xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
36 
37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
38 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
39 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
41 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
42 /// the alloca, and if the source pointer is a pointer to a constant global, we
43 /// can optimize this.
44 static bool
isOnlyCopiedFromConstantMemory(AAResults * AA,Value * V,MemTransferInst * & TheCopy,SmallVectorImpl<Instruction * > & ToDelete)45 isOnlyCopiedFromConstantMemory(AAResults *AA,
46                                Value *V, MemTransferInst *&TheCopy,
47                                SmallVectorImpl<Instruction *> &ToDelete) {
48   // We track lifetime intrinsics as we encounter them.  If we decide to go
49   // ahead and replace the value with the global, this lets the caller quickly
50   // eliminate the markers.
51 
52   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
53   ValuesToInspect.emplace_back(V, false);
54   while (!ValuesToInspect.empty()) {
55     auto ValuePair = ValuesToInspect.pop_back_val();
56     const bool IsOffset = ValuePair.second;
57     for (auto &U : ValuePair.first->uses()) {
58       auto *I = cast<Instruction>(U.getUser());
59 
60       if (auto *LI = dyn_cast<LoadInst>(I)) {
61         // Ignore non-volatile loads, they are always ok.
62         if (!LI->isSimple()) return false;
63         continue;
64       }
65 
66       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
67         // If uses of the bitcast are ok, we are ok.
68         ValuesToInspect.emplace_back(I, IsOffset);
69         continue;
70       }
71       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
72         // If the GEP has all zero indices, it doesn't offset the pointer. If it
73         // doesn't, it does.
74         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
75         continue;
76       }
77 
78       if (auto *Call = dyn_cast<CallBase>(I)) {
79         // If this is the function being called then we treat it like a load and
80         // ignore it.
81         if (Call->isCallee(&U))
82           continue;
83 
84         unsigned DataOpNo = Call->getDataOperandNo(&U);
85         bool IsArgOperand = Call->isArgOperand(&U);
86 
87         // Inalloca arguments are clobbered by the call.
88         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
89           return false;
90 
91         // If this is a readonly/readnone call site, then we know it is just a
92         // load (but one that potentially returns the value itself), so we can
93         // ignore it if we know that the value isn't captured.
94         if (Call->onlyReadsMemory() &&
95             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
96           continue;
97 
98         // If this is being passed as a byval argument, the caller is making a
99         // copy, so it is only a read of the alloca.
100         if (IsArgOperand && Call->isByValArgument(DataOpNo))
101           continue;
102       }
103 
104       // Lifetime intrinsics can be handled by the caller.
105       if (I->isLifetimeStartOrEnd()) {
106         assert(I->use_empty() && "Lifetime markers have no result to use!");
107         ToDelete.push_back(I);
108         continue;
109       }
110 
111       // If this is isn't our memcpy/memmove, reject it as something we can't
112       // handle.
113       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
114       if (!MI)
115         return false;
116 
117       // If the transfer is using the alloca as a source of the transfer, then
118       // ignore it since it is a load (unless the transfer is volatile).
119       if (U.getOperandNo() == 1) {
120         if (MI->isVolatile()) return false;
121         continue;
122       }
123 
124       // If we already have seen a copy, reject the second one.
125       if (TheCopy) return false;
126 
127       // If the pointer has been offset from the start of the alloca, we can't
128       // safely handle this.
129       if (IsOffset) return false;
130 
131       // If the memintrinsic isn't using the alloca as the dest, reject it.
132       if (U.getOperandNo() != 0) return false;
133 
134       // If the source of the memcpy/move is not a constant global, reject it.
135       if (!AA->pointsToConstantMemory(MI->getSource()))
136         return false;
137 
138       // Otherwise, the transform is safe.  Remember the copy instruction.
139       TheCopy = MI;
140     }
141   }
142   return true;
143 }
144 
145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146 /// modified by a copy from a constant global.  If we can prove this, we can
147 /// replace any uses of the alloca with uses of the global directly.
148 static MemTransferInst *
isOnlyCopiedFromConstantMemory(AAResults * AA,AllocaInst * AI,SmallVectorImpl<Instruction * > & ToDelete)149 isOnlyCopiedFromConstantMemory(AAResults *AA,
150                                AllocaInst *AI,
151                                SmallVectorImpl<Instruction *> &ToDelete) {
152   MemTransferInst *TheCopy = nullptr;
153   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
154     return TheCopy;
155   return nullptr;
156 }
157 
158 /// Returns true if V is dereferenceable for size of alloca.
isDereferenceableForAllocaSize(const Value * V,const AllocaInst * AI,const DataLayout & DL)159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
160                                            const DataLayout &DL) {
161   if (AI->isArrayAllocation())
162     return false;
163   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
164   if (!AllocaSize)
165     return false;
166   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
167                                             APInt(64, AllocaSize), DL);
168 }
169 
simplifyAllocaArraySize(InstCombinerImpl & IC,AllocaInst & AI)170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
171                                             AllocaInst &AI) {
172   // Check for array size of 1 (scalar allocation).
173   if (!AI.isArrayAllocation()) {
174     // i32 1 is the canonical array size for scalar allocations.
175     if (AI.getArraySize()->getType()->isIntegerTy(32))
176       return nullptr;
177 
178     // Canonicalize it.
179     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
180   }
181 
182   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
183   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
184     if (C->getValue().getActiveBits() <= 64) {
185       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
187       New->setAlignment(AI.getAlign());
188 
189       // Scan to the end of the allocation instructions, to skip over a block of
190       // allocas if possible...also skip interleaved debug info
191       //
192       BasicBlock::iterator It(New);
193       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194         ++It;
195 
196       // Now that I is pointing to the first non-allocation-inst in the block,
197       // insert our getelementptr instruction...
198       //
199       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200       Value *NullIdx = Constant::getNullValue(IdxTy);
201       Value *Idx[2] = {NullIdx, NullIdx};
202       Instruction *GEP = GetElementPtrInst::CreateInBounds(
203           NewTy, New, Idx, New->getName() + ".sub");
204       IC.InsertNewInstBefore(GEP, *It);
205 
206       // Now make everything use the getelementptr instead of the original
207       // allocation.
208       return IC.replaceInstUsesWith(AI, GEP);
209     }
210   }
211 
212   if (isa<UndefValue>(AI.getArraySize()))
213     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
214 
215   // Ensure that the alloca array size argument has type intptr_t, so that
216   // any casting is exposed early.
217   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
218   if (AI.getArraySize()->getType() != IntPtrTy) {
219     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
220     return IC.replaceOperand(AI, 0, V);
221   }
222 
223   return nullptr;
224 }
225 
226 namespace {
227 // If I and V are pointers in different address space, it is not allowed to
228 // use replaceAllUsesWith since I and V have different types. A
229 // non-target-specific transformation should not use addrspacecast on V since
230 // the two address space may be disjoint depending on target.
231 //
232 // This class chases down uses of the old pointer until reaching the load
233 // instructions, then replaces the old pointer in the load instructions with
234 // the new pointer. If during the chasing it sees bitcast or GEP, it will
235 // create new bitcast or GEP with the new pointer and use them in the load
236 // instruction.
237 class PointerReplacer {
238 public:
PointerReplacer(InstCombinerImpl & IC)239   PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
240 
241   bool collectUsers(Instruction &I);
242   void replacePointer(Instruction &I, Value *V);
243 
244 private:
245   void replace(Instruction *I);
246   Value *getReplacement(Value *I);
247 
248   SmallSetVector<Instruction *, 4> Worklist;
249   MapVector<Value *, Value *> WorkMap;
250   InstCombinerImpl &IC;
251 };
252 } // end anonymous namespace
253 
collectUsers(Instruction & I)254 bool PointerReplacer::collectUsers(Instruction &I) {
255   for (auto U : I.users()) {
256     Instruction *Inst = cast<Instruction>(&*U);
257     if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
258       if (Load->isVolatile())
259         return false;
260       Worklist.insert(Load);
261     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
262       Worklist.insert(Inst);
263       if (!collectUsers(*Inst))
264         return false;
265     } else if (isa<MemTransferInst>(Inst)) {
266       Worklist.insert(Inst);
267     } else {
268       LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
269       return false;
270     }
271   }
272 
273   return true;
274 }
275 
getReplacement(Value * V)276 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
277 
replace(Instruction * I)278 void PointerReplacer::replace(Instruction *I) {
279   if (getReplacement(I))
280     return;
281 
282   if (auto *LT = dyn_cast<LoadInst>(I)) {
283     auto *V = getReplacement(LT->getPointerOperand());
284     assert(V && "Operand not replaced");
285     auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
286                               LT->getAlign(), LT->getOrdering(),
287                               LT->getSyncScopeID());
288     NewI->takeName(LT);
289     copyMetadataForLoad(*NewI, *LT);
290 
291     IC.InsertNewInstWith(NewI, *LT);
292     IC.replaceInstUsesWith(*LT, NewI);
293     WorkMap[LT] = NewI;
294   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
295     auto *V = getReplacement(GEP->getPointerOperand());
296     assert(V && "Operand not replaced");
297     SmallVector<Value *, 8> Indices;
298     Indices.append(GEP->idx_begin(), GEP->idx_end());
299     auto *NewI = GetElementPtrInst::Create(
300         V->getType()->getPointerElementType(), V, Indices);
301     IC.InsertNewInstWith(NewI, *GEP);
302     NewI->takeName(GEP);
303     WorkMap[GEP] = NewI;
304   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
305     auto *V = getReplacement(BC->getOperand(0));
306     assert(V && "Operand not replaced");
307     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
308                                   V->getType()->getPointerAddressSpace());
309     auto *NewI = new BitCastInst(V, NewT);
310     IC.InsertNewInstWith(NewI, *BC);
311     NewI->takeName(BC);
312     WorkMap[BC] = NewI;
313   } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
314     auto *SrcV = getReplacement(MemCpy->getRawSource());
315     // The pointer may appear in the destination of a copy, but we don't want to
316     // replace it.
317     if (!SrcV) {
318       assert(getReplacement(MemCpy->getRawDest()) &&
319              "destination not in replace list");
320       return;
321     }
322 
323     IC.Builder.SetInsertPoint(MemCpy);
324     auto *NewI = IC.Builder.CreateMemTransferInst(
325         MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
326         SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
327         MemCpy->isVolatile());
328     AAMDNodes AAMD;
329     MemCpy->getAAMetadata(AAMD);
330     if (AAMD)
331       NewI->setAAMetadata(AAMD);
332 
333     IC.eraseInstFromFunction(*MemCpy);
334     WorkMap[MemCpy] = NewI;
335   } else {
336     llvm_unreachable("should never reach here");
337   }
338 }
339 
replacePointer(Instruction & I,Value * V)340 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
341 #ifndef NDEBUG
342   auto *PT = cast<PointerType>(I.getType());
343   auto *NT = cast<PointerType>(V->getType());
344   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
345          "Invalid usage");
346 #endif
347   WorkMap[&I] = V;
348 
349   for (Instruction *Workitem : Worklist)
350     replace(Workitem);
351 }
352 
visitAllocaInst(AllocaInst & AI)353 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
354   if (auto *I = simplifyAllocaArraySize(*this, AI))
355     return I;
356 
357   if (AI.getAllocatedType()->isSized()) {
358     // Move all alloca's of zero byte objects to the entry block and merge them
359     // together.  Note that we only do this for alloca's, because malloc should
360     // allocate and return a unique pointer, even for a zero byte allocation.
361     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
362       // For a zero sized alloca there is no point in doing an array allocation.
363       // This is helpful if the array size is a complicated expression not used
364       // elsewhere.
365       if (AI.isArrayAllocation())
366         return replaceOperand(AI, 0,
367             ConstantInt::get(AI.getArraySize()->getType(), 1));
368 
369       // Get the first instruction in the entry block.
370       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
371       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
372       if (FirstInst != &AI) {
373         // If the entry block doesn't start with a zero-size alloca then move
374         // this one to the start of the entry block.  There is no problem with
375         // dominance as the array size was forced to a constant earlier already.
376         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
377         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
378             DL.getTypeAllocSize(EntryAI->getAllocatedType())
379                     .getKnownMinSize() != 0) {
380           AI.moveBefore(FirstInst);
381           return &AI;
382         }
383 
384         // Replace this zero-sized alloca with the one at the start of the entry
385         // block after ensuring that the address will be aligned enough for both
386         // types.
387         const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
388         EntryAI->setAlignment(MaxAlign);
389         if (AI.getType() != EntryAI->getType())
390           return new BitCastInst(EntryAI, AI.getType());
391         return replaceInstUsesWith(AI, EntryAI);
392       }
393     }
394   }
395 
396   // Check to see if this allocation is only modified by a memcpy/memmove from
397   // a constant whose alignment is equal to or exceeds that of the allocation.
398   // If this is the case, we can change all users to use the constant global
399   // instead.  This is commonly produced by the CFE by constructs like "void
400   // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
401   // read.
402   SmallVector<Instruction *, 4> ToDelete;
403   if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
404     Value *TheSrc = Copy->getSource();
405     Align AllocaAlign = AI.getAlign();
406     Align SourceAlign = getOrEnforceKnownAlignment(
407       TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
408     if (AllocaAlign <= SourceAlign &&
409         isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
410         !isa<Instruction>(TheSrc)) {
411       // FIXME: Can we sink instructions without violating dominance when TheSrc
412       // is an instruction instead of a constant or argument?
413       LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
414       LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
415       unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
416       auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
417       if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
418         for (Instruction *Delete : ToDelete)
419           eraseInstFromFunction(*Delete);
420 
421         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
422         Instruction *NewI = replaceInstUsesWith(AI, Cast);
423         eraseInstFromFunction(*Copy);
424         ++NumGlobalCopies;
425         return NewI;
426       }
427 
428       PointerReplacer PtrReplacer(*this);
429       if (PtrReplacer.collectUsers(AI)) {
430         for (Instruction *Delete : ToDelete)
431           eraseInstFromFunction(*Delete);
432 
433         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
434         PtrReplacer.replacePointer(AI, Cast);
435         ++NumGlobalCopies;
436       }
437     }
438   }
439 
440   // At last, use the generic allocation site handler to aggressively remove
441   // unused allocas.
442   return visitAllocSite(AI);
443 }
444 
445 // Are we allowed to form a atomic load or store of this type?
isSupportedAtomicType(Type * Ty)446 static bool isSupportedAtomicType(Type *Ty) {
447   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
448 }
449 
450 /// Helper to combine a load to a new type.
451 ///
452 /// This just does the work of combining a load to a new type. It handles
453 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
454 /// loaded *value* type. This will convert it to a pointer, cast the operand to
455 /// that pointer type, load it, etc.
456 ///
457 /// Note that this will create all of the instructions with whatever insert
458 /// point the \c InstCombinerImpl currently is using.
combineLoadToNewType(LoadInst & LI,Type * NewTy,const Twine & Suffix)459 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
460                                                  const Twine &Suffix) {
461   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
462          "can't fold an atomic load to requested type");
463 
464   Value *Ptr = LI.getPointerOperand();
465   unsigned AS = LI.getPointerAddressSpace();
466   Value *NewPtr = nullptr;
467   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
468         NewPtr->getType()->getPointerElementType() == NewTy &&
469         NewPtr->getType()->getPointerAddressSpace() == AS))
470     NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
471 
472   LoadInst *NewLoad = Builder.CreateAlignedLoad(
473       NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
474   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
475   copyMetadataForLoad(*NewLoad, LI);
476   return NewLoad;
477 }
478 
479 /// Combine a store to a new type.
480 ///
481 /// Returns the newly created store instruction.
combineStoreToNewValue(InstCombinerImpl & IC,StoreInst & SI,Value * V)482 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
483                                          Value *V) {
484   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
485          "can't fold an atomic store of requested type");
486 
487   Value *Ptr = SI.getPointerOperand();
488   unsigned AS = SI.getPointerAddressSpace();
489   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
490   SI.getAllMetadata(MD);
491 
492   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
493       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
494       SI.getAlign(), SI.isVolatile());
495   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
496   for (const auto &MDPair : MD) {
497     unsigned ID = MDPair.first;
498     MDNode *N = MDPair.second;
499     // Note, essentially every kind of metadata should be preserved here! This
500     // routine is supposed to clone a store instruction changing *only its
501     // type*. The only metadata it makes sense to drop is metadata which is
502     // invalidated when the pointer type changes. This should essentially
503     // never be the case in LLVM, but we explicitly switch over only known
504     // metadata to be conservatively correct. If you are adding metadata to
505     // LLVM which pertains to stores, you almost certainly want to add it
506     // here.
507     switch (ID) {
508     case LLVMContext::MD_dbg:
509     case LLVMContext::MD_tbaa:
510     case LLVMContext::MD_prof:
511     case LLVMContext::MD_fpmath:
512     case LLVMContext::MD_tbaa_struct:
513     case LLVMContext::MD_alias_scope:
514     case LLVMContext::MD_noalias:
515     case LLVMContext::MD_nontemporal:
516     case LLVMContext::MD_mem_parallel_loop_access:
517     case LLVMContext::MD_access_group:
518       // All of these directly apply.
519       NewStore->setMetadata(ID, N);
520       break;
521     case LLVMContext::MD_invariant_load:
522     case LLVMContext::MD_nonnull:
523     case LLVMContext::MD_noundef:
524     case LLVMContext::MD_range:
525     case LLVMContext::MD_align:
526     case LLVMContext::MD_dereferenceable:
527     case LLVMContext::MD_dereferenceable_or_null:
528       // These don't apply for stores.
529       break;
530     }
531   }
532 
533   return NewStore;
534 }
535 
536 /// Returns true if instruction represent minmax pattern like:
537 ///   select ((cmp load V1, load V2), V1, V2).
isMinMaxWithLoads(Value * V,Type * & LoadTy)538 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
539   assert(V->getType()->isPointerTy() && "Expected pointer type.");
540   // Ignore possible ty* to ixx* bitcast.
541   V = InstCombiner::peekThroughBitcast(V);
542   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
543   // pattern.
544   CmpInst::Predicate Pred;
545   Instruction *L1;
546   Instruction *L2;
547   Value *LHS;
548   Value *RHS;
549   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
550                          m_Value(LHS), m_Value(RHS))))
551     return false;
552   LoadTy = L1->getType();
553   return (match(L1, m_Load(m_Specific(LHS))) &&
554           match(L2, m_Load(m_Specific(RHS)))) ||
555          (match(L1, m_Load(m_Specific(RHS))) &&
556           match(L2, m_Load(m_Specific(LHS))));
557 }
558 
559 /// Combine loads to match the type of their uses' value after looking
560 /// through intervening bitcasts.
561 ///
562 /// The core idea here is that if the result of a load is used in an operation,
563 /// we should load the type most conducive to that operation. For example, when
564 /// loading an integer and converting that immediately to a pointer, we should
565 /// instead directly load a pointer.
566 ///
567 /// However, this routine must never change the width of a load or the number of
568 /// loads as that would introduce a semantic change. This combine is expected to
569 /// be a semantic no-op which just allows loads to more closely model the types
570 /// of their consuming operations.
571 ///
572 /// Currently, we also refuse to change the precise type used for an atomic load
573 /// or a volatile load. This is debatable, and might be reasonable to change
574 /// later. However, it is risky in case some backend or other part of LLVM is
575 /// relying on the exact type loaded to select appropriate atomic operations.
combineLoadToOperationType(InstCombinerImpl & IC,LoadInst & LI)576 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
577                                                LoadInst &LI) {
578   // FIXME: We could probably with some care handle both volatile and ordered
579   // atomic loads here but it isn't clear that this is important.
580   if (!LI.isUnordered())
581     return nullptr;
582 
583   if (LI.use_empty())
584     return nullptr;
585 
586   // swifterror values can't be bitcasted.
587   if (LI.getPointerOperand()->isSwiftError())
588     return nullptr;
589 
590   const DataLayout &DL = IC.getDataLayout();
591 
592   // Fold away bit casts of the loaded value by loading the desired type.
593   // Note that we should not do this for pointer<->integer casts,
594   // because that would result in type punning.
595   if (LI.hasOneUse()) {
596     // Don't transform when the type is x86_amx, it makes the pass that lower
597     // x86_amx type happy.
598     if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
599       assert(!LI.getType()->isX86_AMXTy() &&
600              "load from x86_amx* should not happen!");
601       if (BC->getType()->isX86_AMXTy())
602         return nullptr;
603     }
604 
605     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
606       if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
607                                     CI->getDestTy()->isPtrOrPtrVectorTy())
608         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
609           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
610           CI->replaceAllUsesWith(NewLoad);
611           IC.eraseInstFromFunction(*CI);
612           return &LI;
613         }
614   }
615 
616   // FIXME: We should also canonicalize loads of vectors when their elements are
617   // cast to other types.
618   return nullptr;
619 }
620 
unpackLoadToAggregate(InstCombinerImpl & IC,LoadInst & LI)621 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
622   // FIXME: We could probably with some care handle both volatile and atomic
623   // stores here but it isn't clear that this is important.
624   if (!LI.isSimple())
625     return nullptr;
626 
627   Type *T = LI.getType();
628   if (!T->isAggregateType())
629     return nullptr;
630 
631   StringRef Name = LI.getName();
632   assert(LI.getAlignment() && "Alignment must be set at this point");
633 
634   if (auto *ST = dyn_cast<StructType>(T)) {
635     // If the struct only have one element, we unpack.
636     auto NumElements = ST->getNumElements();
637     if (NumElements == 1) {
638       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
639                                                   ".unpack");
640       AAMDNodes AAMD;
641       LI.getAAMetadata(AAMD);
642       NewLoad->setAAMetadata(AAMD);
643       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
644         UndefValue::get(T), NewLoad, 0, Name));
645     }
646 
647     // We don't want to break loads with padding here as we'd loose
648     // the knowledge that padding exists for the rest of the pipeline.
649     const DataLayout &DL = IC.getDataLayout();
650     auto *SL = DL.getStructLayout(ST);
651     if (SL->hasPadding())
652       return nullptr;
653 
654     const auto Align = LI.getAlign();
655     auto *Addr = LI.getPointerOperand();
656     auto *IdxType = Type::getInt32Ty(T->getContext());
657     auto *Zero = ConstantInt::get(IdxType, 0);
658 
659     Value *V = UndefValue::get(T);
660     for (unsigned i = 0; i < NumElements; i++) {
661       Value *Indices[2] = {
662         Zero,
663         ConstantInt::get(IdxType, i),
664       };
665       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
666                                                Name + ".elt");
667       auto *L = IC.Builder.CreateAlignedLoad(
668           ST->getElementType(i), Ptr,
669           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
670       // Propagate AA metadata. It'll still be valid on the narrowed load.
671       AAMDNodes AAMD;
672       LI.getAAMetadata(AAMD);
673       L->setAAMetadata(AAMD);
674       V = IC.Builder.CreateInsertValue(V, L, i);
675     }
676 
677     V->setName(Name);
678     return IC.replaceInstUsesWith(LI, V);
679   }
680 
681   if (auto *AT = dyn_cast<ArrayType>(T)) {
682     auto *ET = AT->getElementType();
683     auto NumElements = AT->getNumElements();
684     if (NumElements == 1) {
685       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
686       AAMDNodes AAMD;
687       LI.getAAMetadata(AAMD);
688       NewLoad->setAAMetadata(AAMD);
689       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
690         UndefValue::get(T), NewLoad, 0, Name));
691     }
692 
693     // Bail out if the array is too large. Ideally we would like to optimize
694     // arrays of arbitrary size but this has a terrible impact on compile time.
695     // The threshold here is chosen arbitrarily, maybe needs a little bit of
696     // tuning.
697     if (NumElements > IC.MaxArraySizeForCombine)
698       return nullptr;
699 
700     const DataLayout &DL = IC.getDataLayout();
701     auto EltSize = DL.getTypeAllocSize(ET);
702     const auto Align = LI.getAlign();
703 
704     auto *Addr = LI.getPointerOperand();
705     auto *IdxType = Type::getInt64Ty(T->getContext());
706     auto *Zero = ConstantInt::get(IdxType, 0);
707 
708     Value *V = UndefValue::get(T);
709     uint64_t Offset = 0;
710     for (uint64_t i = 0; i < NumElements; i++) {
711       Value *Indices[2] = {
712         Zero,
713         ConstantInt::get(IdxType, i),
714       };
715       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
716                                                Name + ".elt");
717       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
718                                              commonAlignment(Align, Offset),
719                                              Name + ".unpack");
720       AAMDNodes AAMD;
721       LI.getAAMetadata(AAMD);
722       L->setAAMetadata(AAMD);
723       V = IC.Builder.CreateInsertValue(V, L, i);
724       Offset += EltSize;
725     }
726 
727     V->setName(Name);
728     return IC.replaceInstUsesWith(LI, V);
729   }
730 
731   return nullptr;
732 }
733 
734 // If we can determine that all possible objects pointed to by the provided
735 // pointer value are, not only dereferenceable, but also definitively less than
736 // or equal to the provided maximum size, then return true. Otherwise, return
737 // false (constant global values and allocas fall into this category).
738 //
739 // FIXME: This should probably live in ValueTracking (or similar).
isObjectSizeLessThanOrEq(Value * V,uint64_t MaxSize,const DataLayout & DL)740 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
741                                      const DataLayout &DL) {
742   SmallPtrSet<Value *, 4> Visited;
743   SmallVector<Value *, 4> Worklist(1, V);
744 
745   do {
746     Value *P = Worklist.pop_back_val();
747     P = P->stripPointerCasts();
748 
749     if (!Visited.insert(P).second)
750       continue;
751 
752     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
753       Worklist.push_back(SI->getTrueValue());
754       Worklist.push_back(SI->getFalseValue());
755       continue;
756     }
757 
758     if (PHINode *PN = dyn_cast<PHINode>(P)) {
759       append_range(Worklist, PN->incoming_values());
760       continue;
761     }
762 
763     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
764       if (GA->isInterposable())
765         return false;
766       Worklist.push_back(GA->getAliasee());
767       continue;
768     }
769 
770     // If we know how big this object is, and it is less than MaxSize, continue
771     // searching. Otherwise, return false.
772     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
773       if (!AI->getAllocatedType()->isSized())
774         return false;
775 
776       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
777       if (!CS)
778         return false;
779 
780       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
781       // Make sure that, even if the multiplication below would wrap as an
782       // uint64_t, we still do the right thing.
783       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
784         return false;
785       continue;
786     }
787 
788     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
789       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
790         return false;
791 
792       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
793       if (InitSize > MaxSize)
794         return false;
795       continue;
796     }
797 
798     return false;
799   } while (!Worklist.empty());
800 
801   return true;
802 }
803 
804 // If we're indexing into an object of a known size, and the outer index is
805 // not a constant, but having any value but zero would lead to undefined
806 // behavior, replace it with zero.
807 //
808 // For example, if we have:
809 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
810 // ...
811 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
812 // ... = load i32* %arrayidx, align 4
813 // Then we know that we can replace %x in the GEP with i64 0.
814 //
815 // FIXME: We could fold any GEP index to zero that would cause UB if it were
816 // not zero. Currently, we only handle the first such index. Also, we could
817 // also search through non-zero constant indices if we kept track of the
818 // offsets those indices implied.
canReplaceGEPIdxWithZero(InstCombinerImpl & IC,GetElementPtrInst * GEPI,Instruction * MemI,unsigned & Idx)819 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
820                                      GetElementPtrInst *GEPI, Instruction *MemI,
821                                      unsigned &Idx) {
822   if (GEPI->getNumOperands() < 2)
823     return false;
824 
825   // Find the first non-zero index of a GEP. If all indices are zero, return
826   // one past the last index.
827   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
828     unsigned I = 1;
829     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
830       Value *V = GEPI->getOperand(I);
831       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
832         if (CI->isZero())
833           continue;
834 
835       break;
836     }
837 
838     return I;
839   };
840 
841   // Skip through initial 'zero' indices, and find the corresponding pointer
842   // type. See if the next index is not a constant.
843   Idx = FirstNZIdx(GEPI);
844   if (Idx == GEPI->getNumOperands())
845     return false;
846   if (isa<Constant>(GEPI->getOperand(Idx)))
847     return false;
848 
849   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
850   Type *SourceElementType = GEPI->getSourceElementType();
851   // Size information about scalable vectors is not available, so we cannot
852   // deduce whether indexing at n is undefined behaviour or not. Bail out.
853   if (isa<ScalableVectorType>(SourceElementType))
854     return false;
855 
856   Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
857   if (!AllocTy || !AllocTy->isSized())
858     return false;
859   const DataLayout &DL = IC.getDataLayout();
860   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
861 
862   // If there are more indices after the one we might replace with a zero, make
863   // sure they're all non-negative. If any of them are negative, the overall
864   // address being computed might be before the base address determined by the
865   // first non-zero index.
866   auto IsAllNonNegative = [&]() {
867     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
868       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
869       if (Known.isNonNegative())
870         continue;
871       return false;
872     }
873 
874     return true;
875   };
876 
877   // FIXME: If the GEP is not inbounds, and there are extra indices after the
878   // one we'll replace, those could cause the address computation to wrap
879   // (rendering the IsAllNonNegative() check below insufficient). We can do
880   // better, ignoring zero indices (and other indices we can prove small
881   // enough not to wrap).
882   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
883     return false;
884 
885   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
886   // also known to be dereferenceable.
887   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
888          IsAllNonNegative();
889 }
890 
891 // If we're indexing into an object with a variable index for the memory
892 // access, but the object has only one element, we can assume that the index
893 // will always be zero. If we replace the GEP, return it.
894 template <typename T>
replaceGEPIdxWithZero(InstCombinerImpl & IC,Value * Ptr,T & MemI)895 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
896                                           T &MemI) {
897   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
898     unsigned Idx;
899     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
900       Instruction *NewGEPI = GEPI->clone();
901       NewGEPI->setOperand(Idx,
902         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
903       NewGEPI->insertBefore(GEPI);
904       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
905       return NewGEPI;
906     }
907   }
908 
909   return nullptr;
910 }
911 
canSimplifyNullStoreOrGEP(StoreInst & SI)912 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
913   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
914     return false;
915 
916   auto *Ptr = SI.getPointerOperand();
917   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
918     Ptr = GEPI->getOperand(0);
919   return (isa<ConstantPointerNull>(Ptr) &&
920           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
921 }
922 
canSimplifyNullLoadOrGEP(LoadInst & LI,Value * Op)923 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
924   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
925     const Value *GEPI0 = GEPI->getOperand(0);
926     if (isa<ConstantPointerNull>(GEPI0) &&
927         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
928       return true;
929   }
930   if (isa<UndefValue>(Op) ||
931       (isa<ConstantPointerNull>(Op) &&
932        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
933     return true;
934   return false;
935 }
936 
visitLoadInst(LoadInst & LI)937 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
938   Value *Op = LI.getOperand(0);
939 
940   // Try to canonicalize the loaded type.
941   if (Instruction *Res = combineLoadToOperationType(*this, LI))
942     return Res;
943 
944   // Attempt to improve the alignment.
945   Align KnownAlign = getOrEnforceKnownAlignment(
946       Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
947   if (KnownAlign > LI.getAlign())
948     LI.setAlignment(KnownAlign);
949 
950   // Replace GEP indices if possible.
951   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
952       Worklist.push(NewGEPI);
953       return &LI;
954   }
955 
956   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
957     return Res;
958 
959   // Do really simple store-to-load forwarding and load CSE, to catch cases
960   // where there are several consecutive memory accesses to the same location,
961   // separated by a few arithmetic operations.
962   bool IsLoadCSE = false;
963   if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
964     if (IsLoadCSE)
965       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
966 
967     return replaceInstUsesWith(
968         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
969                                            LI.getName() + ".cast"));
970   }
971 
972   // None of the following transforms are legal for volatile/ordered atomic
973   // loads.  Most of them do apply for unordered atomics.
974   if (!LI.isUnordered()) return nullptr;
975 
976   // load(gep null, ...) -> unreachable
977   // load null/undef -> unreachable
978   // TODO: Consider a target hook for valid address spaces for this xforms.
979   if (canSimplifyNullLoadOrGEP(LI, Op)) {
980     // Insert a new store to null instruction before the load to indicate
981     // that this code is not reachable.  We do this instead of inserting
982     // an unreachable instruction directly because we cannot modify the
983     // CFG.
984     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
985                                   Constant::getNullValue(Op->getType()), &LI);
986     SI->setDebugLoc(LI.getDebugLoc());
987     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
988   }
989 
990   if (Op->hasOneUse()) {
991     // Change select and PHI nodes to select values instead of addresses: this
992     // helps alias analysis out a lot, allows many others simplifications, and
993     // exposes redundancy in the code.
994     //
995     // Note that we cannot do the transformation unless we know that the
996     // introduced loads cannot trap!  Something like this is valid as long as
997     // the condition is always false: load (select bool %C, int* null, int* %G),
998     // but it would not be valid if we transformed it to load from null
999     // unconditionally.
1000     //
1001     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1002       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1003       Align Alignment = LI.getAlign();
1004       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1005                                       Alignment, DL, SI) &&
1006           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1007                                       Alignment, DL, SI)) {
1008         LoadInst *V1 =
1009             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1010                                SI->getOperand(1)->getName() + ".val");
1011         LoadInst *V2 =
1012             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1013                                SI->getOperand(2)->getName() + ".val");
1014         assert(LI.isUnordered() && "implied by above");
1015         V1->setAlignment(Alignment);
1016         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1017         V2->setAlignment(Alignment);
1018         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1019         return SelectInst::Create(SI->getCondition(), V1, V2);
1020       }
1021 
1022       // load (select (cond, null, P)) -> load P
1023       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1024           !NullPointerIsDefined(SI->getFunction(),
1025                                 LI.getPointerAddressSpace()))
1026         return replaceOperand(LI, 0, SI->getOperand(2));
1027 
1028       // load (select (cond, P, null)) -> load P
1029       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1030           !NullPointerIsDefined(SI->getFunction(),
1031                                 LI.getPointerAddressSpace()))
1032         return replaceOperand(LI, 0, SI->getOperand(1));
1033     }
1034   }
1035   return nullptr;
1036 }
1037 
1038 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1039 ///
1040 /// \returns underlying value that was "cast", or nullptr otherwise.
1041 ///
1042 /// For example, if we have:
1043 ///
1044 ///     %E0 = extractelement <2 x double> %U, i32 0
1045 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1046 ///     %E1 = extractelement <2 x double> %U, i32 1
1047 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1048 ///
1049 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1050 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1051 /// Note that %U may contain non-undef values where %V1 has undef.
likeBitCastFromVector(InstCombinerImpl & IC,Value * V)1052 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1053   Value *U = nullptr;
1054   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1055     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1056     if (!E)
1057       return nullptr;
1058     auto *W = E->getVectorOperand();
1059     if (!U)
1060       U = W;
1061     else if (U != W)
1062       return nullptr;
1063     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1064     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1065       return nullptr;
1066     V = IV->getAggregateOperand();
1067   }
1068   if (!match(V, m_Undef()) || !U)
1069     return nullptr;
1070 
1071   auto *UT = cast<VectorType>(U->getType());
1072   auto *VT = V->getType();
1073   // Check that types UT and VT are bitwise isomorphic.
1074   const auto &DL = IC.getDataLayout();
1075   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1076     return nullptr;
1077   }
1078   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1079     if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1080       return nullptr;
1081   } else {
1082     auto *ST = cast<StructType>(VT);
1083     if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1084       return nullptr;
1085     for (const auto *EltT : ST->elements()) {
1086       if (EltT != UT->getElementType())
1087         return nullptr;
1088     }
1089   }
1090   return U;
1091 }
1092 
1093 /// Combine stores to match the type of value being stored.
1094 ///
1095 /// The core idea here is that the memory does not have any intrinsic type and
1096 /// where we can we should match the type of a store to the type of value being
1097 /// stored.
1098 ///
1099 /// However, this routine must never change the width of a store or the number of
1100 /// stores as that would introduce a semantic change. This combine is expected to
1101 /// be a semantic no-op which just allows stores to more closely model the types
1102 /// of their incoming values.
1103 ///
1104 /// Currently, we also refuse to change the precise type used for an atomic or
1105 /// volatile store. This is debatable, and might be reasonable to change later.
1106 /// However, it is risky in case some backend or other part of LLVM is relying
1107 /// on the exact type stored to select appropriate atomic operations.
1108 ///
1109 /// \returns true if the store was successfully combined away. This indicates
1110 /// the caller must erase the store instruction. We have to let the caller erase
1111 /// the store instruction as otherwise there is no way to signal whether it was
1112 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
combineStoreToValueType(InstCombinerImpl & IC,StoreInst & SI)1113 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1114   // FIXME: We could probably with some care handle both volatile and ordered
1115   // atomic stores here but it isn't clear that this is important.
1116   if (!SI.isUnordered())
1117     return false;
1118 
1119   // swifterror values can't be bitcasted.
1120   if (SI.getPointerOperand()->isSwiftError())
1121     return false;
1122 
1123   Value *V = SI.getValueOperand();
1124 
1125   // Fold away bit casts of the stored value by storing the original type.
1126   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1127     assert(!BC->getType()->isX86_AMXTy() &&
1128            "store to x86_amx* should not happen!");
1129     V = BC->getOperand(0);
1130     // Don't transform when the type is x86_amx, it makes the pass that lower
1131     // x86_amx type happy.
1132     if (V->getType()->isX86_AMXTy())
1133       return false;
1134     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1135       combineStoreToNewValue(IC, SI, V);
1136       return true;
1137     }
1138   }
1139 
1140   if (Value *U = likeBitCastFromVector(IC, V))
1141     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1142       combineStoreToNewValue(IC, SI, U);
1143       return true;
1144     }
1145 
1146   // FIXME: We should also canonicalize stores of vectors when their elements
1147   // are cast to other types.
1148   return false;
1149 }
1150 
unpackStoreToAggregate(InstCombinerImpl & IC,StoreInst & SI)1151 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1152   // FIXME: We could probably with some care handle both volatile and atomic
1153   // stores here but it isn't clear that this is important.
1154   if (!SI.isSimple())
1155     return false;
1156 
1157   Value *V = SI.getValueOperand();
1158   Type *T = V->getType();
1159 
1160   if (!T->isAggregateType())
1161     return false;
1162 
1163   if (auto *ST = dyn_cast<StructType>(T)) {
1164     // If the struct only have one element, we unpack.
1165     unsigned Count = ST->getNumElements();
1166     if (Count == 1) {
1167       V = IC.Builder.CreateExtractValue(V, 0);
1168       combineStoreToNewValue(IC, SI, V);
1169       return true;
1170     }
1171 
1172     // We don't want to break loads with padding here as we'd loose
1173     // the knowledge that padding exists for the rest of the pipeline.
1174     const DataLayout &DL = IC.getDataLayout();
1175     auto *SL = DL.getStructLayout(ST);
1176     if (SL->hasPadding())
1177       return false;
1178 
1179     const auto Align = SI.getAlign();
1180 
1181     SmallString<16> EltName = V->getName();
1182     EltName += ".elt";
1183     auto *Addr = SI.getPointerOperand();
1184     SmallString<16> AddrName = Addr->getName();
1185     AddrName += ".repack";
1186 
1187     auto *IdxType = Type::getInt32Ty(ST->getContext());
1188     auto *Zero = ConstantInt::get(IdxType, 0);
1189     for (unsigned i = 0; i < Count; i++) {
1190       Value *Indices[2] = {
1191         Zero,
1192         ConstantInt::get(IdxType, i),
1193       };
1194       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1195                                                AddrName);
1196       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1197       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1198       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1199       AAMDNodes AAMD;
1200       SI.getAAMetadata(AAMD);
1201       NS->setAAMetadata(AAMD);
1202     }
1203 
1204     return true;
1205   }
1206 
1207   if (auto *AT = dyn_cast<ArrayType>(T)) {
1208     // If the array only have one element, we unpack.
1209     auto NumElements = AT->getNumElements();
1210     if (NumElements == 1) {
1211       V = IC.Builder.CreateExtractValue(V, 0);
1212       combineStoreToNewValue(IC, SI, V);
1213       return true;
1214     }
1215 
1216     // Bail out if the array is too large. Ideally we would like to optimize
1217     // arrays of arbitrary size but this has a terrible impact on compile time.
1218     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1219     // tuning.
1220     if (NumElements > IC.MaxArraySizeForCombine)
1221       return false;
1222 
1223     const DataLayout &DL = IC.getDataLayout();
1224     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1225     const auto Align = SI.getAlign();
1226 
1227     SmallString<16> EltName = V->getName();
1228     EltName += ".elt";
1229     auto *Addr = SI.getPointerOperand();
1230     SmallString<16> AddrName = Addr->getName();
1231     AddrName += ".repack";
1232 
1233     auto *IdxType = Type::getInt64Ty(T->getContext());
1234     auto *Zero = ConstantInt::get(IdxType, 0);
1235 
1236     uint64_t Offset = 0;
1237     for (uint64_t i = 0; i < NumElements; i++) {
1238       Value *Indices[2] = {
1239         Zero,
1240         ConstantInt::get(IdxType, i),
1241       };
1242       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1243                                                AddrName);
1244       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1245       auto EltAlign = commonAlignment(Align, Offset);
1246       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1247       AAMDNodes AAMD;
1248       SI.getAAMetadata(AAMD);
1249       NS->setAAMetadata(AAMD);
1250       Offset += EltSize;
1251     }
1252 
1253     return true;
1254   }
1255 
1256   return false;
1257 }
1258 
1259 /// equivalentAddressValues - Test if A and B will obviously have the same
1260 /// value. This includes recognizing that %t0 and %t1 will have the same
1261 /// value in code like this:
1262 ///   %t0 = getelementptr \@a, 0, 3
1263 ///   store i32 0, i32* %t0
1264 ///   %t1 = getelementptr \@a, 0, 3
1265 ///   %t2 = load i32* %t1
1266 ///
equivalentAddressValues(Value * A,Value * B)1267 static bool equivalentAddressValues(Value *A, Value *B) {
1268   // Test if the values are trivially equivalent.
1269   if (A == B) return true;
1270 
1271   // Test if the values come form identical arithmetic instructions.
1272   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1273   // its only used to compare two uses within the same basic block, which
1274   // means that they'll always either have the same value or one of them
1275   // will have an undefined value.
1276   if (isa<BinaryOperator>(A) ||
1277       isa<CastInst>(A) ||
1278       isa<PHINode>(A) ||
1279       isa<GetElementPtrInst>(A))
1280     if (Instruction *BI = dyn_cast<Instruction>(B))
1281       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1282         return true;
1283 
1284   // Otherwise they may not be equivalent.
1285   return false;
1286 }
1287 
1288 /// Converts store (bitcast (load (bitcast (select ...)))) to
1289 /// store (load (select ...)), where select is minmax:
1290 /// select ((cmp load V1, load V2), V1, V2).
removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl & IC,StoreInst & SI)1291 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1292                                                 StoreInst &SI) {
1293   // bitcast?
1294   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1295     return false;
1296   // load? integer?
1297   Value *LoadAddr;
1298   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1299     return false;
1300   auto *LI = cast<LoadInst>(SI.getValueOperand());
1301   if (!LI->getType()->isIntegerTy())
1302     return false;
1303   Type *CmpLoadTy;
1304   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1305     return false;
1306 
1307   // Make sure the type would actually change.
1308   // This condition can be hit with chains of bitcasts.
1309   if (LI->getType() == CmpLoadTy)
1310     return false;
1311 
1312   // Make sure we're not changing the size of the load/store.
1313   const auto &DL = IC.getDataLayout();
1314   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1315       DL.getTypeStoreSizeInBits(CmpLoadTy))
1316     return false;
1317 
1318   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1319         auto *SI = dyn_cast<StoreInst>(U);
1320         return SI && SI->getPointerOperand() != LI &&
1321                InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1322                    LoadAddr &&
1323                !SI->getPointerOperand()->isSwiftError();
1324       }))
1325     return false;
1326 
1327   IC.Builder.SetInsertPoint(LI);
1328   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1329   // Replace all the stores with stores of the newly loaded value.
1330   for (auto *UI : LI->users()) {
1331     auto *USI = cast<StoreInst>(UI);
1332     IC.Builder.SetInsertPoint(USI);
1333     combineStoreToNewValue(IC, *USI, NewLI);
1334   }
1335   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1336   IC.eraseInstFromFunction(*LI);
1337   return true;
1338 }
1339 
visitStoreInst(StoreInst & SI)1340 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1341   Value *Val = SI.getOperand(0);
1342   Value *Ptr = SI.getOperand(1);
1343 
1344   // Try to canonicalize the stored type.
1345   if (combineStoreToValueType(*this, SI))
1346     return eraseInstFromFunction(SI);
1347 
1348   // Attempt to improve the alignment.
1349   const Align KnownAlign = getOrEnforceKnownAlignment(
1350       Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1351   if (KnownAlign > SI.getAlign())
1352     SI.setAlignment(KnownAlign);
1353 
1354   // Try to canonicalize the stored type.
1355   if (unpackStoreToAggregate(*this, SI))
1356     return eraseInstFromFunction(SI);
1357 
1358   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1359     return eraseInstFromFunction(SI);
1360 
1361   // Replace GEP indices if possible.
1362   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1363       Worklist.push(NewGEPI);
1364       return &SI;
1365   }
1366 
1367   // Don't hack volatile/ordered stores.
1368   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1369   if (!SI.isUnordered()) return nullptr;
1370 
1371   // If the RHS is an alloca with a single use, zapify the store, making the
1372   // alloca dead.
1373   if (Ptr->hasOneUse()) {
1374     if (isa<AllocaInst>(Ptr))
1375       return eraseInstFromFunction(SI);
1376     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1377       if (isa<AllocaInst>(GEP->getOperand(0))) {
1378         if (GEP->getOperand(0)->hasOneUse())
1379           return eraseInstFromFunction(SI);
1380       }
1381     }
1382   }
1383 
1384   // If we have a store to a location which is known constant, we can conclude
1385   // that the store must be storing the constant value (else the memory
1386   // wouldn't be constant), and this must be a noop.
1387   if (AA->pointsToConstantMemory(Ptr))
1388     return eraseInstFromFunction(SI);
1389 
1390   // Do really simple DSE, to catch cases where there are several consecutive
1391   // stores to the same location, separated by a few arithmetic operations. This
1392   // situation often occurs with bitfield accesses.
1393   BasicBlock::iterator BBI(SI);
1394   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1395        --ScanInsts) {
1396     --BBI;
1397     // Don't count debug info directives, lest they affect codegen,
1398     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1399     if (BBI->isDebugOrPseudoInst() ||
1400         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1401       ScanInsts++;
1402       continue;
1403     }
1404 
1405     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1406       // Prev store isn't volatile, and stores to the same location?
1407       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1408                                                         SI.getOperand(1))) {
1409         ++NumDeadStore;
1410         // Manually add back the original store to the worklist now, so it will
1411         // be processed after the operands of the removed store, as this may
1412         // expose additional DSE opportunities.
1413         Worklist.push(&SI);
1414         eraseInstFromFunction(*PrevSI);
1415         return nullptr;
1416       }
1417       break;
1418     }
1419 
1420     // If this is a load, we have to stop.  However, if the loaded value is from
1421     // the pointer we're loading and is producing the pointer we're storing,
1422     // then *this* store is dead (X = load P; store X -> P).
1423     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1424       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1425         assert(SI.isUnordered() && "can't eliminate ordering operation");
1426         return eraseInstFromFunction(SI);
1427       }
1428 
1429       // Otherwise, this is a load from some other location.  Stores before it
1430       // may not be dead.
1431       break;
1432     }
1433 
1434     // Don't skip over loads, throws or things that can modify memory.
1435     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1436       break;
1437   }
1438 
1439   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1440   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1441   if (canSimplifyNullStoreOrGEP(SI)) {
1442     if (!isa<UndefValue>(Val))
1443       return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
1444     return nullptr;  // Do not modify these!
1445   }
1446 
1447   // store undef, Ptr -> noop
1448   if (isa<UndefValue>(Val))
1449     return eraseInstFromFunction(SI);
1450 
1451   return nullptr;
1452 }
1453 
1454 /// Try to transform:
1455 ///   if () { *P = v1; } else { *P = v2 }
1456 /// or:
1457 ///   *P = v1; if () { *P = v2; }
1458 /// into a phi node with a store in the successor.
mergeStoreIntoSuccessor(StoreInst & SI)1459 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1460   if (!SI.isUnordered())
1461     return false; // This code has not been audited for volatile/ordered case.
1462 
1463   // Check if the successor block has exactly 2 incoming edges.
1464   BasicBlock *StoreBB = SI.getParent();
1465   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1466   if (!DestBB->hasNPredecessors(2))
1467     return false;
1468 
1469   // Capture the other block (the block that doesn't contain our store).
1470   pred_iterator PredIter = pred_begin(DestBB);
1471   if (*PredIter == StoreBB)
1472     ++PredIter;
1473   BasicBlock *OtherBB = *PredIter;
1474 
1475   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1476   // for example, if SI is in an infinite loop.
1477   if (StoreBB == DestBB || OtherBB == DestBB)
1478     return false;
1479 
1480   // Verify that the other block ends in a branch and is not otherwise empty.
1481   BasicBlock::iterator BBI(OtherBB->getTerminator());
1482   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1483   if (!OtherBr || BBI == OtherBB->begin())
1484     return false;
1485 
1486   // If the other block ends in an unconditional branch, check for the 'if then
1487   // else' case. There is an instruction before the branch.
1488   StoreInst *OtherStore = nullptr;
1489   if (OtherBr->isUnconditional()) {
1490     --BBI;
1491     // Skip over debugging info.
1492     while (isa<DbgInfoIntrinsic>(BBI) ||
1493            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1494       if (BBI==OtherBB->begin())
1495         return false;
1496       --BBI;
1497     }
1498     // If this isn't a store, isn't a store to the same location, or is not the
1499     // right kind of store, bail out.
1500     OtherStore = dyn_cast<StoreInst>(BBI);
1501     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1502         !SI.isSameOperationAs(OtherStore))
1503       return false;
1504   } else {
1505     // Otherwise, the other block ended with a conditional branch. If one of the
1506     // destinations is StoreBB, then we have the if/then case.
1507     if (OtherBr->getSuccessor(0) != StoreBB &&
1508         OtherBr->getSuccessor(1) != StoreBB)
1509       return false;
1510 
1511     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1512     // if/then triangle. See if there is a store to the same ptr as SI that
1513     // lives in OtherBB.
1514     for (;; --BBI) {
1515       // Check to see if we find the matching store.
1516       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1517         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1518             !SI.isSameOperationAs(OtherStore))
1519           return false;
1520         break;
1521       }
1522       // If we find something that may be using or overwriting the stored
1523       // value, or if we run out of instructions, we can't do the transform.
1524       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1525           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1526         return false;
1527     }
1528 
1529     // In order to eliminate the store in OtherBr, we have to make sure nothing
1530     // reads or overwrites the stored value in StoreBB.
1531     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1532       // FIXME: This should really be AA driven.
1533       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1534         return false;
1535     }
1536   }
1537 
1538   // Insert a PHI node now if we need it.
1539   Value *MergedVal = OtherStore->getOperand(0);
1540   // The debug locations of the original instructions might differ. Merge them.
1541   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1542                                                      OtherStore->getDebugLoc());
1543   if (MergedVal != SI.getOperand(0)) {
1544     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1545     PN->addIncoming(SI.getOperand(0), SI.getParent());
1546     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1547     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1548     PN->setDebugLoc(MergedLoc);
1549   }
1550 
1551   // Advance to a place where it is safe to insert the new store and insert it.
1552   BBI = DestBB->getFirstInsertionPt();
1553   StoreInst *NewSI =
1554       new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1555                     SI.getOrdering(), SI.getSyncScopeID());
1556   InsertNewInstBefore(NewSI, *BBI);
1557   NewSI->setDebugLoc(MergedLoc);
1558 
1559   // If the two stores had AA tags, merge them.
1560   AAMDNodes AATags;
1561   SI.getAAMetadata(AATags);
1562   if (AATags) {
1563     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1564     NewSI->setAAMetadata(AATags);
1565   }
1566 
1567   // Nuke the old stores.
1568   eraseInstFromFunction(SI);
1569   eraseInstFromFunction(*OtherStore);
1570   return true;
1571 }
1572