xref: /llvm-project/clang/lib/Lex/LiteralSupport.cpp (revision 8f0c865d1024a9ff7f3f1b0d3e47a6c9f5f672c2)
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NumericLiteralParser, CharLiteralParser, and
10 // StringLiteralParser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Lex/LiteralSupport.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/LangOptions.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/Lexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/ConvertUTF.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Unicode.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <cstring>
36 #include <string>
37 
38 using namespace clang;
39 
40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
41   switch (kind) {
42   default: llvm_unreachable("Unknown token type!");
43   case tok::char_constant:
44   case tok::string_literal:
45   case tok::utf8_char_constant:
46   case tok::utf8_string_literal:
47     return Target.getCharWidth();
48   case tok::wide_char_constant:
49   case tok::wide_string_literal:
50     return Target.getWCharWidth();
51   case tok::utf16_char_constant:
52   case tok::utf16_string_literal:
53     return Target.getChar16Width();
54   case tok::utf32_char_constant:
55   case tok::utf32_string_literal:
56     return Target.getChar32Width();
57   }
58 }
59 
60 static unsigned getEncodingPrefixLen(tok::TokenKind kind) {
61   switch (kind) {
62   default:
63     llvm_unreachable("Unknown token type!");
64   case tok::char_constant:
65   case tok::string_literal:
66     return 0;
67   case tok::utf8_char_constant:
68   case tok::utf8_string_literal:
69     return 2;
70   case tok::wide_char_constant:
71   case tok::wide_string_literal:
72   case tok::utf16_char_constant:
73   case tok::utf16_string_literal:
74   case tok::utf32_char_constant:
75   case tok::utf32_string_literal:
76     return 1;
77   }
78 }
79 
80 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
81                                            FullSourceLoc TokLoc,
82                                            const char *TokBegin,
83                                            const char *TokRangeBegin,
84                                            const char *TokRangeEnd) {
85   SourceLocation Begin =
86     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
87                                    TokLoc.getManager(), Features);
88   SourceLocation End =
89     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
90                                    TokLoc.getManager(), Features);
91   return CharSourceRange::getCharRange(Begin, End);
92 }
93 
94 /// Produce a diagnostic highlighting some portion of a literal.
95 ///
96 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
97 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
98 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
99 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
100                               const LangOptions &Features, FullSourceLoc TokLoc,
101                               const char *TokBegin, const char *TokRangeBegin,
102                               const char *TokRangeEnd, unsigned DiagID) {
103   SourceLocation Begin =
104     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
105                                    TokLoc.getManager(), Features);
106   return Diags->Report(Begin, DiagID) <<
107     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
108 }
109 
110 static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) {
111   switch (Escape) {
112   case '\'':
113   case '"':
114   case '?':
115   case '\\':
116   case 'a':
117   case 'b':
118   case 'f':
119   case 'n':
120   case 'r':
121   case 't':
122   case 'v':
123     return true;
124   }
125   return false;
126 }
127 
128 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
129 /// either a character or a string literal.
130 static unsigned ProcessCharEscape(const char *ThisTokBegin,
131                                   const char *&ThisTokBuf,
132                                   const char *ThisTokEnd, bool &HadError,
133                                   FullSourceLoc Loc, unsigned CharWidth,
134                                   DiagnosticsEngine *Diags,
135                                   const LangOptions &Features,
136                                   StringLiteralEvalMethod EvalMethod) {
137   const char *EscapeBegin = ThisTokBuf;
138   bool Delimited = false;
139   bool EndDelimiterFound = false;
140 
141   // Skip the '\' char.
142   ++ThisTokBuf;
143 
144   // We know that this character can't be off the end of the buffer, because
145   // that would have been \", which would not have been the end of string.
146   unsigned ResultChar = *ThisTokBuf++;
147   char Escape = ResultChar;
148   switch (ResultChar) {
149   // These map to themselves.
150   case '\\': case '\'': case '"': case '?': break;
151 
152     // These have fixed mappings.
153   case 'a':
154     // TODO: K&R: the meaning of '\\a' is different in traditional C
155     ResultChar = 7;
156     break;
157   case 'b':
158     ResultChar = 8;
159     break;
160   case 'e':
161     if (Diags)
162       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
163            diag::ext_nonstandard_escape) << "e";
164     ResultChar = 27;
165     break;
166   case 'E':
167     if (Diags)
168       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
169            diag::ext_nonstandard_escape) << "E";
170     ResultChar = 27;
171     break;
172   case 'f':
173     ResultChar = 12;
174     break;
175   case 'n':
176     ResultChar = 10;
177     break;
178   case 'r':
179     ResultChar = 13;
180     break;
181   case 't':
182     ResultChar = 9;
183     break;
184   case 'v':
185     ResultChar = 11;
186     break;
187   case 'x': { // Hex escape.
188     ResultChar = 0;
189     if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
190       Delimited = true;
191       ThisTokBuf++;
192       if (*ThisTokBuf == '}') {
193         HadError = true;
194         if (Diags)
195           Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
196                diag::err_delimited_escape_empty);
197       }
198     } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
199       if (Diags)
200         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
201              diag::err_hex_escape_no_digits) << "x";
202       return ResultChar;
203     }
204 
205     // Hex escapes are a maximal series of hex digits.
206     bool Overflow = false;
207     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
208       if (Delimited && *ThisTokBuf == '}') {
209         ThisTokBuf++;
210         EndDelimiterFound = true;
211         break;
212       }
213       int CharVal = llvm::hexDigitValue(*ThisTokBuf);
214       if (CharVal == -1) {
215         // Non delimited hex escape sequences stop at the first non-hex digit.
216         if (!Delimited)
217           break;
218         HadError = true;
219         if (Diags)
220           Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
221                diag::err_delimited_escape_invalid)
222               << StringRef(ThisTokBuf, 1);
223         continue;
224       }
225       // About to shift out a digit?
226       if (ResultChar & 0xF0000000)
227         Overflow = true;
228       ResultChar <<= 4;
229       ResultChar |= CharVal;
230     }
231     // See if any bits will be truncated when evaluated as a character.
232     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
233       Overflow = true;
234       ResultChar &= ~0U >> (32-CharWidth);
235     }
236 
237     // Check for overflow.
238     if (!HadError && Overflow) { // Too many digits to fit in
239       HadError = true;
240       if (Diags)
241         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
242              diag::err_escape_too_large)
243             << 0;
244     }
245     break;
246   }
247   case '0': case '1': case '2': case '3':
248   case '4': case '5': case '6': case '7': {
249     // Octal escapes.
250     --ThisTokBuf;
251     ResultChar = 0;
252 
253     // Octal escapes are a series of octal digits with maximum length 3.
254     // "\0123" is a two digit sequence equal to "\012" "3".
255     unsigned NumDigits = 0;
256     do {
257       ResultChar <<= 3;
258       ResultChar |= *ThisTokBuf++ - '0';
259       ++NumDigits;
260     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
261              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
262 
263     // Check for overflow.  Reject '\777', but not L'\777'.
264     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
265       if (Diags)
266         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
267              diag::err_escape_too_large) << 1;
268       ResultChar &= ~0U >> (32-CharWidth);
269     }
270     break;
271   }
272   case 'o': {
273     bool Overflow = false;
274     if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
275       HadError = true;
276       if (Diags)
277         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
278              diag::err_delimited_escape_missing_brace)
279             << "o";
280 
281       break;
282     }
283     ResultChar = 0;
284     Delimited = true;
285     ++ThisTokBuf;
286     if (*ThisTokBuf == '}') {
287       HadError = true;
288       if (Diags)
289         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
290              diag::err_delimited_escape_empty);
291     }
292 
293     while (ThisTokBuf != ThisTokEnd) {
294       if (*ThisTokBuf == '}') {
295         EndDelimiterFound = true;
296         ThisTokBuf++;
297         break;
298       }
299       if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
300         HadError = true;
301         if (Diags)
302           Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
303                diag::err_delimited_escape_invalid)
304               << StringRef(ThisTokBuf, 1);
305         ThisTokBuf++;
306         continue;
307       }
308       // Check if one of the top three bits is set before shifting them out.
309       if (ResultChar & 0xE0000000)
310         Overflow = true;
311 
312       ResultChar <<= 3;
313       ResultChar |= *ThisTokBuf++ - '0';
314     }
315     // Check for overflow.  Reject '\777', but not L'\777'.
316     if (!HadError &&
317         (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
318       HadError = true;
319       if (Diags)
320         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
321              diag::err_escape_too_large)
322             << 1;
323       ResultChar &= ~0U >> (32 - CharWidth);
324     }
325     break;
326   }
327     // Otherwise, these are not valid escapes.
328   case '(': case '{': case '[': case '%':
329     // GCC accepts these as extensions.  We warn about them as such though.
330     if (Diags)
331       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
332            diag::ext_nonstandard_escape)
333         << std::string(1, ResultChar);
334     break;
335   default:
336     if (!Diags)
337       break;
338 
339     if (isPrintable(ResultChar))
340       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
341            diag::ext_unknown_escape)
342         << std::string(1, ResultChar);
343     else
344       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
345            diag::ext_unknown_escape)
346         << "x" + llvm::utohexstr(ResultChar);
347     break;
348   }
349 
350   if (Delimited && Diags) {
351     if (!EndDelimiterFound)
352       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
353            diag::err_expected)
354           << tok::r_brace;
355     else if (!HadError) {
356       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
357            Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence
358                                 : diag::ext_delimited_escape_sequence)
359           << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0);
360     }
361   }
362 
363   if (EvalMethod == StringLiteralEvalMethod::Unevaluated &&
364       !IsEscapeValidInUnevaluatedStringLiteral(Escape)) {
365     Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
366          diag::err_unevaluated_string_invalid_escape_sequence)
367         << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin);
368     HadError = true;
369   }
370 
371   return ResultChar;
372 }
373 
374 static void appendCodePoint(unsigned Codepoint,
375                             llvm::SmallVectorImpl<char> &Str) {
376   char ResultBuf[4];
377   char *ResultPtr = ResultBuf;
378   if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr))
379     Str.append(ResultBuf, ResultPtr);
380 }
381 
382 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
383   for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
384     if (*I != '\\') {
385       Buf.push_back(*I);
386       continue;
387     }
388 
389     ++I;
390     char Kind = *I;
391     ++I;
392 
393     assert(Kind == 'u' || Kind == 'U' || Kind == 'N');
394     uint32_t CodePoint = 0;
395 
396     if (Kind == 'u' && *I == '{') {
397       for (++I; *I != '}'; ++I) {
398         unsigned Value = llvm::hexDigitValue(*I);
399         assert(Value != -1U);
400         CodePoint <<= 4;
401         CodePoint += Value;
402       }
403       appendCodePoint(CodePoint, Buf);
404       continue;
405     }
406 
407     if (Kind == 'N') {
408       assert(*I == '{');
409       ++I;
410       auto Delim = std::find(I, Input.end(), '}');
411       assert(Delim != Input.end());
412       StringRef Name(I, std::distance(I, Delim));
413       std::optional<llvm::sys::unicode::LooseMatchingResult> Res =
414           llvm::sys::unicode::nameToCodepointLooseMatching(Name);
415       assert(Res && "could not find a codepoint that was previously found");
416       CodePoint = Res->CodePoint;
417       assert(CodePoint != 0xFFFFFFFF);
418       appendCodePoint(CodePoint, Buf);
419       I = Delim;
420       continue;
421     }
422 
423     unsigned NumHexDigits;
424     if (Kind == 'u')
425       NumHexDigits = 4;
426     else
427       NumHexDigits = 8;
428 
429     assert(I + NumHexDigits <= E);
430 
431     for (; NumHexDigits != 0; ++I, --NumHexDigits) {
432       unsigned Value = llvm::hexDigitValue(*I);
433       assert(Value != -1U);
434 
435       CodePoint <<= 4;
436       CodePoint += Value;
437     }
438 
439     appendCodePoint(CodePoint, Buf);
440     --I;
441   }
442 }
443 
444 bool clang::isFunctionLocalStringLiteralMacro(tok::TokenKind K,
445                                               const LangOptions &LO) {
446   return LO.MicrosoftExt &&
447          (K == tok::kw___FUNCTION__ || K == tok::kw_L__FUNCTION__ ||
448           K == tok::kw___FUNCSIG__ || K == tok::kw_L__FUNCSIG__ ||
449           K == tok::kw___FUNCDNAME__);
450 }
451 
452 bool clang::tokenIsLikeStringLiteral(const Token &Tok, const LangOptions &LO) {
453   return tok::isStringLiteral(Tok.getKind()) ||
454          isFunctionLocalStringLiteralMacro(Tok.getKind(), LO);
455 }
456 
457 static bool ProcessNumericUCNEscape(const char *ThisTokBegin,
458                                     const char *&ThisTokBuf,
459                                     const char *ThisTokEnd, uint32_t &UcnVal,
460                                     unsigned short &UcnLen, bool &Delimited,
461                                     FullSourceLoc Loc, DiagnosticsEngine *Diags,
462                                     const LangOptions &Features,
463                                     bool in_char_string_literal = false) {
464   const char *UcnBegin = ThisTokBuf;
465   bool HasError = false;
466   bool EndDelimiterFound = false;
467 
468   // Skip the '\u' char's.
469   ThisTokBuf += 2;
470   Delimited = false;
471   if (UcnBegin[1] == 'u' && in_char_string_literal &&
472       ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
473     Delimited = true;
474     ThisTokBuf++;
475   } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
476     if (Diags)
477       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
478            diag::err_hex_escape_no_digits)
479           << StringRef(&ThisTokBuf[-1], 1);
480     return false;
481   }
482   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
483 
484   bool Overflow = false;
485   unsigned short Count = 0;
486   for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
487        ++ThisTokBuf) {
488     if (Delimited && *ThisTokBuf == '}') {
489       ++ThisTokBuf;
490       EndDelimiterFound = true;
491       break;
492     }
493     int CharVal = llvm::hexDigitValue(*ThisTokBuf);
494     if (CharVal == -1) {
495       HasError = true;
496       if (!Delimited)
497         break;
498       if (Diags) {
499         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
500              diag::err_delimited_escape_invalid)
501             << StringRef(ThisTokBuf, 1);
502       }
503       Count++;
504       continue;
505     }
506     if (UcnVal & 0xF0000000) {
507       Overflow = true;
508       continue;
509     }
510     UcnVal <<= 4;
511     UcnVal |= CharVal;
512     Count++;
513   }
514 
515   if (Overflow) {
516     if (Diags)
517       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
518            diag::err_escape_too_large)
519           << 0;
520     return false;
521   }
522 
523   if (Delimited && !EndDelimiterFound) {
524     if (Diags) {
525       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
526            diag::err_expected)
527           << tok::r_brace;
528     }
529     return false;
530   }
531 
532   // If we didn't consume the proper number of digits, there is a problem.
533   if (Count == 0 || (!Delimited && Count != UcnLen)) {
534     if (Diags)
535       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
536            Delimited ? diag::err_delimited_escape_empty
537                      : diag::err_ucn_escape_incomplete);
538     return false;
539   }
540   return !HasError;
541 }
542 
543 static void DiagnoseInvalidUnicodeCharacterName(
544     DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc,
545     const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd,
546     llvm::StringRef Name) {
547 
548   Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
549        diag::err_invalid_ucn_name)
550       << Name;
551 
552   namespace u = llvm::sys::unicode;
553 
554   std::optional<u::LooseMatchingResult> Res =
555       u::nameToCodepointLooseMatching(Name);
556   if (Res) {
557     Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
558          diag::note_invalid_ucn_name_loose_matching)
559         << FixItHint::CreateReplacement(
560                MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
561                                    TokRangeEnd),
562                Res->Name);
563     return;
564   }
565 
566   unsigned Distance = 0;
567   SmallVector<u::MatchForCodepointName> Matches =
568       u::nearestMatchesForCodepointName(Name, 5);
569   assert(!Matches.empty() && "No unicode characters found");
570 
571   for (const auto &Match : Matches) {
572     if (Distance == 0)
573       Distance = Match.Distance;
574     if (std::max(Distance, Match.Distance) -
575             std::min(Distance, Match.Distance) >
576         3)
577       break;
578     Distance = Match.Distance;
579 
580     std::string Str;
581     llvm::UTF32 V = Match.Value;
582     bool Converted =
583         llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str);
584     (void)Converted;
585     assert(Converted && "Found a match wich is not a unicode character");
586 
587     Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
588          diag::note_invalid_ucn_name_candidate)
589         << Match.Name << llvm::utohexstr(Match.Value)
590         << Str // FIXME: Fix the rendering of non printable characters
591         << FixItHint::CreateReplacement(
592                MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
593                                    TokRangeEnd),
594                Match.Name);
595   }
596 }
597 
598 static bool ProcessNamedUCNEscape(const char *ThisTokBegin,
599                                   const char *&ThisTokBuf,
600                                   const char *ThisTokEnd, uint32_t &UcnVal,
601                                   unsigned short &UcnLen, FullSourceLoc Loc,
602                                   DiagnosticsEngine *Diags,
603                                   const LangOptions &Features) {
604   const char *UcnBegin = ThisTokBuf;
605   assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N');
606   ThisTokBuf += 2;
607   if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
608     if (Diags) {
609       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
610            diag::err_delimited_escape_missing_brace)
611           << StringRef(&ThisTokBuf[-1], 1);
612     }
613     return false;
614   }
615   ThisTokBuf++;
616   const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) {
617     return C == '}' || isVerticalWhitespace(C);
618   });
619   bool Incomplete = ClosingBrace == ThisTokEnd;
620   bool Empty = ClosingBrace == ThisTokBuf;
621   if (Incomplete || Empty) {
622     if (Diags) {
623       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
624            Incomplete ? diag::err_ucn_escape_incomplete
625                       : diag::err_delimited_escape_empty)
626           << StringRef(&UcnBegin[1], 1);
627     }
628     ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1;
629     return false;
630   }
631   StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf);
632   ThisTokBuf = ClosingBrace + 1;
633   std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name);
634   if (!Res) {
635     if (Diags)
636       DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin,
637                                           &UcnBegin[3], ClosingBrace, Name);
638     return false;
639   }
640   UcnVal = *Res;
641   UcnLen = UcnVal > 0xFFFF ? 8 : 4;
642   return true;
643 }
644 
645 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
646 /// return the UTF32.
647 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
648                              const char *ThisTokEnd, uint32_t &UcnVal,
649                              unsigned short &UcnLen, FullSourceLoc Loc,
650                              DiagnosticsEngine *Diags,
651                              const LangOptions &Features,
652                              bool in_char_string_literal = false) {
653 
654   bool HasError;
655   const char *UcnBegin = ThisTokBuf;
656   bool IsDelimitedEscapeSequence = false;
657   bool IsNamedEscapeSequence = false;
658   if (ThisTokBuf[1] == 'N') {
659     IsNamedEscapeSequence = true;
660     HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
661                                       UcnVal, UcnLen, Loc, Diags, Features);
662   } else {
663     HasError =
664         !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
665                                  UcnLen, IsDelimitedEscapeSequence, Loc, Diags,
666                                  Features, in_char_string_literal);
667   }
668   if (HasError)
669     return false;
670 
671   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
672   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
673       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
674     if (Diags)
675       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
676            diag::err_ucn_escape_invalid);
677     return false;
678   }
679 
680   // C23 and C++11 allow UCNs that refer to control characters
681   // and basic source characters inside character and string literals
682   if (UcnVal < 0xa0 &&
683       // $, @, ` are allowed in all language modes
684       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {
685     bool IsError =
686         (!(Features.CPlusPlus11 || Features.C23) || !in_char_string_literal);
687     if (Diags) {
688       char BasicSCSChar = UcnVal;
689       if (UcnVal >= 0x20 && UcnVal < 0x7f)
690         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
691              IsError ? diag::err_ucn_escape_basic_scs
692              : Features.CPlusPlus
693                  ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs
694                  : diag::warn_c23_compat_literal_ucn_escape_basic_scs)
695             << StringRef(&BasicSCSChar, 1);
696       else
697         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
698              IsError ? diag::err_ucn_control_character
699              : Features.CPlusPlus
700                  ? diag::warn_cxx98_compat_literal_ucn_control_character
701                  : diag::warn_c23_compat_literal_ucn_control_character);
702     }
703     if (IsError)
704       return false;
705   }
706 
707   if (!Features.CPlusPlus && !Features.C99 && Diags)
708     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
709          diag::warn_ucn_not_valid_in_c89_literal);
710 
711   if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags)
712     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
713          Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence
714                               : diag::ext_delimited_escape_sequence)
715         << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0);
716 
717   return true;
718 }
719 
720 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
721 /// which this UCN will occupy.
722 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
723                             const char *ThisTokEnd, unsigned CharByteWidth,
724                             const LangOptions &Features, bool &HadError) {
725   // UTF-32: 4 bytes per escape.
726   if (CharByteWidth == 4)
727     return 4;
728 
729   uint32_t UcnVal = 0;
730   unsigned short UcnLen = 0;
731   FullSourceLoc Loc;
732 
733   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
734                         UcnLen, Loc, nullptr, Features, true)) {
735     HadError = true;
736     return 0;
737   }
738 
739   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
740   if (CharByteWidth == 2)
741     return UcnVal <= 0xFFFF ? 2 : 4;
742 
743   // UTF-8.
744   if (UcnVal < 0x80)
745     return 1;
746   if (UcnVal < 0x800)
747     return 2;
748   if (UcnVal < 0x10000)
749     return 3;
750   return 4;
751 }
752 
753 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
754 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
755 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
756 /// we will likely rework our support for UCN's.
757 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
758                             const char *ThisTokEnd,
759                             char *&ResultBuf, bool &HadError,
760                             FullSourceLoc Loc, unsigned CharByteWidth,
761                             DiagnosticsEngine *Diags,
762                             const LangOptions &Features) {
763   typedef uint32_t UTF32;
764   UTF32 UcnVal = 0;
765   unsigned short UcnLen = 0;
766   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
767                         Loc, Diags, Features, true)) {
768     HadError = true;
769     return;
770   }
771 
772   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
773          "only character widths of 1, 2, or 4 bytes supported");
774 
775   (void)UcnLen;
776   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
777 
778   if (CharByteWidth == 4) {
779     // FIXME: Make the type of the result buffer correct instead of
780     // using reinterpret_cast.
781     llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
782     *ResultPtr = UcnVal;
783     ResultBuf += 4;
784     return;
785   }
786 
787   if (CharByteWidth == 2) {
788     // FIXME: Make the type of the result buffer correct instead of
789     // using reinterpret_cast.
790     llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
791 
792     if (UcnVal <= (UTF32)0xFFFF) {
793       *ResultPtr = UcnVal;
794       ResultBuf += 2;
795       return;
796     }
797 
798     // Convert to UTF16.
799     UcnVal -= 0x10000;
800     *ResultPtr     = 0xD800 + (UcnVal >> 10);
801     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
802     ResultBuf += 4;
803     return;
804   }
805 
806   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
807 
808   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
809   // The conversion below was inspired by:
810   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
811   // First, we determine how many bytes the result will require.
812   typedef uint8_t UTF8;
813 
814   unsigned short bytesToWrite = 0;
815   if (UcnVal < (UTF32)0x80)
816     bytesToWrite = 1;
817   else if (UcnVal < (UTF32)0x800)
818     bytesToWrite = 2;
819   else if (UcnVal < (UTF32)0x10000)
820     bytesToWrite = 3;
821   else
822     bytesToWrite = 4;
823 
824   const unsigned byteMask = 0xBF;
825   const unsigned byteMark = 0x80;
826 
827   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
828   // into the first byte, depending on how many bytes follow.
829   static const UTF8 firstByteMark[5] = {
830     0x00, 0x00, 0xC0, 0xE0, 0xF0
831   };
832   // Finally, we write the bytes into ResultBuf.
833   ResultBuf += bytesToWrite;
834   switch (bytesToWrite) { // note: everything falls through.
835   case 4:
836     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
837     [[fallthrough]];
838   case 3:
839     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
840     [[fallthrough]];
841   case 2:
842     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
843     [[fallthrough]];
844   case 1:
845     *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
846   }
847   // Update the buffer.
848   ResultBuf += bytesToWrite;
849 }
850 
851 ///       integer-constant: [C99 6.4.4.1]
852 ///         decimal-constant integer-suffix
853 ///         octal-constant integer-suffix
854 ///         hexadecimal-constant integer-suffix
855 ///         binary-literal integer-suffix [GNU, C++1y]
856 ///       user-defined-integer-literal: [C++11 lex.ext]
857 ///         decimal-literal ud-suffix
858 ///         octal-literal ud-suffix
859 ///         hexadecimal-literal ud-suffix
860 ///         binary-literal ud-suffix [GNU, C++1y]
861 ///       decimal-constant:
862 ///         nonzero-digit
863 ///         decimal-constant digit
864 ///       octal-constant:
865 ///         0
866 ///         octal-constant octal-digit
867 ///       hexadecimal-constant:
868 ///         hexadecimal-prefix hexadecimal-digit
869 ///         hexadecimal-constant hexadecimal-digit
870 ///       hexadecimal-prefix: one of
871 ///         0x 0X
872 ///       binary-literal:
873 ///         0b binary-digit
874 ///         0B binary-digit
875 ///         binary-literal binary-digit
876 ///       integer-suffix:
877 ///         unsigned-suffix [long-suffix]
878 ///         unsigned-suffix [long-long-suffix]
879 ///         long-suffix [unsigned-suffix]
880 ///         long-long-suffix [unsigned-sufix]
881 ///       nonzero-digit:
882 ///         1 2 3 4 5 6 7 8 9
883 ///       octal-digit:
884 ///         0 1 2 3 4 5 6 7
885 ///       hexadecimal-digit:
886 ///         0 1 2 3 4 5 6 7 8 9
887 ///         a b c d e f
888 ///         A B C D E F
889 ///       binary-digit:
890 ///         0
891 ///         1
892 ///       unsigned-suffix: one of
893 ///         u U
894 ///       long-suffix: one of
895 ///         l L
896 ///       long-long-suffix: one of
897 ///         ll LL
898 ///
899 ///       floating-constant: [C99 6.4.4.2]
900 ///         TODO: add rules...
901 ///
902 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
903                                            SourceLocation TokLoc,
904                                            const SourceManager &SM,
905                                            const LangOptions &LangOpts,
906                                            const TargetInfo &Target,
907                                            DiagnosticsEngine &Diags)
908     : SM(SM), LangOpts(LangOpts), Diags(Diags),
909       ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
910 
911   s = DigitsBegin = ThisTokBegin;
912   saw_exponent = false;
913   saw_period = false;
914   saw_ud_suffix = false;
915   saw_fixed_point_suffix = false;
916   isLong = false;
917   isUnsigned = false;
918   isLongLong = false;
919   isSizeT = false;
920   isHalf = false;
921   isFloat = false;
922   isImaginary = false;
923   isFloat16 = false;
924   isFloat128 = false;
925   MicrosoftInteger = 0;
926   isFract = false;
927   isAccum = false;
928   hadError = false;
929   isBitInt = false;
930 
931   // This routine assumes that the range begin/end matches the regex for integer
932   // and FP constants (specifically, the 'pp-number' regex), and assumes that
933   // the byte at "*end" is both valid and not part of the regex.  Because of
934   // this, it doesn't have to check for 'overscan' in various places.
935   // Note: For HLSL, the end token is allowed to be '.' which would be in the
936   // 'pp-number' regex. This is required to support vector swizzles on numeric
937   // constants (i.e. 1.xx or 1.5f.rrr).
938   if (isPreprocessingNumberBody(*ThisTokEnd) &&
939       !(LangOpts.HLSL && *ThisTokEnd == '.')) {
940     Diags.Report(TokLoc, diag::err_lexing_numeric);
941     hadError = true;
942     return;
943   }
944 
945   if (*s == '0') { // parse radix
946     ParseNumberStartingWithZero(TokLoc);
947     if (hadError)
948       return;
949   } else { // the first digit is non-zero
950     radix = 10;
951     s = SkipDigits(s);
952     if (s == ThisTokEnd) {
953       // Done.
954     } else {
955       ParseDecimalOrOctalCommon(TokLoc);
956       if (hadError)
957         return;
958     }
959   }
960 
961   SuffixBegin = s;
962   checkSeparator(TokLoc, s, CSK_AfterDigits);
963 
964   // Initial scan to lookahead for fixed point suffix.
965   if (LangOpts.FixedPoint) {
966     for (const char *c = s; c != ThisTokEnd; ++c) {
967       if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
968         saw_fixed_point_suffix = true;
969         break;
970       }
971     }
972   }
973 
974   // Parse the suffix.  At this point we can classify whether we have an FP or
975   // integer constant.
976   bool isFixedPointConstant = isFixedPointLiteral();
977   bool isFPConstant = isFloatingLiteral();
978   bool HasSize = false;
979   bool DoubleUnderscore = false;
980 
981   // Loop over all of the characters of the suffix.  If we see something bad,
982   // we break out of the loop.
983   for (; s != ThisTokEnd; ++s) {
984     switch (*s) {
985     case 'R':
986     case 'r':
987       if (!LangOpts.FixedPoint)
988         break;
989       if (isFract || isAccum) break;
990       if (!(saw_period || saw_exponent)) break;
991       isFract = true;
992       continue;
993     case 'K':
994     case 'k':
995       if (!LangOpts.FixedPoint)
996         break;
997       if (isFract || isAccum) break;
998       if (!(saw_period || saw_exponent)) break;
999       isAccum = true;
1000       continue;
1001     case 'h':      // FP Suffix for "half".
1002     case 'H':
1003       // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
1004       if (!(LangOpts.Half || LangOpts.FixedPoint))
1005         break;
1006       if (isIntegerLiteral()) break;  // Error for integer constant.
1007       if (HasSize)
1008         break;
1009       HasSize = true;
1010       isHalf = true;
1011       continue;  // Success.
1012     case 'f':      // FP Suffix for "float"
1013     case 'F':
1014       if (!isFPConstant) break;  // Error for integer constant.
1015       if (HasSize)
1016         break;
1017       HasSize = true;
1018 
1019       // CUDA host and device may have different _Float16 support, therefore
1020       // allows f16 literals to avoid false alarm.
1021       // When we compile for OpenMP target offloading on NVPTX, f16 suffix
1022       // should also be supported.
1023       // ToDo: more precise check for CUDA.
1024       // TODO: AMDGPU might also support it in the future.
1025       if ((Target.hasFloat16Type() || LangOpts.CUDA ||
1026            (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) &&
1027           s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
1028         s += 2; // success, eat up 2 characters.
1029         isFloat16 = true;
1030         continue;
1031       }
1032 
1033       isFloat = true;
1034       continue;  // Success.
1035     case 'q':    // FP Suffix for "__float128"
1036     case 'Q':
1037       if (!isFPConstant) break;  // Error for integer constant.
1038       if (HasSize)
1039         break;
1040       HasSize = true;
1041       isFloat128 = true;
1042       continue;  // Success.
1043     case 'u':
1044     case 'U':
1045       if (isFPConstant) break;  // Error for floating constant.
1046       if (isUnsigned) break;    // Cannot be repeated.
1047       isUnsigned = true;
1048       continue;  // Success.
1049     case 'l':
1050     case 'L':
1051       if (HasSize)
1052         break;
1053       HasSize = true;
1054 
1055       // Check for long long.  The L's need to be adjacent and the same case.
1056       if (s[1] == s[0]) {
1057         assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
1058         if (isFPConstant) break;        // long long invalid for floats.
1059         isLongLong = true;
1060         ++s;  // Eat both of them.
1061       } else {
1062         isLong = true;
1063       }
1064       continue; // Success.
1065     case 'z':
1066     case 'Z':
1067       if (isFPConstant)
1068         break; // Invalid for floats.
1069       if (HasSize)
1070         break;
1071       HasSize = true;
1072       isSizeT = true;
1073       continue;
1074     case 'i':
1075     case 'I':
1076       if (LangOpts.MicrosoftExt && !isFPConstant) {
1077         // Allow i8, i16, i32, and i64. First, look ahead and check if
1078         // suffixes are Microsoft integers and not the imaginary unit.
1079         uint8_t Bits = 0;
1080         size_t ToSkip = 0;
1081         switch (s[1]) {
1082         case '8': // i8 suffix
1083           Bits = 8;
1084           ToSkip = 2;
1085           break;
1086         case '1':
1087           if (s[2] == '6') { // i16 suffix
1088             Bits = 16;
1089             ToSkip = 3;
1090           }
1091           break;
1092         case '3':
1093           if (s[2] == '2') { // i32 suffix
1094             Bits = 32;
1095             ToSkip = 3;
1096           }
1097           break;
1098         case '6':
1099           if (s[2] == '4') { // i64 suffix
1100             Bits = 64;
1101             ToSkip = 3;
1102           }
1103           break;
1104         default:
1105           break;
1106         }
1107         if (Bits) {
1108           if (HasSize)
1109             break;
1110           HasSize = true;
1111           MicrosoftInteger = Bits;
1112           s += ToSkip;
1113           assert(s <= ThisTokEnd && "didn't maximally munch?");
1114           break;
1115         }
1116       }
1117       [[fallthrough]];
1118     case 'j':
1119     case 'J':
1120       if (isImaginary) break;   // Cannot be repeated.
1121       isImaginary = true;
1122       continue;  // Success.
1123     case '_':
1124       if (isFPConstant)
1125         break; // Invalid for floats
1126       if (HasSize)
1127         break;
1128       // There is currently no way to reach this with DoubleUnderscore set.
1129       // If new double underscope literals are added handle it here as above.
1130       assert(!DoubleUnderscore && "unhandled double underscore case");
1131       if (LangOpts.CPlusPlus && s + 2 < ThisTokEnd &&
1132           s[1] == '_') { // s + 2 < ThisTokEnd to ensure some character exists
1133                          // after __
1134         DoubleUnderscore = true;
1135         s += 2; // Skip both '_'
1136         if (s + 1 < ThisTokEnd &&
1137             (*s == 'u' || *s == 'U')) { // Ensure some character after 'u'/'U'
1138           isUnsigned = true;
1139           ++s;
1140         }
1141         if (s + 1 < ThisTokEnd &&
1142             ((*s == 'w' && *(++s) == 'b') || (*s == 'W' && *(++s) == 'B'))) {
1143           isBitInt = true;
1144           HasSize = true;
1145           continue;
1146         }
1147       }
1148       break;
1149     case 'w':
1150     case 'W':
1151       if (isFPConstant)
1152         break; // Invalid for floats.
1153       if (HasSize)
1154         break; // Invalid if we already have a size for the literal.
1155 
1156       // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1157       // explicitly do not support the suffix in C++ as an extension because a
1158       // library-based UDL that resolves to a library type may be more
1159       // appropriate there. The same rules apply for __wb/__WB.
1160       if ((!LangOpts.CPlusPlus || DoubleUnderscore) && s + 1 < ThisTokEnd &&
1161           ((s[0] == 'w' && s[1] == 'b') || (s[0] == 'W' && s[1] == 'B'))) {
1162         isBitInt = true;
1163         HasSize = true;
1164         ++s; // Skip both characters (2nd char skipped on continue).
1165         continue; // Success.
1166       }
1167     }
1168     // If we reached here, there was an error or a ud-suffix.
1169     break;
1170   }
1171 
1172   // "i", "if", and "il" are user-defined suffixes in C++1y.
1173   if (s != ThisTokEnd || isImaginary) {
1174     // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1175     expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
1176     if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
1177       if (!isImaginary) {
1178         // Any suffix pieces we might have parsed are actually part of the
1179         // ud-suffix.
1180         isLong = false;
1181         isUnsigned = false;
1182         isLongLong = false;
1183         isSizeT = false;
1184         isFloat = false;
1185         isFloat16 = false;
1186         isHalf = false;
1187         isImaginary = false;
1188         isBitInt = false;
1189         MicrosoftInteger = 0;
1190         saw_fixed_point_suffix = false;
1191         isFract = false;
1192         isAccum = false;
1193       }
1194 
1195       saw_ud_suffix = true;
1196       return;
1197     }
1198 
1199     if (s != ThisTokEnd) {
1200       // Report an error if there are any.
1201       Diags.Report(Lexer::AdvanceToTokenCharacter(
1202                        TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
1203                    diag::err_invalid_suffix_constant)
1204           << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
1205           << (isFixedPointConstant ? 2 : isFPConstant);
1206       hadError = true;
1207     }
1208   }
1209 
1210   if (!hadError && saw_fixed_point_suffix) {
1211     assert(isFract || isAccum);
1212   }
1213 }
1214 
1215 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1216 /// numbers. It issues an error for illegal digits, and handles floating point
1217 /// parsing. If it detects a floating point number, the radix is set to 10.
1218 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
1219   assert((radix == 8 || radix == 10) && "Unexpected radix");
1220 
1221   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1222   // the code is using an incorrect base.
1223   if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
1224       !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1225     Diags.Report(
1226         Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
1227         diag::err_invalid_digit)
1228         << StringRef(s, 1) << (radix == 8 ? 1 : 0);
1229     hadError = true;
1230     return;
1231   }
1232 
1233   if (*s == '.') {
1234     checkSeparator(TokLoc, s, CSK_AfterDigits);
1235     s++;
1236     radix = 10;
1237     saw_period = true;
1238     checkSeparator(TokLoc, s, CSK_BeforeDigits);
1239     s = SkipDigits(s); // Skip suffix.
1240   }
1241   if (*s == 'e' || *s == 'E') { // exponent
1242     checkSeparator(TokLoc, s, CSK_AfterDigits);
1243     const char *Exponent = s;
1244     s++;
1245     radix = 10;
1246     saw_exponent = true;
1247     if (s != ThisTokEnd && (*s == '+' || *s == '-'))  s++; // sign
1248     const char *first_non_digit = SkipDigits(s);
1249     if (containsDigits(s, first_non_digit)) {
1250       checkSeparator(TokLoc, s, CSK_BeforeDigits);
1251       s = first_non_digit;
1252     } else {
1253       if (!hadError) {
1254         Diags.Report(Lexer::AdvanceToTokenCharacter(
1255                          TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1256                      diag::err_exponent_has_no_digits);
1257         hadError = true;
1258       }
1259       return;
1260     }
1261   }
1262 }
1263 
1264 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1265 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
1266 /// treat it as an invalid suffix.
1267 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
1268                                            StringRef Suffix) {
1269   if (!LangOpts.CPlusPlus11 || Suffix.empty())
1270     return false;
1271 
1272   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1273   // Suffixes starting with '__' (double underscore) are for use by
1274   // the implementation.
1275   if (Suffix.starts_with("_") && !Suffix.starts_with("__"))
1276     return true;
1277 
1278   // In C++11, there are no library suffixes.
1279   if (!LangOpts.CPlusPlus14)
1280     return false;
1281 
1282   // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1283   // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1284   // In C++2a "d" and "y" are used in the library.
1285   return llvm::StringSwitch<bool>(Suffix)
1286       .Cases("h", "min", "s", true)
1287       .Cases("ms", "us", "ns", true)
1288       .Cases("il", "i", "if", true)
1289       .Cases("d", "y", LangOpts.CPlusPlus20)
1290       .Default(false);
1291 }
1292 
1293 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1294                                           const char *Pos,
1295                                           CheckSeparatorKind IsAfterDigits) {
1296   if (IsAfterDigits == CSK_AfterDigits) {
1297     if (Pos == ThisTokBegin)
1298       return;
1299     --Pos;
1300   } else if (Pos == ThisTokEnd)
1301     return;
1302 
1303   if (isDigitSeparator(*Pos)) {
1304     Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1305                                                 LangOpts),
1306                  diag::err_digit_separator_not_between_digits)
1307         << IsAfterDigits;
1308     hadError = true;
1309   }
1310 }
1311 
1312 /// ParseNumberStartingWithZero - This method is called when the first character
1313 /// of the number is found to be a zero.  This means it is either an octal
1314 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1315 /// a floating point number (01239.123e4).  Eat the prefix, determining the
1316 /// radix etc.
1317 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1318   assert(s[0] == '0' && "Invalid method call");
1319   s++;
1320 
1321   int c1 = s[0];
1322 
1323   // Handle a hex number like 0x1234.
1324   if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1325     s++;
1326     assert(s < ThisTokEnd && "didn't maximally munch?");
1327     radix = 16;
1328     DigitsBegin = s;
1329     s = SkipHexDigits(s);
1330     bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1331     if (s == ThisTokEnd) {
1332       // Done.
1333     } else if (*s == '.') {
1334       s++;
1335       saw_period = true;
1336       const char *floatDigitsBegin = s;
1337       s = SkipHexDigits(s);
1338       if (containsDigits(floatDigitsBegin, s))
1339         HasSignificandDigits = true;
1340       if (HasSignificandDigits)
1341         checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1342     }
1343 
1344     if (!HasSignificandDigits) {
1345       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1346                                                   LangOpts),
1347                    diag::err_hex_constant_requires)
1348           << LangOpts.CPlusPlus << 1;
1349       hadError = true;
1350       return;
1351     }
1352 
1353     // A binary exponent can appear with or with a '.'. If dotted, the
1354     // binary exponent is required.
1355     if (*s == 'p' || *s == 'P') {
1356       checkSeparator(TokLoc, s, CSK_AfterDigits);
1357       const char *Exponent = s;
1358       s++;
1359       saw_exponent = true;
1360       if (s != ThisTokEnd && (*s == '+' || *s == '-'))  s++; // sign
1361       const char *first_non_digit = SkipDigits(s);
1362       if (!containsDigits(s, first_non_digit)) {
1363         if (!hadError) {
1364           Diags.Report(Lexer::AdvanceToTokenCharacter(
1365                            TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1366                        diag::err_exponent_has_no_digits);
1367           hadError = true;
1368         }
1369         return;
1370       }
1371       checkSeparator(TokLoc, s, CSK_BeforeDigits);
1372       s = first_non_digit;
1373 
1374       if (!LangOpts.HexFloats)
1375         Diags.Report(TokLoc, LangOpts.CPlusPlus
1376                                  ? diag::ext_hex_literal_invalid
1377                                  : diag::ext_hex_constant_invalid);
1378       else if (LangOpts.CPlusPlus17)
1379         Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1380     } else if (saw_period) {
1381       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1382                                                   LangOpts),
1383                    diag::err_hex_constant_requires)
1384           << LangOpts.CPlusPlus << 0;
1385       hadError = true;
1386     }
1387     return;
1388   }
1389 
1390   // Handle simple binary numbers 0b01010
1391   if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1392     // 0b101010 is a C++14 and C23 extension.
1393     unsigned DiagId;
1394     if (LangOpts.CPlusPlus14)
1395       DiagId = diag::warn_cxx11_compat_binary_literal;
1396     else if (LangOpts.C23)
1397       DiagId = diag::warn_c23_compat_binary_literal;
1398     else if (LangOpts.CPlusPlus)
1399       DiagId = diag::ext_binary_literal_cxx14;
1400     else
1401       DiagId = diag::ext_binary_literal;
1402     Diags.Report(TokLoc, DiagId);
1403     ++s;
1404     assert(s < ThisTokEnd && "didn't maximally munch?");
1405     radix = 2;
1406     DigitsBegin = s;
1407     s = SkipBinaryDigits(s);
1408     if (s == ThisTokEnd) {
1409       // Done.
1410     } else if (isHexDigit(*s) &&
1411                !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1412       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1413                                                   LangOpts),
1414                    diag::err_invalid_digit)
1415           << StringRef(s, 1) << 2;
1416       hadError = true;
1417     }
1418     // Other suffixes will be diagnosed by the caller.
1419     return;
1420   }
1421 
1422   // For now, the radix is set to 8. If we discover that we have a
1423   // floating point constant, the radix will change to 10. Octal floating
1424   // point constants are not permitted (only decimal and hexadecimal).
1425   radix = 8;
1426   const char *PossibleNewDigitStart = s;
1427   s = SkipOctalDigits(s);
1428   // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1429   // as the start of the digits. So if skipping octal digits does not skip
1430   // anything, we leave the digit start where it was.
1431   if (s != PossibleNewDigitStart)
1432     DigitsBegin = PossibleNewDigitStart;
1433 
1434   if (s == ThisTokEnd)
1435     return; // Done, simple octal number like 01234
1436 
1437   // If we have some other non-octal digit that *is* a decimal digit, see if
1438   // this is part of a floating point number like 094.123 or 09e1.
1439   if (isDigit(*s)) {
1440     const char *EndDecimal = SkipDigits(s);
1441     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1442       s = EndDecimal;
1443       radix = 10;
1444     }
1445   }
1446 
1447   ParseDecimalOrOctalCommon(TokLoc);
1448 }
1449 
1450 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1451   switch (Radix) {
1452   case 2:
1453     return NumDigits <= 64;
1454   case 8:
1455     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1456   case 10:
1457     return NumDigits <= 19; // floor(log10(2^64))
1458   case 16:
1459     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1460   default:
1461     llvm_unreachable("impossible Radix");
1462   }
1463 }
1464 
1465 /// GetIntegerValue - Convert this numeric literal value to an APInt that
1466 /// matches Val's input width.  If there is an overflow, set Val to the low bits
1467 /// of the result and return true.  Otherwise, return false.
1468 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1469   // Fast path: Compute a conservative bound on the maximum number of
1470   // bits per digit in this radix. If we can't possibly overflow a
1471   // uint64 based on that bound then do the simple conversion to
1472   // integer. This avoids the expensive overflow checking below, and
1473   // handles the common cases that matter (small decimal integers and
1474   // hex/octal values which don't overflow).
1475   const unsigned NumDigits = SuffixBegin - DigitsBegin;
1476   if (alwaysFitsInto64Bits(radix, NumDigits)) {
1477     uint64_t N = 0;
1478     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1479       if (!isDigitSeparator(*Ptr))
1480         N = N * radix + llvm::hexDigitValue(*Ptr);
1481 
1482     // This will truncate the value to Val's input width. Simply check
1483     // for overflow by comparing.
1484     Val = N;
1485     return Val.getZExtValue() != N;
1486   }
1487 
1488   Val = 0;
1489   const char *Ptr = DigitsBegin;
1490 
1491   llvm::APInt RadixVal(Val.getBitWidth(), radix);
1492   llvm::APInt CharVal(Val.getBitWidth(), 0);
1493   llvm::APInt OldVal = Val;
1494 
1495   bool OverflowOccurred = false;
1496   while (Ptr < SuffixBegin) {
1497     if (isDigitSeparator(*Ptr)) {
1498       ++Ptr;
1499       continue;
1500     }
1501 
1502     unsigned C = llvm::hexDigitValue(*Ptr++);
1503 
1504     // If this letter is out of bound for this radix, reject it.
1505     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1506 
1507     CharVal = C;
1508 
1509     // Add the digit to the value in the appropriate radix.  If adding in digits
1510     // made the value smaller, then this overflowed.
1511     OldVal = Val;
1512 
1513     // Multiply by radix, did overflow occur on the multiply?
1514     Val *= RadixVal;
1515     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1516 
1517     // Add value, did overflow occur on the value?
1518     //   (a + b) ult b  <=> overflow
1519     Val += CharVal;
1520     OverflowOccurred |= Val.ult(CharVal);
1521   }
1522   return OverflowOccurred;
1523 }
1524 
1525 llvm::APFloat::opStatus
1526 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result,
1527                                     llvm::RoundingMode RM) {
1528   using llvm::APFloat;
1529 
1530   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1531 
1532   llvm::SmallString<16> Buffer;
1533   StringRef Str(ThisTokBegin, n);
1534   if (Str.contains('\'')) {
1535     Buffer.reserve(n);
1536     std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1537                         &isDigitSeparator);
1538     Str = Buffer;
1539   }
1540 
1541   auto StatusOrErr = Result.convertFromString(Str, RM);
1542   assert(StatusOrErr && "Invalid floating point representation");
1543   return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1544                                                : APFloat::opInvalidOp;
1545 }
1546 
1547 static inline bool IsExponentPart(char c, bool isHex) {
1548   if (isHex)
1549     return c == 'p' || c == 'P';
1550   return c == 'e' || c == 'E';
1551 }
1552 
1553 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1554   assert(radix == 16 || radix == 10);
1555 
1556   // Find how many digits are needed to store the whole literal.
1557   unsigned NumDigits = SuffixBegin - DigitsBegin;
1558   if (saw_period) --NumDigits;
1559 
1560   // Initial scan of the exponent if it exists
1561   bool ExpOverflowOccurred = false;
1562   bool NegativeExponent = false;
1563   const char *ExponentBegin;
1564   uint64_t Exponent = 0;
1565   int64_t BaseShift = 0;
1566   if (saw_exponent) {
1567     const char *Ptr = DigitsBegin;
1568 
1569     while (!IsExponentPart(*Ptr, radix == 16))
1570       ++Ptr;
1571     ExponentBegin = Ptr;
1572     ++Ptr;
1573     NegativeExponent = *Ptr == '-';
1574     if (NegativeExponent) ++Ptr;
1575 
1576     unsigned NumExpDigits = SuffixBegin - Ptr;
1577     if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1578       llvm::StringRef ExpStr(Ptr, NumExpDigits);
1579       llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1580       Exponent = ExpInt.getZExtValue();
1581     } else {
1582       ExpOverflowOccurred = true;
1583     }
1584 
1585     if (NegativeExponent) BaseShift -= Exponent;
1586     else BaseShift += Exponent;
1587   }
1588 
1589   // Number of bits needed for decimal literal is
1590   //   ceil(NumDigits * log2(10))       Integral part
1591   // + Scale                            Fractional part
1592   // + ceil(Exponent * log2(10))        Exponent
1593   // --------------------------------------------------
1594   //   ceil((NumDigits + Exponent) * log2(10)) + Scale
1595   //
1596   // But for simplicity in handling integers, we can round up log2(10) to 4,
1597   // making:
1598   // 4 * (NumDigits + Exponent) + Scale
1599   //
1600   // Number of digits needed for hexadecimal literal is
1601   //   4 * NumDigits                    Integral part
1602   // + Scale                            Fractional part
1603   // + Exponent                         Exponent
1604   // --------------------------------------------------
1605   //   (4 * NumDigits) + Scale + Exponent
1606   uint64_t NumBitsNeeded;
1607   if (radix == 10)
1608     NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1609   else
1610     NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1611 
1612   if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1613     ExpOverflowOccurred = true;
1614   llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1615 
1616   bool FoundDecimal = false;
1617 
1618   int64_t FractBaseShift = 0;
1619   const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1620   for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1621     if (*Ptr == '.') {
1622       FoundDecimal = true;
1623       continue;
1624     }
1625 
1626     // Normal reading of an integer
1627     unsigned C = llvm::hexDigitValue(*Ptr);
1628     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1629 
1630     Val *= radix;
1631     Val += C;
1632 
1633     if (FoundDecimal)
1634       // Keep track of how much we will need to adjust this value by from the
1635       // number of digits past the radix point.
1636       --FractBaseShift;
1637   }
1638 
1639   // For a radix of 16, we will be multiplying by 2 instead of 16.
1640   if (radix == 16) FractBaseShift *= 4;
1641   BaseShift += FractBaseShift;
1642 
1643   Val <<= Scale;
1644 
1645   uint64_t Base = (radix == 16) ? 2 : 10;
1646   if (BaseShift > 0) {
1647     for (int64_t i = 0; i < BaseShift; ++i) {
1648       Val *= Base;
1649     }
1650   } else if (BaseShift < 0) {
1651     for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1652       Val = Val.udiv(Base);
1653   }
1654 
1655   bool IntOverflowOccurred = false;
1656   auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1657   if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1658     IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1659     StoreVal = Val.trunc(StoreVal.getBitWidth());
1660   } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1661     IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1662     StoreVal = Val.zext(StoreVal.getBitWidth());
1663   } else {
1664     StoreVal = Val;
1665   }
1666 
1667   return IntOverflowOccurred || ExpOverflowOccurred;
1668 }
1669 
1670 /// \verbatim
1671 ///       user-defined-character-literal: [C++11 lex.ext]
1672 ///         character-literal ud-suffix
1673 ///       ud-suffix:
1674 ///         identifier
1675 ///       character-literal: [C++11 lex.ccon]
1676 ///         ' c-char-sequence '
1677 ///         u' c-char-sequence '
1678 ///         U' c-char-sequence '
1679 ///         L' c-char-sequence '
1680 ///         u8' c-char-sequence ' [C++1z lex.ccon]
1681 ///       c-char-sequence:
1682 ///         c-char
1683 ///         c-char-sequence c-char
1684 ///       c-char:
1685 ///         any member of the source character set except the single-quote ',
1686 ///           backslash \, or new-line character
1687 ///         escape-sequence
1688 ///         universal-character-name
1689 ///       escape-sequence:
1690 ///         simple-escape-sequence
1691 ///         octal-escape-sequence
1692 ///         hexadecimal-escape-sequence
1693 ///       simple-escape-sequence:
1694 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
1695 ///       octal-escape-sequence:
1696 ///         \ octal-digit
1697 ///         \ octal-digit octal-digit
1698 ///         \ octal-digit octal-digit octal-digit
1699 ///       hexadecimal-escape-sequence:
1700 ///         \x hexadecimal-digit
1701 ///         hexadecimal-escape-sequence hexadecimal-digit
1702 ///       universal-character-name: [C++11 lex.charset]
1703 ///         \u hex-quad
1704 ///         \U hex-quad hex-quad
1705 ///       hex-quad:
1706 ///         hex-digit hex-digit hex-digit hex-digit
1707 /// \endverbatim
1708 ///
1709 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1710                                      SourceLocation Loc, Preprocessor &PP,
1711                                      tok::TokenKind kind) {
1712   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1713   HadError = false;
1714 
1715   Kind = kind;
1716 
1717   const char *TokBegin = begin;
1718 
1719   // Skip over wide character determinant.
1720   if (Kind != tok::char_constant)
1721     ++begin;
1722   if (Kind == tok::utf8_char_constant)
1723     ++begin;
1724 
1725   // Skip over the entry quote.
1726   if (begin[0] != '\'') {
1727     PP.Diag(Loc, diag::err_lexing_char);
1728     HadError = true;
1729     return;
1730   }
1731 
1732   ++begin;
1733 
1734   // Remove an optional ud-suffix.
1735   if (end[-1] != '\'') {
1736     const char *UDSuffixEnd = end;
1737     do {
1738       --end;
1739     } while (end[-1] != '\'');
1740     // FIXME: Don't bother with this if !tok.hasUCN().
1741     expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1742     UDSuffixOffset = end - TokBegin;
1743   }
1744 
1745   // Trim the ending quote.
1746   assert(end != begin && "Invalid token lexed");
1747   --end;
1748 
1749   // FIXME: The "Value" is an uint64_t so we can handle char literals of
1750   // up to 64-bits.
1751   // FIXME: This extensively assumes that 'char' is 8-bits.
1752   assert(PP.getTargetInfo().getCharWidth() == 8 &&
1753          "Assumes char is 8 bits");
1754   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1755          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1756          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1757   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1758          "Assumes sizeof(wchar) on target is <= 64");
1759 
1760   SmallVector<uint32_t, 4> codepoint_buffer;
1761   codepoint_buffer.resize(end - begin);
1762   uint32_t *buffer_begin = &codepoint_buffer.front();
1763   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1764 
1765   // Unicode escapes representing characters that cannot be correctly
1766   // represented in a single code unit are disallowed in character literals
1767   // by this implementation.
1768   uint32_t largest_character_for_kind;
1769   if (tok::wide_char_constant == Kind) {
1770     largest_character_for_kind =
1771         0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1772   } else if (tok::utf8_char_constant == Kind) {
1773     largest_character_for_kind = 0x7F;
1774   } else if (tok::utf16_char_constant == Kind) {
1775     largest_character_for_kind = 0xFFFF;
1776   } else if (tok::utf32_char_constant == Kind) {
1777     largest_character_for_kind = 0x10FFFF;
1778   } else {
1779     largest_character_for_kind = 0x7Fu;
1780   }
1781 
1782   while (begin != end) {
1783     // Is this a span of non-escape characters?
1784     if (begin[0] != '\\') {
1785       char const *start = begin;
1786       do {
1787         ++begin;
1788       } while (begin != end && *begin != '\\');
1789 
1790       char const *tmp_in_start = start;
1791       uint32_t *tmp_out_start = buffer_begin;
1792       llvm::ConversionResult res =
1793           llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1794                              reinterpret_cast<llvm::UTF8 const *>(begin),
1795                              &buffer_begin, buffer_end, llvm::strictConversion);
1796       if (res != llvm::conversionOK) {
1797         // If we see bad encoding for unprefixed character literals, warn and
1798         // simply copy the byte values, for compatibility with gcc and
1799         // older versions of clang.
1800         bool NoErrorOnBadEncoding = isOrdinary();
1801         unsigned Msg = diag::err_bad_character_encoding;
1802         if (NoErrorOnBadEncoding)
1803           Msg = diag::warn_bad_character_encoding;
1804         PP.Diag(Loc, Msg);
1805         if (NoErrorOnBadEncoding) {
1806           start = tmp_in_start;
1807           buffer_begin = tmp_out_start;
1808           for (; start != begin; ++start, ++buffer_begin)
1809             *buffer_begin = static_cast<uint8_t>(*start);
1810         } else {
1811           HadError = true;
1812         }
1813       } else {
1814         for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1815           if (*tmp_out_start > largest_character_for_kind) {
1816             HadError = true;
1817             PP.Diag(Loc, diag::err_character_too_large);
1818           }
1819         }
1820       }
1821 
1822       continue;
1823     }
1824     // Is this a Universal Character Name escape?
1825     if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') {
1826       unsigned short UcnLen = 0;
1827       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1828                             FullSourceLoc(Loc, PP.getSourceManager()),
1829                             &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1830         HadError = true;
1831       } else if (*buffer_begin > largest_character_for_kind) {
1832         HadError = true;
1833         PP.Diag(Loc, diag::err_character_too_large);
1834       }
1835 
1836       ++buffer_begin;
1837       continue;
1838     }
1839     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1840     uint64_t result =
1841         ProcessCharEscape(TokBegin, begin, end, HadError,
1842                           FullSourceLoc(Loc, PP.getSourceManager()), CharWidth,
1843                           &PP.getDiagnostics(), PP.getLangOpts(),
1844                           StringLiteralEvalMethod::Evaluated);
1845     *buffer_begin++ = result;
1846   }
1847 
1848   unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1849 
1850   if (NumCharsSoFar > 1) {
1851     if (isOrdinary() && NumCharsSoFar == 4)
1852       PP.Diag(Loc, diag::warn_four_char_character_literal);
1853     else if (isOrdinary())
1854       PP.Diag(Loc, diag::warn_multichar_character_literal);
1855     else {
1856       PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1857       HadError = true;
1858     }
1859     IsMultiChar = true;
1860   } else {
1861     IsMultiChar = false;
1862   }
1863 
1864   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1865 
1866   // Narrow character literals act as though their value is concatenated
1867   // in this implementation, but warn on overflow.
1868   bool multi_char_too_long = false;
1869   if (isOrdinary() && isMultiChar()) {
1870     LitVal = 0;
1871     for (size_t i = 0; i < NumCharsSoFar; ++i) {
1872       // check for enough leading zeros to shift into
1873       multi_char_too_long |= (LitVal.countl_zero() < 8);
1874       LitVal <<= 8;
1875       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1876     }
1877   } else if (NumCharsSoFar > 0) {
1878     // otherwise just take the last character
1879     LitVal = buffer_begin[-1];
1880   }
1881 
1882   if (!HadError && multi_char_too_long) {
1883     PP.Diag(Loc, diag::warn_char_constant_too_large);
1884   }
1885 
1886   // Transfer the value from APInt to uint64_t
1887   Value = LitVal.getZExtValue();
1888 
1889   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1890   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
1891   // character constants are not sign extended in the this implementation:
1892   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1893   if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) &&
1894       PP.getLangOpts().CharIsSigned)
1895     Value = (signed char)Value;
1896 }
1897 
1898 /// \verbatim
1899 ///       string-literal: [C++0x lex.string]
1900 ///         encoding-prefix " [s-char-sequence] "
1901 ///         encoding-prefix R raw-string
1902 ///       encoding-prefix:
1903 ///         u8
1904 ///         u
1905 ///         U
1906 ///         L
1907 ///       s-char-sequence:
1908 ///         s-char
1909 ///         s-char-sequence s-char
1910 ///       s-char:
1911 ///         any member of the source character set except the double-quote ",
1912 ///           backslash \, or new-line character
1913 ///         escape-sequence
1914 ///         universal-character-name
1915 ///       raw-string:
1916 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
1917 ///       r-char-sequence:
1918 ///         r-char
1919 ///         r-char-sequence r-char
1920 ///       r-char:
1921 ///         any member of the source character set, except a right parenthesis )
1922 ///           followed by the initial d-char-sequence (which may be empty)
1923 ///           followed by a double quote ".
1924 ///       d-char-sequence:
1925 ///         d-char
1926 ///         d-char-sequence d-char
1927 ///       d-char:
1928 ///         any member of the basic source character set except:
1929 ///           space, the left parenthesis (, the right parenthesis ),
1930 ///           the backslash \, and the control characters representing horizontal
1931 ///           tab, vertical tab, form feed, and newline.
1932 ///       escape-sequence: [C++0x lex.ccon]
1933 ///         simple-escape-sequence
1934 ///         octal-escape-sequence
1935 ///         hexadecimal-escape-sequence
1936 ///       simple-escape-sequence:
1937 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
1938 ///       octal-escape-sequence:
1939 ///         \ octal-digit
1940 ///         \ octal-digit octal-digit
1941 ///         \ octal-digit octal-digit octal-digit
1942 ///       hexadecimal-escape-sequence:
1943 ///         \x hexadecimal-digit
1944 ///         hexadecimal-escape-sequence hexadecimal-digit
1945 ///       universal-character-name:
1946 ///         \u hex-quad
1947 ///         \U hex-quad hex-quad
1948 ///       hex-quad:
1949 ///         hex-digit hex-digit hex-digit hex-digit
1950 /// \endverbatim
1951 ///
1952 StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks,
1953                                          Preprocessor &PP,
1954                                          StringLiteralEvalMethod EvalMethod)
1955     : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1956       Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1957       MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1958       ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false),
1959       Pascal(false) {
1960   init(StringToks);
1961 }
1962 
1963 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1964   // The literal token may have come from an invalid source location (e.g. due
1965   // to a PCH error), in which case the token length will be 0.
1966   if (StringToks.empty() || StringToks[0].getLength() < 2)
1967     return DiagnoseLexingError(SourceLocation());
1968 
1969   // Scan all of the string portions, remember the max individual token length,
1970   // computing a bound on the concatenated string length, and see whether any
1971   // piece is a wide-string.  If any of the string portions is a wide-string
1972   // literal, the result is a wide-string literal [C99 6.4.5p4].
1973   assert(!StringToks.empty() && "expected at least one token");
1974   MaxTokenLength = StringToks[0].getLength();
1975   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1976   SizeBound = StringToks[0].getLength() - 2; // -2 for "".
1977   hadError = false;
1978 
1979   // Determines the kind of string from the prefix
1980   Kind = tok::string_literal;
1981 
1982   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
1983   for (const Token &Tok : StringToks) {
1984     if (Tok.getLength() < 2)
1985       return DiagnoseLexingError(Tok.getLocation());
1986 
1987     // The string could be shorter than this if it needs cleaning, but this is a
1988     // reasonable bound, which is all we need.
1989     assert(Tok.getLength() >= 2 && "literal token is invalid!");
1990     SizeBound += Tok.getLength() - 2; // -2 for "".
1991 
1992     // Remember maximum string piece length.
1993     if (Tok.getLength() > MaxTokenLength)
1994       MaxTokenLength = Tok.getLength();
1995 
1996     // Remember if we see any wide or utf-8/16/32 strings.
1997     // Also check for illegal concatenations.
1998     if (isUnevaluated() && Tok.getKind() != tok::string_literal) {
1999       if (Diags) {
2000         SourceLocation PrefixEndLoc = Lexer::AdvanceToTokenCharacter(
2001             Tok.getLocation(), getEncodingPrefixLen(Tok.getKind()), SM,
2002             Features);
2003         CharSourceRange Range =
2004             CharSourceRange::getCharRange({Tok.getLocation(), PrefixEndLoc});
2005         StringRef Prefix(SM.getCharacterData(Tok.getLocation()),
2006                          getEncodingPrefixLen(Tok.getKind()));
2007         Diags->Report(Tok.getLocation(),
2008                       Features.CPlusPlus26
2009                           ? diag::err_unevaluated_string_prefix
2010                           : diag::warn_unevaluated_string_prefix)
2011             << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(Range);
2012       }
2013       if (Features.CPlusPlus26)
2014         hadError = true;
2015     } else if (Tok.isNot(Kind) && Tok.isNot(tok::string_literal)) {
2016       if (isOrdinary()) {
2017         Kind = Tok.getKind();
2018       } else {
2019         if (Diags)
2020           Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat);
2021         hadError = true;
2022       }
2023     }
2024   }
2025 
2026   // Include space for the null terminator.
2027   ++SizeBound;
2028 
2029   // TODO: K&R warning: "traditional C rejects string constant concatenation"
2030 
2031   // Get the width in bytes of char/wchar_t/char16_t/char32_t
2032   CharByteWidth = getCharWidth(Kind, Target);
2033   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
2034   CharByteWidth /= 8;
2035 
2036   // The output buffer size needs to be large enough to hold wide characters.
2037   // This is a worst-case assumption which basically corresponds to L"" "long".
2038   SizeBound *= CharByteWidth;
2039 
2040   // Size the temporary buffer to hold the result string data.
2041   ResultBuf.resize(SizeBound);
2042 
2043   // Likewise, but for each string piece.
2044   SmallString<512> TokenBuf;
2045   TokenBuf.resize(MaxTokenLength);
2046 
2047   // Loop over all the strings, getting their spelling, and expanding them to
2048   // wide strings as appropriate.
2049   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
2050 
2051   Pascal = false;
2052 
2053   SourceLocation UDSuffixTokLoc;
2054 
2055   for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
2056     const char *ThisTokBuf = &TokenBuf[0];
2057     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
2058     // that ThisTokBuf points to a buffer that is big enough for the whole token
2059     // and 'spelled' tokens can only shrink.
2060     bool StringInvalid = false;
2061     unsigned ThisTokLen =
2062       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
2063                          &StringInvalid);
2064     if (StringInvalid)
2065       return DiagnoseLexingError(StringToks[i].getLocation());
2066 
2067     const char *ThisTokBegin = ThisTokBuf;
2068     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
2069 
2070     // Remove an optional ud-suffix.
2071     if (ThisTokEnd[-1] != '"') {
2072       const char *UDSuffixEnd = ThisTokEnd;
2073       do {
2074         --ThisTokEnd;
2075       } while (ThisTokEnd[-1] != '"');
2076 
2077       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
2078 
2079       if (UDSuffixBuf.empty()) {
2080         if (StringToks[i].hasUCN())
2081           expandUCNs(UDSuffixBuf, UDSuffix);
2082         else
2083           UDSuffixBuf.assign(UDSuffix);
2084         UDSuffixToken = i;
2085         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
2086         UDSuffixTokLoc = StringToks[i].getLocation();
2087       } else {
2088         SmallString<32> ExpandedUDSuffix;
2089         if (StringToks[i].hasUCN()) {
2090           expandUCNs(ExpandedUDSuffix, UDSuffix);
2091           UDSuffix = ExpandedUDSuffix;
2092         }
2093 
2094         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
2095         // result of a concatenation involving at least one user-defined-string-
2096         // literal, all the participating user-defined-string-literals shall
2097         // have the same ud-suffix.
2098         bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty();
2099         if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) {
2100           if (Diags) {
2101             SourceLocation TokLoc = StringToks[i].getLocation();
2102             if (UnevaluatedStringHasUDL) {
2103               Diags->Report(TokLoc, diag::err_unevaluated_string_udl)
2104                   << SourceRange(TokLoc, TokLoc);
2105             } else {
2106               Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
2107                   << UDSuffixBuf << UDSuffix
2108                   << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc);
2109             }
2110           }
2111           hadError = true;
2112         }
2113       }
2114     }
2115 
2116     // Strip the end quote.
2117     --ThisTokEnd;
2118 
2119     // TODO: Input character set mapping support.
2120 
2121     // Skip marker for wide or unicode strings.
2122     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
2123       ++ThisTokBuf;
2124       // Skip 8 of u8 marker for utf8 strings.
2125       if (ThisTokBuf[0] == '8')
2126         ++ThisTokBuf;
2127     }
2128 
2129     // Check for raw string
2130     if (ThisTokBuf[0] == 'R') {
2131       if (ThisTokBuf[1] != '"') {
2132         // The file may have come from PCH and then changed after loading the
2133         // PCH; Fail gracefully.
2134         return DiagnoseLexingError(StringToks[i].getLocation());
2135       }
2136       ThisTokBuf += 2; // skip R"
2137 
2138       // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2139       // characters.
2140       constexpr unsigned MaxRawStrDelimLen = 16;
2141 
2142       const char *Prefix = ThisTokBuf;
2143       while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
2144              ThisTokBuf[0] != '(')
2145         ++ThisTokBuf;
2146       if (ThisTokBuf[0] != '(')
2147         return DiagnoseLexingError(StringToks[i].getLocation());
2148       ++ThisTokBuf; // skip '('
2149 
2150       // Remove same number of characters from the end
2151       ThisTokEnd -= ThisTokBuf - Prefix;
2152       if (ThisTokEnd < ThisTokBuf)
2153         return DiagnoseLexingError(StringToks[i].getLocation());
2154 
2155       // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2156       // results in a new-line in the resulting execution string-literal.
2157       StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
2158       while (!RemainingTokenSpan.empty()) {
2159         // Split the string literal on \r\n boundaries.
2160         size_t CRLFPos = RemainingTokenSpan.find("\r\n");
2161         StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
2162         StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
2163 
2164         // Copy everything before the \r\n sequence into the string literal.
2165         if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
2166           hadError = true;
2167 
2168         // Point into the \n inside the \r\n sequence and operate on the
2169         // remaining portion of the literal.
2170         RemainingTokenSpan = AfterCRLF.substr(1);
2171       }
2172     } else {
2173       if (ThisTokBuf[0] != '"') {
2174         // The file may have come from PCH and then changed after loading the
2175         // PCH; Fail gracefully.
2176         return DiagnoseLexingError(StringToks[i].getLocation());
2177       }
2178       ++ThisTokBuf; // skip "
2179 
2180       // Check if this is a pascal string
2181       if (!isUnevaluated() && Features.PascalStrings &&
2182           ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' &&
2183           ThisTokBuf[1] == 'p') {
2184 
2185         // If the \p sequence is found in the first token, we have a pascal string
2186         // Otherwise, if we already have a pascal string, ignore the first \p
2187         if (i == 0) {
2188           ++ThisTokBuf;
2189           Pascal = true;
2190         } else if (Pascal)
2191           ThisTokBuf += 2;
2192       }
2193 
2194       while (ThisTokBuf != ThisTokEnd) {
2195         // Is this a span of non-escape characters?
2196         if (ThisTokBuf[0] != '\\') {
2197           const char *InStart = ThisTokBuf;
2198           do {
2199             ++ThisTokBuf;
2200           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
2201 
2202           // Copy the character span over.
2203           if (CopyStringFragment(StringToks[i], ThisTokBegin,
2204                                  StringRef(InStart, ThisTokBuf - InStart)))
2205             hadError = true;
2206           continue;
2207         }
2208         // Is this a Universal Character Name escape?
2209         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' ||
2210             ThisTokBuf[1] == 'N') {
2211           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
2212                           ResultPtr, hadError,
2213                           FullSourceLoc(StringToks[i].getLocation(), SM),
2214                           CharByteWidth, Diags, Features);
2215           continue;
2216         }
2217         // Otherwise, this is a non-UCN escape character.  Process it.
2218         unsigned ResultChar =
2219             ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
2220                               FullSourceLoc(StringToks[i].getLocation(), SM),
2221                               CharByteWidth * 8, Diags, Features, EvalMethod);
2222 
2223         if (CharByteWidth == 4) {
2224           // FIXME: Make the type of the result buffer correct instead of
2225           // using reinterpret_cast.
2226           llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
2227           *ResultWidePtr = ResultChar;
2228           ResultPtr += 4;
2229         } else if (CharByteWidth == 2) {
2230           // FIXME: Make the type of the result buffer correct instead of
2231           // using reinterpret_cast.
2232           llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
2233           *ResultWidePtr = ResultChar & 0xFFFF;
2234           ResultPtr += 2;
2235         } else {
2236           assert(CharByteWidth == 1 && "Unexpected char width");
2237           *ResultPtr++ = ResultChar & 0xFF;
2238         }
2239       }
2240     }
2241   }
2242 
2243   assert((!Pascal || !isUnevaluated()) &&
2244          "Pascal string in unevaluated context");
2245   if (Pascal) {
2246     if (CharByteWidth == 4) {
2247       // FIXME: Make the type of the result buffer correct instead of
2248       // using reinterpret_cast.
2249       llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
2250       ResultWidePtr[0] = GetNumStringChars() - 1;
2251     } else if (CharByteWidth == 2) {
2252       // FIXME: Make the type of the result buffer correct instead of
2253       // using reinterpret_cast.
2254       llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
2255       ResultWidePtr[0] = GetNumStringChars() - 1;
2256     } else {
2257       assert(CharByteWidth == 1 && "Unexpected char width");
2258       ResultBuf[0] = GetNumStringChars() - 1;
2259     }
2260 
2261     // Verify that pascal strings aren't too large.
2262     if (GetStringLength() > 256) {
2263       if (Diags)
2264         Diags->Report(StringToks.front().getLocation(),
2265                       diag::err_pascal_string_too_long)
2266           << SourceRange(StringToks.front().getLocation(),
2267                          StringToks.back().getLocation());
2268       hadError = true;
2269       return;
2270     }
2271   } else if (Diags) {
2272     // Complain if this string literal has too many characters.
2273     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
2274 
2275     if (GetNumStringChars() > MaxChars)
2276       Diags->Report(StringToks.front().getLocation(),
2277                     diag::ext_string_too_long)
2278         << GetNumStringChars() << MaxChars
2279         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
2280         << SourceRange(StringToks.front().getLocation(),
2281                        StringToks.back().getLocation());
2282   }
2283 }
2284 
2285 static const char *resyncUTF8(const char *Err, const char *End) {
2286   if (Err == End)
2287     return End;
2288   End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
2289   while (++Err != End && (*Err & 0xC0) == 0x80)
2290     ;
2291   return Err;
2292 }
2293 
2294 /// This function copies from Fragment, which is a sequence of bytes
2295 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
2296 /// Performs widening for multi-byte characters.
2297 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2298                                              const char *TokBegin,
2299                                              StringRef Fragment) {
2300   const llvm::UTF8 *ErrorPtrTmp;
2301   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
2302     return false;
2303 
2304   // If we see bad encoding for unprefixed string literals, warn and
2305   // simply copy the byte values, for compatibility with gcc and older
2306   // versions of clang.
2307   bool NoErrorOnBadEncoding = isOrdinary();
2308   if (NoErrorOnBadEncoding) {
2309     memcpy(ResultPtr, Fragment.data(), Fragment.size());
2310     ResultPtr += Fragment.size();
2311   }
2312 
2313   if (Diags) {
2314     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2315 
2316     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2317     const DiagnosticBuilder &Builder =
2318       Diag(Diags, Features, SourceLoc, TokBegin,
2319            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2320            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2321                                 : diag::err_bad_string_encoding);
2322 
2323     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2324     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2325 
2326     // Decode into a dummy buffer.
2327     SmallString<512> Dummy;
2328     Dummy.reserve(Fragment.size() * CharByteWidth);
2329     char *Ptr = Dummy.data();
2330 
2331     while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2332       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2333       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2334       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2335                                      ErrorPtr, NextStart);
2336       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2337     }
2338   }
2339   return !NoErrorOnBadEncoding;
2340 }
2341 
2342 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2343   hadError = true;
2344   if (Diags)
2345     Diags->Report(Loc, diag::err_lexing_string);
2346 }
2347 
2348 /// getOffsetOfStringByte - This function returns the offset of the
2349 /// specified byte of the string data represented by Token.  This handles
2350 /// advancing over escape sequences in the string.
2351 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2352                                                     unsigned ByteNo) const {
2353   // Get the spelling of the token.
2354   SmallString<32> SpellingBuffer;
2355   SpellingBuffer.resize(Tok.getLength());
2356 
2357   bool StringInvalid = false;
2358   const char *SpellingPtr = &SpellingBuffer[0];
2359   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2360                                        &StringInvalid);
2361   if (StringInvalid)
2362     return 0;
2363 
2364   const char *SpellingStart = SpellingPtr;
2365   const char *SpellingEnd = SpellingPtr+TokLen;
2366 
2367   // Handle UTF-8 strings just like narrow strings.
2368   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2369     SpellingPtr += 2;
2370 
2371   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2372          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2373 
2374   // For raw string literals, this is easy.
2375   if (SpellingPtr[0] == 'R') {
2376     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2377     // Skip 'R"'.
2378     SpellingPtr += 2;
2379     while (*SpellingPtr != '(') {
2380       ++SpellingPtr;
2381       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2382     }
2383     // Skip '('.
2384     ++SpellingPtr;
2385     return SpellingPtr - SpellingStart + ByteNo;
2386   }
2387 
2388   // Skip over the leading quote
2389   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2390   ++SpellingPtr;
2391 
2392   // Skip over bytes until we find the offset we're looking for.
2393   while (ByteNo) {
2394     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2395 
2396     // Step over non-escapes simply.
2397     if (*SpellingPtr != '\\') {
2398       ++SpellingPtr;
2399       --ByteNo;
2400       continue;
2401     }
2402 
2403     // Otherwise, this is an escape character.  Advance over it.
2404     bool HadError = false;
2405     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' ||
2406         SpellingPtr[1] == 'N') {
2407       const char *EscapePtr = SpellingPtr;
2408       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2409                                       1, Features, HadError);
2410       if (Len > ByteNo) {
2411         // ByteNo is somewhere within the escape sequence.
2412         SpellingPtr = EscapePtr;
2413         break;
2414       }
2415       ByteNo -= Len;
2416     } else {
2417       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2418                         FullSourceLoc(Tok.getLocation(), SM), CharByteWidth * 8,
2419                         Diags, Features, StringLiteralEvalMethod::Evaluated);
2420       --ByteNo;
2421     }
2422     assert(!HadError && "This method isn't valid on erroneous strings");
2423   }
2424 
2425   return SpellingPtr-SpellingStart;
2426 }
2427 
2428 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2429 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
2430 /// treat it as an invalid suffix.
2431 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2432                                           StringRef Suffix) {
2433   return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2434          Suffix == "sv";
2435 }
2436