xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/InstCombine/InstCombineInternal.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17 
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetFolder.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
28 #include "llvm/Transforms/InstCombine/InstCombiner.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include <cassert>
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 using namespace llvm::PatternMatch;
35 
36 // As a default, let's assume that we want to be aggressive,
37 // and attempt to traverse with no limits in attempt to sink negation.
38 static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
39 
40 // Let's guesstimate that most often we will end up visiting/producing
41 // fairly small number of new instructions.
42 static constexpr unsigned NegatorMaxNodesSSO = 16;
43 
44 namespace llvm {
45 
46 class AAResults;
47 class APInt;
48 class AssumptionCache;
49 class BlockFrequencyInfo;
50 class DataLayout;
51 class DominatorTree;
52 class GEPOperator;
53 class GlobalVariable;
54 class LoopInfo;
55 class OptimizationRemarkEmitter;
56 class ProfileSummaryInfo;
57 class TargetLibraryInfo;
58 class User;
59 
60 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
61     : public InstCombiner,
62       public InstVisitor<InstCombinerImpl, Instruction *> {
63 public:
InstCombinerImpl(InstCombineWorklist & Worklist,BuilderTy & Builder,bool MinimizeSize,AAResults * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,const DataLayout & DL,LoopInfo * LI)64   InstCombinerImpl(InstCombineWorklist &Worklist, BuilderTy &Builder,
65                    bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
66                    TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
67                    DominatorTree &DT, OptimizationRemarkEmitter &ORE,
68                    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
69                    const DataLayout &DL, LoopInfo *LI)
70       : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
71                      BFI, PSI, DL, LI) {}
72 
~InstCombinerImpl()73   virtual ~InstCombinerImpl() {}
74 
75   /// Run the combiner over the entire worklist until it is empty.
76   ///
77   /// \returns true if the IR is changed.
78   bool run();
79 
80   // Visitation implementation - Implement instruction combining for different
81   // instruction types.  The semantics are as follows:
82   // Return Value:
83   //    null        - No change was made
84   //     I          - Change was made, I is still valid, I may be dead though
85   //   otherwise    - Change was made, replace I with returned instruction
86   //
87   Instruction *visitFNeg(UnaryOperator &I);
88   Instruction *visitAdd(BinaryOperator &I);
89   Instruction *visitFAdd(BinaryOperator &I);
90   Value *OptimizePointerDifference(
91       Value *LHS, Value *RHS, Type *Ty, bool isNUW);
92   Instruction *visitSub(BinaryOperator &I);
93   Instruction *visitFSub(BinaryOperator &I);
94   Instruction *visitMul(BinaryOperator &I);
95   Instruction *visitFMul(BinaryOperator &I);
96   Instruction *visitURem(BinaryOperator &I);
97   Instruction *visitSRem(BinaryOperator &I);
98   Instruction *visitFRem(BinaryOperator &I);
99   bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
100   Instruction *commonIRemTransforms(BinaryOperator &I);
101   Instruction *commonIDivTransforms(BinaryOperator &I);
102   Instruction *visitUDiv(BinaryOperator &I);
103   Instruction *visitSDiv(BinaryOperator &I);
104   Instruction *visitFDiv(BinaryOperator &I);
105   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
106   Instruction *visitAnd(BinaryOperator &I);
107   Instruction *visitOr(BinaryOperator &I);
108   bool sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I);
109   Instruction *visitXor(BinaryOperator &I);
110   Instruction *visitShl(BinaryOperator &I);
111   Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
112       BinaryOperator *Sh0, const SimplifyQuery &SQ,
113       bool AnalyzeForSignBitExtraction = false);
114   Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
115       BinaryOperator &I);
116   Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
117       BinaryOperator &OldAShr);
118   Instruction *visitAShr(BinaryOperator &I);
119   Instruction *visitLShr(BinaryOperator &I);
120   Instruction *commonShiftTransforms(BinaryOperator &I);
121   Instruction *visitFCmpInst(FCmpInst &I);
122   CmpInst *canonicalizeICmpPredicate(CmpInst &I);
123   Instruction *visitICmpInst(ICmpInst &I);
124   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
125                                    BinaryOperator &I);
126   Instruction *commonCastTransforms(CastInst &CI);
127   Instruction *commonPointerCastTransforms(CastInst &CI);
128   Instruction *visitTrunc(TruncInst &CI);
129   Instruction *visitZExt(ZExtInst &CI);
130   Instruction *visitSExt(SExtInst &CI);
131   Instruction *visitFPTrunc(FPTruncInst &CI);
132   Instruction *visitFPExt(CastInst &CI);
133   Instruction *visitFPToUI(FPToUIInst &FI);
134   Instruction *visitFPToSI(FPToSIInst &FI);
135   Instruction *visitUIToFP(CastInst &CI);
136   Instruction *visitSIToFP(CastInst &CI);
137   Instruction *visitPtrToInt(PtrToIntInst &CI);
138   Instruction *visitIntToPtr(IntToPtrInst &CI);
139   Instruction *visitBitCast(BitCastInst &CI);
140   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
141   Instruction *foldItoFPtoI(CastInst &FI);
142   Instruction *visitSelectInst(SelectInst &SI);
143   Instruction *visitCallInst(CallInst &CI);
144   Instruction *visitInvokeInst(InvokeInst &II);
145   Instruction *visitCallBrInst(CallBrInst &CBI);
146 
147   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
148   Instruction *visitPHINode(PHINode &PN);
149   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
150   Instruction *visitAllocaInst(AllocaInst &AI);
151   Instruction *visitAllocSite(Instruction &FI);
152   Instruction *visitFree(CallInst &FI);
153   Instruction *visitLoadInst(LoadInst &LI);
154   Instruction *visitStoreInst(StoreInst &SI);
155   Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
156   Instruction *visitUnconditionalBranchInst(BranchInst &BI);
157   Instruction *visitBranchInst(BranchInst &BI);
158   Instruction *visitFenceInst(FenceInst &FI);
159   Instruction *visitSwitchInst(SwitchInst &SI);
160   Instruction *visitReturnInst(ReturnInst &RI);
161   Instruction *visitUnreachableInst(UnreachableInst &I);
162   Instruction *
163   foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
164   Instruction *visitInsertValueInst(InsertValueInst &IV);
165   Instruction *visitInsertElementInst(InsertElementInst &IE);
166   Instruction *visitExtractElementInst(ExtractElementInst &EI);
167   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
168   Instruction *visitExtractValueInst(ExtractValueInst &EV);
169   Instruction *visitLandingPadInst(LandingPadInst &LI);
170   Instruction *visitVAEndInst(VAEndInst &I);
171   Instruction *visitFreeze(FreezeInst &I);
172 
173   /// Specify what to return for unhandled instructions.
visitInstruction(Instruction & I)174   Instruction *visitInstruction(Instruction &I) { return nullptr; }
175 
176   /// True when DB dominates all uses of DI except UI.
177   /// UI must be in the same block as DI.
178   /// The routine checks that the DI parent and DB are different.
179   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
180                         const BasicBlock *DB) const;
181 
182   /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
183   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
184                                  const unsigned SIOpd);
185 
186   LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
187                                  const Twine &Suffix = "");
188 
189 private:
190   void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
191   bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
192   bool shouldChangeType(Type *From, Type *To) const;
193   Value *dyn_castNegVal(Value *V) const;
194   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
195                             SmallVectorImpl<Value *> &NewIndices);
196 
197   /// Classify whether a cast is worth optimizing.
198   ///
199   /// This is a helper to decide whether the simplification of
200   /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
201   ///
202   /// \param CI The cast we are interested in.
203   ///
204   /// \return true if this cast actually results in any code being generated and
205   /// if it cannot already be eliminated by some other transformation.
206   bool shouldOptimizeCast(CastInst *CI);
207 
208   /// Try to optimize a sequence of instructions checking if an operation
209   /// on LHS and RHS overflows.
210   ///
211   /// If this overflow check is done via one of the overflow check intrinsics,
212   /// then CtxI has to be the call instruction calling that intrinsic.  If this
213   /// overflow check is done by arithmetic followed by a compare, then CtxI has
214   /// to be the arithmetic instruction.
215   ///
216   /// If a simplification is possible, stores the simplified result of the
217   /// operation in OperationResult and result of the overflow check in
218   /// OverflowResult, and return true.  If no simplification is possible,
219   /// returns false.
220   bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
221                              Value *LHS, Value *RHS,
222                              Instruction &CtxI, Value *&OperationResult,
223                              Constant *&OverflowResult);
224 
225   Instruction *visitCallBase(CallBase &Call);
226   Instruction *tryOptimizeCall(CallInst *CI);
227   bool transformConstExprCastCall(CallBase &Call);
228   Instruction *transformCallThroughTrampoline(CallBase &Call,
229                                               IntrinsicInst &Tramp);
230 
231   Value *simplifyMaskedLoad(IntrinsicInst &II);
232   Instruction *simplifyMaskedStore(IntrinsicInst &II);
233   Instruction *simplifyMaskedGather(IntrinsicInst &II);
234   Instruction *simplifyMaskedScatter(IntrinsicInst &II);
235 
236   /// Transform (zext icmp) to bitwise / integer operations in order to
237   /// eliminate it.
238   ///
239   /// \param ICI The icmp of the (zext icmp) pair we are interested in.
240   /// \parem CI The zext of the (zext icmp) pair we are interested in.
241   /// \param DoTransform Pass false to just test whether the given (zext icmp)
242   /// would be transformed. Pass true to actually perform the transformation.
243   ///
244   /// \return null if the transformation cannot be performed. If the
245   /// transformation can be performed the new instruction that replaces the
246   /// (zext icmp) pair will be returned (if \p DoTransform is false the
247   /// unmodified \p ICI will be returned in this case).
248   Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
249                                  bool DoTransform = true);
250 
251   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
252 
willNotOverflowSignedAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI)253   bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
254                                 const Instruction &CxtI) const {
255     return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
256            OverflowResult::NeverOverflows;
257   }
258 
willNotOverflowUnsignedAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI)259   bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
260                                   const Instruction &CxtI) const {
261     return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
262            OverflowResult::NeverOverflows;
263   }
264 
willNotOverflowAdd(const Value * LHS,const Value * RHS,const Instruction & CxtI,bool IsSigned)265   bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
266                           const Instruction &CxtI, bool IsSigned) const {
267     return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
268                     : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
269   }
270 
willNotOverflowSignedSub(const Value * LHS,const Value * RHS,const Instruction & CxtI)271   bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
272                                 const Instruction &CxtI) const {
273     return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
274            OverflowResult::NeverOverflows;
275   }
276 
willNotOverflowUnsignedSub(const Value * LHS,const Value * RHS,const Instruction & CxtI)277   bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
278                                   const Instruction &CxtI) const {
279     return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
280            OverflowResult::NeverOverflows;
281   }
282 
willNotOverflowSub(const Value * LHS,const Value * RHS,const Instruction & CxtI,bool IsSigned)283   bool willNotOverflowSub(const Value *LHS, const Value *RHS,
284                           const Instruction &CxtI, bool IsSigned) const {
285     return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
286                     : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
287   }
288 
willNotOverflowSignedMul(const Value * LHS,const Value * RHS,const Instruction & CxtI)289   bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
290                                 const Instruction &CxtI) const {
291     return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
292            OverflowResult::NeverOverflows;
293   }
294 
willNotOverflowUnsignedMul(const Value * LHS,const Value * RHS,const Instruction & CxtI)295   bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
296                                   const Instruction &CxtI) const {
297     return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
298            OverflowResult::NeverOverflows;
299   }
300 
willNotOverflowMul(const Value * LHS,const Value * RHS,const Instruction & CxtI,bool IsSigned)301   bool willNotOverflowMul(const Value *LHS, const Value *RHS,
302                           const Instruction &CxtI, bool IsSigned) const {
303     return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
304                     : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
305   }
306 
willNotOverflow(BinaryOperator::BinaryOps Opcode,const Value * LHS,const Value * RHS,const Instruction & CxtI,bool IsSigned)307   bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
308                        const Value *RHS, const Instruction &CxtI,
309                        bool IsSigned) const {
310     switch (Opcode) {
311     case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
312     case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
313     case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
314     default: llvm_unreachable("Unexpected opcode for overflow query");
315     }
316   }
317 
318   Value *EmitGEPOffset(User *GEP);
319   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
320   Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
321   Instruction *narrowBinOp(TruncInst &Trunc);
322   Instruction *narrowMaskedBinOp(BinaryOperator &And);
323   Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
324   Instruction *narrowFunnelShift(TruncInst &Trunc);
325   Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
326   Instruction *matchSAddSubSat(SelectInst &MinMax1);
327 
328   void freelyInvertAllUsersOf(Value *V);
329 
330   /// Determine if a pair of casts can be replaced by a single cast.
331   ///
332   /// \param CI1 The first of a pair of casts.
333   /// \param CI2 The second of a pair of casts.
334   ///
335   /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
336   /// Instruction::CastOps value for a cast that can replace the pair, casting
337   /// CI1->getSrcTy() to CI2->getDstTy().
338   ///
339   /// \see CastInst::isEliminableCastPair
340   Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
341                                             const CastInst *CI2);
342 
343   Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &And);
344   Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Or);
345   Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
346 
347   /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
348   /// NOTE: Unlike most of instcombine, this returns a Value which should
349   /// already be inserted into the function.
350   Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
351 
352   Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
353                                        Instruction *CxtI, bool IsAnd,
354                                        bool IsLogical = false);
355   Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
356   Value *getSelectCondition(Value *A, Value *B);
357 
358   Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
359   Instruction *foldFPSignBitOps(BinaryOperator &I);
360 
361   // Optimize one of these forms:
362   //   and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
363   //   or i1 Op, SI  / select i1 Op, i1 true, i1 SI  (if IsAnd = false)
364   // into simplier select instruction using isImpliedCondition.
365   Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
366                                                  bool IsAnd);
367 
368 public:
369   /// Inserts an instruction \p New before instruction \p Old
370   ///
371   /// Also adds the new instruction to the worklist and returns \p New so that
372   /// it is suitable for use as the return from the visitation patterns.
InsertNewInstBefore(Instruction * New,Instruction & Old)373   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
374     assert(New && !New->getParent() &&
375            "New instruction already inserted into a basic block!");
376     BasicBlock *BB = Old.getParent();
377     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
378     Worklist.add(New);
379     return New;
380   }
381 
382   /// Same as InsertNewInstBefore, but also sets the debug loc.
InsertNewInstWith(Instruction * New,Instruction & Old)383   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
384     New->setDebugLoc(Old.getDebugLoc());
385     return InsertNewInstBefore(New, Old);
386   }
387 
388   /// A combiner-aware RAUW-like routine.
389   ///
390   /// This method is to be used when an instruction is found to be dead,
391   /// replaceable with another preexisting expression. Here we add all uses of
392   /// I to the worklist, replace all uses of I with the new value, then return
393   /// I, so that the inst combiner will know that I was modified.
replaceInstUsesWith(Instruction & I,Value * V)394   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
395     // If there are no uses to replace, then we return nullptr to indicate that
396     // no changes were made to the program.
397     if (I.use_empty()) return nullptr;
398 
399     Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
400 
401     // If we are replacing the instruction with itself, this must be in a
402     // segment of unreachable code, so just clobber the instruction.
403     if (&I == V)
404       V = UndefValue::get(I.getType());
405 
406     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
407                       << "    with " << *V << '\n');
408 
409     I.replaceAllUsesWith(V);
410     MadeIRChange = true;
411     return &I;
412   }
413 
414   /// Replace operand of instruction and add old operand to the worklist.
replaceOperand(Instruction & I,unsigned OpNum,Value * V)415   Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
416     Worklist.addValue(I.getOperand(OpNum));
417     I.setOperand(OpNum, V);
418     return &I;
419   }
420 
421   /// Replace use and add the previously used value to the worklist.
replaceUse(Use & U,Value * NewValue)422   void replaceUse(Use &U, Value *NewValue) {
423     Worklist.addValue(U);
424     U = NewValue;
425   }
426 
427   /// Creates a result tuple for an overflow intrinsic \p II with a given
428   /// \p Result and a constant \p Overflow value.
CreateOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)429   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
430                                    Constant *Overflow) {
431     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
432     StructType *ST = cast<StructType>(II->getType());
433     Constant *Struct = ConstantStruct::get(ST, V);
434     return InsertValueInst::Create(Struct, Result, 0);
435   }
436 
437   /// Create and insert the idiom we use to indicate a block is unreachable
438   /// without having to rewrite the CFG from within InstCombine.
CreateNonTerminatorUnreachable(Instruction * InsertAt)439   void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
440     auto &Ctx = InsertAt->getContext();
441     new StoreInst(ConstantInt::getTrue(Ctx),
442                   UndefValue::get(Type::getInt1PtrTy(Ctx)),
443                   InsertAt);
444   }
445 
446 
447   /// Combiner aware instruction erasure.
448   ///
449   /// When dealing with an instruction that has side effects or produces a void
450   /// value, we can't rely on DCE to delete the instruction. Instead, visit
451   /// methods should return the value returned by this function.
eraseInstFromFunction(Instruction & I)452   Instruction *eraseInstFromFunction(Instruction &I) override {
453     LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
454     assert(I.use_empty() && "Cannot erase instruction that is used!");
455     salvageDebugInfo(I);
456 
457     // Make sure that we reprocess all operands now that we reduced their
458     // use counts.
459     for (Use &Operand : I.operands())
460       if (auto *Inst = dyn_cast<Instruction>(Operand))
461         Worklist.add(Inst);
462 
463     Worklist.remove(&I);
464     I.eraseFromParent();
465     MadeIRChange = true;
466     return nullptr; // Don't do anything with FI
467   }
468 
computeKnownBits(const Value * V,KnownBits & Known,unsigned Depth,const Instruction * CxtI)469   void computeKnownBits(const Value *V, KnownBits &Known,
470                         unsigned Depth, const Instruction *CxtI) const {
471     llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
472   }
473 
computeKnownBits(const Value * V,unsigned Depth,const Instruction * CxtI)474   KnownBits computeKnownBits(const Value *V, unsigned Depth,
475                              const Instruction *CxtI) const {
476     return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
477   }
478 
479   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
480                               unsigned Depth = 0,
481                               const Instruction *CxtI = nullptr) {
482     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
483   }
484 
485   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
486                          const Instruction *CxtI = nullptr) const {
487     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
488   }
489 
490   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
491                               const Instruction *CxtI = nullptr) const {
492     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
493   }
494 
computeOverflowForUnsignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)495   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
496                                                const Value *RHS,
497                                                const Instruction *CxtI) const {
498     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
499   }
500 
computeOverflowForSignedMul(const Value * LHS,const Value * RHS,const Instruction * CxtI)501   OverflowResult computeOverflowForSignedMul(const Value *LHS,
502                                              const Value *RHS,
503                                              const Instruction *CxtI) const {
504     return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
505   }
506 
computeOverflowForUnsignedAdd(const Value * LHS,const Value * RHS,const Instruction * CxtI)507   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
508                                                const Value *RHS,
509                                                const Instruction *CxtI) const {
510     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
511   }
512 
computeOverflowForSignedAdd(const Value * LHS,const Value * RHS,const Instruction * CxtI)513   OverflowResult computeOverflowForSignedAdd(const Value *LHS,
514                                              const Value *RHS,
515                                              const Instruction *CxtI) const {
516     return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
517   }
518 
computeOverflowForUnsignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)519   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
520                                                const Value *RHS,
521                                                const Instruction *CxtI) const {
522     return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
523   }
524 
computeOverflowForSignedSub(const Value * LHS,const Value * RHS,const Instruction * CxtI)525   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
526                                              const Instruction *CxtI) const {
527     return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
528   }
529 
530   OverflowResult computeOverflow(
531       Instruction::BinaryOps BinaryOp, bool IsSigned,
532       Value *LHS, Value *RHS, Instruction *CxtI) const;
533 
534   /// Performs a few simplifications for operators which are associative
535   /// or commutative.
536   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
537 
538   /// Tries to simplify binary operations which some other binary
539   /// operation distributes over.
540   ///
541   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
542   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
543   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
544   /// value, or null if it didn't simplify.
545   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
546 
547   /// Tries to simplify add operations using the definition of remainder.
548   ///
549   /// The definition of remainder is X % C = X - (X / C ) * C. The add
550   /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
551   /// X % (C0 * C1)
552   Value *SimplifyAddWithRemainder(BinaryOperator &I);
553 
554   // Binary Op helper for select operations where the expression can be
555   // efficiently reorganized.
556   Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
557                                         Value *RHS);
558 
559   /// This tries to simplify binary operations by factorizing out common terms
560   /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
561   Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
562                           Value *, Value *, Value *);
563 
564   /// Match a select chain which produces one of three values based on whether
565   /// the LHS is less than, equal to, or greater than RHS respectively.
566   /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
567   /// Equal and Greater values are saved in the matching process and returned to
568   /// the caller.
569   bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
570                                ConstantInt *&Less, ConstantInt *&Equal,
571                                ConstantInt *&Greater);
572 
573   /// Attempts to replace V with a simpler value based on the demanded
574   /// bits.
575   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
576                                  unsigned Depth, Instruction *CxtI);
577   bool SimplifyDemandedBits(Instruction *I, unsigned Op,
578                             const APInt &DemandedMask, KnownBits &Known,
579                             unsigned Depth = 0) override;
580 
581   /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
582   /// bits. It also tries to handle simplifications that can be done based on
583   /// DemandedMask, but without modifying the Instruction.
584   Value *SimplifyMultipleUseDemandedBits(Instruction *I,
585                                          const APInt &DemandedMask,
586                                          KnownBits &Known,
587                                          unsigned Depth, Instruction *CxtI);
588 
589   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
590   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
591   Value *simplifyShrShlDemandedBits(
592       Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
593       const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
594 
595   /// Tries to simplify operands to an integer instruction based on its
596   /// demanded bits.
597   bool SimplifyDemandedInstructionBits(Instruction &Inst);
598 
599   virtual Value *
600   SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
601                              unsigned Depth = 0,
602                              bool AllowMultipleUsers = false) override;
603 
604   /// Canonicalize the position of binops relative to shufflevector.
605   Instruction *foldVectorBinop(BinaryOperator &Inst);
606   Instruction *foldVectorSelect(SelectInst &Sel);
607 
608   /// Given a binary operator, cast instruction, or select which has a PHI node
609   /// as operand #0, see if we can fold the instruction into the PHI (which is
610   /// only possible if all operands to the PHI are constants).
611   Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
612 
613   /// Given an instruction with a select as one operand and a constant as the
614   /// other operand, try to fold the binary operator into the select arguments.
615   /// This also works for Cast instructions, which obviously do not have a
616   /// second operand.
617   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
618 
619   /// This is a convenience wrapper function for the above two functions.
620   Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
621 
622   Instruction *foldAddWithConstant(BinaryOperator &Add);
623 
624   /// Try to rotate an operation below a PHI node, using PHI nodes for
625   /// its operands.
626   Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
627   Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
628   Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
629   Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
630   Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
631   Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
632   Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
633 
634   /// If an integer typed PHI has only one use which is an IntToPtr operation,
635   /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
636   /// insert a new pointer typed PHI and replace the original one.
637   Instruction *foldIntegerTypedPHI(PHINode &PN);
638 
639   /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
640   /// folded operation.
641   void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
642 
643   Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
644                            ICmpInst::Predicate Cond, Instruction &I);
645   Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
646                              const Value *Other);
647   Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
648                                             GlobalVariable *GV, CmpInst &ICI,
649                                             ConstantInt *AndCst = nullptr);
650   Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
651                                     Constant *RHSC);
652   Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
653                                   ICmpInst::Predicate Pred);
654   Instruction *foldICmpWithCastOp(ICmpInst &ICI);
655 
656   Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
657   Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
658   Instruction *foldICmpWithConstant(ICmpInst &Cmp);
659   Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
660   Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
661   Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
662   Instruction *foldICmpEquality(ICmpInst &Cmp);
663   Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
664   Instruction *foldSignBitTest(ICmpInst &I);
665   Instruction *foldICmpWithZero(ICmpInst &Cmp);
666 
667   Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);
668 
669   Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
670                                       ConstantInt *C);
671   Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
672                                      const APInt &C);
673   Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
674                                    const APInt &C);
675   Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
676                                    const APInt &C);
677   Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
678                                   const APInt &C);
679   Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
680                                    const APInt &C);
681   Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
682                                    const APInt &C);
683   Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
684                                    const APInt &C);
685   Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
686                                     const APInt &C);
687   Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
688                                     const APInt &C);
689   Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
690                                    const APInt &C);
691   Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
692                                    const APInt &C);
693   Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
694                                    const APInt &C);
695   Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
696                                      const APInt &C1);
697   Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
698                                 const APInt &C1, const APInt &C2);
699   Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
700                                      const APInt &C2);
701   Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
702                                      const APInt &C2);
703 
704   Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
705                                                  BinaryOperator *BO,
706                                                  const APInt &C);
707   Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
708                                              const APInt &C);
709   Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
710                                                const APInt &C);
711 
712   // Helpers of visitSelectInst().
713   Instruction *foldSelectExtConst(SelectInst &Sel);
714   Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
715   Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
716   Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
717                             Value *A, Value *B, Instruction &Outer,
718                             SelectPatternFlavor SPF2, Value *C);
719   Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
720   Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
721 
722   Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
723                          bool isSigned, bool Inside);
724   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
725   bool mergeStoreIntoSuccessor(StoreInst &SI);
726 
727   /// Given an initial instruction, check to see if it is the root of a
728   /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
729   /// intrinsic.
730   Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
731                                       bool MatchBitReversals);
732 
733   Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
734   Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
735 
736   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
737 
738   /// Returns a value X such that Val = X * Scale, or null if none.
739   ///
740   /// If the multiplication is known not to overflow then NoSignedWrap is set.
741   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
742 };
743 
744 class Negator final {
745   /// Top-to-bottom, def-to-use negated instruction tree we produced.
746   SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
747 
748   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
749   BuilderTy Builder;
750 
751   const DataLayout &DL;
752   AssumptionCache &AC;
753   const DominatorTree &DT;
754 
755   const bool IsTrulyNegation;
756 
757   SmallDenseMap<Value *, Value *> NegationsCache;
758 
759   Negator(LLVMContext &C, const DataLayout &DL, AssumptionCache &AC,
760           const DominatorTree &DT, bool IsTrulyNegation);
761 
762 #if LLVM_ENABLE_STATS
763   unsigned NumValuesVisitedInThisNegator = 0;
764   ~Negator();
765 #endif
766 
767   using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
768                            Value * /*NegatedRoot*/>;
769 
770   std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
771 
772   LLVM_NODISCARD Value *visitImpl(Value *V, unsigned Depth);
773 
774   LLVM_NODISCARD Value *negate(Value *V, unsigned Depth);
775 
776   /// Recurse depth-first and attempt to sink the negation.
777   /// FIXME: use worklist?
778   LLVM_NODISCARD Optional<Result> run(Value *Root);
779 
780   Negator(const Negator &) = delete;
781   Negator(Negator &&) = delete;
782   Negator &operator=(const Negator &) = delete;
783   Negator &operator=(Negator &&) = delete;
784 
785 public:
786   /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
787   /// otherwise returns negated value.
788   LLVM_NODISCARD static Value *Negate(bool LHSIsZero, Value *Root,
789                                       InstCombinerImpl &IC);
790 };
791 
792 } // end namespace llvm
793 
794 #undef DEBUG_TYPE
795 
796 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
797