xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Linker/IRMover.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/IR/DiagnosticPrinter.h"
17 #include "llvm/IR/GVMaterializer.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/TypeFinder.h"
20 #include "llvm/Object/ModuleSymbolTable.h"
21 #include "llvm/Support/Error.h"
22 #include "llvm/Transforms/Utils/Cloning.h"
23 #include <utility>
24 using namespace llvm;
25 
26 //===----------------------------------------------------------------------===//
27 // TypeMap implementation.
28 //===----------------------------------------------------------------------===//
29 
30 namespace {
31 class TypeMapTy : public ValueMapTypeRemapper {
32   /// This is a mapping from a source type to a destination type to use.
33   DenseMap<Type *, Type *> MappedTypes;
34 
35   /// When checking to see if two subgraphs are isomorphic, we speculatively
36   /// add types to MappedTypes, but keep track of them here in case we need to
37   /// roll back.
38   SmallVector<Type *, 16> SpeculativeTypes;
39 
40   SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
41 
42   /// This is a list of non-opaque structs in the source module that are mapped
43   /// to an opaque struct in the destination module.
44   SmallVector<StructType *, 16> SrcDefinitionsToResolve;
45 
46   /// This is the set of opaque types in the destination modules who are
47   /// getting a body from the source module.
48   SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
49 
50 public:
TypeMapTy(IRMover::IdentifiedStructTypeSet & DstStructTypesSet)51   TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
52       : DstStructTypesSet(DstStructTypesSet) {}
53 
54   IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
55   /// Indicate that the specified type in the destination module is conceptually
56   /// equivalent to the specified type in the source module.
57   void addTypeMapping(Type *DstTy, Type *SrcTy);
58 
59   /// Produce a body for an opaque type in the dest module from a type
60   /// definition in the source module.
61   void linkDefinedTypeBodies();
62 
63   /// Return the mapped type to use for the specified input type from the
64   /// source module.
65   Type *get(Type *SrcTy);
66   Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
67 
68   void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
69 
get(FunctionType * T)70   FunctionType *get(FunctionType *T) {
71     return cast<FunctionType>(get((Type *)T));
72   }
73 
74 private:
remapType(Type * SrcTy)75   Type *remapType(Type *SrcTy) override { return get(SrcTy); }
76 
77   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
78 };
79 }
80 
addTypeMapping(Type * DstTy,Type * SrcTy)81 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
82   assert(SpeculativeTypes.empty());
83   assert(SpeculativeDstOpaqueTypes.empty());
84 
85   // Check to see if these types are recursively isomorphic and establish a
86   // mapping between them if so.
87   if (!areTypesIsomorphic(DstTy, SrcTy)) {
88     // Oops, they aren't isomorphic.  Just discard this request by rolling out
89     // any speculative mappings we've established.
90     for (Type *Ty : SpeculativeTypes)
91       MappedTypes.erase(Ty);
92 
93     SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
94                                    SpeculativeDstOpaqueTypes.size());
95     for (StructType *Ty : SpeculativeDstOpaqueTypes)
96       DstResolvedOpaqueTypes.erase(Ty);
97   } else {
98     // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
99     // and all its descendants to lower amount of renaming in LLVM context
100     // Renaming occurs because we load all source modules to the same context
101     // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
102     // As a result we may get several different types in the destination
103     // module, which are in fact the same.
104     for (Type *Ty : SpeculativeTypes)
105       if (auto *STy = dyn_cast<StructType>(Ty))
106         if (STy->hasName())
107           STy->setName("");
108   }
109   SpeculativeTypes.clear();
110   SpeculativeDstOpaqueTypes.clear();
111 }
112 
113 /// Recursively walk this pair of types, returning true if they are isomorphic,
114 /// false if they are not.
areTypesIsomorphic(Type * DstTy,Type * SrcTy)115 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
116   // Two types with differing kinds are clearly not isomorphic.
117   if (DstTy->getTypeID() != SrcTy->getTypeID())
118     return false;
119 
120   // If we have an entry in the MappedTypes table, then we have our answer.
121   Type *&Entry = MappedTypes[SrcTy];
122   if (Entry)
123     return Entry == DstTy;
124 
125   // Two identical types are clearly isomorphic.  Remember this
126   // non-speculatively.
127   if (DstTy == SrcTy) {
128     Entry = DstTy;
129     return true;
130   }
131 
132   // Okay, we have two types with identical kinds that we haven't seen before.
133 
134   // If this is an opaque struct type, special case it.
135   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
136     // Mapping an opaque type to any struct, just keep the dest struct.
137     if (SSTy->isOpaque()) {
138       Entry = DstTy;
139       SpeculativeTypes.push_back(SrcTy);
140       return true;
141     }
142 
143     // Mapping a non-opaque source type to an opaque dest.  If this is the first
144     // type that we're mapping onto this destination type then we succeed.  Keep
145     // the dest, but fill it in later. If this is the second (different) type
146     // that we're trying to map onto the same opaque type then we fail.
147     if (cast<StructType>(DstTy)->isOpaque()) {
148       // We can only map one source type onto the opaque destination type.
149       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
150         return false;
151       SrcDefinitionsToResolve.push_back(SSTy);
152       SpeculativeTypes.push_back(SrcTy);
153       SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
154       Entry = DstTy;
155       return true;
156     }
157   }
158 
159   // If the number of subtypes disagree between the two types, then we fail.
160   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
161     return false;
162 
163   // Fail if any of the extra properties (e.g. array size) of the type disagree.
164   if (isa<IntegerType>(DstTy))
165     return false; // bitwidth disagrees.
166   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
167     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
168       return false;
169   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
170     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
171       return false;
172   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
173     StructType *SSTy = cast<StructType>(SrcTy);
174     if (DSTy->isLiteral() != SSTy->isLiteral() ||
175         DSTy->isPacked() != SSTy->isPacked())
176       return false;
177   } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
178     if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
179       return false;
180   } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
181     if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
182       return false;
183   }
184 
185   // Otherwise, we speculate that these two types will line up and recursively
186   // check the subelements.
187   Entry = DstTy;
188   SpeculativeTypes.push_back(SrcTy);
189 
190   for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
191     if (!areTypesIsomorphic(DstTy->getContainedType(I),
192                             SrcTy->getContainedType(I)))
193       return false;
194 
195   // If everything seems to have lined up, then everything is great.
196   return true;
197 }
198 
linkDefinedTypeBodies()199 void TypeMapTy::linkDefinedTypeBodies() {
200   SmallVector<Type *, 16> Elements;
201   for (StructType *SrcSTy : SrcDefinitionsToResolve) {
202     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
203     assert(DstSTy->isOpaque());
204 
205     // Map the body of the source type over to a new body for the dest type.
206     Elements.resize(SrcSTy->getNumElements());
207     for (unsigned I = 0, E = Elements.size(); I != E; ++I)
208       Elements[I] = get(SrcSTy->getElementType(I));
209 
210     DstSTy->setBody(Elements, SrcSTy->isPacked());
211     DstStructTypesSet.switchToNonOpaque(DstSTy);
212   }
213   SrcDefinitionsToResolve.clear();
214   DstResolvedOpaqueTypes.clear();
215 }
216 
finishType(StructType * DTy,StructType * STy,ArrayRef<Type * > ETypes)217 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
218                            ArrayRef<Type *> ETypes) {
219   DTy->setBody(ETypes, STy->isPacked());
220 
221   // Steal STy's name.
222   if (STy->hasName()) {
223     SmallString<16> TmpName = STy->getName();
224     STy->setName("");
225     DTy->setName(TmpName);
226   }
227 
228   DstStructTypesSet.addNonOpaque(DTy);
229 }
230 
get(Type * Ty)231 Type *TypeMapTy::get(Type *Ty) {
232   SmallPtrSet<StructType *, 8> Visited;
233   return get(Ty, Visited);
234 }
235 
get(Type * Ty,SmallPtrSet<StructType *,8> & Visited)236 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
237   // If we already have an entry for this type, return it.
238   Type **Entry = &MappedTypes[Ty];
239   if (*Entry)
240     return *Entry;
241 
242   // These are types that LLVM itself will unique.
243   bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
244 
245   if (!IsUniqued) {
246 #ifndef NDEBUG
247     for (auto &Pair : MappedTypes) {
248       assert(!(Pair.first != Ty && Pair.second == Ty) &&
249              "mapping to a source type");
250     }
251 #endif
252 
253     if (!Visited.insert(cast<StructType>(Ty)).second) {
254       StructType *DTy = StructType::create(Ty->getContext());
255       return *Entry = DTy;
256     }
257   }
258 
259   // If this is not a recursive type, then just map all of the elements and
260   // then rebuild the type from inside out.
261   SmallVector<Type *, 4> ElementTypes;
262 
263   // If there are no element types to map, then the type is itself.  This is
264   // true for the anonymous {} struct, things like 'float', integers, etc.
265   if (Ty->getNumContainedTypes() == 0 && IsUniqued)
266     return *Entry = Ty;
267 
268   // Remap all of the elements, keeping track of whether any of them change.
269   bool AnyChange = false;
270   ElementTypes.resize(Ty->getNumContainedTypes());
271   for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
272     ElementTypes[I] = get(Ty->getContainedType(I), Visited);
273     AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
274   }
275 
276   // If we found our type while recursively processing stuff, just use it.
277   Entry = &MappedTypes[Ty];
278   if (*Entry) {
279     if (auto *DTy = dyn_cast<StructType>(*Entry)) {
280       if (DTy->isOpaque()) {
281         auto *STy = cast<StructType>(Ty);
282         finishType(DTy, STy, ElementTypes);
283       }
284     }
285     return *Entry;
286   }
287 
288   // If all of the element types mapped directly over and the type is not
289   // a named struct, then the type is usable as-is.
290   if (!AnyChange && IsUniqued)
291     return *Entry = Ty;
292 
293   // Otherwise, rebuild a modified type.
294   switch (Ty->getTypeID()) {
295   default:
296     llvm_unreachable("unknown derived type to remap");
297   case Type::ArrayTyID:
298     return *Entry = ArrayType::get(ElementTypes[0],
299                                    cast<ArrayType>(Ty)->getNumElements());
300   case Type::ScalableVectorTyID:
301   case Type::FixedVectorTyID:
302     return *Entry = VectorType::get(ElementTypes[0],
303                                     cast<VectorType>(Ty)->getElementCount());
304   case Type::PointerTyID:
305     return *Entry = PointerType::get(ElementTypes[0],
306                                      cast<PointerType>(Ty)->getAddressSpace());
307   case Type::FunctionTyID:
308     return *Entry = FunctionType::get(ElementTypes[0],
309                                       makeArrayRef(ElementTypes).slice(1),
310                                       cast<FunctionType>(Ty)->isVarArg());
311   case Type::StructTyID: {
312     auto *STy = cast<StructType>(Ty);
313     bool IsPacked = STy->isPacked();
314     if (IsUniqued)
315       return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
316 
317     // If the type is opaque, we can just use it directly.
318     if (STy->isOpaque()) {
319       DstStructTypesSet.addOpaque(STy);
320       return *Entry = Ty;
321     }
322 
323     if (StructType *OldT =
324             DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
325       STy->setName("");
326       return *Entry = OldT;
327     }
328 
329     if (!AnyChange) {
330       DstStructTypesSet.addNonOpaque(STy);
331       return *Entry = Ty;
332     }
333 
334     StructType *DTy = StructType::create(Ty->getContext());
335     finishType(DTy, STy, ElementTypes);
336     return *Entry = DTy;
337   }
338   }
339 }
340 
LinkDiagnosticInfo(DiagnosticSeverity Severity,const Twine & Msg)341 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
342                                        const Twine &Msg)
343     : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
print(DiagnosticPrinter & DP) const344 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
345 
346 //===----------------------------------------------------------------------===//
347 // IRLinker implementation.
348 //===----------------------------------------------------------------------===//
349 
350 namespace {
351 class IRLinker;
352 
353 /// Creates prototypes for functions that are lazily linked on the fly. This
354 /// speeds up linking for modules with many/ lazily linked functions of which
355 /// few get used.
356 class GlobalValueMaterializer final : public ValueMaterializer {
357   IRLinker &TheIRLinker;
358 
359 public:
GlobalValueMaterializer(IRLinker & TheIRLinker)360   GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
361   Value *materialize(Value *V) override;
362 };
363 
364 class LocalValueMaterializer final : public ValueMaterializer {
365   IRLinker &TheIRLinker;
366 
367 public:
LocalValueMaterializer(IRLinker & TheIRLinker)368   LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
369   Value *materialize(Value *V) override;
370 };
371 
372 /// Type of the Metadata map in \a ValueToValueMapTy.
373 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
374 
375 /// This is responsible for keeping track of the state used for moving data
376 /// from SrcM to DstM.
377 class IRLinker {
378   Module &DstM;
379   std::unique_ptr<Module> SrcM;
380 
381   /// See IRMover::move().
382   std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
383 
384   TypeMapTy TypeMap;
385   GlobalValueMaterializer GValMaterializer;
386   LocalValueMaterializer LValMaterializer;
387 
388   /// A metadata map that's shared between IRLinker instances.
389   MDMapT &SharedMDs;
390 
391   /// Mapping of values from what they used to be in Src, to what they are now
392   /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
393   /// due to the use of Value handles which the Linker doesn't actually need,
394   /// but this allows us to reuse the ValueMapper code.
395   ValueToValueMapTy ValueMap;
396   ValueToValueMapTy IndirectSymbolValueMap;
397 
398   DenseSet<GlobalValue *> ValuesToLink;
399   std::vector<GlobalValue *> Worklist;
400   std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
401 
maybeAdd(GlobalValue * GV)402   void maybeAdd(GlobalValue *GV) {
403     if (ValuesToLink.insert(GV).second)
404       Worklist.push_back(GV);
405   }
406 
407   /// Whether we are importing globals for ThinLTO, as opposed to linking the
408   /// source module. If this flag is set, it means that we can rely on some
409   /// other object file to define any non-GlobalValue entities defined by the
410   /// source module. This currently causes us to not link retained types in
411   /// debug info metadata and module inline asm.
412   bool IsPerformingImport;
413 
414   /// Set to true when all global value body linking is complete (including
415   /// lazy linking). Used to prevent metadata linking from creating new
416   /// references.
417   bool DoneLinkingBodies = false;
418 
419   /// The Error encountered during materialization. We use an Optional here to
420   /// avoid needing to manage an unconsumed success value.
421   Optional<Error> FoundError;
setError(Error E)422   void setError(Error E) {
423     if (E)
424       FoundError = std::move(E);
425   }
426 
427   /// Most of the errors produced by this module are inconvertible StringErrors.
428   /// This convenience function lets us return one of those more easily.
stringErr(const Twine & T)429   Error stringErr(const Twine &T) {
430     return make_error<StringError>(T, inconvertibleErrorCode());
431   }
432 
433   /// Entry point for mapping values and alternate context for mapping aliases.
434   ValueMapper Mapper;
435   unsigned IndirectSymbolMCID;
436 
437   /// Handles cloning of a global values from the source module into
438   /// the destination module, including setting the attributes and visibility.
439   GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
440 
emitWarning(const Twine & Message)441   void emitWarning(const Twine &Message) {
442     SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
443   }
444 
445   /// Given a global in the source module, return the global in the
446   /// destination module that is being linked to, if any.
getLinkedToGlobal(const GlobalValue * SrcGV)447   GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
448     // If the source has no name it can't link.  If it has local linkage,
449     // there is no name match-up going on.
450     if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
451       return nullptr;
452 
453     // Otherwise see if we have a match in the destination module's symtab.
454     GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
455     if (!DGV)
456       return nullptr;
457 
458     // If we found a global with the same name in the dest module, but it has
459     // internal linkage, we are really not doing any linkage here.
460     if (DGV->hasLocalLinkage())
461       return nullptr;
462 
463     // If we found an intrinsic declaration with mismatching prototypes, we
464     // probably had a nameclash. Don't use that version.
465     if (auto *FDGV = dyn_cast<Function>(DGV))
466       if (FDGV->isIntrinsic())
467         if (const auto *FSrcGV = dyn_cast<Function>(SrcGV))
468           if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType()))
469             return nullptr;
470 
471     // Otherwise, we do in fact link to the destination global.
472     return DGV;
473   }
474 
475   void computeTypeMapping();
476 
477   Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
478                                              const GlobalVariable *SrcGV);
479 
480   /// Given the GlobaValue \p SGV in the source module, and the matching
481   /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
482   /// into the destination module.
483   ///
484   /// Note this code may call the client-provided \p AddLazyFor.
485   bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
486   Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
487                                             bool ForIndirectSymbol);
488 
489   Error linkModuleFlagsMetadata();
490 
491   void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
492   Error linkFunctionBody(Function &Dst, Function &Src);
493   void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
494                               GlobalIndirectSymbol &Src);
495   Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
496 
497   /// Replace all types in the source AttributeList with the
498   /// corresponding destination type.
499   AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
500 
501   /// Functions that take care of cloning a specific global value type
502   /// into the destination module.
503   GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
504   Function *copyFunctionProto(const Function *SF);
505   GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS);
506 
507   /// Perform "replace all uses with" operations. These work items need to be
508   /// performed as part of materialization, but we postpone them to happen after
509   /// materialization is done. The materializer called by ValueMapper is not
510   /// expected to delete constants, as ValueMapper is holding pointers to some
511   /// of them, but constant destruction may be indirectly triggered by RAUW.
512   /// Hence, the need to move this out of the materialization call chain.
513   void flushRAUWWorklist();
514 
515   /// When importing for ThinLTO, prevent importing of types listed on
516   /// the DICompileUnit that we don't need a copy of in the importing
517   /// module.
518   void prepareCompileUnitsForImport();
519   void linkNamedMDNodes();
520 
521 public:
IRLinker(Module & DstM,MDMapT & SharedMDs,IRMover::IdentifiedStructTypeSet & Set,std::unique_ptr<Module> SrcM,ArrayRef<GlobalValue * > ValuesToLink,std::function<void (GlobalValue &,IRMover::ValueAdder)> AddLazyFor,bool IsPerformingImport)522   IRLinker(Module &DstM, MDMapT &SharedMDs,
523            IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
524            ArrayRef<GlobalValue *> ValuesToLink,
525            std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
526            bool IsPerformingImport)
527       : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
528         TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
529         SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
530         Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals,
531                &TypeMap, &GValMaterializer),
532         IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
533             IndirectSymbolValueMap, &LValMaterializer)) {
534     ValueMap.getMDMap() = std::move(SharedMDs);
535     for (GlobalValue *GV : ValuesToLink)
536       maybeAdd(GV);
537     if (IsPerformingImport)
538       prepareCompileUnitsForImport();
539   }
~IRLinker()540   ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
541 
542   Error run();
543   Value *materialize(Value *V, bool ForIndirectSymbol);
544 };
545 }
546 
547 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
548 /// table. This is good for all clients except for us. Go through the trouble
549 /// to force this back.
forceRenaming(GlobalValue * GV,StringRef Name)550 static void forceRenaming(GlobalValue *GV, StringRef Name) {
551   // If the global doesn't force its name or if it already has the right name,
552   // there is nothing for us to do.
553   if (GV->hasLocalLinkage() || GV->getName() == Name)
554     return;
555 
556   Module *M = GV->getParent();
557 
558   // If there is a conflict, rename the conflict.
559   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
560     GV->takeName(ConflictGV);
561     ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
562     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
563   } else {
564     GV->setName(Name); // Force the name back
565   }
566 }
567 
materialize(Value * SGV)568 Value *GlobalValueMaterializer::materialize(Value *SGV) {
569   return TheIRLinker.materialize(SGV, false);
570 }
571 
materialize(Value * SGV)572 Value *LocalValueMaterializer::materialize(Value *SGV) {
573   return TheIRLinker.materialize(SGV, true);
574 }
575 
materialize(Value * V,bool ForIndirectSymbol)576 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
577   auto *SGV = dyn_cast<GlobalValue>(V);
578   if (!SGV)
579     return nullptr;
580 
581   // When linking a global from other modules than source & dest, skip
582   // materializing it because it would be mapped later when its containing
583   // module is linked. Linking it now would potentially pull in many types that
584   // may not be mapped properly.
585   if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
586     return nullptr;
587 
588   Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
589   if (!NewProto) {
590     setError(NewProto.takeError());
591     return nullptr;
592   }
593   if (!*NewProto)
594     return nullptr;
595 
596   GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
597   if (!New)
598     return *NewProto;
599 
600   // If we already created the body, just return.
601   if (auto *F = dyn_cast<Function>(New)) {
602     if (!F->isDeclaration())
603       return New;
604   } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
605     if (V->hasInitializer() || V->hasAppendingLinkage())
606       return New;
607   } else {
608     auto *IS = cast<GlobalIndirectSymbol>(New);
609     if (IS->getIndirectSymbol())
610       return New;
611   }
612 
613   // If the global is being linked for an indirect symbol, it may have already
614   // been scheduled to satisfy a regular symbol. Similarly, a global being linked
615   // for a regular symbol may have already been scheduled for an indirect
616   // symbol. Check for these cases by looking in the other value map and
617   // confirming the same value has been scheduled.  If there is an entry in the
618   // ValueMap but the value is different, it means that the value already had a
619   // definition in the destination module (linkonce for instance), but we need a
620   // new definition for the indirect symbol ("New" will be different).
621   if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) ||
622       (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New))
623     return New;
624 
625   if (ForIndirectSymbol || shouldLink(New, *SGV))
626     setError(linkGlobalValueBody(*New, *SGV));
627 
628   return New;
629 }
630 
631 /// Loop through the global variables in the src module and merge them into the
632 /// dest module.
copyGlobalVariableProto(const GlobalVariable * SGVar)633 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
634   // No linking to be performed or linking from the source: simply create an
635   // identical version of the symbol over in the dest module... the
636   // initializer will be filled in later by LinkGlobalInits.
637   GlobalVariable *NewDGV =
638       new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
639                          SGVar->isConstant(), GlobalValue::ExternalLinkage,
640                          /*init*/ nullptr, SGVar->getName(),
641                          /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
642                          SGVar->getAddressSpace());
643   NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment()));
644   NewDGV->copyAttributesFrom(SGVar);
645   return NewDGV;
646 }
647 
mapAttributeTypes(LLVMContext & C,AttributeList Attrs)648 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
649   for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
650     for (Attribute::AttrKind TypedAttr :
651          {Attribute::ByVal, Attribute::StructRet, Attribute::ByRef,
652           Attribute::InAlloca}) {
653       if (Attrs.hasAttribute(i, TypedAttr)) {
654         if (Type *Ty = Attrs.getAttribute(i, TypedAttr).getValueAsType()) {
655           Attrs = Attrs.replaceAttributeType(C, i, TypedAttr, TypeMap.get(Ty));
656           break;
657         }
658       }
659     }
660   }
661   return Attrs;
662 }
663 
664 /// Link the function in the source module into the destination module if
665 /// needed, setting up mapping information.
copyFunctionProto(const Function * SF)666 Function *IRLinker::copyFunctionProto(const Function *SF) {
667   // If there is no linkage to be performed or we are linking from the source,
668   // bring SF over.
669   auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
670                              GlobalValue::ExternalLinkage,
671                              SF->getAddressSpace(), SF->getName(), &DstM);
672   F->copyAttributesFrom(SF);
673   F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
674   return F;
675 }
676 
677 /// Set up prototypes for any indirect symbols that come over from the source
678 /// module.
679 GlobalValue *
copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol * SGIS)680 IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) {
681   // If there is no linkage to be performed or we're linking from the source,
682   // bring over SGA.
683   auto *Ty = TypeMap.get(SGIS->getValueType());
684   GlobalIndirectSymbol *GIS;
685   if (isa<GlobalAlias>(SGIS))
686     GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(),
687                               GlobalValue::ExternalLinkage, SGIS->getName(),
688                               &DstM);
689   else
690     GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(),
691                               GlobalValue::ExternalLinkage, SGIS->getName(),
692                               nullptr, &DstM);
693   GIS->copyAttributesFrom(SGIS);
694   return GIS;
695 }
696 
copyGlobalValueProto(const GlobalValue * SGV,bool ForDefinition)697 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
698                                             bool ForDefinition) {
699   GlobalValue *NewGV;
700   if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
701     NewGV = copyGlobalVariableProto(SGVar);
702   } else if (auto *SF = dyn_cast<Function>(SGV)) {
703     NewGV = copyFunctionProto(SF);
704   } else {
705     if (ForDefinition)
706       NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV));
707     else if (SGV->getValueType()->isFunctionTy())
708       NewGV =
709           Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
710                            GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
711                            SGV->getName(), &DstM);
712     else
713       NewGV =
714           new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
715                              /*isConstant*/ false, GlobalValue::ExternalLinkage,
716                              /*init*/ nullptr, SGV->getName(),
717                              /*insertbefore*/ nullptr,
718                              SGV->getThreadLocalMode(), SGV->getAddressSpace());
719   }
720 
721   if (ForDefinition)
722     NewGV->setLinkage(SGV->getLinkage());
723   else if (SGV->hasExternalWeakLinkage())
724     NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
725 
726   if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
727     // Metadata for global variables and function declarations is copied eagerly.
728     if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
729       NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
730   }
731 
732   // Remove these copied constants in case this stays a declaration, since
733   // they point to the source module. If the def is linked the values will
734   // be mapped in during linkFunctionBody.
735   if (auto *NewF = dyn_cast<Function>(NewGV)) {
736     NewF->setPersonalityFn(nullptr);
737     NewF->setPrefixData(nullptr);
738     NewF->setPrologueData(nullptr);
739   }
740 
741   return NewGV;
742 }
743 
getTypeNamePrefix(StringRef Name)744 static StringRef getTypeNamePrefix(StringRef Name) {
745   size_t DotPos = Name.rfind('.');
746   return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
747           !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
748              ? Name
749              : Name.substr(0, DotPos);
750 }
751 
752 /// Loop over all of the linked values to compute type mappings.  For example,
753 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
754 /// types 'Foo' but one got renamed when the module was loaded into the same
755 /// LLVMContext.
computeTypeMapping()756 void IRLinker::computeTypeMapping() {
757   for (GlobalValue &SGV : SrcM->globals()) {
758     GlobalValue *DGV = getLinkedToGlobal(&SGV);
759     if (!DGV)
760       continue;
761 
762     if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
763       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
764       continue;
765     }
766 
767     // Unify the element type of appending arrays.
768     ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
769     ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
770     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
771   }
772 
773   for (GlobalValue &SGV : *SrcM)
774     if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
775       if (DGV->getType() == SGV.getType()) {
776         // If the types of DGV and SGV are the same, it means that DGV is from
777         // the source module and got added to DstM from a shared metadata.  We
778         // shouldn't map this type to itself in case the type's components get
779         // remapped to a new type from DstM (for instance, during the loop over
780         // SrcM->getIdentifiedStructTypes() below).
781         continue;
782       }
783 
784       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
785     }
786 
787   for (GlobalValue &SGV : SrcM->aliases())
788     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
789       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
790 
791   // Incorporate types by name, scanning all the types in the source module.
792   // At this point, the destination module may have a type "%foo = { i32 }" for
793   // example.  When the source module got loaded into the same LLVMContext, if
794   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
795   std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
796   for (StructType *ST : Types) {
797     if (!ST->hasName())
798       continue;
799 
800     if (TypeMap.DstStructTypesSet.hasType(ST)) {
801       // This is actually a type from the destination module.
802       // getIdentifiedStructTypes() can have found it by walking debug info
803       // metadata nodes, some of which get linked by name when ODR Type Uniquing
804       // is enabled on the Context, from the source to the destination module.
805       continue;
806     }
807 
808     auto STTypePrefix = getTypeNamePrefix(ST->getName());
809     if (STTypePrefix.size() == ST->getName().size())
810       continue;
811 
812     // Check to see if the destination module has a struct with the prefix name.
813     StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
814     if (!DST)
815       continue;
816 
817     // Don't use it if this actually came from the source module. They're in
818     // the same LLVMContext after all. Also don't use it unless the type is
819     // actually used in the destination module. This can happen in situations
820     // like this:
821     //
822     //      Module A                         Module B
823     //      --------                         --------
824     //   %Z = type { %A }                %B = type { %C.1 }
825     //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
826     //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
827     //   %C = type { i8* }               %B.3 = type { %C.1 }
828     //
829     // When we link Module B with Module A, the '%B' in Module B is
830     // used. However, that would then use '%C.1'. But when we process '%C.1',
831     // we prefer to take the '%C' version. So we are then left with both
832     // '%C.1' and '%C' being used for the same types. This leads to some
833     // variables using one type and some using the other.
834     if (TypeMap.DstStructTypesSet.hasType(DST))
835       TypeMap.addTypeMapping(DST, ST);
836   }
837 
838   // Now that we have discovered all of the type equivalences, get a body for
839   // any 'opaque' types in the dest module that are now resolved.
840   TypeMap.linkDefinedTypeBodies();
841 }
842 
getArrayElements(const Constant * C,SmallVectorImpl<Constant * > & Dest)843 static void getArrayElements(const Constant *C,
844                              SmallVectorImpl<Constant *> &Dest) {
845   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
846 
847   for (unsigned i = 0; i != NumElements; ++i)
848     Dest.push_back(C->getAggregateElement(i));
849 }
850 
851 /// If there were any appending global variables, link them together now.
852 Expected<Constant *>
linkAppendingVarProto(GlobalVariable * DstGV,const GlobalVariable * SrcGV)853 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
854                                 const GlobalVariable *SrcGV) {
855   // Check that both variables have compatible properties.
856   if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
857     if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
858       return stringErr(
859           "Linking globals named '" + SrcGV->getName() +
860           "': can only link appending global with another appending "
861           "global!");
862 
863     if (DstGV->isConstant() != SrcGV->isConstant())
864       return stringErr("Appending variables linked with different const'ness!");
865 
866     if (DstGV->getAlignment() != SrcGV->getAlignment())
867       return stringErr(
868           "Appending variables with different alignment need to be linked!");
869 
870     if (DstGV->getVisibility() != SrcGV->getVisibility())
871       return stringErr(
872           "Appending variables with different visibility need to be linked!");
873 
874     if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
875       return stringErr(
876           "Appending variables with different unnamed_addr need to be linked!");
877 
878     if (DstGV->getSection() != SrcGV->getSection())
879       return stringErr(
880           "Appending variables with different section name need to be linked!");
881   }
882 
883   // Do not need to do anything if source is a declaration.
884   if (SrcGV->isDeclaration())
885     return DstGV;
886 
887   Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
888                     ->getElementType();
889 
890   // FIXME: This upgrade is done during linking to support the C API.  Once the
891   // old form is deprecated, we should move this upgrade to
892   // llvm::UpgradeGlobalVariable() and simplify the logic here and in
893   // Mapper::mapAppendingVariable() in ValueMapper.cpp.
894   StringRef Name = SrcGV->getName();
895   bool IsNewStructor = false;
896   bool IsOldStructor = false;
897   if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
898     if (cast<StructType>(EltTy)->getNumElements() == 3)
899       IsNewStructor = true;
900     else
901       IsOldStructor = true;
902   }
903 
904   PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
905   if (IsOldStructor) {
906     auto &ST = *cast<StructType>(EltTy);
907     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
908     EltTy = StructType::get(SrcGV->getContext(), Tys, false);
909   }
910 
911   uint64_t DstNumElements = 0;
912   if (DstGV && !DstGV->isDeclaration()) {
913     ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
914     DstNumElements = DstTy->getNumElements();
915 
916     // Check to see that they two arrays agree on type.
917     if (EltTy != DstTy->getElementType())
918       return stringErr("Appending variables with different element types!");
919   }
920 
921   SmallVector<Constant *, 16> SrcElements;
922   getArrayElements(SrcGV->getInitializer(), SrcElements);
923 
924   if (IsNewStructor) {
925     erase_if(SrcElements, [this](Constant *E) {
926       auto *Key =
927           dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
928       if (!Key)
929         return false;
930       GlobalValue *DGV = getLinkedToGlobal(Key);
931       return !shouldLink(DGV, *Key);
932     });
933   }
934   uint64_t NewSize = DstNumElements + SrcElements.size();
935   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
936 
937   // Create the new global variable.
938   GlobalVariable *NG = new GlobalVariable(
939       DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
940       /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
941       SrcGV->getAddressSpace());
942 
943   NG->copyAttributesFrom(SrcGV);
944   forceRenaming(NG, SrcGV->getName());
945 
946   Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
947 
948   Mapper.scheduleMapAppendingVariable(
949       *NG,
950       (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
951       IsOldStructor, SrcElements);
952 
953   // Replace any uses of the two global variables with uses of the new
954   // global.
955   if (DstGV) {
956     RAUWWorklist.push_back(
957         std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
958   }
959 
960   return Ret;
961 }
962 
shouldLink(GlobalValue * DGV,GlobalValue & SGV)963 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
964   if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
965     return true;
966 
967   if (DGV && !DGV->isDeclarationForLinker())
968     return false;
969 
970   if (SGV.isDeclaration() || DoneLinkingBodies)
971     return false;
972 
973   // Callback to the client to give a chance to lazily add the Global to the
974   // list of value to link.
975   bool LazilyAdded = false;
976   AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
977     maybeAdd(&GV);
978     LazilyAdded = true;
979   });
980   return LazilyAdded;
981 }
982 
linkGlobalValueProto(GlobalValue * SGV,bool ForIndirectSymbol)983 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
984                                                     bool ForIndirectSymbol) {
985   GlobalValue *DGV = getLinkedToGlobal(SGV);
986 
987   bool ShouldLink = shouldLink(DGV, *SGV);
988 
989   // just missing from map
990   if (ShouldLink) {
991     auto I = ValueMap.find(SGV);
992     if (I != ValueMap.end())
993       return cast<Constant>(I->second);
994 
995     I = IndirectSymbolValueMap.find(SGV);
996     if (I != IndirectSymbolValueMap.end())
997       return cast<Constant>(I->second);
998   }
999 
1000   if (!ShouldLink && ForIndirectSymbol)
1001     DGV = nullptr;
1002 
1003   // Handle the ultra special appending linkage case first.
1004   if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
1005     return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
1006                                  cast<GlobalVariable>(SGV));
1007 
1008   bool NeedsRenaming = false;
1009   GlobalValue *NewGV;
1010   if (DGV && !ShouldLink) {
1011     NewGV = DGV;
1012   } else {
1013     // If we are done linking global value bodies (i.e. we are performing
1014     // metadata linking), don't link in the global value due to this
1015     // reference, simply map it to null.
1016     if (DoneLinkingBodies)
1017       return nullptr;
1018 
1019     NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
1020     if (ShouldLink || !ForIndirectSymbol)
1021       NeedsRenaming = true;
1022   }
1023 
1024   // Overloaded intrinsics have overloaded types names as part of their
1025   // names. If we renamed overloaded types we should rename the intrinsic
1026   // as well.
1027   if (Function *F = dyn_cast<Function>(NewGV))
1028     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
1029       NewGV->eraseFromParent();
1030       NewGV = Remangled.getValue();
1031       NeedsRenaming = false;
1032     }
1033 
1034   if (NeedsRenaming)
1035     forceRenaming(NewGV, SGV->getName());
1036 
1037   if (ShouldLink || ForIndirectSymbol) {
1038     if (const Comdat *SC = SGV->getComdat()) {
1039       if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
1040         Comdat *DC = DstM.getOrInsertComdat(SC->getName());
1041         DC->setSelectionKind(SC->getSelectionKind());
1042         GO->setComdat(DC);
1043       }
1044     }
1045   }
1046 
1047   if (!ShouldLink && ForIndirectSymbol)
1048     NewGV->setLinkage(GlobalValue::InternalLinkage);
1049 
1050   Constant *C = NewGV;
1051   // Only create a bitcast if necessary. In particular, with
1052   // DebugTypeODRUniquing we may reach metadata in the destination module
1053   // containing a GV from the source module, in which case SGV will be
1054   // the same as DGV and NewGV, and TypeMap.get() will assert since it
1055   // assumes it is being invoked on a type in the source module.
1056   if (DGV && NewGV != SGV) {
1057     C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1058       NewGV, TypeMap.get(SGV->getType()));
1059   }
1060 
1061   if (DGV && NewGV != DGV) {
1062     // Schedule "replace all uses with" to happen after materializing is
1063     // done. It is not safe to do it now, since ValueMapper may be holding
1064     // pointers to constants that will get deleted if RAUW runs.
1065     RAUWWorklist.push_back(std::make_pair(
1066         DGV,
1067         ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1068   }
1069 
1070   return C;
1071 }
1072 
1073 /// Update the initializers in the Dest module now that all globals that may be
1074 /// referenced are in Dest.
linkGlobalVariable(GlobalVariable & Dst,GlobalVariable & Src)1075 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1076   // Figure out what the initializer looks like in the dest module.
1077   Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1078 }
1079 
1080 /// Copy the source function over into the dest function and fix up references
1081 /// to values. At this point we know that Dest is an external function, and
1082 /// that Src is not.
linkFunctionBody(Function & Dst,Function & Src)1083 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1084   assert(Dst.isDeclaration() && !Src.isDeclaration());
1085 
1086   // Materialize if needed.
1087   if (Error Err = Src.materialize())
1088     return Err;
1089 
1090   // Link in the operands without remapping.
1091   if (Src.hasPrefixData())
1092     Dst.setPrefixData(Src.getPrefixData());
1093   if (Src.hasPrologueData())
1094     Dst.setPrologueData(Src.getPrologueData());
1095   if (Src.hasPersonalityFn())
1096     Dst.setPersonalityFn(Src.getPersonalityFn());
1097 
1098   // Copy over the metadata attachments without remapping.
1099   Dst.copyMetadata(&Src, 0);
1100 
1101   // Steal arguments and splice the body of Src into Dst.
1102   Dst.stealArgumentListFrom(Src);
1103   Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1104 
1105   // Everything has been moved over.  Remap it.
1106   Mapper.scheduleRemapFunction(Dst);
1107   return Error::success();
1108 }
1109 
linkIndirectSymbolBody(GlobalIndirectSymbol & Dst,GlobalIndirectSymbol & Src)1110 void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
1111                                       GlobalIndirectSymbol &Src) {
1112   Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(),
1113                                          IndirectSymbolMCID);
1114 }
1115 
linkGlobalValueBody(GlobalValue & Dst,GlobalValue & Src)1116 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1117   if (auto *F = dyn_cast<Function>(&Src))
1118     return linkFunctionBody(cast<Function>(Dst), *F);
1119   if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1120     linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1121     return Error::success();
1122   }
1123   linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src));
1124   return Error::success();
1125 }
1126 
flushRAUWWorklist()1127 void IRLinker::flushRAUWWorklist() {
1128   for (const auto &Elem : RAUWWorklist) {
1129     GlobalValue *Old;
1130     Value *New;
1131     std::tie(Old, New) = Elem;
1132 
1133     Old->replaceAllUsesWith(New);
1134     Old->eraseFromParent();
1135   }
1136   RAUWWorklist.clear();
1137 }
1138 
prepareCompileUnitsForImport()1139 void IRLinker::prepareCompileUnitsForImport() {
1140   NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1141   if (!SrcCompileUnits)
1142     return;
1143   // When importing for ThinLTO, prevent importing of types listed on
1144   // the DICompileUnit that we don't need a copy of in the importing
1145   // module. They will be emitted by the originating module.
1146   for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1147     auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1148     assert(CU && "Expected valid compile unit");
1149     // Enums, macros, and retained types don't need to be listed on the
1150     // imported DICompileUnit. This means they will only be imported
1151     // if reached from the mapped IR.
1152     CU->replaceEnumTypes(nullptr);
1153     CU->replaceMacros(nullptr);
1154     CU->replaceRetainedTypes(nullptr);
1155 
1156     // The original definition (or at least its debug info - if the variable is
1157     // internalized and optimized away) will remain in the source module, so
1158     // there's no need to import them.
1159     // If LLVM ever does more advanced optimizations on global variables
1160     // (removing/localizing write operations, for instance) that can track
1161     // through debug info, this decision may need to be revisited - but do so
1162     // with care when it comes to debug info size. Emitting small CUs containing
1163     // only a few imported entities into every destination module may be very
1164     // size inefficient.
1165     CU->replaceGlobalVariables(nullptr);
1166 
1167     // Imported entities only need to be mapped in if they have local
1168     // scope, as those might correspond to an imported entity inside a
1169     // function being imported (any locally scoped imported entities that
1170     // don't end up referenced by an imported function will not be emitted
1171     // into the object). Imported entities not in a local scope
1172     // (e.g. on the namespace) only need to be emitted by the originating
1173     // module. Create a list of the locally scoped imported entities, and
1174     // replace the source CUs imported entity list with the new list, so
1175     // only those are mapped in.
1176     // FIXME: Locally-scoped imported entities could be moved to the
1177     // functions they are local to instead of listing them on the CU, and
1178     // we would naturally only link in those needed by function importing.
1179     SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1180     bool ReplaceImportedEntities = false;
1181     for (auto *IE : CU->getImportedEntities()) {
1182       DIScope *Scope = IE->getScope();
1183       assert(Scope && "Invalid Scope encoding!");
1184       if (isa<DILocalScope>(Scope))
1185         AllImportedModules.emplace_back(IE);
1186       else
1187         ReplaceImportedEntities = true;
1188     }
1189     if (ReplaceImportedEntities) {
1190       if (!AllImportedModules.empty())
1191         CU->replaceImportedEntities(MDTuple::get(
1192             CU->getContext(),
1193             SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1194                                         AllImportedModules.end())));
1195       else
1196         // If there were no local scope imported entities, we can map
1197         // the whole list to nullptr.
1198         CU->replaceImportedEntities(nullptr);
1199     }
1200   }
1201 }
1202 
1203 /// Insert all of the named MDNodes in Src into the Dest module.
linkNamedMDNodes()1204 void IRLinker::linkNamedMDNodes() {
1205   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1206   for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1207     // Don't link module flags here. Do them separately.
1208     if (&NMD == SrcModFlags)
1209       continue;
1210     NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1211     // Add Src elements into Dest node.
1212     for (const MDNode *Op : NMD.operands())
1213       DestNMD->addOperand(Mapper.mapMDNode(*Op));
1214   }
1215 }
1216 
1217 /// Merge the linker flags in Src into the Dest module.
linkModuleFlagsMetadata()1218 Error IRLinker::linkModuleFlagsMetadata() {
1219   // If the source module has no module flags, we are done.
1220   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1221   if (!SrcModFlags)
1222     return Error::success();
1223 
1224   // If the destination module doesn't have module flags yet, then just copy
1225   // over the source module's flags.
1226   NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1227   if (DstModFlags->getNumOperands() == 0) {
1228     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1229       DstModFlags->addOperand(SrcModFlags->getOperand(I));
1230 
1231     return Error::success();
1232   }
1233 
1234   // First build a map of the existing module flags and requirements.
1235   DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1236   SmallSetVector<MDNode *, 16> Requirements;
1237   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1238     MDNode *Op = DstModFlags->getOperand(I);
1239     ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1240     MDString *ID = cast<MDString>(Op->getOperand(1));
1241 
1242     if (Behavior->getZExtValue() == Module::Require) {
1243       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1244     } else {
1245       Flags[ID] = std::make_pair(Op, I);
1246     }
1247   }
1248 
1249   // Merge in the flags from the source module, and also collect its set of
1250   // requirements.
1251   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1252     MDNode *SrcOp = SrcModFlags->getOperand(I);
1253     ConstantInt *SrcBehavior =
1254         mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1255     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1256     MDNode *DstOp;
1257     unsigned DstIndex;
1258     std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1259     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1260 
1261     // If this is a requirement, add it and continue.
1262     if (SrcBehaviorValue == Module::Require) {
1263       // If the destination module does not already have this requirement, add
1264       // it.
1265       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1266         DstModFlags->addOperand(SrcOp);
1267       }
1268       continue;
1269     }
1270 
1271     // If there is no existing flag with this ID, just add it.
1272     if (!DstOp) {
1273       Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1274       DstModFlags->addOperand(SrcOp);
1275       continue;
1276     }
1277 
1278     // Otherwise, perform a merge.
1279     ConstantInt *DstBehavior =
1280         mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1281     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1282 
1283     auto overrideDstValue = [&]() {
1284       DstModFlags->setOperand(DstIndex, SrcOp);
1285       Flags[ID].first = SrcOp;
1286     };
1287 
1288     // If either flag has override behavior, handle it first.
1289     if (DstBehaviorValue == Module::Override) {
1290       // Diagnose inconsistent flags which both have override behavior.
1291       if (SrcBehaviorValue == Module::Override &&
1292           SrcOp->getOperand(2) != DstOp->getOperand(2))
1293         return stringErr("linking module flags '" + ID->getString() +
1294                          "': IDs have conflicting override values in '" +
1295                          SrcM->getModuleIdentifier() + "' and '" +
1296                          DstM.getModuleIdentifier() + "'");
1297       continue;
1298     } else if (SrcBehaviorValue == Module::Override) {
1299       // Update the destination flag to that of the source.
1300       overrideDstValue();
1301       continue;
1302     }
1303 
1304     // Diagnose inconsistent merge behavior types.
1305     if (SrcBehaviorValue != DstBehaviorValue) {
1306       bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1307                          DstBehaviorValue == Module::Warning) ||
1308                         (DstBehaviorValue == Module::Max &&
1309                          SrcBehaviorValue == Module::Warning);
1310       if (!MaxAndWarn)
1311         return stringErr("linking module flags '" + ID->getString() +
1312                          "': IDs have conflicting behaviors in '" +
1313                          SrcM->getModuleIdentifier() + "' and '" +
1314                          DstM.getModuleIdentifier() + "'");
1315     }
1316 
1317     auto replaceDstValue = [&](MDNode *New) {
1318       Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1319       MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1320       DstModFlags->setOperand(DstIndex, Flag);
1321       Flags[ID].first = Flag;
1322     };
1323 
1324     // Emit a warning if the values differ and either source or destination
1325     // request Warning behavior.
1326     if ((DstBehaviorValue == Module::Warning ||
1327          SrcBehaviorValue == Module::Warning) &&
1328         SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1329       std::string Str;
1330       raw_string_ostream(Str)
1331           << "linking module flags '" << ID->getString()
1332           << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1333           << "' from " << SrcM->getModuleIdentifier() << " with '"
1334           << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1335           << ')';
1336       emitWarning(Str);
1337     }
1338 
1339     // Choose the maximum if either source or destination request Max behavior.
1340     if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1341       ConstantInt *DstValue =
1342           mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1343       ConstantInt *SrcValue =
1344           mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1345 
1346       // The resulting flag should have a Max behavior, and contain the maximum
1347       // value from between the source and destination values.
1348       Metadata *FlagOps[] = {
1349           (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1350           (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1351               ->getOperand(2)};
1352       MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1353       DstModFlags->setOperand(DstIndex, Flag);
1354       Flags[ID].first = Flag;
1355       continue;
1356     }
1357 
1358     // Perform the merge for standard behavior types.
1359     switch (SrcBehaviorValue) {
1360     case Module::Require:
1361     case Module::Override:
1362       llvm_unreachable("not possible");
1363     case Module::Error: {
1364       // Emit an error if the values differ.
1365       if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1366         return stringErr("linking module flags '" + ID->getString() +
1367                          "': IDs have conflicting values in '" +
1368                          SrcM->getModuleIdentifier() + "' and '" +
1369                          DstM.getModuleIdentifier() + "'");
1370       continue;
1371     }
1372     case Module::Warning: {
1373       break;
1374     }
1375     case Module::Max: {
1376       break;
1377     }
1378     case Module::Append: {
1379       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1380       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1381       SmallVector<Metadata *, 8> MDs;
1382       MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1383       MDs.append(DstValue->op_begin(), DstValue->op_end());
1384       MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1385 
1386       replaceDstValue(MDNode::get(DstM.getContext(), MDs));
1387       break;
1388     }
1389     case Module::AppendUnique: {
1390       SmallSetVector<Metadata *, 16> Elts;
1391       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1392       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1393       Elts.insert(DstValue->op_begin(), DstValue->op_end());
1394       Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1395 
1396       replaceDstValue(MDNode::get(DstM.getContext(),
1397                                   makeArrayRef(Elts.begin(), Elts.end())));
1398       break;
1399     }
1400     }
1401 
1402   }
1403 
1404   // Check all of the requirements.
1405   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1406     MDNode *Requirement = Requirements[I];
1407     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1408     Metadata *ReqValue = Requirement->getOperand(1);
1409 
1410     MDNode *Op = Flags[Flag].first;
1411     if (!Op || Op->getOperand(2) != ReqValue)
1412       return stringErr("linking module flags '" + Flag->getString() +
1413                        "': does not have the required value");
1414   }
1415   return Error::success();
1416 }
1417 
1418 /// Return InlineAsm adjusted with target-specific directives if required.
1419 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1420 /// to support mixing module-level inline assembly from ARM and Thumb modules.
adjustInlineAsm(const std::string & InlineAsm,const Triple & Triple)1421 static std::string adjustInlineAsm(const std::string &InlineAsm,
1422                                    const Triple &Triple) {
1423   if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1424     return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1425   if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1426     return ".text\n.balign 4\n.arm\n" + InlineAsm;
1427   return InlineAsm;
1428 }
1429 
run()1430 Error IRLinker::run() {
1431   // Ensure metadata materialized before value mapping.
1432   if (SrcM->getMaterializer())
1433     if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1434       return Err;
1435 
1436   // Inherit the target data from the source module if the destination module
1437   // doesn't have one already.
1438   if (DstM.getDataLayout().isDefault())
1439     DstM.setDataLayout(SrcM->getDataLayout());
1440 
1441   if (SrcM->getDataLayout() != DstM.getDataLayout()) {
1442     emitWarning("Linking two modules of different data layouts: '" +
1443                 SrcM->getModuleIdentifier() + "' is '" +
1444                 SrcM->getDataLayoutStr() + "' whereas '" +
1445                 DstM.getModuleIdentifier() + "' is '" +
1446                 DstM.getDataLayoutStr() + "'\n");
1447   }
1448 
1449   // Copy the target triple from the source to dest if the dest's is empty.
1450   if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1451     DstM.setTargetTriple(SrcM->getTargetTriple());
1452 
1453   Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1454 
1455   if (!SrcM->getTargetTriple().empty()&&
1456       !SrcTriple.isCompatibleWith(DstTriple))
1457     emitWarning("Linking two modules of different target triples: '" +
1458                 SrcM->getModuleIdentifier() + "' is '" +
1459                 SrcM->getTargetTriple() + "' whereas '" +
1460                 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1461                 "'\n");
1462 
1463   DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1464 
1465   // Loop over all of the linked values to compute type mappings.
1466   computeTypeMapping();
1467 
1468   std::reverse(Worklist.begin(), Worklist.end());
1469   while (!Worklist.empty()) {
1470     GlobalValue *GV = Worklist.back();
1471     Worklist.pop_back();
1472 
1473     // Already mapped.
1474     if (ValueMap.find(GV) != ValueMap.end() ||
1475         IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1476       continue;
1477 
1478     assert(!GV->isDeclaration());
1479     Mapper.mapValue(*GV);
1480     if (FoundError)
1481       return std::move(*FoundError);
1482     flushRAUWWorklist();
1483   }
1484 
1485   // Note that we are done linking global value bodies. This prevents
1486   // metadata linking from creating new references.
1487   DoneLinkingBodies = true;
1488   Mapper.addFlags(RF_NullMapMissingGlobalValues);
1489 
1490   // Remap all of the named MDNodes in Src into the DstM module. We do this
1491   // after linking GlobalValues so that MDNodes that reference GlobalValues
1492   // are properly remapped.
1493   linkNamedMDNodes();
1494 
1495   if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1496     // Append the module inline asm string.
1497     DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
1498                                                SrcTriple));
1499   } else if (IsPerformingImport) {
1500     // Import any symver directives for symbols in DstM.
1501     ModuleSymbolTable::CollectAsmSymvers(*SrcM,
1502                                          [&](StringRef Name, StringRef Alias) {
1503       if (DstM.getNamedValue(Name)) {
1504         SmallString<256> S(".symver ");
1505         S += Name;
1506         S += ", ";
1507         S += Alias;
1508         DstM.appendModuleInlineAsm(S);
1509       }
1510     });
1511   }
1512 
1513   // Reorder the globals just added to the destination module to match their
1514   // original order in the source module.
1515   Module::GlobalListType &Globals = DstM.getGlobalList();
1516   for (GlobalVariable &GV : SrcM->globals()) {
1517     if (GV.hasAppendingLinkage())
1518       continue;
1519     Value *NewValue = Mapper.mapValue(GV);
1520     if (NewValue) {
1521       auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts());
1522       if (NewGV)
1523         Globals.splice(Globals.end(), Globals, NewGV->getIterator());
1524     }
1525   }
1526 
1527   // Merge the module flags into the DstM module.
1528   return linkModuleFlagsMetadata();
1529 }
1530 
KeyTy(ArrayRef<Type * > E,bool P)1531 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1532     : ETypes(E), IsPacked(P) {}
1533 
KeyTy(const StructType * ST)1534 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1535     : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1536 
operator ==(const KeyTy & That) const1537 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1538   return IsPacked == That.IsPacked && ETypes == That.ETypes;
1539 }
1540 
operator !=(const KeyTy & That) const1541 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1542   return !this->operator==(That);
1543 }
1544 
getEmptyKey()1545 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1546   return DenseMapInfo<StructType *>::getEmptyKey();
1547 }
1548 
getTombstoneKey()1549 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1550   return DenseMapInfo<StructType *>::getTombstoneKey();
1551 }
1552 
getHashValue(const KeyTy & Key)1553 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1554   return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1555                       Key.IsPacked);
1556 }
1557 
getHashValue(const StructType * ST)1558 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1559   return getHashValue(KeyTy(ST));
1560 }
1561 
isEqual(const KeyTy & LHS,const StructType * RHS)1562 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1563                                          const StructType *RHS) {
1564   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1565     return false;
1566   return LHS == KeyTy(RHS);
1567 }
1568 
isEqual(const StructType * LHS,const StructType * RHS)1569 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1570                                          const StructType *RHS) {
1571   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1572     return LHS == RHS;
1573   return KeyTy(LHS) == KeyTy(RHS);
1574 }
1575 
addNonOpaque(StructType * Ty)1576 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1577   assert(!Ty->isOpaque());
1578   NonOpaqueStructTypes.insert(Ty);
1579 }
1580 
switchToNonOpaque(StructType * Ty)1581 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1582   assert(!Ty->isOpaque());
1583   NonOpaqueStructTypes.insert(Ty);
1584   bool Removed = OpaqueStructTypes.erase(Ty);
1585   (void)Removed;
1586   assert(Removed);
1587 }
1588 
addOpaque(StructType * Ty)1589 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1590   assert(Ty->isOpaque());
1591   OpaqueStructTypes.insert(Ty);
1592 }
1593 
1594 StructType *
findNonOpaque(ArrayRef<Type * > ETypes,bool IsPacked)1595 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1596                                                 bool IsPacked) {
1597   IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1598   auto I = NonOpaqueStructTypes.find_as(Key);
1599   return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1600 }
1601 
hasType(StructType * Ty)1602 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1603   if (Ty->isOpaque())
1604     return OpaqueStructTypes.count(Ty);
1605   auto I = NonOpaqueStructTypes.find(Ty);
1606   return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1607 }
1608 
IRMover(Module & M)1609 IRMover::IRMover(Module &M) : Composite(M) {
1610   TypeFinder StructTypes;
1611   StructTypes.run(M, /* OnlyNamed */ false);
1612   for (StructType *Ty : StructTypes) {
1613     if (Ty->isOpaque())
1614       IdentifiedStructTypes.addOpaque(Ty);
1615     else
1616       IdentifiedStructTypes.addNonOpaque(Ty);
1617   }
1618   // Self-map metadatas in the destination module. This is needed when
1619   // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1620   // destination module may be reached from the source module.
1621   for (auto *MD : StructTypes.getVisitedMetadata()) {
1622     SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1623   }
1624 }
1625 
move(std::unique_ptr<Module> Src,ArrayRef<GlobalValue * > ValuesToLink,std::function<void (GlobalValue &,ValueAdder Add)> AddLazyFor,bool IsPerformingImport)1626 Error IRMover::move(
1627     std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
1628     std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
1629     bool IsPerformingImport) {
1630   IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1631                        std::move(Src), ValuesToLink, std::move(AddLazyFor),
1632                        IsPerformingImport);
1633   Error E = TheIRLinker.run();
1634   Composite.dropTriviallyDeadConstantArrays();
1635   return E;
1636 }
1637