1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/LazyValueInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/ConstantRange.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/ValueHandle.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetLibraryInfo.h"
33 #include <map>
34 #include <stack>
35 using namespace llvm;
36 using namespace PatternMatch;
37
38 #define DEBUG_TYPE "lazy-value-info"
39
40 char LazyValueInfo::ID = 0;
41 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
42 "Lazy Value Information Analysis", false, true)
43 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
44 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
45 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
46 "Lazy Value Information Analysis", false, true)
47
48 namespace llvm {
createLazyValueInfoPass()49 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
50 }
51
52
53 //===----------------------------------------------------------------------===//
54 // LVILatticeVal
55 //===----------------------------------------------------------------------===//
56
57 /// This is the information tracked by LazyValueInfo for each value.
58 ///
59 /// FIXME: This is basically just for bringup, this can be made a lot more rich
60 /// in the future.
61 ///
62 namespace {
63 class LVILatticeVal {
64 enum LatticeValueTy {
65 /// This Value has no known value yet.
66 undefined,
67
68 /// This Value has a specific constant value.
69 constant,
70
71 /// This Value is known to not have the specified value.
72 notconstant,
73
74 /// The Value falls within this range.
75 constantrange,
76
77 /// This value is not known to be constant, and we know that it has a value.
78 overdefined
79 };
80
81 /// Val: This stores the current lattice value along with the Constant* for
82 /// the constant if this is a 'constant' or 'notconstant' value.
83 LatticeValueTy Tag;
84 Constant *Val;
85 ConstantRange Range;
86
87 public:
LVILatticeVal()88 LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
89
get(Constant * C)90 static LVILatticeVal get(Constant *C) {
91 LVILatticeVal Res;
92 if (!isa<UndefValue>(C))
93 Res.markConstant(C);
94 return Res;
95 }
getNot(Constant * C)96 static LVILatticeVal getNot(Constant *C) {
97 LVILatticeVal Res;
98 if (!isa<UndefValue>(C))
99 Res.markNotConstant(C);
100 return Res;
101 }
getRange(ConstantRange CR)102 static LVILatticeVal getRange(ConstantRange CR) {
103 LVILatticeVal Res;
104 Res.markConstantRange(CR);
105 return Res;
106 }
107
isUndefined() const108 bool isUndefined() const { return Tag == undefined; }
isConstant() const109 bool isConstant() const { return Tag == constant; }
isNotConstant() const110 bool isNotConstant() const { return Tag == notconstant; }
isConstantRange() const111 bool isConstantRange() const { return Tag == constantrange; }
isOverdefined() const112 bool isOverdefined() const { return Tag == overdefined; }
113
getConstant() const114 Constant *getConstant() const {
115 assert(isConstant() && "Cannot get the constant of a non-constant!");
116 return Val;
117 }
118
getNotConstant() const119 Constant *getNotConstant() const {
120 assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
121 return Val;
122 }
123
getConstantRange() const124 ConstantRange getConstantRange() const {
125 assert(isConstantRange() &&
126 "Cannot get the constant-range of a non-constant-range!");
127 return Range;
128 }
129
130 /// Return true if this is a change in status.
markOverdefined()131 bool markOverdefined() {
132 if (isOverdefined())
133 return false;
134 Tag = overdefined;
135 return true;
136 }
137
138 /// Return true if this is a change in status.
markConstant(Constant * V)139 bool markConstant(Constant *V) {
140 assert(V && "Marking constant with NULL");
141 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
142 return markConstantRange(ConstantRange(CI->getValue()));
143 if (isa<UndefValue>(V))
144 return false;
145
146 assert((!isConstant() || getConstant() == V) &&
147 "Marking constant with different value");
148 assert(isUndefined());
149 Tag = constant;
150 Val = V;
151 return true;
152 }
153
154 /// Return true if this is a change in status.
markNotConstant(Constant * V)155 bool markNotConstant(Constant *V) {
156 assert(V && "Marking constant with NULL");
157 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
158 return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
159 if (isa<UndefValue>(V))
160 return false;
161
162 assert((!isConstant() || getConstant() != V) &&
163 "Marking constant !constant with same value");
164 assert((!isNotConstant() || getNotConstant() == V) &&
165 "Marking !constant with different value");
166 assert(isUndefined() || isConstant());
167 Tag = notconstant;
168 Val = V;
169 return true;
170 }
171
172 /// Return true if this is a change in status.
markConstantRange(const ConstantRange NewR)173 bool markConstantRange(const ConstantRange NewR) {
174 if (isConstantRange()) {
175 if (NewR.isEmptySet())
176 return markOverdefined();
177
178 bool changed = Range != NewR;
179 Range = NewR;
180 return changed;
181 }
182
183 assert(isUndefined());
184 if (NewR.isEmptySet())
185 return markOverdefined();
186
187 Tag = constantrange;
188 Range = NewR;
189 return true;
190 }
191
192 /// Merge the specified lattice value into this one, updating this
193 /// one and returning true if anything changed.
mergeIn(const LVILatticeVal & RHS)194 bool mergeIn(const LVILatticeVal &RHS) {
195 if (RHS.isUndefined() || isOverdefined()) return false;
196 if (RHS.isOverdefined()) return markOverdefined();
197
198 if (isUndefined()) {
199 Tag = RHS.Tag;
200 Val = RHS.Val;
201 Range = RHS.Range;
202 return true;
203 }
204
205 if (isConstant()) {
206 if (RHS.isConstant()) {
207 if (Val == RHS.Val)
208 return false;
209 return markOverdefined();
210 }
211
212 if (RHS.isNotConstant()) {
213 if (Val == RHS.Val)
214 return markOverdefined();
215
216 // Unless we can prove that the two Constants are different, we must
217 // move to overdefined.
218 // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
219 if (ConstantInt *Res = dyn_cast<ConstantInt>(
220 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
221 getConstant(),
222 RHS.getNotConstant())))
223 if (Res->isOne())
224 return markNotConstant(RHS.getNotConstant());
225
226 return markOverdefined();
227 }
228
229 // RHS is a ConstantRange, LHS is a non-integer Constant.
230
231 // FIXME: consider the case where RHS is a range [1, 0) and LHS is
232 // a function. The correct result is to pick up RHS.
233
234 return markOverdefined();
235 }
236
237 if (isNotConstant()) {
238 if (RHS.isConstant()) {
239 if (Val == RHS.Val)
240 return markOverdefined();
241
242 // Unless we can prove that the two Constants are different, we must
243 // move to overdefined.
244 // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
245 if (ConstantInt *Res = dyn_cast<ConstantInt>(
246 ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
247 getNotConstant(),
248 RHS.getConstant())))
249 if (Res->isOne())
250 return false;
251
252 return markOverdefined();
253 }
254
255 if (RHS.isNotConstant()) {
256 if (Val == RHS.Val)
257 return false;
258 return markOverdefined();
259 }
260
261 return markOverdefined();
262 }
263
264 assert(isConstantRange() && "New LVILattice type?");
265 if (!RHS.isConstantRange())
266 return markOverdefined();
267
268 ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
269 if (NewR.isFullSet())
270 return markOverdefined();
271 return markConstantRange(NewR);
272 }
273 };
274
275 } // end anonymous namespace.
276
277 namespace llvm {
278 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
279 LLVM_ATTRIBUTE_USED;
operator <<(raw_ostream & OS,const LVILatticeVal & Val)280 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
281 if (Val.isUndefined())
282 return OS << "undefined";
283 if (Val.isOverdefined())
284 return OS << "overdefined";
285
286 if (Val.isNotConstant())
287 return OS << "notconstant<" << *Val.getNotConstant() << '>';
288 else if (Val.isConstantRange())
289 return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
290 << Val.getConstantRange().getUpper() << '>';
291 return OS << "constant<" << *Val.getConstant() << '>';
292 }
293 }
294
295 //===----------------------------------------------------------------------===//
296 // LazyValueInfoCache Decl
297 //===----------------------------------------------------------------------===//
298
299 namespace {
300 /// A callback value handle updates the cache when values are erased.
301 class LazyValueInfoCache;
302 struct LVIValueHandle : public CallbackVH {
303 LazyValueInfoCache *Parent;
304
LVIValueHandle__anon7157ca7f0211::LVIValueHandle305 LVIValueHandle(Value *V, LazyValueInfoCache *P)
306 : CallbackVH(V), Parent(P) { }
307
308 void deleted() override;
allUsesReplacedWith__anon7157ca7f0211::LVIValueHandle309 void allUsesReplacedWith(Value *V) override {
310 deleted();
311 }
312 };
313 }
314
315 namespace {
316 /// This is the cache kept by LazyValueInfo which
317 /// maintains information about queries across the clients' queries.
318 class LazyValueInfoCache {
319 /// This is all of the cached block information for exactly one Value*.
320 /// The entries are sorted by the BasicBlock* of the
321 /// entries, allowing us to do a lookup with a binary search.
322 typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
323
324 /// This is all of the cached information for all values,
325 /// mapped from Value* to key information.
326 std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
327
328 /// This tracks, on a per-block basis, the set of values that are
329 /// over-defined at the end of that block. This is required
330 /// for cache updating.
331 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
332 DenseSet<OverDefinedPairTy> OverDefinedCache;
333
334 /// Keep track of all blocks that we have ever seen, so we
335 /// don't spend time removing unused blocks from our caches.
336 DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
337
338 /// This stack holds the state of the value solver during a query.
339 /// It basically emulates the callstack of the naive
340 /// recursive value lookup process.
341 std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
342
343 /// Keeps track of which block-value pairs are in BlockValueStack.
344 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
345
346 /// Push BV onto BlockValueStack unless it's already in there.
347 /// Returns true on success.
pushBlockValue(const std::pair<BasicBlock *,Value * > & BV)348 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
349 if (BlockValueSet.count(BV))
350 return false; // It's already in the stack.
351
352 BlockValueStack.push(BV);
353 BlockValueSet.insert(BV);
354 return true;
355 }
356
357 /// A pointer to the cache of @llvm.assume calls.
358 AssumptionCache *AC;
359 /// An optional DL pointer.
360 const DataLayout *DL;
361 /// An optional DT pointer.
362 DominatorTree *DT;
363
364 friend struct LVIValueHandle;
365
insertResult(Value * Val,BasicBlock * BB,const LVILatticeVal & Result)366 void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
367 SeenBlocks.insert(BB);
368 lookup(Val)[BB] = Result;
369 if (Result.isOverdefined())
370 OverDefinedCache.insert(std::make_pair(BB, Val));
371 }
372
373 LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
374 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
375 LVILatticeVal &Result,
376 Instruction *CxtI = nullptr);
377 bool hasBlockValue(Value *Val, BasicBlock *BB);
378
379 // These methods process one work item and may add more. A false value
380 // returned means that the work item was not completely processed and must
381 // be revisited after going through the new items.
382 bool solveBlockValue(Value *Val, BasicBlock *BB);
383 bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
384 Value *Val, BasicBlock *BB);
385 bool solveBlockValuePHINode(LVILatticeVal &BBLV,
386 PHINode *PN, BasicBlock *BB);
387 bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
388 Instruction *BBI, BasicBlock *BB);
389 void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
390 Instruction *BBI);
391
392 void solve();
393
lookup(Value * V)394 ValueCacheEntryTy &lookup(Value *V) {
395 return ValueCache[LVIValueHandle(V, this)];
396 }
397
398 public:
399 /// This is the query interface to determine the lattice
400 /// value for the specified Value* at the end of the specified block.
401 LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
402 Instruction *CxtI = nullptr);
403
404 /// This is the query interface to determine the lattice
405 /// value for the specified Value* at the specified instruction (generally
406 /// from an assume intrinsic).
407 LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
408
409 /// This is the query interface to determine the lattice
410 /// value for the specified Value* that is true on the specified edge.
411 LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
412 Instruction *CxtI = nullptr);
413
414 /// This is the update interface to inform the cache that an edge from
415 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
416 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
417
418 /// This is part of the update interface to inform the cache
419 /// that a block has been deleted.
420 void eraseBlock(BasicBlock *BB);
421
422 /// clear - Empty the cache.
clear()423 void clear() {
424 SeenBlocks.clear();
425 ValueCache.clear();
426 OverDefinedCache.clear();
427 }
428
LazyValueInfoCache(AssumptionCache * AC,const DataLayout * DL=nullptr,DominatorTree * DT=nullptr)429 LazyValueInfoCache(AssumptionCache *AC, const DataLayout *DL = nullptr,
430 DominatorTree *DT = nullptr)
431 : AC(AC), DL(DL), DT(DT) {}
432 };
433 } // end anonymous namespace
434
deleted()435 void LVIValueHandle::deleted() {
436 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
437
438 SmallVector<OverDefinedPairTy, 4> ToErase;
439 for (const OverDefinedPairTy &P : Parent->OverDefinedCache)
440 if (P.second == getValPtr())
441 ToErase.push_back(P);
442 for (const OverDefinedPairTy &P : ToErase)
443 Parent->OverDefinedCache.erase(P);
444
445 // This erasure deallocates *this, so it MUST happen after we're done
446 // using any and all members of *this.
447 Parent->ValueCache.erase(*this);
448 }
449
eraseBlock(BasicBlock * BB)450 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
451 // Shortcut if we have never seen this block.
452 DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
453 if (I == SeenBlocks.end())
454 return;
455 SeenBlocks.erase(I);
456
457 SmallVector<OverDefinedPairTy, 4> ToErase;
458 for (const OverDefinedPairTy& P : OverDefinedCache)
459 if (P.first == BB)
460 ToErase.push_back(P);
461 for (const OverDefinedPairTy &P : ToErase)
462 OverDefinedCache.erase(P);
463
464 for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
465 I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
466 I->second.erase(BB);
467 }
468
solve()469 void LazyValueInfoCache::solve() {
470 while (!BlockValueStack.empty()) {
471 std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
472 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
473
474 if (solveBlockValue(e.second, e.first)) {
475 // The work item was completely processed.
476 assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
477 assert(lookup(e.second).count(e.first) && "Result should be in cache!");
478
479 BlockValueStack.pop();
480 BlockValueSet.erase(e);
481 } else {
482 // More work needs to be done before revisiting.
483 assert(BlockValueStack.top() != e && "Stack should have been pushed!");
484 }
485 }
486 }
487
hasBlockValue(Value * Val,BasicBlock * BB)488 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
489 // If already a constant, there is nothing to compute.
490 if (isa<Constant>(Val))
491 return true;
492
493 LVIValueHandle ValHandle(Val, this);
494 std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
495 ValueCache.find(ValHandle);
496 if (I == ValueCache.end()) return false;
497 return I->second.count(BB);
498 }
499
getBlockValue(Value * Val,BasicBlock * BB)500 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
501 // If already a constant, there is nothing to compute.
502 if (Constant *VC = dyn_cast<Constant>(Val))
503 return LVILatticeVal::get(VC);
504
505 SeenBlocks.insert(BB);
506 return lookup(Val)[BB];
507 }
508
solveBlockValue(Value * Val,BasicBlock * BB)509 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
510 if (isa<Constant>(Val))
511 return true;
512
513 if (lookup(Val).count(BB)) {
514 // If we have a cached value, use that.
515 DEBUG(dbgs() << " reuse BB '" << BB->getName()
516 << "' val=" << lookup(Val)[BB] << '\n');
517
518 // Since we're reusing a cached value, we don't need to update the
519 // OverDefinedCache. The cache will have been properly updated whenever the
520 // cached value was inserted.
521 return true;
522 }
523
524 // Hold off inserting this value into the Cache in case we have to return
525 // false and come back later.
526 LVILatticeVal Res;
527
528 Instruction *BBI = dyn_cast<Instruction>(Val);
529 if (!BBI || BBI->getParent() != BB) {
530 if (!solveBlockValueNonLocal(Res, Val, BB))
531 return false;
532 insertResult(Val, BB, Res);
533 return true;
534 }
535
536 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
537 if (!solveBlockValuePHINode(Res, PN, BB))
538 return false;
539 insertResult(Val, BB, Res);
540 return true;
541 }
542
543 if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
544 Res = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
545 insertResult(Val, BB, Res);
546 return true;
547 }
548
549 // We can only analyze the definitions of certain classes of instructions
550 // (integral binops and casts at the moment), so bail if this isn't one.
551 LVILatticeVal Result;
552 if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
553 !BBI->getType()->isIntegerTy()) {
554 DEBUG(dbgs() << " compute BB '" << BB->getName()
555 << "' - overdefined because inst def found.\n");
556 Res.markOverdefined();
557 insertResult(Val, BB, Res);
558 return true;
559 }
560
561 // FIXME: We're currently limited to binops with a constant RHS. This should
562 // be improved.
563 BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
564 if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
565 DEBUG(dbgs() << " compute BB '" << BB->getName()
566 << "' - overdefined because inst def found.\n");
567
568 Res.markOverdefined();
569 insertResult(Val, BB, Res);
570 return true;
571 }
572
573 if (!solveBlockValueConstantRange(Res, BBI, BB))
574 return false;
575 insertResult(Val, BB, Res);
576 return true;
577 }
578
InstructionDereferencesPointer(Instruction * I,Value * Ptr)579 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
580 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
581 return L->getPointerAddressSpace() == 0 &&
582 GetUnderlyingObject(L->getPointerOperand()) == Ptr;
583 }
584 if (StoreInst *S = dyn_cast<StoreInst>(I)) {
585 return S->getPointerAddressSpace() == 0 &&
586 GetUnderlyingObject(S->getPointerOperand()) == Ptr;
587 }
588 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
589 if (MI->isVolatile()) return false;
590
591 // FIXME: check whether it has a valuerange that excludes zero?
592 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
593 if (!Len || Len->isZero()) return false;
594
595 if (MI->getDestAddressSpace() == 0)
596 if (GetUnderlyingObject(MI->getRawDest()) == Ptr)
597 return true;
598 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
599 if (MTI->getSourceAddressSpace() == 0)
600 if (GetUnderlyingObject(MTI->getRawSource()) == Ptr)
601 return true;
602 }
603 return false;
604 }
605
solveBlockValueNonLocal(LVILatticeVal & BBLV,Value * Val,BasicBlock * BB)606 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
607 Value *Val, BasicBlock *BB) {
608 LVILatticeVal Result; // Start Undefined.
609
610 // If this is a pointer, and there's a load from that pointer in this BB,
611 // then we know that the pointer can't be NULL.
612 bool NotNull = false;
613 if (Val->getType()->isPointerTy()) {
614 if (isKnownNonNull(Val)) {
615 NotNull = true;
616 } else {
617 Value *UnderlyingVal = GetUnderlyingObject(Val);
618 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
619 // inside InstructionDereferencesPointer either.
620 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, nullptr, 1)) {
621 for (Instruction &I : *BB) {
622 if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
623 NotNull = true;
624 break;
625 }
626 }
627 }
628 }
629 }
630
631 // If this is the entry block, we must be asking about an argument. The
632 // value is overdefined.
633 if (BB == &BB->getParent()->getEntryBlock()) {
634 assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
635 if (NotNull) {
636 PointerType *PTy = cast<PointerType>(Val->getType());
637 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
638 } else {
639 Result.markOverdefined();
640 }
641 BBLV = Result;
642 return true;
643 }
644
645 // Loop over all of our predecessors, merging what we know from them into
646 // result.
647 bool EdgesMissing = false;
648 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
649 LVILatticeVal EdgeResult;
650 EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
651 if (EdgesMissing)
652 continue;
653
654 Result.mergeIn(EdgeResult);
655
656 // If we hit overdefined, exit early. The BlockVals entry is already set
657 // to overdefined.
658 if (Result.isOverdefined()) {
659 DEBUG(dbgs() << " compute BB '" << BB->getName()
660 << "' - overdefined because of pred.\n");
661 // If we previously determined that this is a pointer that can't be null
662 // then return that rather than giving up entirely.
663 if (NotNull) {
664 PointerType *PTy = cast<PointerType>(Val->getType());
665 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
666 }
667
668 BBLV = Result;
669 return true;
670 }
671 }
672 if (EdgesMissing)
673 return false;
674
675 // Return the merged value, which is more precise than 'overdefined'.
676 assert(!Result.isOverdefined());
677 BBLV = Result;
678 return true;
679 }
680
solveBlockValuePHINode(LVILatticeVal & BBLV,PHINode * PN,BasicBlock * BB)681 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
682 PHINode *PN, BasicBlock *BB) {
683 LVILatticeVal Result; // Start Undefined.
684
685 // Loop over all of our predecessors, merging what we know from them into
686 // result.
687 bool EdgesMissing = false;
688 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
689 BasicBlock *PhiBB = PN->getIncomingBlock(i);
690 Value *PhiVal = PN->getIncomingValue(i);
691 LVILatticeVal EdgeResult;
692 // Note that we can provide PN as the context value to getEdgeValue, even
693 // though the results will be cached, because PN is the value being used as
694 // the cache key in the caller.
695 EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
696 if (EdgesMissing)
697 continue;
698
699 Result.mergeIn(EdgeResult);
700
701 // If we hit overdefined, exit early. The BlockVals entry is already set
702 // to overdefined.
703 if (Result.isOverdefined()) {
704 DEBUG(dbgs() << " compute BB '" << BB->getName()
705 << "' - overdefined because of pred.\n");
706
707 BBLV = Result;
708 return true;
709 }
710 }
711 if (EdgesMissing)
712 return false;
713
714 // Return the merged value, which is more precise than 'overdefined'.
715 assert(!Result.isOverdefined() && "Possible PHI in entry block?");
716 BBLV = Result;
717 return true;
718 }
719
720 static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
721 LVILatticeVal &Result,
722 bool isTrueDest = true);
723
724 // If we can determine a constant range for the value Val in the context
725 // provided by the instruction BBI, then merge it into BBLV. If we did find a
726 // constant range, return true.
mergeAssumeBlockValueConstantRange(Value * Val,LVILatticeVal & BBLV,Instruction * BBI)727 void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val,
728 LVILatticeVal &BBLV,
729 Instruction *BBI) {
730 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
731 if (!BBI)
732 return;
733
734 for (auto &AssumeVH : AC->assumptions()) {
735 if (!AssumeVH)
736 continue;
737 auto *I = cast<CallInst>(AssumeVH);
738 if (!isValidAssumeForContext(I, BBI, DL, DT))
739 continue;
740
741 Value *C = I->getArgOperand(0);
742 if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
743 LVILatticeVal Result;
744 if (getValueFromFromCondition(Val, ICI, Result)) {
745 if (BBLV.isOverdefined())
746 BBLV = Result;
747 else
748 BBLV.mergeIn(Result);
749 }
750 }
751 }
752 }
753
solveBlockValueConstantRange(LVILatticeVal & BBLV,Instruction * BBI,BasicBlock * BB)754 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
755 Instruction *BBI,
756 BasicBlock *BB) {
757 // Figure out the range of the LHS. If that fails, bail.
758 if (!hasBlockValue(BBI->getOperand(0), BB)) {
759 if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
760 return false;
761 BBLV.markOverdefined();
762 return true;
763 }
764
765 LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
766 mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
767 if (!LHSVal.isConstantRange()) {
768 BBLV.markOverdefined();
769 return true;
770 }
771
772 ConstantRange LHSRange = LHSVal.getConstantRange();
773 ConstantRange RHSRange(1);
774 IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
775 if (isa<BinaryOperator>(BBI)) {
776 if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
777 RHSRange = ConstantRange(RHS->getValue());
778 } else {
779 BBLV.markOverdefined();
780 return true;
781 }
782 }
783
784 // NOTE: We're currently limited by the set of operations that ConstantRange
785 // can evaluate symbolically. Enhancing that set will allows us to analyze
786 // more definitions.
787 LVILatticeVal Result;
788 switch (BBI->getOpcode()) {
789 case Instruction::Add:
790 Result.markConstantRange(LHSRange.add(RHSRange));
791 break;
792 case Instruction::Sub:
793 Result.markConstantRange(LHSRange.sub(RHSRange));
794 break;
795 case Instruction::Mul:
796 Result.markConstantRange(LHSRange.multiply(RHSRange));
797 break;
798 case Instruction::UDiv:
799 Result.markConstantRange(LHSRange.udiv(RHSRange));
800 break;
801 case Instruction::Shl:
802 Result.markConstantRange(LHSRange.shl(RHSRange));
803 break;
804 case Instruction::LShr:
805 Result.markConstantRange(LHSRange.lshr(RHSRange));
806 break;
807 case Instruction::Trunc:
808 Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
809 break;
810 case Instruction::SExt:
811 Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
812 break;
813 case Instruction::ZExt:
814 Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
815 break;
816 case Instruction::BitCast:
817 Result.markConstantRange(LHSRange);
818 break;
819 case Instruction::And:
820 Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
821 break;
822 case Instruction::Or:
823 Result.markConstantRange(LHSRange.binaryOr(RHSRange));
824 break;
825
826 // Unhandled instructions are overdefined.
827 default:
828 DEBUG(dbgs() << " compute BB '" << BB->getName()
829 << "' - overdefined because inst def found.\n");
830 Result.markOverdefined();
831 break;
832 }
833
834 BBLV = Result;
835 return true;
836 }
837
getValueFromFromCondition(Value * Val,ICmpInst * ICI,LVILatticeVal & Result,bool isTrueDest)838 bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
839 LVILatticeVal &Result, bool isTrueDest) {
840 if (ICI && isa<Constant>(ICI->getOperand(1))) {
841 if (ICI->isEquality() && ICI->getOperand(0) == Val) {
842 // We know that V has the RHS constant if this is a true SETEQ or
843 // false SETNE.
844 if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
845 Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
846 else
847 Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
848 return true;
849 }
850
851 // Recognize the range checking idiom that InstCombine produces.
852 // (X-C1) u< C2 --> [C1, C1+C2)
853 ConstantInt *NegOffset = nullptr;
854 if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
855 match(ICI->getOperand(0), m_Add(m_Specific(Val),
856 m_ConstantInt(NegOffset)));
857
858 ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
859 if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
860 // Calculate the range of values that would satisfy the comparison.
861 ConstantRange CmpRange(CI->getValue());
862 ConstantRange TrueValues =
863 ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
864
865 if (NegOffset) // Apply the offset from above.
866 TrueValues = TrueValues.subtract(NegOffset->getValue());
867
868 // If we're interested in the false dest, invert the condition.
869 if (!isTrueDest) TrueValues = TrueValues.inverse();
870
871 Result = LVILatticeVal::getRange(TrueValues);
872 return true;
873 }
874 }
875
876 return false;
877 }
878
879 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
880 /// Val is not constrained on the edge.
getEdgeValueLocal(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result)881 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
882 BasicBlock *BBTo, LVILatticeVal &Result) {
883 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
884 // know that v != 0.
885 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
886 // If this is a conditional branch and only one successor goes to BBTo, then
887 // we may be able to infer something from the condition.
888 if (BI->isConditional() &&
889 BI->getSuccessor(0) != BI->getSuccessor(1)) {
890 bool isTrueDest = BI->getSuccessor(0) == BBTo;
891 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
892 "BBTo isn't a successor of BBFrom");
893
894 // If V is the condition of the branch itself, then we know exactly what
895 // it is.
896 if (BI->getCondition() == Val) {
897 Result = LVILatticeVal::get(ConstantInt::get(
898 Type::getInt1Ty(Val->getContext()), isTrueDest));
899 return true;
900 }
901
902 // If the condition of the branch is an equality comparison, we may be
903 // able to infer the value.
904 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
905 if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
906 return true;
907 }
908 }
909
910 // If the edge was formed by a switch on the value, then we may know exactly
911 // what it is.
912 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
913 if (SI->getCondition() != Val)
914 return false;
915
916 bool DefaultCase = SI->getDefaultDest() == BBTo;
917 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
918 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
919
920 for (SwitchInst::CaseIt i : SI->cases()) {
921 ConstantRange EdgeVal(i.getCaseValue()->getValue());
922 if (DefaultCase) {
923 // It is possible that the default destination is the destination of
924 // some cases. There is no need to perform difference for those cases.
925 if (i.getCaseSuccessor() != BBTo)
926 EdgesVals = EdgesVals.difference(EdgeVal);
927 } else if (i.getCaseSuccessor() == BBTo)
928 EdgesVals = EdgesVals.unionWith(EdgeVal);
929 }
930 Result = LVILatticeVal::getRange(EdgesVals);
931 return true;
932 }
933 return false;
934 }
935
936 /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
937 /// the basic block if the edge does not constrain Val.
getEdgeValue(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result,Instruction * CxtI)938 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
939 BasicBlock *BBTo, LVILatticeVal &Result,
940 Instruction *CxtI) {
941 // If already a constant, there is nothing to compute.
942 if (Constant *VC = dyn_cast<Constant>(Val)) {
943 Result = LVILatticeVal::get(VC);
944 return true;
945 }
946
947 if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
948 if (!Result.isConstantRange() ||
949 Result.getConstantRange().getSingleElement())
950 return true;
951
952 // FIXME: this check should be moved to the beginning of the function when
953 // LVI better supports recursive values. Even for the single value case, we
954 // can intersect to detect dead code (an empty range).
955 if (!hasBlockValue(Val, BBFrom)) {
956 if (pushBlockValue(std::make_pair(BBFrom, Val)))
957 return false;
958 Result.markOverdefined();
959 return true;
960 }
961
962 // Try to intersect ranges of the BB and the constraint on the edge.
963 LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
964 mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
965 // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange,
966 // and caching, below.
967 mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI);
968 if (!InBlock.isConstantRange())
969 return true;
970
971 ConstantRange Range =
972 Result.getConstantRange().intersectWith(InBlock.getConstantRange());
973 Result = LVILatticeVal::getRange(Range);
974 return true;
975 }
976
977 if (!hasBlockValue(Val, BBFrom)) {
978 if (pushBlockValue(std::make_pair(BBFrom, Val)))
979 return false;
980 Result.markOverdefined();
981 return true;
982 }
983
984 // If we couldn't compute the value on the edge, use the value from the BB.
985 Result = getBlockValue(Val, BBFrom);
986 mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator());
987 // We can use the context instruction (generically the ultimate instruction
988 // the calling pass is trying to simplify) here, even though the result of
989 // this function is generally cached when called from the solve* functions
990 // (and that cached result might be used with queries using a different
991 // context instruction), because when this function is called from the solve*
992 // functions, the context instruction is not provided. When called from
993 // LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
994 // but then the result is not cached.
995 mergeAssumeBlockValueConstantRange(Val, Result, CxtI);
996 return true;
997 }
998
getValueInBlock(Value * V,BasicBlock * BB,Instruction * CxtI)999 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
1000 Instruction *CxtI) {
1001 DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1002 << BB->getName() << "'\n");
1003
1004 assert(BlockValueStack.empty() && BlockValueSet.empty());
1005 pushBlockValue(std::make_pair(BB, V));
1006
1007 solve();
1008 LVILatticeVal Result = getBlockValue(V, BB);
1009 mergeAssumeBlockValueConstantRange(V, Result, CxtI);
1010
1011 DEBUG(dbgs() << " Result = " << Result << "\n");
1012 return Result;
1013 }
1014
getValueAt(Value * V,Instruction * CxtI)1015 LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
1016 DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
1017 << CxtI->getName() << "'\n");
1018
1019 LVILatticeVal Result;
1020 mergeAssumeBlockValueConstantRange(V, Result, CxtI);
1021
1022 DEBUG(dbgs() << " Result = " << Result << "\n");
1023 return Result;
1024 }
1025
1026 LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1027 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1028 Instruction *CxtI) {
1029 DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1030 << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
1031
1032 LVILatticeVal Result;
1033 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1034 solve();
1035 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1036 (void)WasFastQuery;
1037 assert(WasFastQuery && "More work to do after problem solved?");
1038 }
1039
1040 DEBUG(dbgs() << " Result = " << Result << "\n");
1041 return Result;
1042 }
1043
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1044 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1045 BasicBlock *NewSucc) {
1046 // When an edge in the graph has been threaded, values that we could not
1047 // determine a value for before (i.e. were marked overdefined) may be possible
1048 // to solve now. We do NOT try to proactively update these values. Instead,
1049 // we clear their entries from the cache, and allow lazy updating to recompute
1050 // them when needed.
1051
1052 // The updating process is fairly simple: we need to drop cached info
1053 // for all values that were marked overdefined in OldSucc, and for those same
1054 // values in any successor of OldSucc (except NewSucc) in which they were
1055 // also marked overdefined.
1056 std::vector<BasicBlock*> worklist;
1057 worklist.push_back(OldSucc);
1058
1059 DenseSet<Value*> ClearSet;
1060 for (OverDefinedPairTy &P : OverDefinedCache)
1061 if (P.first == OldSucc)
1062 ClearSet.insert(P.second);
1063
1064 // Use a worklist to perform a depth-first search of OldSucc's successors.
1065 // NOTE: We do not need a visited list since any blocks we have already
1066 // visited will have had their overdefined markers cleared already, and we
1067 // thus won't loop to their successors.
1068 while (!worklist.empty()) {
1069 BasicBlock *ToUpdate = worklist.back();
1070 worklist.pop_back();
1071
1072 // Skip blocks only accessible through NewSucc.
1073 if (ToUpdate == NewSucc) continue;
1074
1075 bool changed = false;
1076 for (Value *V : ClearSet) {
1077 // If a value was marked overdefined in OldSucc, and is here too...
1078 DenseSet<OverDefinedPairTy>::iterator OI =
1079 OverDefinedCache.find(std::make_pair(ToUpdate, V));
1080 if (OI == OverDefinedCache.end()) continue;
1081
1082 // Remove it from the caches.
1083 ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(V, this)];
1084 ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
1085
1086 assert(CI != Entry.end() && "Couldn't find entry to update?");
1087 Entry.erase(CI);
1088 OverDefinedCache.erase(OI);
1089
1090 // If we removed anything, then we potentially need to update
1091 // blocks successors too.
1092 changed = true;
1093 }
1094
1095 if (!changed) continue;
1096
1097 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
1098 }
1099 }
1100
1101 //===----------------------------------------------------------------------===//
1102 // LazyValueInfo Impl
1103 //===----------------------------------------------------------------------===//
1104
1105 /// This lazily constructs the LazyValueInfoCache.
getCache(void * & PImpl,AssumptionCache * AC,const DataLayout * DL=nullptr,DominatorTree * DT=nullptr)1106 static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
1107 const DataLayout *DL = nullptr,
1108 DominatorTree *DT = nullptr) {
1109 if (!PImpl)
1110 PImpl = new LazyValueInfoCache(AC, DL, DT);
1111 return *static_cast<LazyValueInfoCache*>(PImpl);
1112 }
1113
runOnFunction(Function & F)1114 bool LazyValueInfo::runOnFunction(Function &F) {
1115 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1116
1117 DominatorTreeWrapperPass *DTWP =
1118 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1119 DT = DTWP ? &DTWP->getDomTree() : nullptr;
1120
1121 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1122 DL = DLP ? &DLP->getDataLayout() : nullptr;
1123
1124 TLI = &getAnalysis<TargetLibraryInfo>();
1125
1126 if (PImpl)
1127 getCache(PImpl, AC, DL, DT).clear();
1128
1129 // Fully lazy.
1130 return false;
1131 }
1132
getAnalysisUsage(AnalysisUsage & AU) const1133 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
1134 AU.setPreservesAll();
1135 AU.addRequired<AssumptionCacheTracker>();
1136 AU.addRequired<TargetLibraryInfo>();
1137 }
1138
releaseMemory()1139 void LazyValueInfo::releaseMemory() {
1140 // If the cache was allocated, free it.
1141 if (PImpl) {
1142 delete &getCache(PImpl, AC);
1143 PImpl = nullptr;
1144 }
1145 }
1146
getConstant(Value * V,BasicBlock * BB,Instruction * CxtI)1147 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1148 Instruction *CxtI) {
1149 LVILatticeVal Result =
1150 getCache(PImpl, AC, DL, DT).getValueInBlock(V, BB, CxtI);
1151
1152 if (Result.isConstant())
1153 return Result.getConstant();
1154 if (Result.isConstantRange()) {
1155 ConstantRange CR = Result.getConstantRange();
1156 if (const APInt *SingleVal = CR.getSingleElement())
1157 return ConstantInt::get(V->getContext(), *SingleVal);
1158 }
1159 return nullptr;
1160 }
1161
1162 /// Determine whether the specified value is known to be a
1163 /// constant on the specified edge. Return null if not.
getConstantOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1164 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1165 BasicBlock *ToBB,
1166 Instruction *CxtI) {
1167 LVILatticeVal Result =
1168 getCache(PImpl, AC, DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1169
1170 if (Result.isConstant())
1171 return Result.getConstant();
1172 if (Result.isConstantRange()) {
1173 ConstantRange CR = Result.getConstantRange();
1174 if (const APInt *SingleVal = CR.getSingleElement())
1175 return ConstantInt::get(V->getContext(), *SingleVal);
1176 }
1177 return nullptr;
1178 }
1179
1180 static LazyValueInfo::Tristate
getPredicateResult(unsigned Pred,Constant * C,LVILatticeVal & Result,const DataLayout * DL,TargetLibraryInfo * TLI)1181 getPredicateResult(unsigned Pred, Constant *C, LVILatticeVal &Result,
1182 const DataLayout *DL, TargetLibraryInfo *TLI) {
1183
1184 // If we know the value is a constant, evaluate the conditional.
1185 Constant *Res = nullptr;
1186 if (Result.isConstant()) {
1187 Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
1188 TLI);
1189 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1190 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1191 return LazyValueInfo::Unknown;
1192 }
1193
1194 if (Result.isConstantRange()) {
1195 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1196 if (!CI) return LazyValueInfo::Unknown;
1197
1198 ConstantRange CR = Result.getConstantRange();
1199 if (Pred == ICmpInst::ICMP_EQ) {
1200 if (!CR.contains(CI->getValue()))
1201 return LazyValueInfo::False;
1202
1203 if (CR.isSingleElement() && CR.contains(CI->getValue()))
1204 return LazyValueInfo::True;
1205 } else if (Pred == ICmpInst::ICMP_NE) {
1206 if (!CR.contains(CI->getValue()))
1207 return LazyValueInfo::True;
1208
1209 if (CR.isSingleElement() && CR.contains(CI->getValue()))
1210 return LazyValueInfo::False;
1211 }
1212
1213 // Handle more complex predicates.
1214 ConstantRange TrueValues =
1215 ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
1216 if (TrueValues.contains(CR))
1217 return LazyValueInfo::True;
1218 if (TrueValues.inverse().contains(CR))
1219 return LazyValueInfo::False;
1220 return LazyValueInfo::Unknown;
1221 }
1222
1223 if (Result.isNotConstant()) {
1224 // If this is an equality comparison, we can try to fold it knowing that
1225 // "V != C1".
1226 if (Pred == ICmpInst::ICMP_EQ) {
1227 // !C1 == C -> false iff C1 == C.
1228 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1229 Result.getNotConstant(), C, DL,
1230 TLI);
1231 if (Res->isNullValue())
1232 return LazyValueInfo::False;
1233 } else if (Pred == ICmpInst::ICMP_NE) {
1234 // !C1 != C -> true iff C1 == C.
1235 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1236 Result.getNotConstant(), C, DL,
1237 TLI);
1238 if (Res->isNullValue())
1239 return LazyValueInfo::True;
1240 }
1241 return LazyValueInfo::Unknown;
1242 }
1243
1244 return LazyValueInfo::Unknown;
1245 }
1246
1247 /// Determine whether the specified value comparison with a constant is known to
1248 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1249 LazyValueInfo::Tristate
getPredicateOnEdge(unsigned Pred,Value * V,Constant * C,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1250 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1251 BasicBlock *FromBB, BasicBlock *ToBB,
1252 Instruction *CxtI) {
1253 LVILatticeVal Result =
1254 getCache(PImpl, AC, DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1255
1256 return getPredicateResult(Pred, C, Result, DL, TLI);
1257 }
1258
1259 LazyValueInfo::Tristate
getPredicateAt(unsigned Pred,Value * V,Constant * C,Instruction * CxtI)1260 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1261 Instruction *CxtI) {
1262 LVILatticeVal Result = getCache(PImpl, AC, DL, DT).getValueAt(V, CxtI);
1263
1264 return getPredicateResult(Pred, C, Result, DL, TLI);
1265 }
1266
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1267 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1268 BasicBlock *NewSucc) {
1269 if (PImpl)
1270 getCache(PImpl, AC, DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1271 }
1272
eraseBlock(BasicBlock * BB)1273 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1274 if (PImpl)
1275 getCache(PImpl, AC, DL, DT).eraseBlock(BB);
1276 }
1277