1 //===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop Distribution Pass. Its main focus is to
10 // distribute loops that cannot be vectorized due to dependence cycles. It
11 // tries to isolate the offending dependences into a new loop allowing
12 // vectorization of the remaining parts.
13 //
14 // For dependence analysis, the pass uses the LoopVectorizer's
15 // LoopAccessAnalysis. Because this analysis presumes no change in the order of
16 // memory operations, special care is taken to preserve the lexical order of
17 // these operations.
18 //
19 // Similarly to the Vectorizer, the pass also supports loop versioning to
20 // run-time disambiguate potentially overlapping arrays.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/Transforms/Scalar/LoopDistribute.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/EquivalenceClasses.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AssumptionCache.h"
36 #include "llvm/Analysis/GlobalsModRef.h"
37 #include "llvm/Analysis/LoopAccessAnalysis.h"
38 #include "llvm/Analysis/LoopAnalysisManager.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63 #include "llvm/Transforms/Utils/Cloning.h"
64 #include "llvm/Transforms/Utils/LoopUtils.h"
65 #include "llvm/Transforms/Utils/LoopVersioning.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <cassert>
68 #include <functional>
69 #include <list>
70 #include <tuple>
71 #include <utility>
72
73 using namespace llvm;
74
75 #define LDIST_NAME "loop-distribute"
76 #define DEBUG_TYPE LDIST_NAME
77
78 /// @{
79 /// Metadata attribute names
80 static const char *const LLVMLoopDistributeFollowupAll =
81 "llvm.loop.distribute.followup_all";
82 static const char *const LLVMLoopDistributeFollowupCoincident =
83 "llvm.loop.distribute.followup_coincident";
84 static const char *const LLVMLoopDistributeFollowupSequential =
85 "llvm.loop.distribute.followup_sequential";
86 static const char *const LLVMLoopDistributeFollowupFallback =
87 "llvm.loop.distribute.followup_fallback";
88 /// @}
89
90 static cl::opt<bool>
91 LDistVerify("loop-distribute-verify", cl::Hidden,
92 cl::desc("Turn on DominatorTree and LoopInfo verification "
93 "after Loop Distribution"),
94 cl::init(false));
95
96 static cl::opt<bool> DistributeNonIfConvertible(
97 "loop-distribute-non-if-convertible", cl::Hidden,
98 cl::desc("Whether to distribute into a loop that may not be "
99 "if-convertible by the loop vectorizer"),
100 cl::init(false));
101
102 static cl::opt<unsigned> DistributeSCEVCheckThreshold(
103 "loop-distribute-scev-check-threshold", cl::init(8), cl::Hidden,
104 cl::desc("The maximum number of SCEV checks allowed for Loop "
105 "Distribution"));
106
107 static cl::opt<unsigned> PragmaDistributeSCEVCheckThreshold(
108 "loop-distribute-scev-check-threshold-with-pragma", cl::init(128),
109 cl::Hidden,
110 cl::desc(
111 "The maximum number of SCEV checks allowed for Loop "
112 "Distribution for loop marked with #pragma loop distribute(enable)"));
113
114 static cl::opt<bool> EnableLoopDistribute(
115 "enable-loop-distribute", cl::Hidden,
116 cl::desc("Enable the new, experimental LoopDistribution Pass"),
117 cl::init(false));
118
119 STATISTIC(NumLoopsDistributed, "Number of loops distributed");
120
121 namespace {
122
123 /// Maintains the set of instructions of the loop for a partition before
124 /// cloning. After cloning, it hosts the new loop.
125 class InstPartition {
126 using InstructionSet = SmallPtrSet<Instruction *, 8>;
127
128 public:
InstPartition(Instruction * I,Loop * L,bool DepCycle=false)129 InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
130 : DepCycle(DepCycle), OrigLoop(L) {
131 Set.insert(I);
132 }
133
134 /// Returns whether this partition contains a dependence cycle.
hasDepCycle() const135 bool hasDepCycle() const { return DepCycle; }
136
137 /// Adds an instruction to this partition.
add(Instruction * I)138 void add(Instruction *I) { Set.insert(I); }
139
140 /// Collection accessors.
begin()141 InstructionSet::iterator begin() { return Set.begin(); }
end()142 InstructionSet::iterator end() { return Set.end(); }
begin() const143 InstructionSet::const_iterator begin() const { return Set.begin(); }
end() const144 InstructionSet::const_iterator end() const { return Set.end(); }
empty() const145 bool empty() const { return Set.empty(); }
146
147 /// Moves this partition into \p Other. This partition becomes empty
148 /// after this.
moveTo(InstPartition & Other)149 void moveTo(InstPartition &Other) {
150 Other.Set.insert(Set.begin(), Set.end());
151 Set.clear();
152 Other.DepCycle |= DepCycle;
153 }
154
155 /// Populates the partition with a transitive closure of all the
156 /// instructions that the seeded instructions dependent on.
populateUsedSet()157 void populateUsedSet() {
158 // FIXME: We currently don't use control-dependence but simply include all
159 // blocks (possibly empty at the end) and let simplifycfg mostly clean this
160 // up.
161 for (auto *B : OrigLoop->getBlocks())
162 Set.insert(B->getTerminator());
163
164 // Follow the use-def chains to form a transitive closure of all the
165 // instructions that the originally seeded instructions depend on.
166 SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
167 while (!Worklist.empty()) {
168 Instruction *I = Worklist.pop_back_val();
169 // Insert instructions from the loop that we depend on.
170 for (Value *V : I->operand_values()) {
171 auto *I = dyn_cast<Instruction>(V);
172 if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
173 Worklist.push_back(I);
174 }
175 }
176 }
177
178 /// Clones the original loop.
179 ///
180 /// Updates LoopInfo and DominatorTree using the information that block \p
181 /// LoopDomBB dominates the loop.
cloneLoopWithPreheader(BasicBlock * InsertBefore,BasicBlock * LoopDomBB,unsigned Index,LoopInfo * LI,DominatorTree * DT)182 Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
183 unsigned Index, LoopInfo *LI,
184 DominatorTree *DT) {
185 ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
186 VMap, Twine(".ldist") + Twine(Index),
187 LI, DT, ClonedLoopBlocks);
188 return ClonedLoop;
189 }
190
191 /// The cloned loop. If this partition is mapped to the original loop,
192 /// this is null.
getClonedLoop() const193 const Loop *getClonedLoop() const { return ClonedLoop; }
194
195 /// Returns the loop where this partition ends up after distribution.
196 /// If this partition is mapped to the original loop then use the block from
197 /// the loop.
getDistributedLoop() const198 Loop *getDistributedLoop() const {
199 return ClonedLoop ? ClonedLoop : OrigLoop;
200 }
201
202 /// The VMap that is populated by cloning and then used in
203 /// remapinstruction to remap the cloned instructions.
getVMap()204 ValueToValueMapTy &getVMap() { return VMap; }
205
206 /// Remaps the cloned instructions using VMap.
remapInstructions()207 void remapInstructions() {
208 remapInstructionsInBlocks(ClonedLoopBlocks, VMap);
209 }
210
211 /// Based on the set of instructions selected for this partition,
212 /// removes the unnecessary ones.
removeUnusedInsts()213 void removeUnusedInsts() {
214 SmallVector<Instruction *, 8> Unused;
215
216 for (auto *Block : OrigLoop->getBlocks())
217 for (auto &Inst : *Block)
218 if (!Set.count(&Inst)) {
219 Instruction *NewInst = &Inst;
220 if (!VMap.empty())
221 NewInst = cast<Instruction>(VMap[NewInst]);
222
223 assert(!isa<BranchInst>(NewInst) &&
224 "Branches are marked used early on");
225 Unused.push_back(NewInst);
226 }
227
228 // Delete the instructions backwards, as it has a reduced likelihood of
229 // having to update as many def-use and use-def chains.
230 for (auto *Inst : reverse(Unused)) {
231 if (!Inst->use_empty())
232 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType()));
233 Inst->eraseFromParent();
234 }
235 }
236
print() const237 void print() const {
238 if (DepCycle)
239 dbgs() << " (cycle)\n";
240 for (auto *I : Set)
241 // Prefix with the block name.
242 dbgs() << " " << I->getParent()->getName() << ":" << *I << "\n";
243 }
244
printBlocks() const245 void printBlocks() const {
246 for (auto *BB : getDistributedLoop()->getBlocks())
247 dbgs() << *BB;
248 }
249
250 private:
251 /// Instructions from OrigLoop selected for this partition.
252 InstructionSet Set;
253
254 /// Whether this partition contains a dependence cycle.
255 bool DepCycle;
256
257 /// The original loop.
258 Loop *OrigLoop;
259
260 /// The cloned loop. If this partition is mapped to the original loop,
261 /// this is null.
262 Loop *ClonedLoop = nullptr;
263
264 /// The blocks of ClonedLoop including the preheader. If this
265 /// partition is mapped to the original loop, this is empty.
266 SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
267
268 /// These gets populated once the set of instructions have been
269 /// finalized. If this partition is mapped to the original loop, these are not
270 /// set.
271 ValueToValueMapTy VMap;
272 };
273
274 /// Holds the set of Partitions. It populates them, merges them and then
275 /// clones the loops.
276 class InstPartitionContainer {
277 using InstToPartitionIdT = DenseMap<Instruction *, int>;
278
279 public:
InstPartitionContainer(Loop * L,LoopInfo * LI,DominatorTree * DT)280 InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
281 : L(L), LI(LI), DT(DT) {}
282
283 /// Returns the number of partitions.
getSize() const284 unsigned getSize() const { return PartitionContainer.size(); }
285
286 /// Adds \p Inst into the current partition if that is marked to
287 /// contain cycles. Otherwise start a new partition for it.
addToCyclicPartition(Instruction * Inst)288 void addToCyclicPartition(Instruction *Inst) {
289 // If the current partition is non-cyclic. Start a new one.
290 if (PartitionContainer.empty() || !PartitionContainer.back().hasDepCycle())
291 PartitionContainer.emplace_back(Inst, L, /*DepCycle=*/true);
292 else
293 PartitionContainer.back().add(Inst);
294 }
295
296 /// Adds \p Inst into a partition that is not marked to contain
297 /// dependence cycles.
298 ///
299 // Initially we isolate memory instructions into as many partitions as
300 // possible, then later we may merge them back together.
addToNewNonCyclicPartition(Instruction * Inst)301 void addToNewNonCyclicPartition(Instruction *Inst) {
302 PartitionContainer.emplace_back(Inst, L);
303 }
304
305 /// Merges adjacent non-cyclic partitions.
306 ///
307 /// The idea is that we currently only want to isolate the non-vectorizable
308 /// partition. We could later allow more distribution among these partition
309 /// too.
mergeAdjacentNonCyclic()310 void mergeAdjacentNonCyclic() {
311 mergeAdjacentPartitionsIf(
312 [](const InstPartition *P) { return !P->hasDepCycle(); });
313 }
314
315 /// If a partition contains only conditional stores, we won't vectorize
316 /// it. Try to merge it with a previous cyclic partition.
mergeNonIfConvertible()317 void mergeNonIfConvertible() {
318 mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
319 if (Partition->hasDepCycle())
320 return true;
321
322 // Now, check if all stores are conditional in this partition.
323 bool seenStore = false;
324
325 for (auto *Inst : *Partition)
326 if (isa<StoreInst>(Inst)) {
327 seenStore = true;
328 if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
329 return false;
330 }
331 return seenStore;
332 });
333 }
334
335 /// Merges the partitions according to various heuristics.
mergeBeforePopulating()336 void mergeBeforePopulating() {
337 mergeAdjacentNonCyclic();
338 if (!DistributeNonIfConvertible)
339 mergeNonIfConvertible();
340 }
341
342 /// Merges partitions in order to ensure that no loads are duplicated.
343 ///
344 /// We can't duplicate loads because that could potentially reorder them.
345 /// LoopAccessAnalysis provides dependency information with the context that
346 /// the order of memory operation is preserved.
347 ///
348 /// Return if any partitions were merged.
mergeToAvoidDuplicatedLoads()349 bool mergeToAvoidDuplicatedLoads() {
350 using LoadToPartitionT = DenseMap<Instruction *, InstPartition *>;
351 using ToBeMergedT = EquivalenceClasses<InstPartition *>;
352
353 LoadToPartitionT LoadToPartition;
354 ToBeMergedT ToBeMerged;
355
356 // Step through the partitions and create equivalence between partitions
357 // that contain the same load. Also put partitions in between them in the
358 // same equivalence class to avoid reordering of memory operations.
359 for (PartitionContainerT::iterator I = PartitionContainer.begin(),
360 E = PartitionContainer.end();
361 I != E; ++I) {
362 auto *PartI = &*I;
363
364 // If a load occurs in two partitions PartI and PartJ, merge all
365 // partitions (PartI, PartJ] into PartI.
366 for (Instruction *Inst : *PartI)
367 if (isa<LoadInst>(Inst)) {
368 bool NewElt;
369 LoadToPartitionT::iterator LoadToPart;
370
371 std::tie(LoadToPart, NewElt) =
372 LoadToPartition.insert(std::make_pair(Inst, PartI));
373 if (!NewElt) {
374 LLVM_DEBUG(dbgs()
375 << "Merging partitions due to this load in multiple "
376 << "partitions: " << PartI << ", " << LoadToPart->second
377 << "\n"
378 << *Inst << "\n");
379
380 auto PartJ = I;
381 do {
382 --PartJ;
383 ToBeMerged.unionSets(PartI, &*PartJ);
384 } while (&*PartJ != LoadToPart->second);
385 }
386 }
387 }
388 if (ToBeMerged.empty())
389 return false;
390
391 // Merge the member of an equivalence class into its class leader. This
392 // makes the members empty.
393 for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
394 I != E; ++I) {
395 if (!I->isLeader())
396 continue;
397
398 auto PartI = I->getData();
399 for (auto *PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
400 ToBeMerged.member_end())) {
401 PartJ->moveTo(*PartI);
402 }
403 }
404
405 // Remove the empty partitions.
406 PartitionContainer.remove_if(
407 [](const InstPartition &P) { return P.empty(); });
408
409 return true;
410 }
411
412 /// Sets up the mapping between instructions to partitions. If the
413 /// instruction is duplicated across multiple partitions, set the entry to -1.
setupPartitionIdOnInstructions()414 void setupPartitionIdOnInstructions() {
415 int PartitionID = 0;
416 for (const auto &Partition : PartitionContainer) {
417 for (Instruction *Inst : Partition) {
418 bool NewElt;
419 InstToPartitionIdT::iterator Iter;
420
421 std::tie(Iter, NewElt) =
422 InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
423 if (!NewElt)
424 Iter->second = -1;
425 }
426 ++PartitionID;
427 }
428 }
429
430 /// Populates the partition with everything that the seeding
431 /// instructions require.
populateUsedSet()432 void populateUsedSet() {
433 for (auto &P : PartitionContainer)
434 P.populateUsedSet();
435 }
436
437 /// This performs the main chunk of the work of cloning the loops for
438 /// the partitions.
cloneLoops()439 void cloneLoops() {
440 BasicBlock *OrigPH = L->getLoopPreheader();
441 // At this point the predecessor of the preheader is either the memcheck
442 // block or the top part of the original preheader.
443 BasicBlock *Pred = OrigPH->getSinglePredecessor();
444 assert(Pred && "Preheader does not have a single predecessor");
445 BasicBlock *ExitBlock = L->getExitBlock();
446 assert(ExitBlock && "No single exit block");
447 Loop *NewLoop;
448
449 assert(!PartitionContainer.empty() && "at least two partitions expected");
450 // We're cloning the preheader along with the loop so we already made sure
451 // it was empty.
452 assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
453 "preheader not empty");
454
455 // Preserve the original loop ID for use after the transformation.
456 MDNode *OrigLoopID = L->getLoopID();
457
458 // Create a loop for each partition except the last. Clone the original
459 // loop before PH along with adding a preheader for the cloned loop. Then
460 // update PH to point to the newly added preheader.
461 BasicBlock *TopPH = OrigPH;
462 unsigned Index = getSize() - 1;
463 for (auto &Part : llvm::drop_begin(llvm::reverse(PartitionContainer))) {
464 NewLoop = Part.cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
465
466 Part.getVMap()[ExitBlock] = TopPH;
467 Part.remapInstructions();
468 setNewLoopID(OrigLoopID, &Part);
469 --Index;
470 TopPH = NewLoop->getLoopPreheader();
471 }
472 Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
473
474 // Also set a new loop ID for the last loop.
475 setNewLoopID(OrigLoopID, &PartitionContainer.back());
476
477 // Now go in forward order and update the immediate dominator for the
478 // preheaders with the exiting block of the previous loop. Dominance
479 // within the loop is updated in cloneLoopWithPreheader.
480 for (auto Curr = PartitionContainer.cbegin(),
481 Next = std::next(PartitionContainer.cbegin()),
482 E = PartitionContainer.cend();
483 Next != E; ++Curr, ++Next)
484 DT->changeImmediateDominator(
485 Next->getDistributedLoop()->getLoopPreheader(),
486 Curr->getDistributedLoop()->getExitingBlock());
487 }
488
489 /// Removes the dead instructions from the cloned loops.
removeUnusedInsts()490 void removeUnusedInsts() {
491 for (auto &Partition : PartitionContainer)
492 Partition.removeUnusedInsts();
493 }
494
495 /// For each memory pointer, it computes the partitionId the pointer is
496 /// used in.
497 ///
498 /// This returns an array of int where the I-th entry corresponds to I-th
499 /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple
500 /// partitions its entry is set to -1.
501 SmallVector<int, 8>
computePartitionSetForPointers(const LoopAccessInfo & LAI)502 computePartitionSetForPointers(const LoopAccessInfo &LAI) {
503 const RuntimePointerChecking *RtPtrCheck = LAI.getRuntimePointerChecking();
504
505 unsigned N = RtPtrCheck->Pointers.size();
506 SmallVector<int, 8> PtrToPartitions(N);
507 for (unsigned I = 0; I < N; ++I) {
508 Value *Ptr = RtPtrCheck->Pointers[I].PointerValue;
509 auto Instructions =
510 LAI.getInstructionsForAccess(Ptr, RtPtrCheck->Pointers[I].IsWritePtr);
511
512 int &Partition = PtrToPartitions[I];
513 // First set it to uninitialized.
514 Partition = -2;
515 for (Instruction *Inst : Instructions) {
516 // Note that this could be -1 if Inst is duplicated across multiple
517 // partitions.
518 int ThisPartition = this->InstToPartitionId[Inst];
519 if (Partition == -2)
520 Partition = ThisPartition;
521 // -1 means belonging to multiple partitions.
522 else if (Partition == -1)
523 break;
524 else if (Partition != (int)ThisPartition)
525 Partition = -1;
526 }
527 assert(Partition != -2 && "Pointer not belonging to any partition");
528 }
529
530 return PtrToPartitions;
531 }
532
print(raw_ostream & OS) const533 void print(raw_ostream &OS) const {
534 unsigned Index = 0;
535 for (const auto &P : PartitionContainer) {
536 OS << "Partition " << Index++ << " (" << &P << "):\n";
537 P.print();
538 }
539 }
540
dump() const541 void dump() const { print(dbgs()); }
542
543 #ifndef NDEBUG
operator <<(raw_ostream & OS,const InstPartitionContainer & Partitions)544 friend raw_ostream &operator<<(raw_ostream &OS,
545 const InstPartitionContainer &Partitions) {
546 Partitions.print(OS);
547 return OS;
548 }
549 #endif
550
printBlocks() const551 void printBlocks() const {
552 unsigned Index = 0;
553 for (const auto &P : PartitionContainer) {
554 dbgs() << "\nPartition " << Index++ << " (" << &P << "):\n";
555 P.printBlocks();
556 }
557 }
558
559 private:
560 using PartitionContainerT = std::list<InstPartition>;
561
562 /// List of partitions.
563 PartitionContainerT PartitionContainer;
564
565 /// Mapping from Instruction to partition Id. If the instruction
566 /// belongs to multiple partitions the entry contains -1.
567 InstToPartitionIdT InstToPartitionId;
568
569 Loop *L;
570 LoopInfo *LI;
571 DominatorTree *DT;
572
573 /// The control structure to merge adjacent partitions if both satisfy
574 /// the \p Predicate.
575 template <class UnaryPredicate>
mergeAdjacentPartitionsIf(UnaryPredicate Predicate)576 void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
577 InstPartition *PrevMatch = nullptr;
578 for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
579 auto DoesMatch = Predicate(&*I);
580 if (PrevMatch == nullptr && DoesMatch) {
581 PrevMatch = &*I;
582 ++I;
583 } else if (PrevMatch != nullptr && DoesMatch) {
584 I->moveTo(*PrevMatch);
585 I = PartitionContainer.erase(I);
586 } else {
587 PrevMatch = nullptr;
588 ++I;
589 }
590 }
591 }
592
593 /// Assign new LoopIDs for the partition's cloned loop.
setNewLoopID(MDNode * OrigLoopID,InstPartition * Part)594 void setNewLoopID(MDNode *OrigLoopID, InstPartition *Part) {
595 std::optional<MDNode *> PartitionID = makeFollowupLoopID(
596 OrigLoopID,
597 {LLVMLoopDistributeFollowupAll,
598 Part->hasDepCycle() ? LLVMLoopDistributeFollowupSequential
599 : LLVMLoopDistributeFollowupCoincident});
600 if (PartitionID) {
601 Loop *NewLoop = Part->getDistributedLoop();
602 NewLoop->setLoopID(*PartitionID);
603 }
604 }
605 };
606
607 /// For each memory instruction, this class maintains difference of the
608 /// number of unsafe dependences that start out from this instruction minus
609 /// those that end here.
610 ///
611 /// By traversing the memory instructions in program order and accumulating this
612 /// number, we know whether any unsafe dependence crosses over a program point.
613 class MemoryInstructionDependences {
614 using Dependence = MemoryDepChecker::Dependence;
615
616 public:
617 struct Entry {
618 Instruction *Inst;
619 unsigned NumUnsafeDependencesStartOrEnd = 0;
620
Entry__anonf92e1f230111::MemoryInstructionDependences::Entry621 Entry(Instruction *Inst) : Inst(Inst) {}
622 };
623
624 using AccessesType = SmallVector<Entry, 8>;
625
begin() const626 AccessesType::const_iterator begin() const { return Accesses.begin(); }
end() const627 AccessesType::const_iterator end() const { return Accesses.end(); }
628
MemoryInstructionDependences(const SmallVectorImpl<Instruction * > & Instructions,const SmallVectorImpl<Dependence> & Dependences)629 MemoryInstructionDependences(
630 const SmallVectorImpl<Instruction *> &Instructions,
631 const SmallVectorImpl<Dependence> &Dependences) {
632 Accesses.append(Instructions.begin(), Instructions.end());
633
634 LLVM_DEBUG(dbgs() << "Backward dependences:\n");
635 for (const auto &Dep : Dependences)
636 if (Dep.isPossiblyBackward()) {
637 // Note that the designations source and destination follow the program
638 // order, i.e. source is always first. (The direction is given by the
639 // DepType.)
640 ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
641 --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
642
643 LLVM_DEBUG(Dep.print(dbgs(), 2, Instructions));
644 }
645 }
646
647 private:
648 AccessesType Accesses;
649 };
650
651 /// The actual class performing the per-loop work.
652 class LoopDistributeForLoop {
653 public:
LoopDistributeForLoop(Loop * L,Function * F,LoopInfo * LI,DominatorTree * DT,ScalarEvolution * SE,LoopAccessInfoManager & LAIs,OptimizationRemarkEmitter * ORE)654 LoopDistributeForLoop(Loop *L, Function *F, LoopInfo *LI, DominatorTree *DT,
655 ScalarEvolution *SE, LoopAccessInfoManager &LAIs,
656 OptimizationRemarkEmitter *ORE)
657 : L(L), F(F), LI(LI), DT(DT), SE(SE), LAIs(LAIs), ORE(ORE) {
658 setForced();
659 }
660
661 /// Try to distribute an inner-most loop.
processLoop()662 bool processLoop() {
663 assert(L->isInnermost() && "Only process inner loops.");
664
665 LLVM_DEBUG(dbgs() << "\nLDist: In \""
666 << L->getHeader()->getParent()->getName()
667 << "\" checking " << *L << "\n");
668
669 // Having a single exit block implies there's also one exiting block.
670 if (!L->getExitBlock())
671 return fail("MultipleExitBlocks", "multiple exit blocks");
672 if (!L->isLoopSimplifyForm())
673 return fail("NotLoopSimplifyForm",
674 "loop is not in loop-simplify form");
675 if (!L->isRotatedForm())
676 return fail("NotBottomTested", "loop is not bottom tested");
677
678 BasicBlock *PH = L->getLoopPreheader();
679
680 LAI = &LAIs.getInfo(*L);
681
682 // Currently, we only distribute to isolate the part of the loop with
683 // dependence cycles to enable partial vectorization.
684 if (LAI->canVectorizeMemory())
685 return fail("MemOpsCanBeVectorized",
686 "memory operations are safe for vectorization");
687
688 auto *Dependences = LAI->getDepChecker().getDependences();
689 if (!Dependences || Dependences->empty())
690 return fail("NoUnsafeDeps", "no unsafe dependences to isolate");
691
692 InstPartitionContainer Partitions(L, LI, DT);
693
694 // First, go through each memory operation and assign them to consecutive
695 // partitions (the order of partitions follows program order). Put those
696 // with unsafe dependences into "cyclic" partition otherwise put each store
697 // in its own "non-cyclic" partition (we'll merge these later).
698 //
699 // Note that a memory operation (e.g. Load2 below) at a program point that
700 // has an unsafe dependence (Store3->Load1) spanning over it must be
701 // included in the same cyclic partition as the dependent operations. This
702 // is to preserve the original program order after distribution. E.g.:
703 //
704 // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive
705 // Load1 -. 1 0->1
706 // Load2 | /Unsafe/ 0 1
707 // Store3 -' -1 1->0
708 // Load4 0 0
709 //
710 // NumUnsafeDependencesActive > 0 indicates this situation and in this case
711 // we just keep assigning to the same cyclic partition until
712 // NumUnsafeDependencesActive reaches 0.
713 const MemoryDepChecker &DepChecker = LAI->getDepChecker();
714 MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
715 *Dependences);
716
717 int NumUnsafeDependencesActive = 0;
718 for (const auto &InstDep : MID) {
719 Instruction *I = InstDep.Inst;
720 // We update NumUnsafeDependencesActive post-instruction, catch the
721 // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
722 if (NumUnsafeDependencesActive ||
723 InstDep.NumUnsafeDependencesStartOrEnd > 0)
724 Partitions.addToCyclicPartition(I);
725 else
726 Partitions.addToNewNonCyclicPartition(I);
727 NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
728 assert(NumUnsafeDependencesActive >= 0 &&
729 "Negative number of dependences active");
730 }
731
732 // Add partitions for values used outside. These partitions can be out of
733 // order from the original program order. This is OK because if the
734 // partition uses a load we will merge this partition with the original
735 // partition of the load that we set up in the previous loop (see
736 // mergeToAvoidDuplicatedLoads).
737 auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
738 for (auto *Inst : DefsUsedOutside)
739 Partitions.addToNewNonCyclicPartition(Inst);
740
741 LLVM_DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
742 if (Partitions.getSize() < 2)
743 return fail("CantIsolateUnsafeDeps",
744 "cannot isolate unsafe dependencies");
745
746 // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
747 // should be able to vectorize these together.
748 Partitions.mergeBeforePopulating();
749 LLVM_DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
750 if (Partitions.getSize() < 2)
751 return fail("CantIsolateUnsafeDeps",
752 "cannot isolate unsafe dependencies");
753
754 // Now, populate the partitions with non-memory operations.
755 Partitions.populateUsedSet();
756 LLVM_DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
757
758 // In order to preserve original lexical order for loads, keep them in the
759 // partition that we set up in the MemoryInstructionDependences loop.
760 if (Partitions.mergeToAvoidDuplicatedLoads()) {
761 LLVM_DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
762 << Partitions);
763 if (Partitions.getSize() < 2)
764 return fail("CantIsolateUnsafeDeps",
765 "cannot isolate unsafe dependencies");
766 }
767
768 // Don't distribute the loop if we need too many SCEV run-time checks, or
769 // any if it's illegal.
770 const SCEVPredicate &Pred = LAI->getPSE().getPredicate();
771 if (LAI->hasConvergentOp() && !Pred.isAlwaysTrue()) {
772 return fail("RuntimeCheckWithConvergent",
773 "may not insert runtime check with convergent operation");
774 }
775
776 if (Pred.getComplexity() > (IsForced.value_or(false)
777 ? PragmaDistributeSCEVCheckThreshold
778 : DistributeSCEVCheckThreshold))
779 return fail("TooManySCEVRuntimeChecks",
780 "too many SCEV run-time checks needed.\n");
781
782 if (!IsForced.value_or(false) && hasDisableAllTransformsHint(L))
783 return fail("HeuristicDisabled", "distribution heuristic disabled");
784
785 LLVM_DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
786 // We're done forming the partitions set up the reverse mapping from
787 // instructions to partitions.
788 Partitions.setupPartitionIdOnInstructions();
789
790 // If we need run-time checks, version the loop now.
791 auto PtrToPartition = Partitions.computePartitionSetForPointers(*LAI);
792 const auto *RtPtrChecking = LAI->getRuntimePointerChecking();
793 const auto &AllChecks = RtPtrChecking->getChecks();
794 auto Checks = includeOnlyCrossPartitionChecks(AllChecks, PtrToPartition,
795 RtPtrChecking);
796
797 if (LAI->hasConvergentOp() && !Checks.empty()) {
798 return fail("RuntimeCheckWithConvergent",
799 "may not insert runtime check with convergent operation");
800 }
801
802 // To keep things simple have an empty preheader before we version or clone
803 // the loop. (Also split if this has no predecessor, i.e. entry, because we
804 // rely on PH having a predecessor.)
805 if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
806 SplitBlock(PH, PH->getTerminator(), DT, LI);
807
808 if (!Pred.isAlwaysTrue() || !Checks.empty()) {
809 assert(!LAI->hasConvergentOp() && "inserting illegal loop versioning");
810
811 MDNode *OrigLoopID = L->getLoopID();
812
813 LLVM_DEBUG(dbgs() << "\nPointers:\n");
814 LLVM_DEBUG(LAI->getRuntimePointerChecking()->printChecks(dbgs(), Checks));
815 LoopVersioning LVer(*LAI, Checks, L, LI, DT, SE);
816 LVer.versionLoop(DefsUsedOutside);
817 LVer.annotateLoopWithNoAlias();
818
819 // The unversioned loop will not be changed, so we inherit all attributes
820 // from the original loop, but remove the loop distribution metadata to
821 // avoid to distribute it again.
822 MDNode *UnversionedLoopID = *makeFollowupLoopID(
823 OrigLoopID,
824 {LLVMLoopDistributeFollowupAll, LLVMLoopDistributeFollowupFallback},
825 "llvm.loop.distribute.", true);
826 LVer.getNonVersionedLoop()->setLoopID(UnversionedLoopID);
827 }
828
829 // Create identical copies of the original loop for each partition and hook
830 // them up sequentially.
831 Partitions.cloneLoops();
832
833 // Now, we remove the instruction from each loop that don't belong to that
834 // partition.
835 Partitions.removeUnusedInsts();
836 LLVM_DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
837 LLVM_DEBUG(Partitions.printBlocks());
838
839 if (LDistVerify) {
840 LI->verify(*DT);
841 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
842 }
843
844 ++NumLoopsDistributed;
845 // Report the success.
846 ORE->emit([&]() {
847 return OptimizationRemark(LDIST_NAME, "Distribute", L->getStartLoc(),
848 L->getHeader())
849 << "distributed loop";
850 });
851 return true;
852 }
853
854 /// Provide diagnostics then \return with false.
fail(StringRef RemarkName,StringRef Message)855 bool fail(StringRef RemarkName, StringRef Message) {
856 LLVMContext &Ctx = F->getContext();
857 bool Forced = isForced().value_or(false);
858
859 LLVM_DEBUG(dbgs() << "Skipping; " << Message << "\n");
860
861 // With Rpass-missed report that distribution failed.
862 ORE->emit([&]() {
863 return OptimizationRemarkMissed(LDIST_NAME, "NotDistributed",
864 L->getStartLoc(), L->getHeader())
865 << "loop not distributed: use -Rpass-analysis=loop-distribute for "
866 "more "
867 "info";
868 });
869
870 // With Rpass-analysis report why. This is on by default if distribution
871 // was requested explicitly.
872 ORE->emit(OptimizationRemarkAnalysis(
873 Forced ? OptimizationRemarkAnalysis::AlwaysPrint : LDIST_NAME,
874 RemarkName, L->getStartLoc(), L->getHeader())
875 << "loop not distributed: " << Message);
876
877 // Also issue a warning if distribution was requested explicitly but it
878 // failed.
879 if (Forced)
880 Ctx.diagnose(DiagnosticInfoOptimizationFailure(
881 *F, L->getStartLoc(), "loop not distributed: failed "
882 "explicitly specified loop distribution"));
883
884 return false;
885 }
886
887 /// Return if distribution forced to be enabled/disabled for the loop.
888 ///
889 /// If the optional has a value, it indicates whether distribution was forced
890 /// to be enabled (true) or disabled (false). If the optional has no value
891 /// distribution was not forced either way.
isForced() const892 const std::optional<bool> &isForced() const { return IsForced; }
893
894 private:
895 /// Filter out checks between pointers from the same partition.
896 ///
897 /// \p PtrToPartition contains the partition number for pointers. Partition
898 /// number -1 means that the pointer is used in multiple partitions. In this
899 /// case we can't safely omit the check.
includeOnlyCrossPartitionChecks(const SmallVectorImpl<RuntimePointerCheck> & AllChecks,const SmallVectorImpl<int> & PtrToPartition,const RuntimePointerChecking * RtPtrChecking)900 SmallVector<RuntimePointerCheck, 4> includeOnlyCrossPartitionChecks(
901 const SmallVectorImpl<RuntimePointerCheck> &AllChecks,
902 const SmallVectorImpl<int> &PtrToPartition,
903 const RuntimePointerChecking *RtPtrChecking) {
904 SmallVector<RuntimePointerCheck, 4> Checks;
905
906 copy_if(AllChecks, std::back_inserter(Checks),
907 [&](const RuntimePointerCheck &Check) {
908 for (unsigned PtrIdx1 : Check.first->Members)
909 for (unsigned PtrIdx2 : Check.second->Members)
910 // Only include this check if there is a pair of pointers
911 // that require checking and the pointers fall into
912 // separate partitions.
913 //
914 // (Note that we already know at this point that the two
915 // pointer groups need checking but it doesn't follow
916 // that each pair of pointers within the two groups need
917 // checking as well.
918 //
919 // In other words we don't want to include a check just
920 // because there is a pair of pointers between the two
921 // pointer groups that require checks and a different
922 // pair whose pointers fall into different partitions.)
923 if (RtPtrChecking->needsChecking(PtrIdx1, PtrIdx2) &&
924 !RuntimePointerChecking::arePointersInSamePartition(
925 PtrToPartition, PtrIdx1, PtrIdx2))
926 return true;
927 return false;
928 });
929
930 return Checks;
931 }
932
933 /// Check whether the loop metadata is forcing distribution to be
934 /// enabled/disabled.
setForced()935 void setForced() {
936 std::optional<const MDOperand *> Value =
937 findStringMetadataForLoop(L, "llvm.loop.distribute.enable");
938 if (!Value)
939 return;
940
941 const MDOperand *Op = *Value;
942 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
943 IsForced = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
944 }
945
946 Loop *L;
947 Function *F;
948
949 // Analyses used.
950 LoopInfo *LI;
951 const LoopAccessInfo *LAI = nullptr;
952 DominatorTree *DT;
953 ScalarEvolution *SE;
954 LoopAccessInfoManager &LAIs;
955 OptimizationRemarkEmitter *ORE;
956
957 /// Indicates whether distribution is forced to be enabled/disabled for
958 /// the loop.
959 ///
960 /// If the optional has a value, it indicates whether distribution was forced
961 /// to be enabled (true) or disabled (false). If the optional has no value
962 /// distribution was not forced either way.
963 std::optional<bool> IsForced;
964 };
965
966 } // end anonymous namespace
967
968 /// Shared implementation between new and old PMs.
runImpl(Function & F,LoopInfo * LI,DominatorTree * DT,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE,LoopAccessInfoManager & LAIs)969 static bool runImpl(Function &F, LoopInfo *LI, DominatorTree *DT,
970 ScalarEvolution *SE, OptimizationRemarkEmitter *ORE,
971 LoopAccessInfoManager &LAIs) {
972 // Build up a worklist of inner-loops to vectorize. This is necessary as the
973 // act of distributing a loop creates new loops and can invalidate iterators
974 // across the loops.
975 SmallVector<Loop *, 8> Worklist;
976
977 for (Loop *TopLevelLoop : *LI)
978 for (Loop *L : depth_first(TopLevelLoop))
979 // We only handle inner-most loops.
980 if (L->isInnermost())
981 Worklist.push_back(L);
982
983 // Now walk the identified inner loops.
984 bool Changed = false;
985 for (Loop *L : Worklist) {
986 LoopDistributeForLoop LDL(L, &F, LI, DT, SE, LAIs, ORE);
987
988 // If distribution was forced for the specific loop to be
989 // enabled/disabled, follow that. Otherwise use the global flag.
990 if (LDL.isForced().value_or(EnableLoopDistribute))
991 Changed |= LDL.processLoop();
992 }
993
994 // Process each loop nest in the function.
995 return Changed;
996 }
997
998 namespace {
999
1000 /// The pass class.
1001 class LoopDistributeLegacy : public FunctionPass {
1002 public:
1003 static char ID;
1004
LoopDistributeLegacy()1005 LoopDistributeLegacy() : FunctionPass(ID) {
1006 // The default is set by the caller.
1007 initializeLoopDistributeLegacyPass(*PassRegistry::getPassRegistry());
1008 }
1009
runOnFunction(Function & F)1010 bool runOnFunction(Function &F) override {
1011 if (skipFunction(F))
1012 return false;
1013
1014 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1015 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1016 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1017 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1018 auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs();
1019
1020 return runImpl(F, LI, DT, SE, ORE, LAIs);
1021 }
1022
getAnalysisUsage(AnalysisUsage & AU) const1023 void getAnalysisUsage(AnalysisUsage &AU) const override {
1024 AU.addRequired<ScalarEvolutionWrapperPass>();
1025 AU.addRequired<LoopInfoWrapperPass>();
1026 AU.addPreserved<LoopInfoWrapperPass>();
1027 AU.addRequired<LoopAccessLegacyAnalysis>();
1028 AU.addRequired<DominatorTreeWrapperPass>();
1029 AU.addPreserved<DominatorTreeWrapperPass>();
1030 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1031 AU.addPreserved<GlobalsAAWrapperPass>();
1032 }
1033 };
1034
1035 } // end anonymous namespace
1036
run(Function & F,FunctionAnalysisManager & AM)1037 PreservedAnalyses LoopDistributePass::run(Function &F,
1038 FunctionAnalysisManager &AM) {
1039 auto &LI = AM.getResult<LoopAnalysis>(F);
1040 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1041 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1042 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1043
1044 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
1045 bool Changed = runImpl(F, &LI, &DT, &SE, &ORE, LAIs);
1046 if (!Changed)
1047 return PreservedAnalyses::all();
1048 PreservedAnalyses PA;
1049 PA.preserve<LoopAnalysis>();
1050 PA.preserve<DominatorTreeAnalysis>();
1051 return PA;
1052 }
1053
1054 char LoopDistributeLegacy::ID;
1055
1056 static const char ldist_name[] = "Loop Distribution";
1057
INITIALIZE_PASS_BEGIN(LoopDistributeLegacy,LDIST_NAME,ldist_name,false,false)1058 INITIALIZE_PASS_BEGIN(LoopDistributeLegacy, LDIST_NAME, ldist_name, false,
1059 false)
1060 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1061 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
1062 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1063 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1064 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1065 INITIALIZE_PASS_END(LoopDistributeLegacy, LDIST_NAME, ldist_name, false, false)
1066
1067 FunctionPass *llvm::createLoopDistributePass() { return new LoopDistributeLegacy(); }
1068