2371
2372 // cmp-br is commutative, so canonicalize to a single variant.
2373 if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2374 Pred = ICmpInst::getInversePredicate(Pred);
2375 std::swap(TrueBB, FalseBB);
2376 }
2377
2378 // We expect to exit loop when comparison yields false,
2379 // so when it yields true we should branch back to loop header.
2380 if (TrueBB != LoopHeaderBB) {
2381 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2382 return false;
2383 }
2384
2385 // Okay, idiom checks out.
2386 return true;
2387 }
2388
2389 /// Look for the following loop:
2390 /// \code
2391 /// entry:
2392 /// <...>
2393 /// %bitmask = shl i32 1, %bitpos
2394 /// br label %loop
2395 ///
2396 /// loop:
2397 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2398 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask
2399 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2400 /// %x.next = shl i32 %x.curr, 1
2401 /// <...>
2402 /// br i1 %x.curr.isbitunset, label %loop, label %end
2403 ///
2404 /// end:
2405 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2406 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2407 /// <...>
2408 /// \endcode
2409 ///
2410 /// And transform it into:
2411 /// \code
2412 /// entry:
2413 /// %bitmask = shl i32 1, %bitpos
2414 /// %lowbitmask = add i32 %bitmask, -1
2415 /// %mask = or i32 %lowbitmask, %bitmask
2416 /// %x.masked = and i32 %x, %mask
2417 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2418 /// i1 true)
2419 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2420 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2421 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2422 /// %tripcount = add i32 %backedgetakencount, 1
2423 /// %x.curr = shl i32 %x, %backedgetakencount
2424 /// %x.next = shl i32 %x, %tripcount
2425 /// br label %loop
2426 ///
2427 /// loop:
2428 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2429 /// %loop.iv.next = add nuw i32 %loop.iv, 1
2430 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2431 /// <...>
2432 /// br i1 %loop.ivcheck, label %end, label %loop
2433 ///
2434 /// end:
2435 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2436 /// %x.next.res = phi i32 [ %x.next, %loop ] <...>
2437 /// <...>
2438 /// \endcode
recognizeShiftUntilBitTest()2439 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2440 bool MadeChange = false;
2441
2442 Value *X, *BitMask, *BitPos, *XCurr;
2443 Instruction *XNext;
2444 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2445 XNext)) {
2446 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2447 " shift-until-bittest idiom detection failed.\n");
2448 return MadeChange;
2449 }
2450 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2451
2452 // Ok, it is the idiom we were looking for, we *could* transform this loop,
2453 // but is it profitable to transform?
2454
2455 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2456 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2457 assert(LoopPreheaderBB && "There is always a loop preheader.");
2458
2459 BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2460 assert(SuccessorBB && "There is only a single successor.");
2461
2462 IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2463 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2464
2465 Intrinsic::ID IntrID = Intrinsic::ctlz;
2466 Type *Ty = X->getType();
2467 unsigned Bitwidth = Ty->getScalarSizeInBits();
2468
2469 TargetTransformInfo::TargetCostKind CostKind =
2470 TargetTransformInfo::TCK_SizeAndLatency;
2471
2472 // The rewrite is considered to be unprofitable iff and only iff the
2473 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2474 // making the loop countable, even if nothing else changes.
2475 IntrinsicCostAttributes Attrs(
2476 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
2477 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2478 if (Cost > TargetTransformInfo::TCC_Basic) {
2479 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2480 " Intrinsic is too costly, not beneficial\n");
2481 return MadeChange;
2482 }
2483 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2484 TargetTransformInfo::TCC_Basic) {
2485 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2486 return MadeChange;
2487 }
2488
2489 // Ok, transform appears worthwhile.
2490 MadeChange = true;
2491
2492 // Step 1: Compute the loop trip count.
2493
2494 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2495 BitPos->getName() + ".lowbitmask");
2496 Value *Mask =
2497 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2498 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2499 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2500 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
2501 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2502 Value *XMaskedNumActiveBits = Builder.CreateSub(
2503 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2504 XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2505 /*HasNSW=*/Bitwidth != 2);
2506 Value *XMaskedLeadingOnePos =
2507 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2508 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2509 /*HasNSW=*/Bitwidth > 2);
2510
2511 Value *LoopBackedgeTakenCount = Builder.CreateSub(
2512 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2513 /*HasNUW=*/true, /*HasNSW=*/true);
2514 // We know loop's backedge-taken count, but what's loop's trip count?
2515 // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2516 Value *LoopTripCount =
2517 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2518 CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2519 /*HasNSW=*/Bitwidth != 2);
2520
2521 // Step 2: Compute the recurrence's final value without a loop.
2522
2523 // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2524 // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2525 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2526 NewX->takeName(XCurr);
2527 if (auto *I = dyn_cast<Instruction>(NewX))
2528 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2529
2530 Value *NewXNext;
2531 // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2532 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2533 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2534 // that isn't the case, we'll need to emit an alternative, safe IR.
2535 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2536 PatternMatch::match(
2537 BitPos, PatternMatch::m_SpecificInt_ICMP(
2538 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2539 Ty->getScalarSizeInBits() - 1))))
2540 NewXNext = Builder.CreateShl(X, LoopTripCount);
2541 else {
2542 // Otherwise, just additionally shift by one. It's the smallest solution,
2543 // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2544 // and select 0 instead.
2545 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2546 }
2547
2548 NewXNext->takeName(XNext);
2549 if (auto *I = dyn_cast<Instruction>(NewXNext))
2550 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2551
2552 // Step 3: Adjust the successor basic block to recieve the computed
2553 // recurrence's final value instead of the recurrence itself.
2554
2555 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2556 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2557
2558 // Step 4: Rewrite the loop into a countable form, with canonical IV.
2559
2560 // The new canonical induction variable.
2561 Builder.SetInsertPoint(&LoopHeaderBB->front());
2562 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2563
2564 // The induction itself.
2565 // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2566 Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2567 auto *IVNext =
2568 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2569 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2570
2571 // The loop trip count check.
2572 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2573 CurLoop->getName() + ".ivcheck");
2574 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2575 LoopHeaderBB->getTerminator()->eraseFromParent();
2576
2577 // Populate the IV PHI.
2578 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2579 IV->addIncoming(IVNext, LoopHeaderBB);
2580
2581 // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2582 // loop. The loop would otherwise not be deleted even if it becomes empty.
2583
2584 SE->forgetLoop(CurLoop);
2585
2586 // Other passes will take care of actually deleting the loop if possible.
2587
2588 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2589
2590 ++NumShiftUntilBitTest;
2591 return MadeChange;
2592 }
2593
2594 /// Return true if the idiom is detected in the loop.
2595 ///
2596 /// The core idiom we are trying to detect is:
2597 /// \code
2598 /// entry:
2599 /// <...>
2600 /// %start = <...>
2601 /// %extraoffset = <...>
2602 /// <...>
2603 /// br label %for.cond
2604 ///
2605 /// loop:
2606 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2607 /// %nbits = add nsw i8 %iv, %extraoffset
2608 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2609 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2610 /// %iv.next = add i8 %iv, 1
2611 /// <...>
2612 /// br i1 %val.shifted.iszero, label %end, label %loop
2613 ///
2614 /// end:
2615 /// %iv.res = phi i8 [ %iv, %loop ] <...>
2616 /// %nbits.res = phi i8 [ %nbits, %loop ] <...>
2617 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2618 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2619 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2620 /// <...>
2621 /// \endcode
detectShiftUntilZeroIdiom(Loop * CurLoop,ScalarEvolution * SE,Instruction * & ValShiftedIsZero,Intrinsic::ID & IntrinID,Instruction * & IV,Value * & Start,Value * & Val,const SCEV * & ExtraOffsetExpr,bool & InvertedCond)2622 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2623 Instruction *&ValShiftedIsZero,
2624 Intrinsic::ID &IntrinID, Instruction *&IV,
2625 Value *&Start, Value *&Val,
2626 const SCEV *&ExtraOffsetExpr,
2627 bool &InvertedCond) {
2628 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2629 " Performing shift-until-zero idiom detection.\n");
2630
2631 // Give up if the loop has multiple blocks or multiple backedges.
2632 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2633 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2634 return false;
2635 }
2636
2637 Instruction *ValShifted, *NBits, *IVNext;
2638 Value *ExtraOffset;
2639
2640 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2641 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2642 assert(LoopPreheaderBB && "There is always a loop preheader.");
2643
2644 using namespace PatternMatch;
2645
2646 // Step 1: Check if the loop backedge, condition is in desirable form.
2647
2648 ICmpInst::Predicate Pred;
2649 BasicBlock *TrueBB, *FalseBB;
2650 if (!match(LoopHeaderBB->getTerminator(),
2651 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2652 m_BasicBlock(FalseBB))) ||
2653 !match(ValShiftedIsZero,
2654 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2655 !ICmpInst::isEquality(Pred)) {
2656 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2657 return false;
2658 }
2659
2660 // Step 2: Check if the comparison's operand is in desirable form.
2661 // FIXME: Val could be a one-input PHI node, which we should look past.
2662 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2663 m_Instruction(NBits)))) {
2664 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2665 return false;
2666 }
2667 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2668 : Intrinsic::ctlz;
2669
2670 // Step 3: Check if the shift amount is in desirable form.
2671
2672 if (match(NBits, m_c_Add(m_Instruction(IV),
2673 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2674 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2675 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2676 else if (match(NBits,
2677 m_Sub(m_Instruction(IV),
2678 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2679 NBits->hasNoSignedWrap())
2680 ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2681 else {
2682 IV = NBits;
2683 ExtraOffsetExpr = SE->getZero(NBits->getType());
2684 }
2685
2686 // Step 4: Check if the recurrence is in desirable form.
2687 auto *IVPN = dyn_cast<PHINode>(IV);
2688 if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2689 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2690 return false;
2691 }
2692
2693 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2694 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2695
2696 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2697 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2698 return false;
2699 }
2700
2701 // Step 4: Check if the backedge's destinations are in desirable form.
2702
2703 assert(ICmpInst::isEquality(Pred) &&
2704 "Should only get equality predicates here.");
2705
2706 // cmp-br is commutative, so canonicalize to a single variant.
2707 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2708 if (InvertedCond) {
2709 Pred = ICmpInst::getInversePredicate(Pred);
2710 std::swap(TrueBB, FalseBB);
2711 }
2712
2713 // We expect to exit loop when comparison yields true,
2714 // so when it yields false we should branch back to loop header.
2715 if (FalseBB != LoopHeaderBB) {
2716 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2717 return false;
2718 }
2719
2720 // The new, countable, loop will certainly only run a known number of
2721 // iterations, It won't be infinite. But the old loop might be infinite
2722 // under certain conditions. For logical shifts, the value will become zero
2723 // after at most bitwidth(%Val) loop iterations. However, for arithmetic
2724 // right-shift, iff the sign bit was set, the value will never become zero,
2725 // and the loop may never finish.
2726 if (ValShifted->getOpcode() == Instruction::AShr &&
2727 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2728 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2729 return false;
2730 }
2731
2732 // Okay, idiom checks out.
2733 return true;
2734 }
2735
2736 /// Look for the following loop:
2737 /// \code
2738 /// entry:
2739 /// <...>
2740 /// %start = <...>
2741 /// %extraoffset = <...>
2742 /// <...>
2743 /// br label %for.cond
2744 ///
2745 /// loop:
2746 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2747 /// %nbits = add nsw i8 %iv, %extraoffset
2748 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2749 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2750 /// %iv.next = add i8 %iv, 1
2751 /// <...>
2752 /// br i1 %val.shifted.iszero, label %end, label %loop
2753 ///
2754 /// end:
2755 /// %iv.res = phi i8 [ %iv, %loop ] <...>
2756 /// %nbits.res = phi i8 [ %nbits, %loop ] <...>
2757 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2758 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2759 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2760 /// <...>
2761 /// \endcode
2762 ///
2763 /// And transform it into:
2764 /// \code
2765 /// entry:
2766 /// <...>
2767 /// %start = <...>
2768 /// %extraoffset = <...>
2769 /// <...>
2770 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2771 /// %val.numactivebits = sub i8 8, %val.numleadingzeros
2772 /// %extraoffset.neg = sub i8 0, %extraoffset
2773 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg
2774 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2775 /// %loop.tripcount = sub i8 %iv.final, %start
2776 /// br label %loop
2777 ///
2778 /// loop:
2779 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2780 /// %loop.iv.next = add i8 %loop.iv, 1
2781 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2782 /// %iv = add i8 %loop.iv, %start
2783 /// <...>
2784 /// br i1 %loop.ivcheck, label %end, label %loop
2785 ///
2786 /// end:
2787 /// %iv.res = phi i8 [ %iv.final, %loop ] <...>
2788 /// <...>
2789 /// \endcode
recognizeShiftUntilZero()2790 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2791 bool MadeChange = false;
2792
2793 Instruction *ValShiftedIsZero;
2794 Intrinsic::ID IntrID;
2795 Instruction *IV;
2796 Value *Start, *Val;
2797 const SCEV *ExtraOffsetExpr;
2798 bool InvertedCond;
2799 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2800 Start, Val, ExtraOffsetExpr, InvertedCond)) {
2801 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2802 " shift-until-zero idiom detection failed.\n");
2803 return MadeChange;
2804 }
2805 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2806
2807 // Ok, it is the idiom we were looking for, we *could* transform this loop,
2808 // but is it profitable to transform?
2809
2810 BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2811 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2812 assert(LoopPreheaderBB && "There is always a loop preheader.");
2813
2814 BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2815 assert(SuccessorBB && "There is only a single successor.");
2816
2817 IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2818 Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2819
2820 Type *Ty = Val->getType();
2821 unsigned Bitwidth = Ty->getScalarSizeInBits();
2822
2823 TargetTransformInfo::TargetCostKind CostKind =
2824 TargetTransformInfo::TCK_SizeAndLatency;
2825
2826 // The rewrite is considered to be unprofitable iff and only iff the
2827 // intrinsic we'll use are not cheap. Note that we are okay with *just*
2828 // making the loop countable, even if nothing else changes.
2829 IntrinsicCostAttributes Attrs(
2830 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()});
2831 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2832 if (Cost > TargetTransformInfo::TCC_Basic) {
2833 LLVM_DEBUG(dbgs() << DEBUG_TYPE
2834 " Intrinsic is too costly, not beneficial\n");
2835 return MadeChange;
2836 }
2837
2838 // Ok, transform appears worthwhile.
2839 MadeChange = true;
2840
2841 bool OffsetIsZero = false;
2842 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2843 OffsetIsZero = ExtraOffsetExprC->isZero();
2844
2845 // Step 1: Compute the loop's final IV value / trip count.
2846
2847 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
2848 IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()},
2849 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
2850 Value *ValNumActiveBits = Builder.CreateSub(
2851 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
2852 Val->getName() + ".numactivebits", /*HasNUW=*/true,
2853 /*HasNSW=*/Bitwidth != 2);
2854
2855 SCEVExpander Expander(*SE, *DL, "loop-idiom");
2856 Expander.setInsertPoint(&*Builder.GetInsertPoint());
2857 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
2858
2859 Value *ValNumActiveBitsOffset = Builder.CreateAdd(
2860 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
2861 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
2862 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
2863 {ValNumActiveBitsOffset, Start},
2864 /*FMFSource=*/nullptr, "iv.final");
2865
2866 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
2867 IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
2868 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
2869 // FIXME: or when the offset was `add nuw`
2870
2871 // We know loop's backedge-taken count, but what's loop's trip count?
2872 Value *LoopTripCount =
2873 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2874 CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2875 /*HasNSW=*/Bitwidth != 2);
2876
2877 // Step 2: Adjust the successor basic block to recieve the original
2878 // induction variable's final value instead of the orig. IV itself.
2879
2880 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
2881
2882 // Step 3: Rewrite the loop into a countable form, with canonical IV.
2883
2884 // The new canonical induction variable.
2885 Builder.SetInsertPoint(&LoopHeaderBB->front());
2886 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2887
2888 // The induction itself.
2889 Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI());
2890 auto *CIVNext =
2891 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
2892 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2893
2894 // The loop trip count check.
2895 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
2896 CurLoop->getName() + ".ivcheck");
2897 auto *NewIVCheck = CIVCheck;
2898 if (InvertedCond) {
2899 NewIVCheck = Builder.CreateNot(CIVCheck);
2900 NewIVCheck->takeName(ValShiftedIsZero);
2901 }
2902
2903 // The original IV, but rebased to be an offset to the CIV.
2904 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
2905 /*HasNSW=*/true); // FIXME: what about NUW?
2906 IVDePHId->takeName(IV);
2907
2908 // The loop terminator.
2909 Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2910 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
2911 LoopHeaderBB->getTerminator()->eraseFromParent();
2912
2913 // Populate the IV PHI.
2914 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2915 CIV->addIncoming(CIVNext, LoopHeaderBB);
2916
2917 // Step 4: Forget the "non-computable" trip-count SCEV associated with the
2918 // loop. The loop would otherwise not be deleted even if it becomes empty.
2919
2920 SE->forgetLoop(CurLoop);
2921
2922 // Step 5: Try to cleanup the loop's body somewhat.
2923 IV->replaceAllUsesWith(IVDePHId);
2924 IV->eraseFromParent();
2925
2926 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
2927 ValShiftedIsZero->eraseFromParent();
2928
2929 // Other passes will take care of actually deleting the loop if possible.
2930
2931 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
2932
2933 ++NumShiftUntilZero;
2934 return MadeChange;
2935 }
2936