1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsHexagon.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CodeGen.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <limits>
62 #include <utility>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "hexagon-lowering"
67
68 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
69 cl::init(true), cl::Hidden,
70 cl::desc("Control jump table emission on Hexagon target"));
71
72 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
73 cl::Hidden, cl::ZeroOrMore, cl::init(false),
74 cl::desc("Enable Hexagon SDNode scheduling"));
75
76 static cl::opt<bool> EnableFastMath("ffast-math",
77 cl::Hidden, cl::ZeroOrMore, cl::init(false),
78 cl::desc("Enable Fast Math processing"));
79
80 static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
81 cl::Hidden, cl::ZeroOrMore, cl::init(5),
82 cl::desc("Set minimum jump tables"));
83
84 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
85 cl::Hidden, cl::ZeroOrMore, cl::init(6),
86 cl::desc("Max #stores to inline memcpy"));
87
88 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
89 cl::Hidden, cl::ZeroOrMore, cl::init(4),
90 cl::desc("Max #stores to inline memcpy"));
91
92 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
93 cl::Hidden, cl::ZeroOrMore, cl::init(6),
94 cl::desc("Max #stores to inline memmove"));
95
96 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
97 cl::Hidden, cl::ZeroOrMore, cl::init(4),
98 cl::desc("Max #stores to inline memmove"));
99
100 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
101 cl::Hidden, cl::ZeroOrMore, cl::init(8),
102 cl::desc("Max #stores to inline memset"));
103
104 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
105 cl::Hidden, cl::ZeroOrMore, cl::init(4),
106 cl::desc("Max #stores to inline memset"));
107
108 static cl::opt<bool> AlignLoads("hexagon-align-loads",
109 cl::Hidden, cl::init(false),
110 cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
111
112 static cl::opt<bool>
113 DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
114 cl::init(false),
115 cl::desc("Disable minimum alignment of 1 for "
116 "arguments passed by value on stack"));
117
118 namespace {
119
120 class HexagonCCState : public CCState {
121 unsigned NumNamedVarArgParams = 0;
122
123 public:
HexagonCCState(CallingConv::ID CC,bool IsVarArg,MachineFunction & MF,SmallVectorImpl<CCValAssign> & locs,LLVMContext & C,unsigned NumNamedArgs)124 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
125 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
126 unsigned NumNamedArgs)
127 : CCState(CC, IsVarArg, MF, locs, C),
128 NumNamedVarArgParams(NumNamedArgs) {}
getNumNamedVarArgParams() const129 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
130 };
131
132 } // end anonymous namespace
133
134
135 // Implement calling convention for Hexagon.
136
CC_SkipOdd(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)137 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
138 CCValAssign::LocInfo &LocInfo,
139 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
140 static const MCPhysReg ArgRegs[] = {
141 Hexagon::R0, Hexagon::R1, Hexagon::R2,
142 Hexagon::R3, Hexagon::R4, Hexagon::R5
143 };
144 const unsigned NumArgRegs = array_lengthof(ArgRegs);
145 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
146
147 // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
148 if (RegNum != NumArgRegs && RegNum % 2 == 1)
149 State.AllocateReg(ArgRegs[RegNum]);
150
151 // Always return false here, as this function only makes sure that the first
152 // unallocated register has an even register number and does not actually
153 // allocate a register for the current argument.
154 return false;
155 }
156
157 #include "HexagonGenCallingConv.inc"
158
159
160 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const161 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
162 const {
163 return SDValue();
164 }
165
166 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
167 /// by "Src" to address "Dst" of size "Size". Alignment information is
168 /// specified by the specific parameter attribute. The copy will be passed as
169 /// a byval function parameter. Sometimes what we are copying is the end of a
170 /// larger object, the part that does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)171 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
172 SDValue Chain, ISD::ArgFlagsTy Flags,
173 SelectionDAG &DAG, const SDLoc &dl) {
174 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
175 return DAG.getMemcpy(
176 Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
177 /*isVolatile=*/false, /*AlwaysInline=*/false,
178 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
179 }
180
181 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const182 HexagonTargetLowering::CanLowerReturn(
183 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
184 const SmallVectorImpl<ISD::OutputArg> &Outs,
185 LLVMContext &Context) const {
186 SmallVector<CCValAssign, 16> RVLocs;
187 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
188
189 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
190 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
191 return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
192 }
193
194 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
195 // passed by value, the function prototype is modified to return void and
196 // the value is stored in memory pointed by a pointer passed by caller.
197 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const198 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
199 bool IsVarArg,
200 const SmallVectorImpl<ISD::OutputArg> &Outs,
201 const SmallVectorImpl<SDValue> &OutVals,
202 const SDLoc &dl, SelectionDAG &DAG) const {
203 // CCValAssign - represent the assignment of the return value to locations.
204 SmallVector<CCValAssign, 16> RVLocs;
205
206 // CCState - Info about the registers and stack slot.
207 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
208 *DAG.getContext());
209
210 // Analyze return values of ISD::RET
211 if (Subtarget.useHVXOps())
212 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
213 else
214 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
215
216 SDValue Flag;
217 SmallVector<SDValue, 4> RetOps(1, Chain);
218
219 // Copy the result values into the output registers.
220 for (unsigned i = 0; i != RVLocs.size(); ++i) {
221 CCValAssign &VA = RVLocs[i];
222 SDValue Val = OutVals[i];
223
224 switch (VA.getLocInfo()) {
225 default:
226 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
227 llvm_unreachable("Unknown loc info!");
228 case CCValAssign::Full:
229 break;
230 case CCValAssign::BCvt:
231 Val = DAG.getBitcast(VA.getLocVT(), Val);
232 break;
233 case CCValAssign::SExt:
234 Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val);
235 break;
236 case CCValAssign::ZExt:
237 Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val);
238 break;
239 case CCValAssign::AExt:
240 Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val);
241 break;
242 }
243
244 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Flag);
245
246 // Guarantee that all emitted copies are stuck together with flags.
247 Flag = Chain.getValue(1);
248 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
249 }
250
251 RetOps[0] = Chain; // Update chain.
252
253 // Add the flag if we have it.
254 if (Flag.getNode())
255 RetOps.push_back(Flag);
256
257 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
258 }
259
mayBeEmittedAsTailCall(const CallInst * CI) const260 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
261 // If either no tail call or told not to tail call at all, don't.
262 return CI->isTailCall();
263 }
264
getRegisterByName(const char * RegName,LLT VT,const MachineFunction &) const265 Register HexagonTargetLowering::getRegisterByName(
266 const char* RegName, LLT VT, const MachineFunction &) const {
267 // Just support r19, the linux kernel uses it.
268 Register Reg = StringSwitch<Register>(RegName)
269 .Case("r0", Hexagon::R0)
270 .Case("r1", Hexagon::R1)
271 .Case("r2", Hexagon::R2)
272 .Case("r3", Hexagon::R3)
273 .Case("r4", Hexagon::R4)
274 .Case("r5", Hexagon::R5)
275 .Case("r6", Hexagon::R6)
276 .Case("r7", Hexagon::R7)
277 .Case("r8", Hexagon::R8)
278 .Case("r9", Hexagon::R9)
279 .Case("r10", Hexagon::R10)
280 .Case("r11", Hexagon::R11)
281 .Case("r12", Hexagon::R12)
282 .Case("r13", Hexagon::R13)
283 .Case("r14", Hexagon::R14)
284 .Case("r15", Hexagon::R15)
285 .Case("r16", Hexagon::R16)
286 .Case("r17", Hexagon::R17)
287 .Case("r18", Hexagon::R18)
288 .Case("r19", Hexagon::R19)
289 .Case("r20", Hexagon::R20)
290 .Case("r21", Hexagon::R21)
291 .Case("r22", Hexagon::R22)
292 .Case("r23", Hexagon::R23)
293 .Case("r24", Hexagon::R24)
294 .Case("r25", Hexagon::R25)
295 .Case("r26", Hexagon::R26)
296 .Case("r27", Hexagon::R27)
297 .Case("r28", Hexagon::R28)
298 .Case("r29", Hexagon::R29)
299 .Case("r30", Hexagon::R30)
300 .Case("r31", Hexagon::R31)
301 .Case("r1:0", Hexagon::D0)
302 .Case("r3:2", Hexagon::D1)
303 .Case("r5:4", Hexagon::D2)
304 .Case("r7:6", Hexagon::D3)
305 .Case("r9:8", Hexagon::D4)
306 .Case("r11:10", Hexagon::D5)
307 .Case("r13:12", Hexagon::D6)
308 .Case("r15:14", Hexagon::D7)
309 .Case("r17:16", Hexagon::D8)
310 .Case("r19:18", Hexagon::D9)
311 .Case("r21:20", Hexagon::D10)
312 .Case("r23:22", Hexagon::D11)
313 .Case("r25:24", Hexagon::D12)
314 .Case("r27:26", Hexagon::D13)
315 .Case("r29:28", Hexagon::D14)
316 .Case("r31:30", Hexagon::D15)
317 .Case("sp", Hexagon::R29)
318 .Case("fp", Hexagon::R30)
319 .Case("lr", Hexagon::R31)
320 .Case("p0", Hexagon::P0)
321 .Case("p1", Hexagon::P1)
322 .Case("p2", Hexagon::P2)
323 .Case("p3", Hexagon::P3)
324 .Case("sa0", Hexagon::SA0)
325 .Case("lc0", Hexagon::LC0)
326 .Case("sa1", Hexagon::SA1)
327 .Case("lc1", Hexagon::LC1)
328 .Case("m0", Hexagon::M0)
329 .Case("m1", Hexagon::M1)
330 .Case("usr", Hexagon::USR)
331 .Case("ugp", Hexagon::UGP)
332 .Case("cs0", Hexagon::CS0)
333 .Case("cs1", Hexagon::CS1)
334 .Default(Register());
335 if (Reg)
336 return Reg;
337
338 report_fatal_error("Invalid register name global variable");
339 }
340
341 /// LowerCallResult - Lower the result values of an ISD::CALL into the
342 /// appropriate copies out of appropriate physical registers. This assumes that
343 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
344 /// being lowered. Returns a SDNode with the same number of values as the
345 /// ISD::CALL.
LowerCallResult(SDValue Chain,SDValue Glue,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,const SmallVectorImpl<SDValue> & OutVals,SDValue Callee) const346 SDValue HexagonTargetLowering::LowerCallResult(
347 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
348 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
349 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
350 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
351 // Assign locations to each value returned by this call.
352 SmallVector<CCValAssign, 16> RVLocs;
353
354 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
355 *DAG.getContext());
356
357 if (Subtarget.useHVXOps())
358 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
359 else
360 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
361
362 // Copy all of the result registers out of their specified physreg.
363 for (unsigned i = 0; i != RVLocs.size(); ++i) {
364 SDValue RetVal;
365 if (RVLocs[i].getValVT() == MVT::i1) {
366 // Return values of type MVT::i1 require special handling. The reason
367 // is that MVT::i1 is associated with the PredRegs register class, but
368 // values of that type are still returned in R0. Generate an explicit
369 // copy into a predicate register from R0, and treat the value of the
370 // predicate register as the call result.
371 auto &MRI = DAG.getMachineFunction().getRegInfo();
372 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
373 MVT::i32, Glue);
374 // FR0 = (Value, Chain, Glue)
375 Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
376 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
377 FR0.getValue(0), FR0.getValue(2));
378 // TPR = (Chain, Glue)
379 // Don't glue this CopyFromReg, because it copies from a virtual
380 // register. If it is glued to the call, InstrEmitter will add it
381 // as an implicit def to the call (EmitMachineNode).
382 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
383 Glue = TPR.getValue(1);
384 Chain = TPR.getValue(0);
385 } else {
386 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
387 RVLocs[i].getValVT(), Glue);
388 Glue = RetVal.getValue(2);
389 Chain = RetVal.getValue(1);
390 }
391 InVals.push_back(RetVal.getValue(0));
392 }
393
394 return Chain;
395 }
396
397 /// LowerCall - Functions arguments are copied from virtual regs to
398 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
399 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const400 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
401 SmallVectorImpl<SDValue> &InVals) const {
402 SelectionDAG &DAG = CLI.DAG;
403 SDLoc &dl = CLI.DL;
404 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
405 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
406 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
407 SDValue Chain = CLI.Chain;
408 SDValue Callee = CLI.Callee;
409 CallingConv::ID CallConv = CLI.CallConv;
410 bool IsVarArg = CLI.IsVarArg;
411 bool DoesNotReturn = CLI.DoesNotReturn;
412
413 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
414 MachineFunction &MF = DAG.getMachineFunction();
415 MachineFrameInfo &MFI = MF.getFrameInfo();
416 auto PtrVT = getPointerTy(MF.getDataLayout());
417
418 unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
419 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
420 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
421
422 // Linux ABI treats var-arg calls the same way as regular ones.
423 bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
424
425 // Analyze operands of the call, assigning locations to each operand.
426 SmallVector<CCValAssign, 16> ArgLocs;
427 HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
428 NumParams);
429
430 if (Subtarget.useHVXOps())
431 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
432 else if (DisableArgsMinAlignment)
433 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
434 else
435 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
436
437 if (CLI.IsTailCall) {
438 bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
439 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
440 IsVarArg, IsStructRet, StructAttrFlag, Outs,
441 OutVals, Ins, DAG);
442 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
443 CCValAssign &VA = ArgLocs[i];
444 if (VA.isMemLoc()) {
445 CLI.IsTailCall = false;
446 break;
447 }
448 }
449 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
450 : "Argument must be passed on stack. "
451 "Not eligible for Tail Call\n"));
452 }
453 // Get a count of how many bytes are to be pushed on the stack.
454 unsigned NumBytes = CCInfo.getNextStackOffset();
455 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
456 SmallVector<SDValue, 8> MemOpChains;
457
458 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
459 SDValue StackPtr =
460 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
461
462 bool NeedsArgAlign = false;
463 Align LargestAlignSeen;
464 // Walk the register/memloc assignments, inserting copies/loads.
465 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
466 CCValAssign &VA = ArgLocs[i];
467 SDValue Arg = OutVals[i];
468 ISD::ArgFlagsTy Flags = Outs[i].Flags;
469 // Record if we need > 8 byte alignment on an argument.
470 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
471 NeedsArgAlign |= ArgAlign;
472
473 // Promote the value if needed.
474 switch (VA.getLocInfo()) {
475 default:
476 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
477 llvm_unreachable("Unknown loc info!");
478 case CCValAssign::Full:
479 break;
480 case CCValAssign::BCvt:
481 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
482 break;
483 case CCValAssign::SExt:
484 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
485 break;
486 case CCValAssign::ZExt:
487 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
488 break;
489 case CCValAssign::AExt:
490 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
491 break;
492 }
493
494 if (VA.isMemLoc()) {
495 unsigned LocMemOffset = VA.getLocMemOffset();
496 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
497 StackPtr.getValueType());
498 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
499 if (ArgAlign)
500 LargestAlignSeen = std::max(
501 LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
502 if (Flags.isByVal()) {
503 // The argument is a struct passed by value. According to LLVM, "Arg"
504 // is a pointer.
505 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
506 Flags, DAG, dl));
507 } else {
508 MachinePointerInfo LocPI = MachinePointerInfo::getStack(
509 DAG.getMachineFunction(), LocMemOffset);
510 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
511 MemOpChains.push_back(S);
512 }
513 continue;
514 }
515
516 // Arguments that can be passed on register must be kept at RegsToPass
517 // vector.
518 if (VA.isRegLoc())
519 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
520 }
521
522 if (NeedsArgAlign && Subtarget.hasV60Ops()) {
523 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
524 Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
525 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
526 MFI.ensureMaxAlignment(LargestAlignSeen);
527 }
528 // Transform all store nodes into one single node because all store
529 // nodes are independent of each other.
530 if (!MemOpChains.empty())
531 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
532
533 SDValue Glue;
534 if (!CLI.IsTailCall) {
535 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
536 Glue = Chain.getValue(1);
537 }
538
539 // Build a sequence of copy-to-reg nodes chained together with token
540 // chain and flag operands which copy the outgoing args into registers.
541 // The Glue is necessary since all emitted instructions must be
542 // stuck together.
543 if (!CLI.IsTailCall) {
544 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
545 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
546 RegsToPass[i].second, Glue);
547 Glue = Chain.getValue(1);
548 }
549 } else {
550 // For tail calls lower the arguments to the 'real' stack slot.
551 //
552 // Force all the incoming stack arguments to be loaded from the stack
553 // before any new outgoing arguments are stored to the stack, because the
554 // outgoing stack slots may alias the incoming argument stack slots, and
555 // the alias isn't otherwise explicit. This is slightly more conservative
556 // than necessary, because it means that each store effectively depends
557 // on every argument instead of just those arguments it would clobber.
558 //
559 // Do not flag preceding copytoreg stuff together with the following stuff.
560 Glue = SDValue();
561 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
562 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
563 RegsToPass[i].second, Glue);
564 Glue = Chain.getValue(1);
565 }
566 Glue = SDValue();
567 }
568
569 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
570 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
571
572 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
573 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
574 // node so that legalize doesn't hack it.
575 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
576 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
577 } else if (ExternalSymbolSDNode *S =
578 dyn_cast<ExternalSymbolSDNode>(Callee)) {
579 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
580 }
581
582 // Returns a chain & a flag for retval copy to use.
583 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
584 SmallVector<SDValue, 8> Ops;
585 Ops.push_back(Chain);
586 Ops.push_back(Callee);
587
588 // Add argument registers to the end of the list so that they are
589 // known live into the call.
590 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
591 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
592 RegsToPass[i].second.getValueType()));
593 }
594
595 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
596 assert(Mask && "Missing call preserved mask for calling convention");
597 Ops.push_back(DAG.getRegisterMask(Mask));
598
599 if (Glue.getNode())
600 Ops.push_back(Glue);
601
602 if (CLI.IsTailCall) {
603 MFI.setHasTailCall();
604 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
605 }
606
607 // Set this here because we need to know this for "hasFP" in frame lowering.
608 // The target-independent code calls getFrameRegister before setting it, and
609 // getFrameRegister uses hasFP to determine whether the function has FP.
610 MFI.setHasCalls(true);
611
612 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
613 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
614 Glue = Chain.getValue(1);
615
616 // Create the CALLSEQ_END node.
617 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
618 DAG.getIntPtrConstant(0, dl, true), Glue, dl);
619 Glue = Chain.getValue(1);
620
621 // Handle result values, copying them out of physregs into vregs that we
622 // return.
623 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
624 InVals, OutVals, Callee);
625 }
626
627 /// Returns true by value, base pointer and offset pointer and addressing
628 /// mode by reference if this node can be combined with a load / store to
629 /// form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const630 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
631 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
632 SelectionDAG &DAG) const {
633 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
634 if (!LSN)
635 return false;
636 EVT VT = LSN->getMemoryVT();
637 if (!VT.isSimple())
638 return false;
639 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
640 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
641 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
642 VT == MVT::v4i16 || VT == MVT::v8i8 ||
643 Subtarget.isHVXVectorType(VT.getSimpleVT());
644 if (!IsLegalType)
645 return false;
646
647 if (Op->getOpcode() != ISD::ADD)
648 return false;
649 Base = Op->getOperand(0);
650 Offset = Op->getOperand(1);
651 if (!isa<ConstantSDNode>(Offset.getNode()))
652 return false;
653 AM = ISD::POST_INC;
654
655 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
656 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
657 }
658
659 SDValue
LowerINLINEASM(SDValue Op,SelectionDAG & DAG) const660 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
661 MachineFunction &MF = DAG.getMachineFunction();
662 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
663 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
664 unsigned LR = HRI.getRARegister();
665
666 if ((Op.getOpcode() != ISD::INLINEASM &&
667 Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
668 return Op;
669
670 unsigned NumOps = Op.getNumOperands();
671 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
672 --NumOps; // Ignore the flag operand.
673
674 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
675 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
676 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
677 ++i; // Skip the ID value.
678
679 switch (InlineAsm::getKind(Flags)) {
680 default:
681 llvm_unreachable("Bad flags!");
682 case InlineAsm::Kind_RegUse:
683 case InlineAsm::Kind_Imm:
684 case InlineAsm::Kind_Mem:
685 i += NumVals;
686 break;
687 case InlineAsm::Kind_Clobber:
688 case InlineAsm::Kind_RegDef:
689 case InlineAsm::Kind_RegDefEarlyClobber: {
690 for (; NumVals; --NumVals, ++i) {
691 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
692 if (Reg != LR)
693 continue;
694 HMFI.setHasClobberLR(true);
695 return Op;
696 }
697 break;
698 }
699 }
700 }
701
702 return Op;
703 }
704
705 // Need to transform ISD::PREFETCH into something that doesn't inherit
706 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
707 // SDNPMayStore.
LowerPREFETCH(SDValue Op,SelectionDAG & DAG) const708 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
709 SelectionDAG &DAG) const {
710 SDValue Chain = Op.getOperand(0);
711 SDValue Addr = Op.getOperand(1);
712 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
713 // if the "reg" is fed by an "add".
714 SDLoc DL(Op);
715 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
716 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
717 }
718
719 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
720 // is marked as having side-effects, while the register read on Hexagon does
721 // not have any. TableGen refuses to accept the direct pattern from that node
722 // to the A4_tfrcpp.
LowerREADCYCLECOUNTER(SDValue Op,SelectionDAG & DAG) const723 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
724 SelectionDAG &DAG) const {
725 SDValue Chain = Op.getOperand(0);
726 SDLoc dl(Op);
727 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
728 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
729 }
730
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const731 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
732 SelectionDAG &DAG) const {
733 SDValue Chain = Op.getOperand(0);
734 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
735 // Lower the hexagon_prefetch builtin to DCFETCH, as above.
736 if (IntNo == Intrinsic::hexagon_prefetch) {
737 SDValue Addr = Op.getOperand(2);
738 SDLoc DL(Op);
739 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
740 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
741 }
742 return SDValue();
743 }
744
745 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const746 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
747 SelectionDAG &DAG) const {
748 SDValue Chain = Op.getOperand(0);
749 SDValue Size = Op.getOperand(1);
750 SDValue Align = Op.getOperand(2);
751 SDLoc dl(Op);
752
753 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
754 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
755
756 unsigned A = AlignConst->getSExtValue();
757 auto &HFI = *Subtarget.getFrameLowering();
758 // "Zero" means natural stack alignment.
759 if (A == 0)
760 A = HFI.getStackAlign().value();
761
762 LLVM_DEBUG({
763 dbgs () << __func__ << " Align: " << A << " Size: ";
764 Size.getNode()->dump(&DAG);
765 dbgs() << "\n";
766 });
767
768 SDValue AC = DAG.getConstant(A, dl, MVT::i32);
769 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
770 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
771
772 DAG.ReplaceAllUsesOfValueWith(Op, AA);
773 return AA;
774 }
775
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const776 SDValue HexagonTargetLowering::LowerFormalArguments(
777 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
778 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
779 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
780 MachineFunction &MF = DAG.getMachineFunction();
781 MachineFrameInfo &MFI = MF.getFrameInfo();
782 MachineRegisterInfo &MRI = MF.getRegInfo();
783
784 // Linux ABI treats var-arg calls the same way as regular ones.
785 bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
786
787 // Assign locations to all of the incoming arguments.
788 SmallVector<CCValAssign, 16> ArgLocs;
789 HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
790 *DAG.getContext(),
791 MF.getFunction().getFunctionType()->getNumParams());
792
793 if (Subtarget.useHVXOps())
794 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
795 else if (DisableArgsMinAlignment)
796 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
797 else
798 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
799
800 // For LLVM, in the case when returning a struct by value (>8byte),
801 // the first argument is a pointer that points to the location on caller's
802 // stack where the return value will be stored. For Hexagon, the location on
803 // caller's stack is passed only when the struct size is smaller than (and
804 // equal to) 8 bytes. If not, no address will be passed into callee and
805 // callee return the result direclty through R0/R1.
806 auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
807 switch (RC.getID()) {
808 case Hexagon::IntRegsRegClassID:
809 return Reg - Hexagon::R0 + 1;
810 case Hexagon::DoubleRegsRegClassID:
811 return (Reg - Hexagon::D0 + 1) * 2;
812 case Hexagon::HvxVRRegClassID:
813 return Reg - Hexagon::V0 + 1;
814 case Hexagon::HvxWRRegClassID:
815 return (Reg - Hexagon::W0 + 1) * 2;
816 }
817 llvm_unreachable("Unexpected register class");
818 };
819
820 auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
821 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
822 HFL.FirstVarArgSavedReg = 0;
823 HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
824
825 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
826 CCValAssign &VA = ArgLocs[i];
827 ISD::ArgFlagsTy Flags = Ins[i].Flags;
828 bool ByVal = Flags.isByVal();
829
830 // Arguments passed in registers:
831 // 1. 32- and 64-bit values and HVX vectors are passed directly,
832 // 2. Large structs are passed via an address, and the address is
833 // passed in a register.
834 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
835 llvm_unreachable("ByValSize must be bigger than 8 bytes");
836
837 bool InReg = VA.isRegLoc() &&
838 (!ByVal || (ByVal && Flags.getByValSize() > 8));
839
840 if (InReg) {
841 MVT RegVT = VA.getLocVT();
842 if (VA.getLocInfo() == CCValAssign::BCvt)
843 RegVT = VA.getValVT();
844
845 const TargetRegisterClass *RC = getRegClassFor(RegVT);
846 Register VReg = MRI.createVirtualRegister(RC);
847 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
848
849 // Treat values of type MVT::i1 specially: they are passed in
850 // registers of type i32, but they need to remain as values of
851 // type i1 for consistency of the argument lowering.
852 if (VA.getValVT() == MVT::i1) {
853 assert(RegVT.getSizeInBits() <= 32);
854 SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
855 Copy, DAG.getConstant(1, dl, RegVT));
856 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
857 ISD::SETNE);
858 } else {
859 #ifndef NDEBUG
860 unsigned RegSize = RegVT.getSizeInBits();
861 assert(RegSize == 32 || RegSize == 64 ||
862 Subtarget.isHVXVectorType(RegVT));
863 #endif
864 }
865 InVals.push_back(Copy);
866 MRI.addLiveIn(VA.getLocReg(), VReg);
867 HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
868 } else {
869 assert(VA.isMemLoc() && "Argument should be passed in memory");
870
871 // If it's a byval parameter, then we need to compute the
872 // "real" size, not the size of the pointer.
873 unsigned ObjSize = Flags.isByVal()
874 ? Flags.getByValSize()
875 : VA.getLocVT().getStoreSizeInBits() / 8;
876
877 // Create the frame index object for this incoming parameter.
878 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
879 int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
880 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
881
882 if (Flags.isByVal()) {
883 // If it's a pass-by-value aggregate, then do not dereference the stack
884 // location. Instead, we should generate a reference to the stack
885 // location.
886 InVals.push_back(FIN);
887 } else {
888 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
889 MachinePointerInfo::getFixedStack(MF, FI, 0));
890 InVals.push_back(L);
891 }
892 }
893 }
894
895 if (IsVarArg && Subtarget.isEnvironmentMusl()) {
896 for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
897 MRI.addLiveIn(Hexagon::R0+i);
898 }
899
900 if (IsVarArg && Subtarget.isEnvironmentMusl()) {
901 HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
902 HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
903
904 // Create Frame index for the start of register saved area.
905 int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
906 bool RequiresPadding = (NumVarArgRegs & 1);
907 int RegSaveAreaSizePlusPadding = RequiresPadding
908 ? (NumVarArgRegs + 1) * 4
909 : NumVarArgRegs * 4;
910
911 if (RegSaveAreaSizePlusPadding > 0) {
912 // The offset to saved register area should be 8 byte aligned.
913 int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
914 if (!(RegAreaStart % 8))
915 RegAreaStart = (RegAreaStart + 7) & -8;
916
917 int RegSaveAreaFrameIndex =
918 MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
919 HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
920
921 // This will point to the next argument passed via stack.
922 int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
923 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
924 HMFI.setVarArgsFrameIndex(FI);
925 } else {
926 // This will point to the next argument passed via stack, when
927 // there is no saved register area.
928 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
929 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
930 HMFI.setRegSavedAreaStartFrameIndex(FI);
931 HMFI.setVarArgsFrameIndex(FI);
932 }
933 }
934
935
936 if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
937 // This will point to the next argument passed via stack.
938 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
939 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
940 HMFI.setVarArgsFrameIndex(FI);
941 }
942
943 return Chain;
944 }
945
946 SDValue
LowerVASTART(SDValue Op,SelectionDAG & DAG) const947 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
948 // VASTART stores the address of the VarArgsFrameIndex slot into the
949 // memory location argument.
950 MachineFunction &MF = DAG.getMachineFunction();
951 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
952 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
953 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
954
955 if (!Subtarget.isEnvironmentMusl()) {
956 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
957 MachinePointerInfo(SV));
958 }
959 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
960 auto &HFL = *Subtarget.getFrameLowering();
961 SDLoc DL(Op);
962 SmallVector<SDValue, 8> MemOps;
963
964 // Get frame index of va_list.
965 SDValue FIN = Op.getOperand(1);
966
967 // If first Vararg register is odd, add 4 bytes to start of
968 // saved register area to point to the first register location.
969 // This is because the saved register area has to be 8 byte aligned.
970 // Incase of an odd start register, there will be 4 bytes of padding in
971 // the beginning of saved register area. If all registers area used up,
972 // the following condition will handle it correctly.
973 SDValue SavedRegAreaStartFrameIndex =
974 DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
975
976 auto PtrVT = getPointerTy(DAG.getDataLayout());
977
978 if (HFL.FirstVarArgSavedReg & 1)
979 SavedRegAreaStartFrameIndex =
980 DAG.getNode(ISD::ADD, DL, PtrVT,
981 DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
982 MVT::i32),
983 DAG.getIntPtrConstant(4, DL));
984
985 // Store the saved register area start pointer.
986 SDValue Store =
987 DAG.getStore(Op.getOperand(0), DL,
988 SavedRegAreaStartFrameIndex,
989 FIN, MachinePointerInfo(SV));
990 MemOps.push_back(Store);
991
992 // Store saved register area end pointer.
993 FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
994 FIN, DAG.getIntPtrConstant(4, DL));
995 Store = DAG.getStore(Op.getOperand(0), DL,
996 DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
997 PtrVT),
998 FIN, MachinePointerInfo(SV, 4));
999 MemOps.push_back(Store);
1000
1001 // Store overflow area pointer.
1002 FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1003 FIN, DAG.getIntPtrConstant(4, DL));
1004 Store = DAG.getStore(Op.getOperand(0), DL,
1005 DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1006 PtrVT),
1007 FIN, MachinePointerInfo(SV, 8));
1008 MemOps.push_back(Store);
1009
1010 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1011 }
1012
1013 SDValue
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const1014 HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
1015 // Assert that the linux ABI is enabled for the current compilation.
1016 assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
1017 SDValue Chain = Op.getOperand(0);
1018 SDValue DestPtr = Op.getOperand(1);
1019 SDValue SrcPtr = Op.getOperand(2);
1020 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1021 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1022 SDLoc DL(Op);
1023 // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
1024 // we need to memcopy 12 bytes from va_list to another similar list.
1025 return DAG.getMemcpy(Chain, DL, DestPtr, SrcPtr,
1026 DAG.getIntPtrConstant(12, DL), Align(4),
1027 /*isVolatile*/ false, false, false,
1028 MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
1029 }
1030
LowerSETCC(SDValue Op,SelectionDAG & DAG) const1031 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1032 const SDLoc &dl(Op);
1033 SDValue LHS = Op.getOperand(0);
1034 SDValue RHS = Op.getOperand(1);
1035 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1036 MVT ResTy = ty(Op);
1037 MVT OpTy = ty(LHS);
1038
1039 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1040 MVT ElemTy = OpTy.getVectorElementType();
1041 assert(ElemTy.isScalarInteger());
1042 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1043 OpTy.getVectorNumElements());
1044 return DAG.getSetCC(dl, ResTy,
1045 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
1046 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
1047 }
1048
1049 // Treat all other vector types as legal.
1050 if (ResTy.isVector())
1051 return Op;
1052
1053 // Comparisons of short integers should use sign-extend, not zero-extend,
1054 // since we can represent small negative values in the compare instructions.
1055 // The LLVM default is to use zero-extend arbitrarily in these cases.
1056 auto isSExtFree = [this](SDValue N) {
1057 switch (N.getOpcode()) {
1058 case ISD::TRUNCATE: {
1059 // A sign-extend of a truncate of a sign-extend is free.
1060 SDValue Op = N.getOperand(0);
1061 if (Op.getOpcode() != ISD::AssertSext)
1062 return false;
1063 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
1064 unsigned ThisBW = ty(N).getSizeInBits();
1065 unsigned OrigBW = OrigTy.getSizeInBits();
1066 // The type that was sign-extended to get the AssertSext must be
1067 // narrower than the type of N (so that N has still the same value
1068 // as the original).
1069 return ThisBW >= OrigBW;
1070 }
1071 case ISD::LOAD:
1072 // We have sign-extended loads.
1073 return true;
1074 }
1075 return false;
1076 };
1077
1078 if (OpTy == MVT::i8 || OpTy == MVT::i16) {
1079 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1080 bool IsNegative = C && C->getAPIntValue().isNegative();
1081 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
1082 return DAG.getSetCC(dl, ResTy,
1083 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
1084 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
1085 }
1086
1087 return SDValue();
1088 }
1089
1090 SDValue
LowerVSELECT(SDValue Op,SelectionDAG & DAG) const1091 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1092 SDValue PredOp = Op.getOperand(0);
1093 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1094 MVT OpTy = ty(Op1);
1095 const SDLoc &dl(Op);
1096
1097 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1098 MVT ElemTy = OpTy.getVectorElementType();
1099 assert(ElemTy.isScalarInteger());
1100 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1101 OpTy.getVectorNumElements());
1102 // Generate (trunc (select (_, sext, sext))).
1103 return DAG.getSExtOrTrunc(
1104 DAG.getSelect(dl, WideTy, PredOp,
1105 DAG.getSExtOrTrunc(Op1, dl, WideTy),
1106 DAG.getSExtOrTrunc(Op2, dl, WideTy)),
1107 dl, OpTy);
1108 }
1109
1110 return SDValue();
1111 }
1112
1113 SDValue
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const1114 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1115 EVT ValTy = Op.getValueType();
1116 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1117 Constant *CVal = nullptr;
1118 bool isVTi1Type = false;
1119 if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
1120 if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
1121 IRBuilder<> IRB(CV->getContext());
1122 SmallVector<Constant*, 128> NewConst;
1123 unsigned VecLen = CV->getNumOperands();
1124 assert(isPowerOf2_32(VecLen) &&
1125 "conversion only supported for pow2 VectorSize");
1126 for (unsigned i = 0; i < VecLen; ++i)
1127 NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
1128
1129 CVal = ConstantVector::get(NewConst);
1130 isVTi1Type = true;
1131 }
1132 }
1133 Align Alignment = CPN->getAlign();
1134 bool IsPositionIndependent = isPositionIndependent();
1135 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1136
1137 unsigned Offset = 0;
1138 SDValue T;
1139 if (CPN->isMachineConstantPoolEntry())
1140 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
1141 Offset, TF);
1142 else if (isVTi1Type)
1143 T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
1144 else
1145 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
1146 TF);
1147
1148 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
1149 "Inconsistent target flag encountered");
1150
1151 if (IsPositionIndependent)
1152 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1153 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1154 }
1155
1156 SDValue
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1157 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1158 EVT VT = Op.getValueType();
1159 int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1160 if (isPositionIndependent()) {
1161 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1162 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1163 }
1164
1165 SDValue T = DAG.getTargetJumpTable(Idx, VT);
1166 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1167 }
1168
1169 SDValue
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1170 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1171 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1172 MachineFunction &MF = DAG.getMachineFunction();
1173 MachineFrameInfo &MFI = MF.getFrameInfo();
1174 MFI.setReturnAddressIsTaken(true);
1175
1176 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1177 return SDValue();
1178
1179 EVT VT = Op.getValueType();
1180 SDLoc dl(Op);
1181 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1182 if (Depth) {
1183 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1184 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1185 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1186 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1187 MachinePointerInfo());
1188 }
1189
1190 // Return LR, which contains the return address. Mark it an implicit live-in.
1191 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1192 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1193 }
1194
1195 SDValue
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1196 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1197 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1198 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1199 MFI.setFrameAddressIsTaken(true);
1200
1201 EVT VT = Op.getValueType();
1202 SDLoc dl(Op);
1203 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1204 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1205 HRI.getFrameRegister(), VT);
1206 while (Depth--)
1207 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1208 MachinePointerInfo());
1209 return FrameAddr;
1210 }
1211
1212 SDValue
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const1213 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1214 SDLoc dl(Op);
1215 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1216 }
1217
1218 SDValue
LowerGLOBALADDRESS(SDValue Op,SelectionDAG & DAG) const1219 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1220 SDLoc dl(Op);
1221 auto *GAN = cast<GlobalAddressSDNode>(Op);
1222 auto PtrVT = getPointerTy(DAG.getDataLayout());
1223 auto *GV = GAN->getGlobal();
1224 int64_t Offset = GAN->getOffset();
1225
1226 auto &HLOF = *HTM.getObjFileLowering();
1227 Reloc::Model RM = HTM.getRelocationModel();
1228
1229 if (RM == Reloc::Static) {
1230 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1231 const GlobalObject *GO = GV->getBaseObject();
1232 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1233 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1234 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1235 }
1236
1237 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1238 if (UsePCRel) {
1239 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1240 HexagonII::MO_PCREL);
1241 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1242 }
1243
1244 // Use GOT index.
1245 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1246 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1247 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1248 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1249 }
1250
1251 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1252 SDValue
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const1253 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1254 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1255 SDLoc dl(Op);
1256 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1257
1258 Reloc::Model RM = HTM.getRelocationModel();
1259 if (RM == Reloc::Static) {
1260 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1261 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1262 }
1263
1264 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1265 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1266 }
1267
1268 SDValue
LowerGLOBAL_OFFSET_TABLE(SDValue Op,SelectionDAG & DAG) const1269 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1270 const {
1271 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1272 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1273 HexagonII::MO_PCREL);
1274 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1275 }
1276
1277 SDValue
GetDynamicTLSAddr(SelectionDAG & DAG,SDValue Chain,GlobalAddressSDNode * GA,SDValue Glue,EVT PtrVT,unsigned ReturnReg,unsigned char OperandFlags) const1278 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1279 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1280 unsigned char OperandFlags) const {
1281 MachineFunction &MF = DAG.getMachineFunction();
1282 MachineFrameInfo &MFI = MF.getFrameInfo();
1283 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1284 SDLoc dl(GA);
1285 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1286 GA->getValueType(0),
1287 GA->getOffset(),
1288 OperandFlags);
1289 // Create Operands for the call.The Operands should have the following:
1290 // 1. Chain SDValue
1291 // 2. Callee which in this case is the Global address value.
1292 // 3. Registers live into the call.In this case its R0, as we
1293 // have just one argument to be passed.
1294 // 4. Glue.
1295 // Note: The order is important.
1296
1297 const auto &HRI = *Subtarget.getRegisterInfo();
1298 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1299 assert(Mask && "Missing call preserved mask for calling convention");
1300 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1301 DAG.getRegisterMask(Mask), Glue };
1302 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1303
1304 // Inform MFI that function has calls.
1305 MFI.setAdjustsStack(true);
1306
1307 Glue = Chain.getValue(1);
1308 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1309 }
1310
1311 //
1312 // Lower using the intial executable model for TLS addresses
1313 //
1314 SDValue
LowerToTLSInitialExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1315 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1316 SelectionDAG &DAG) const {
1317 SDLoc dl(GA);
1318 int64_t Offset = GA->getOffset();
1319 auto PtrVT = getPointerTy(DAG.getDataLayout());
1320
1321 // Get the thread pointer.
1322 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1323
1324 bool IsPositionIndependent = isPositionIndependent();
1325 unsigned char TF =
1326 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1327
1328 // First generate the TLS symbol address
1329 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1330 Offset, TF);
1331
1332 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1333
1334 if (IsPositionIndependent) {
1335 // Generate the GOT pointer in case of position independent code
1336 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1337
1338 // Add the TLS Symbol address to GOT pointer.This gives
1339 // GOT relative relocation for the symbol.
1340 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1341 }
1342
1343 // Load the offset value for TLS symbol.This offset is relative to
1344 // thread pointer.
1345 SDValue LoadOffset =
1346 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1347
1348 // Address of the thread local variable is the add of thread
1349 // pointer and the offset of the variable.
1350 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1351 }
1352
1353 //
1354 // Lower using the local executable model for TLS addresses
1355 //
1356 SDValue
LowerToTLSLocalExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1357 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1358 SelectionDAG &DAG) const {
1359 SDLoc dl(GA);
1360 int64_t Offset = GA->getOffset();
1361 auto PtrVT = getPointerTy(DAG.getDataLayout());
1362
1363 // Get the thread pointer.
1364 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1365 // Generate the TLS symbol address
1366 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1367 HexagonII::MO_TPREL);
1368 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1369
1370 // Address of the thread local variable is the add of thread
1371 // pointer and the offset of the variable.
1372 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1373 }
1374
1375 //
1376 // Lower using the general dynamic model for TLS addresses
1377 //
1378 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const1379 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1380 SelectionDAG &DAG) const {
1381 SDLoc dl(GA);
1382 int64_t Offset = GA->getOffset();
1383 auto PtrVT = getPointerTy(DAG.getDataLayout());
1384
1385 // First generate the TLS symbol address
1386 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1387 HexagonII::MO_GDGOT);
1388
1389 // Then, generate the GOT pointer
1390 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1391
1392 // Add the TLS symbol and the GOT pointer
1393 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1394 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1395
1396 // Copy over the argument to R0
1397 SDValue InFlag;
1398 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1399 InFlag = Chain.getValue(1);
1400
1401 unsigned Flags =
1402 static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1403 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1404 : HexagonII::MO_GDPLT;
1405
1406 return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1407 Hexagon::R0, Flags);
1408 }
1409
1410 //
1411 // Lower TLS addresses.
1412 //
1413 // For now for dynamic models, we only support the general dynamic model.
1414 //
1415 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1416 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1417 SelectionDAG &DAG) const {
1418 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1419
1420 switch (HTM.getTLSModel(GA->getGlobal())) {
1421 case TLSModel::GeneralDynamic:
1422 case TLSModel::LocalDynamic:
1423 return LowerToTLSGeneralDynamicModel(GA, DAG);
1424 case TLSModel::InitialExec:
1425 return LowerToTLSInitialExecModel(GA, DAG);
1426 case TLSModel::LocalExec:
1427 return LowerToTLSLocalExecModel(GA, DAG);
1428 }
1429 llvm_unreachable("Bogus TLS model");
1430 }
1431
1432 //===----------------------------------------------------------------------===//
1433 // TargetLowering Implementation
1434 //===----------------------------------------------------------------------===//
1435
HexagonTargetLowering(const TargetMachine & TM,const HexagonSubtarget & ST)1436 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1437 const HexagonSubtarget &ST)
1438 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1439 Subtarget(ST) {
1440 auto &HRI = *Subtarget.getRegisterInfo();
1441
1442 setPrefLoopAlignment(Align(16));
1443 setMinFunctionAlignment(Align(4));
1444 setPrefFunctionAlignment(Align(16));
1445 setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1446 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1447 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1448
1449 setMaxAtomicSizeInBitsSupported(64);
1450 setMinCmpXchgSizeInBits(32);
1451
1452 if (EnableHexSDNodeSched)
1453 setSchedulingPreference(Sched::VLIW);
1454 else
1455 setSchedulingPreference(Sched::Source);
1456
1457 // Limits for inline expansion of memcpy/memmove
1458 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1459 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1460 MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1461 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1462 MaxStoresPerMemset = MaxStoresPerMemsetCL;
1463 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1464
1465 //
1466 // Set up register classes.
1467 //
1468
1469 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1470 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
1471 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
1472 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
1473 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1474 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1475 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
1476 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1477 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
1478 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1479 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1480
1481 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1482 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1483
1484 //
1485 // Handling of scalar operations.
1486 //
1487 // All operations default to "legal", except:
1488 // - indexed loads and stores (pre-/post-incremented),
1489 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1490 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1491 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1492 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1493 // which default to "expand" for at least one type.
1494
1495 // Misc operations.
1496 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
1497 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
1498 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1499 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1500 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1501 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1502 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1503 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1504 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
1505 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1506 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1507 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1508 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1509 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1510 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1511 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1512
1513 // Custom legalize GlobalAddress nodes into CONST32.
1514 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1515 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1516 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1517
1518 // Hexagon needs to optimize cases with negative constants.
1519 setOperationAction(ISD::SETCC, MVT::i8, Custom);
1520 setOperationAction(ISD::SETCC, MVT::i16, Custom);
1521 setOperationAction(ISD::SETCC, MVT::v4i8, Custom);
1522 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1523
1524 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1525 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1526 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1527 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1528 if (Subtarget.isEnvironmentMusl())
1529 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
1530 else
1531 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1532
1533 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1534 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1535 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1536
1537 if (EmitJumpTables)
1538 setMinimumJumpTableEntries(MinimumJumpTables);
1539 else
1540 setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1541 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1542
1543 for (unsigned LegalIntOp :
1544 {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) {
1545 setOperationAction(LegalIntOp, MVT::i32, Legal);
1546 setOperationAction(LegalIntOp, MVT::i64, Legal);
1547 }
1548
1549 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1550 // but they only operate on i64.
1551 for (MVT VT : MVT::integer_valuetypes()) {
1552 setOperationAction(ISD::UADDO, VT, Custom);
1553 setOperationAction(ISD::USUBO, VT, Custom);
1554 setOperationAction(ISD::SADDO, VT, Expand);
1555 setOperationAction(ISD::SSUBO, VT, Expand);
1556 setOperationAction(ISD::ADDCARRY, VT, Expand);
1557 setOperationAction(ISD::SUBCARRY, VT, Expand);
1558 }
1559 setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1560 setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1561
1562 setOperationAction(ISD::CTLZ, MVT::i8, Promote);
1563 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1564 setOperationAction(ISD::CTTZ, MVT::i8, Promote);
1565 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1566
1567 // Popcount can count # of 1s in i64 but returns i32.
1568 setOperationAction(ISD::CTPOP, MVT::i8, Promote);
1569 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1570 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1571 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1572
1573 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1574 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1575 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1576 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1577
1578 setOperationAction(ISD::FSHL, MVT::i32, Legal);
1579 setOperationAction(ISD::FSHL, MVT::i64, Legal);
1580 setOperationAction(ISD::FSHR, MVT::i32, Legal);
1581 setOperationAction(ISD::FSHR, MVT::i64, Legal);
1582
1583 for (unsigned IntExpOp :
1584 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1585 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
1586 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1587 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1588 for (MVT VT : MVT::integer_valuetypes())
1589 setOperationAction(IntExpOp, VT, Expand);
1590 }
1591
1592 for (unsigned FPExpOp :
1593 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1594 ISD::FPOW, ISD::FCOPYSIGN}) {
1595 for (MVT VT : MVT::fp_valuetypes())
1596 setOperationAction(FPExpOp, VT, Expand);
1597 }
1598
1599 // No extending loads from i32.
1600 for (MVT VT : MVT::integer_valuetypes()) {
1601 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1602 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1603 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
1604 }
1605 // Turn FP truncstore into trunc + store.
1606 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1607 // Turn FP extload into load/fpextend.
1608 for (MVT VT : MVT::fp_valuetypes())
1609 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1610
1611 // Expand BR_CC and SELECT_CC for all integer and fp types.
1612 for (MVT VT : MVT::integer_valuetypes()) {
1613 setOperationAction(ISD::BR_CC, VT, Expand);
1614 setOperationAction(ISD::SELECT_CC, VT, Expand);
1615 }
1616 for (MVT VT : MVT::fp_valuetypes()) {
1617 setOperationAction(ISD::BR_CC, VT, Expand);
1618 setOperationAction(ISD::SELECT_CC, VT, Expand);
1619 }
1620 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1621
1622 //
1623 // Handling of vector operations.
1624 //
1625
1626 // Set the action for vector operations to "expand", then override it with
1627 // either "custom" or "legal" for specific cases.
1628 static const unsigned VectExpOps[] = {
1629 // Integer arithmetic:
1630 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
1631 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO,
1632 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1633 // Logical/bit:
1634 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
1635 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ,
1636 // Floating point arithmetic/math functions:
1637 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
1638 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
1639 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
1640 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
1641 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
1642 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1643 // Misc:
1644 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool,
1645 // Vector:
1646 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
1647 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
1648 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
1649 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE,
1650 ISD::SPLAT_VECTOR,
1651 };
1652
1653 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1654 for (unsigned VectExpOp : VectExpOps)
1655 setOperationAction(VectExpOp, VT, Expand);
1656
1657 // Expand all extending loads and truncating stores:
1658 for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1659 if (TargetVT == VT)
1660 continue;
1661 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1662 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1663 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1664 setTruncStoreAction(VT, TargetVT, Expand);
1665 }
1666
1667 // Normalize all inputs to SELECT to be vectors of i32.
1668 if (VT.getVectorElementType() != MVT::i32) {
1669 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1670 setOperationAction(ISD::SELECT, VT, Promote);
1671 AddPromotedToType(ISD::SELECT, VT, VT32);
1672 }
1673 setOperationAction(ISD::SRA, VT, Custom);
1674 setOperationAction(ISD::SHL, VT, Custom);
1675 setOperationAction(ISD::SRL, VT, Custom);
1676 }
1677
1678 // Extending loads from (native) vectors of i8 into (native) vectors of i16
1679 // are legal.
1680 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1681 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1682 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1683 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1684 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1685 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1686
1687 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal);
1688 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1689 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1690
1691 // Types natively supported:
1692 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1693 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1694 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
1695 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1696 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
1697 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
1698 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
1699 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
1700
1701 setOperationAction(ISD::ADD, NativeVT, Legal);
1702 setOperationAction(ISD::SUB, NativeVT, Legal);
1703 setOperationAction(ISD::MUL, NativeVT, Legal);
1704 setOperationAction(ISD::AND, NativeVT, Legal);
1705 setOperationAction(ISD::OR, NativeVT, Legal);
1706 setOperationAction(ISD::XOR, NativeVT, Legal);
1707
1708 if (NativeVT.getVectorElementType() != MVT::i1)
1709 setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal);
1710 }
1711
1712 for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) {
1713 setOperationAction(ISD::SMIN, VT, Legal);
1714 setOperationAction(ISD::SMAX, VT, Legal);
1715 setOperationAction(ISD::UMIN, VT, Legal);
1716 setOperationAction(ISD::UMAX, VT, Legal);
1717 }
1718
1719 // Custom lower unaligned loads.
1720 // Also, for both loads and stores, verify the alignment of the address
1721 // in case it is a compile-time constant. This is a usability feature to
1722 // provide a meaningful error message to users.
1723 for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1724 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1725 setOperationAction(ISD::LOAD, VT, Custom);
1726 setOperationAction(ISD::STORE, VT, Custom);
1727 }
1728
1729 // Custom-lower load/stores of boolean vectors.
1730 for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1731 setOperationAction(ISD::LOAD, VT, Custom);
1732 setOperationAction(ISD::STORE, VT, Custom);
1733 }
1734
1735 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1736 MVT::v2i32}) {
1737 setCondCodeAction(ISD::SETNE, VT, Expand);
1738 setCondCodeAction(ISD::SETLE, VT, Expand);
1739 setCondCodeAction(ISD::SETGE, VT, Expand);
1740 setCondCodeAction(ISD::SETLT, VT, Expand);
1741 setCondCodeAction(ISD::SETULE, VT, Expand);
1742 setCondCodeAction(ISD::SETUGE, VT, Expand);
1743 setCondCodeAction(ISD::SETULT, VT, Expand);
1744 }
1745
1746 // Custom-lower bitcasts from i8 to v8i1.
1747 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1748 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1749 setOperationAction(ISD::VSELECT, MVT::v4i8, Custom);
1750 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
1751 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
1752 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1753 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
1754
1755 // V5+.
1756 setOperationAction(ISD::FMA, MVT::f64, Expand);
1757 setOperationAction(ISD::FADD, MVT::f64, Expand);
1758 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1759 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1760
1761 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1762 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1763
1764 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1765 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1766 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1767 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1768 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1769 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1770 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1771 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1772 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1773 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1774 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1775 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1776
1777 // Handling of indexed loads/stores: default is "expand".
1778 //
1779 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1780 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1781 setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1782 setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1783 }
1784
1785 // Subtarget-specific operation actions.
1786 //
1787 if (Subtarget.hasV60Ops()) {
1788 setOperationAction(ISD::ROTL, MVT::i32, Legal);
1789 setOperationAction(ISD::ROTL, MVT::i64, Legal);
1790 setOperationAction(ISD::ROTR, MVT::i32, Legal);
1791 setOperationAction(ISD::ROTR, MVT::i64, Legal);
1792 }
1793 if (Subtarget.hasV66Ops()) {
1794 setOperationAction(ISD::FADD, MVT::f64, Legal);
1795 setOperationAction(ISD::FSUB, MVT::f64, Legal);
1796 }
1797 if (Subtarget.hasV67Ops()) {
1798 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1799 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1800 setOperationAction(ISD::FMUL, MVT::f64, Legal);
1801 }
1802
1803 setTargetDAGCombine(ISD::VSELECT);
1804
1805 if (Subtarget.useHVXOps())
1806 initializeHVXLowering();
1807
1808 computeRegisterProperties(&HRI);
1809
1810 //
1811 // Library calls for unsupported operations
1812 //
1813 bool FastMath = EnableFastMath;
1814
1815 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1816 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1817 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1818 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1819 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1820 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1821 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1822 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1823
1824 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1825 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1826 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1827 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1828 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1829 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1830
1831 // This is the only fast library function for sqrtd.
1832 if (FastMath)
1833 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1834
1835 // Prefix is: nothing for "slow-math",
1836 // "fast2_" for V5+ fast-math double-precision
1837 // (actually, keep fast-math and fast-math2 separate for now)
1838 if (FastMath) {
1839 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1840 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1841 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1842 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1843 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1844 } else {
1845 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1846 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1847 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1848 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1849 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1850 }
1851
1852 if (FastMath)
1853 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1854 else
1855 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1856
1857 // These cause problems when the shift amount is non-constant.
1858 setLibcallName(RTLIB::SHL_I128, nullptr);
1859 setLibcallName(RTLIB::SRL_I128, nullptr);
1860 setLibcallName(RTLIB::SRA_I128, nullptr);
1861 }
1862
getTargetNodeName(unsigned Opcode) const1863 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1864 switch ((HexagonISD::NodeType)Opcode) {
1865 case HexagonISD::ADDC: return "HexagonISD::ADDC";
1866 case HexagonISD::SUBC: return "HexagonISD::SUBC";
1867 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
1868 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
1869 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
1870 case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
1871 case HexagonISD::CALL: return "HexagonISD::CALL";
1872 case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
1873 case HexagonISD::CALLR: return "HexagonISD::CALLR";
1874 case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
1875 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1876 case HexagonISD::CONST32: return "HexagonISD::CONST32";
1877 case HexagonISD::CP: return "HexagonISD::CP";
1878 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
1879 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1880 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT";
1881 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
1882 case HexagonISD::INSERT: return "HexagonISD::INSERT";
1883 case HexagonISD::JT: return "HexagonISD::JT";
1884 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
1885 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
1886 case HexagonISD::VASL: return "HexagonISD::VASL";
1887 case HexagonISD::VASR: return "HexagonISD::VASR";
1888 case HexagonISD::VLSR: return "HexagonISD::VLSR";
1889 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW";
1890 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0";
1891 case HexagonISD::VROR: return "HexagonISD::VROR";
1892 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE";
1893 case HexagonISD::PTRUE: return "HexagonISD::PTRUE";
1894 case HexagonISD::PFALSE: return "HexagonISD::PFALSE";
1895 case HexagonISD::D2P: return "HexagonISD::D2P";
1896 case HexagonISD::P2D: return "HexagonISD::P2D";
1897 case HexagonISD::V2Q: return "HexagonISD::V2Q";
1898 case HexagonISD::Q2V: return "HexagonISD::Q2V";
1899 case HexagonISD::QCAT: return "HexagonISD::QCAT";
1900 case HexagonISD::QTRUE: return "HexagonISD::QTRUE";
1901 case HexagonISD::QFALSE: return "HexagonISD::QFALSE";
1902 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST";
1903 case HexagonISD::VALIGN: return "HexagonISD::VALIGN";
1904 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR";
1905 case HexagonISD::VPACKL: return "HexagonISD::VPACKL";
1906 case HexagonISD::VUNPACK: return "HexagonISD::VUNPACK";
1907 case HexagonISD::VUNPACKU: return "HexagonISD::VUNPACKU";
1908 case HexagonISD::ISEL: return "HexagonISD::ISEL";
1909 case HexagonISD::OP_END: break;
1910 }
1911 return nullptr;
1912 }
1913
1914 void
validateConstPtrAlignment(SDValue Ptr,const SDLoc & dl,unsigned NeedAlign) const1915 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
1916 unsigned NeedAlign) const {
1917 auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1918 if (!CA)
1919 return;
1920 unsigned Addr = CA->getZExtValue();
1921 unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
1922 if (HaveAlign < NeedAlign) {
1923 std::string ErrMsg;
1924 raw_string_ostream O(ErrMsg);
1925 O << "Misaligned constant address: " << format_hex(Addr, 10)
1926 << " has alignment " << HaveAlign
1927 << ", but the memory access requires " << NeedAlign;
1928 if (DebugLoc DL = dl.getDebugLoc())
1929 DL.print(O << ", at ");
1930 report_fatal_error(O.str());
1931 }
1932 }
1933
1934 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1935 // intrinsic.
isBrevLdIntrinsic(const Value * Inst)1936 static bool isBrevLdIntrinsic(const Value *Inst) {
1937 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1938 return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1939 ID == Intrinsic::hexagon_L2_loadri_pbr ||
1940 ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1941 ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1942 ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1943 ID == Intrinsic::hexagon_L2_loadrub_pbr);
1944 }
1945
1946 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1947 // instruction. So far we only handle bitcast, extract value and bit reverse
1948 // load intrinsic instructions. Should we handle CGEP ?
getBrevLdObject(Value * V)1949 static Value *getBrevLdObject(Value *V) {
1950 if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1951 Operator::getOpcode(V) == Instruction::BitCast)
1952 V = cast<Operator>(V)->getOperand(0);
1953 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1954 V = cast<Instruction>(V)->getOperand(0);
1955 return V;
1956 }
1957
1958 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1959 // a back edge. If the back edge comes from the intrinsic itself, the incoming
1960 // edge is returned.
returnEdge(const PHINode * PN,Value * IntrBaseVal)1961 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1962 const BasicBlock *Parent = PN->getParent();
1963 int Idx = -1;
1964 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1965 BasicBlock *Blk = PN->getIncomingBlock(i);
1966 // Determine if the back edge is originated from intrinsic.
1967 if (Blk == Parent) {
1968 Value *BackEdgeVal = PN->getIncomingValue(i);
1969 Value *BaseVal;
1970 // Loop over till we return the same Value or we hit the IntrBaseVal.
1971 do {
1972 BaseVal = BackEdgeVal;
1973 BackEdgeVal = getBrevLdObject(BackEdgeVal);
1974 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1975 // If the getBrevLdObject returns IntrBaseVal, we should return the
1976 // incoming edge.
1977 if (IntrBaseVal == BackEdgeVal)
1978 continue;
1979 Idx = i;
1980 break;
1981 } else // Set the node to incoming edge.
1982 Idx = i;
1983 }
1984 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1985 return PN->getIncomingValue(Idx);
1986 }
1987
1988 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
1989 // pointer points to, for the bit-reverse load intrinsic. Setting this to
1990 // memoperand might help alias analysis to figure out the dependencies.
getUnderLyingObjectForBrevLdIntr(Value * V)1991 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1992 Value *IntrBaseVal = V;
1993 Value *BaseVal;
1994 // Loop over till we return the same Value, implies we either figure out
1995 // the object or we hit a PHI
1996 do {
1997 BaseVal = V;
1998 V = getBrevLdObject(V);
1999 } while (BaseVal != V);
2000
2001 // Identify the object from PHINode.
2002 if (const PHINode *PN = dyn_cast<PHINode>(V))
2003 return returnEdge(PN, IntrBaseVal);
2004 // For non PHI nodes, the object is the last value returned by getBrevLdObject
2005 else
2006 return V;
2007 }
2008
2009 /// Given an intrinsic, checks if on the target the intrinsic will need to map
2010 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
2011 /// true and store the intrinsic information into the IntrinsicInfo that was
2012 /// passed to the function.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const2013 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
2014 const CallInst &I,
2015 MachineFunction &MF,
2016 unsigned Intrinsic) const {
2017 switch (Intrinsic) {
2018 case Intrinsic::hexagon_L2_loadrd_pbr:
2019 case Intrinsic::hexagon_L2_loadri_pbr:
2020 case Intrinsic::hexagon_L2_loadrh_pbr:
2021 case Intrinsic::hexagon_L2_loadruh_pbr:
2022 case Intrinsic::hexagon_L2_loadrb_pbr:
2023 case Intrinsic::hexagon_L2_loadrub_pbr: {
2024 Info.opc = ISD::INTRINSIC_W_CHAIN;
2025 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
2026 auto &Cont = I.getCalledFunction()->getParent()->getContext();
2027 // The intrinsic function call is of the form { ElTy, i8* }
2028 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
2029 // should be derived from ElTy.
2030 Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
2031 Info.memVT = MVT::getVT(ElTy);
2032 llvm::Value *BasePtrVal = I.getOperand(0);
2033 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
2034 // The offset value comes through Modifier register. For now, assume the
2035 // offset is 0.
2036 Info.offset = 0;
2037 Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
2038 Info.flags = MachineMemOperand::MOLoad;
2039 return true;
2040 }
2041 case Intrinsic::hexagon_V6_vgathermw:
2042 case Intrinsic::hexagon_V6_vgathermw_128B:
2043 case Intrinsic::hexagon_V6_vgathermh:
2044 case Intrinsic::hexagon_V6_vgathermh_128B:
2045 case Intrinsic::hexagon_V6_vgathermhw:
2046 case Intrinsic::hexagon_V6_vgathermhw_128B:
2047 case Intrinsic::hexagon_V6_vgathermwq:
2048 case Intrinsic::hexagon_V6_vgathermwq_128B:
2049 case Intrinsic::hexagon_V6_vgathermhq:
2050 case Intrinsic::hexagon_V6_vgathermhq_128B:
2051 case Intrinsic::hexagon_V6_vgathermhwq:
2052 case Intrinsic::hexagon_V6_vgathermhwq_128B: {
2053 const Module &M = *I.getParent()->getParent()->getParent();
2054 Info.opc = ISD::INTRINSIC_W_CHAIN;
2055 Type *VecTy = I.getArgOperand(1)->getType();
2056 Info.memVT = MVT::getVT(VecTy);
2057 Info.ptrVal = I.getArgOperand(0);
2058 Info.offset = 0;
2059 Info.align =
2060 MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
2061 Info.flags = MachineMemOperand::MOLoad |
2062 MachineMemOperand::MOStore |
2063 MachineMemOperand::MOVolatile;
2064 return true;
2065 }
2066 default:
2067 break;
2068 }
2069 return false;
2070 }
2071
hasBitTest(SDValue X,SDValue Y) const2072 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
2073 return X.getValueType().isScalarInteger(); // 'tstbit'
2074 }
2075
isTruncateFree(Type * Ty1,Type * Ty2) const2076 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2077 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
2078 }
2079
isTruncateFree(EVT VT1,EVT VT2) const2080 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2081 if (!VT1.isSimple() || !VT2.isSimple())
2082 return false;
2083 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
2084 }
2085
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const2086 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
2087 const MachineFunction &MF, EVT VT) const {
2088 return isOperationLegalOrCustom(ISD::FMA, VT);
2089 }
2090
2091 // Should we expand the build vector with shuffles?
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const2092 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2093 unsigned DefinedValues) const {
2094 return false;
2095 }
2096
isShuffleMaskLegal(ArrayRef<int> Mask,EVT VT) const2097 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
2098 EVT VT) const {
2099 return true;
2100 }
2101
2102 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const2103 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
2104 unsigned VecLen = VT.getVectorMinNumElements();
2105 MVT ElemTy = VT.getVectorElementType();
2106
2107 if (VecLen == 1 || VT.isScalableVector())
2108 return TargetLoweringBase::TypeScalarizeVector;
2109
2110 if (Subtarget.useHVXOps()) {
2111 unsigned Action = getPreferredHvxVectorAction(VT);
2112 if (Action != ~0u)
2113 return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
2114 }
2115
2116 // Always widen (remaining) vectors of i1.
2117 if (ElemTy == MVT::i1)
2118 return TargetLoweringBase::TypeWidenVector;
2119
2120 return TargetLoweringBase::TypeSplitVector;
2121 }
2122
2123 std::pair<SDValue, int>
getBaseAndOffset(SDValue Addr) const2124 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
2125 if (Addr.getOpcode() == ISD::ADD) {
2126 SDValue Op1 = Addr.getOperand(1);
2127 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
2128 return { Addr.getOperand(0), CN->getSExtValue() };
2129 }
2130 return { Addr, 0 };
2131 }
2132
2133 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
2134 // to select data from, V3 is the permutation.
2135 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const2136 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
2137 const {
2138 const auto *SVN = cast<ShuffleVectorSDNode>(Op);
2139 ArrayRef<int> AM = SVN->getMask();
2140 assert(AM.size() <= 8 && "Unexpected shuffle mask");
2141 unsigned VecLen = AM.size();
2142
2143 MVT VecTy = ty(Op);
2144 assert(!Subtarget.isHVXVectorType(VecTy, true) &&
2145 "HVX shuffles should be legal");
2146 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
2147
2148 SDValue Op0 = Op.getOperand(0);
2149 SDValue Op1 = Op.getOperand(1);
2150 const SDLoc &dl(Op);
2151
2152 // If the inputs are not the same as the output, bail. This is not an
2153 // error situation, but complicates the handling and the default expansion
2154 // (into BUILD_VECTOR) should be adequate.
2155 if (ty(Op0) != VecTy || ty(Op1) != VecTy)
2156 return SDValue();
2157
2158 // Normalize the mask so that the first non-negative index comes from
2159 // the first operand.
2160 SmallVector<int,8> Mask(AM.begin(), AM.end());
2161 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
2162 if (F == AM.size())
2163 return DAG.getUNDEF(VecTy);
2164 if (AM[F] >= int(VecLen)) {
2165 ShuffleVectorSDNode::commuteMask(Mask);
2166 std::swap(Op0, Op1);
2167 }
2168
2169 // Express the shuffle mask in terms of bytes.
2170 SmallVector<int,8> ByteMask;
2171 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2172 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2173 int M = Mask[i];
2174 if (M < 0) {
2175 for (unsigned j = 0; j != ElemBytes; ++j)
2176 ByteMask.push_back(-1);
2177 } else {
2178 for (unsigned j = 0; j != ElemBytes; ++j)
2179 ByteMask.push_back(M*ElemBytes + j);
2180 }
2181 }
2182 assert(ByteMask.size() <= 8);
2183
2184 // All non-undef (non-negative) indexes are well within [0..127], so they
2185 // fit in a single byte. Build two 64-bit words:
2186 // - MaskIdx where each byte is the corresponding index (for non-negative
2187 // indexes), and 0xFF for negative indexes, and
2188 // - MaskUnd that has 0xFF for each negative index.
2189 uint64_t MaskIdx = 0;
2190 uint64_t MaskUnd = 0;
2191 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2192 unsigned S = 8*i;
2193 uint64_t M = ByteMask[i] & 0xFF;
2194 if (M == 0xFF)
2195 MaskUnd |= M << S;
2196 MaskIdx |= M << S;
2197 }
2198
2199 if (ByteMask.size() == 4) {
2200 // Identity.
2201 if (MaskIdx == (0x03020100 | MaskUnd))
2202 return Op0;
2203 // Byte swap.
2204 if (MaskIdx == (0x00010203 | MaskUnd)) {
2205 SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2206 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2207 return DAG.getBitcast(VecTy, T1);
2208 }
2209
2210 // Byte packs.
2211 SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
2212 typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
2213 if (MaskIdx == (0x06040200 | MaskUnd))
2214 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2215 if (MaskIdx == (0x07050301 | MaskUnd))
2216 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2217
2218 SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
2219 typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
2220 if (MaskIdx == (0x02000604 | MaskUnd))
2221 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2222 if (MaskIdx == (0x03010705 | MaskUnd))
2223 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2224 }
2225
2226 if (ByteMask.size() == 8) {
2227 // Identity.
2228 if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2229 return Op0;
2230 // Byte swap.
2231 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2232 SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2233 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2234 return DAG.getBitcast(VecTy, T1);
2235 }
2236
2237 // Halfword picks.
2238 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2239 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2240 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2241 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2242 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2243 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2244 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2245 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2246 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2247 VectorPair P = opSplit(Op0, dl, DAG);
2248 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2249 }
2250
2251 // Byte packs.
2252 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2253 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2254 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2255 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2256 }
2257
2258 return SDValue();
2259 }
2260
2261 // Create a Hexagon-specific node for shifting a vector by an integer.
2262 SDValue
getVectorShiftByInt(SDValue Op,SelectionDAG & DAG) const2263 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2264 const {
2265 unsigned NewOpc;
2266 switch (Op.getOpcode()) {
2267 case ISD::SHL:
2268 NewOpc = HexagonISD::VASL;
2269 break;
2270 case ISD::SRA:
2271 NewOpc = HexagonISD::VASR;
2272 break;
2273 case ISD::SRL:
2274 NewOpc = HexagonISD::VLSR;
2275 break;
2276 default:
2277 llvm_unreachable("Unexpected shift opcode");
2278 }
2279
2280 SDValue Op0 = Op.getOperand(0);
2281 SDValue Op1 = Op.getOperand(1);
2282 const SDLoc &dl(Op);
2283
2284 switch (Op1.getOpcode()) {
2285 case ISD::BUILD_VECTOR:
2286 if (SDValue S = cast<BuildVectorSDNode>(Op1)->getSplatValue())
2287 return DAG.getNode(NewOpc, dl, ty(Op), Op0, S);
2288 break;
2289 case ISD::SPLAT_VECTOR:
2290 return DAG.getNode(NewOpc, dl, ty(Op), Op0, Op1.getOperand(0));
2291 }
2292 return SDValue();
2293 }
2294
2295 SDValue
LowerVECTOR_SHIFT(SDValue Op,SelectionDAG & DAG) const2296 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2297 return getVectorShiftByInt(Op, DAG);
2298 }
2299
2300 SDValue
LowerROTL(SDValue Op,SelectionDAG & DAG) const2301 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2302 if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2303 return Op;
2304 return SDValue();
2305 }
2306
2307 SDValue
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const2308 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2309 MVT ResTy = ty(Op);
2310 SDValue InpV = Op.getOperand(0);
2311 MVT InpTy = ty(InpV);
2312 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2313 const SDLoc &dl(Op);
2314
2315 // Handle conversion from i8 to v8i1.
2316 if (InpTy == MVT::i8) {
2317 if (ResTy == MVT::v8i1) {
2318 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2319 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2320 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2321 }
2322 return SDValue();
2323 }
2324
2325 return Op;
2326 }
2327
2328 bool
getBuildVectorConstInts(ArrayRef<SDValue> Values,MVT VecTy,SelectionDAG & DAG,MutableArrayRef<ConstantInt * > Consts) const2329 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2330 MVT VecTy, SelectionDAG &DAG,
2331 MutableArrayRef<ConstantInt*> Consts) const {
2332 MVT ElemTy = VecTy.getVectorElementType();
2333 unsigned ElemWidth = ElemTy.getSizeInBits();
2334 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2335 bool AllConst = true;
2336
2337 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2338 SDValue V = Values[i];
2339 if (V.isUndef()) {
2340 Consts[i] = ConstantInt::get(IntTy, 0);
2341 continue;
2342 }
2343 // Make sure to always cast to IntTy.
2344 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2345 const ConstantInt *CI = CN->getConstantIntValue();
2346 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2347 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2348 const ConstantFP *CF = CN->getConstantFPValue();
2349 APInt A = CF->getValueAPF().bitcastToAPInt();
2350 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2351 } else {
2352 AllConst = false;
2353 }
2354 }
2355 return AllConst;
2356 }
2357
2358 SDValue
buildVector32(ArrayRef<SDValue> Elem,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const2359 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2360 MVT VecTy, SelectionDAG &DAG) const {
2361 MVT ElemTy = VecTy.getVectorElementType();
2362 assert(VecTy.getVectorNumElements() == Elem.size());
2363
2364 SmallVector<ConstantInt*,4> Consts(Elem.size());
2365 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2366
2367 unsigned First, Num = Elem.size();
2368 for (First = 0; First != Num; ++First) {
2369 if (!isUndef(Elem[First]))
2370 break;
2371 }
2372 if (First == Num)
2373 return DAG.getUNDEF(VecTy);
2374
2375 if (AllConst &&
2376 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2377 return getZero(dl, VecTy, DAG);
2378
2379 if (ElemTy == MVT::i16) {
2380 assert(Elem.size() == 2);
2381 if (AllConst) {
2382 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2383 Consts[1]->getZExtValue() << 16;
2384 return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2385 }
2386 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2387 {Elem[1], Elem[0]}, DAG);
2388 return DAG.getBitcast(MVT::v2i16, N);
2389 }
2390
2391 if (ElemTy == MVT::i8) {
2392 // First try generating a constant.
2393 if (AllConst) {
2394 int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2395 (Consts[1]->getZExtValue() & 0xFF) << 8 |
2396 (Consts[1]->getZExtValue() & 0xFF) << 16 |
2397 Consts[2]->getZExtValue() << 24;
2398 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2399 }
2400
2401 // Then try splat.
2402 bool IsSplat = true;
2403 for (unsigned i = First+1; i != Num; ++i) {
2404 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2405 continue;
2406 IsSplat = false;
2407 break;
2408 }
2409 if (IsSplat) {
2410 // Legalize the operand of SPLAT_VECTOR.
2411 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2412 return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2413 }
2414
2415 // Generate
2416 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2417 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2418 assert(Elem.size() == 4);
2419 SDValue Vs[4];
2420 for (unsigned i = 0; i != 4; ++i) {
2421 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2422 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2423 }
2424 SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2425 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2426 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2427 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2428 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2429
2430 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2431 return DAG.getBitcast(MVT::v4i8, R);
2432 }
2433
2434 #ifndef NDEBUG
2435 dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2436 #endif
2437 llvm_unreachable("Unexpected vector element type");
2438 }
2439
2440 SDValue
buildVector64(ArrayRef<SDValue> Elem,const SDLoc & dl,MVT VecTy,SelectionDAG & DAG) const2441 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2442 MVT VecTy, SelectionDAG &DAG) const {
2443 MVT ElemTy = VecTy.getVectorElementType();
2444 assert(VecTy.getVectorNumElements() == Elem.size());
2445
2446 SmallVector<ConstantInt*,8> Consts(Elem.size());
2447 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2448
2449 unsigned First, Num = Elem.size();
2450 for (First = 0; First != Num; ++First) {
2451 if (!isUndef(Elem[First]))
2452 break;
2453 }
2454 if (First == Num)
2455 return DAG.getUNDEF(VecTy);
2456
2457 if (AllConst &&
2458 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2459 return getZero(dl, VecTy, DAG);
2460
2461 // First try splat if possible.
2462 if (ElemTy == MVT::i16) {
2463 bool IsSplat = true;
2464 for (unsigned i = First+1; i != Num; ++i) {
2465 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2466 continue;
2467 IsSplat = false;
2468 break;
2469 }
2470 if (IsSplat) {
2471 // Legalize the operand of SPLAT_VECTOR
2472 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2473 return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2474 }
2475 }
2476
2477 // Then try constant.
2478 if (AllConst) {
2479 uint64_t Val = 0;
2480 unsigned W = ElemTy.getSizeInBits();
2481 uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull
2482 : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2483 for (unsigned i = 0; i != Num; ++i)
2484 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2485 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2486 return DAG.getBitcast(VecTy, V0);
2487 }
2488
2489 // Build two 32-bit vectors and concatenate.
2490 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2491 SDValue L = (ElemTy == MVT::i32)
2492 ? Elem[0]
2493 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2494 SDValue H = (ElemTy == MVT::i32)
2495 ? Elem[1]
2496 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2497 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2498 }
2499
2500 SDValue
extractVector(SDValue VecV,SDValue IdxV,const SDLoc & dl,MVT ValTy,MVT ResTy,SelectionDAG & DAG) const2501 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2502 const SDLoc &dl, MVT ValTy, MVT ResTy,
2503 SelectionDAG &DAG) const {
2504 MVT VecTy = ty(VecV);
2505 assert(!ValTy.isVector() ||
2506 VecTy.getVectorElementType() == ValTy.getVectorElementType());
2507 unsigned VecWidth = VecTy.getSizeInBits();
2508 unsigned ValWidth = ValTy.getSizeInBits();
2509 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2510 assert((VecWidth % ElemWidth) == 0);
2511 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2512
2513 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2514 // without any coprocessors).
2515 if (ElemWidth == 1) {
2516 assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2517 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2518 // Check if this is an extract of the lowest bit.
2519 if (IdxN) {
2520 // Extracting the lowest bit is a no-op, but it changes the type,
2521 // so it must be kept as an operation to avoid errors related to
2522 // type mismatches.
2523 if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2524 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2525 }
2526
2527 // If the value extracted is a single bit, use tstbit.
2528 if (ValWidth == 1) {
2529 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2530 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2531 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2532 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2533 }
2534
2535 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2536 // a predicate register. The elements of the vector are repeated
2537 // in the register (if necessary) so that the total number is 8.
2538 // The extracted subvector will need to be expanded in such a way.
2539 unsigned Scale = VecWidth / ValWidth;
2540
2541 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2542 // position 0.
2543 assert(ty(IdxV) == MVT::i32);
2544 unsigned VecRep = 8 / VecWidth;
2545 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2546 DAG.getConstant(8*VecRep, dl, MVT::i32));
2547 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2548 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2549 while (Scale > 1) {
2550 // The longest possible subvector is at most 32 bits, so it is always
2551 // contained in the low subregister.
2552 T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2553 T1 = expandPredicate(T1, dl, DAG);
2554 Scale /= 2;
2555 }
2556
2557 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2558 }
2559
2560 assert(VecWidth == 32 || VecWidth == 64);
2561
2562 // Cast everything to scalar integer types.
2563 MVT ScalarTy = tyScalar(VecTy);
2564 VecV = DAG.getBitcast(ScalarTy, VecV);
2565
2566 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2567 SDValue ExtV;
2568
2569 if (IdxN) {
2570 unsigned Off = IdxN->getZExtValue() * ElemWidth;
2571 if (VecWidth == 64 && ValWidth == 32) {
2572 assert(Off == 0 || Off == 32);
2573 unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2574 ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2575 } else if (Off == 0 && (ValWidth % 8) == 0) {
2576 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2577 } else {
2578 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2579 // The return type of EXTRACTU must be the same as the type of the
2580 // input vector.
2581 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2582 {VecV, WidthV, OffV});
2583 }
2584 } else {
2585 if (ty(IdxV) != MVT::i32)
2586 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2587 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2588 DAG.getConstant(ElemWidth, dl, MVT::i32));
2589 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2590 {VecV, WidthV, OffV});
2591 }
2592
2593 // Cast ExtV to the requested result type.
2594 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2595 ExtV = DAG.getBitcast(ResTy, ExtV);
2596 return ExtV;
2597 }
2598
2599 SDValue
insertVector(SDValue VecV,SDValue ValV,SDValue IdxV,const SDLoc & dl,MVT ValTy,SelectionDAG & DAG) const2600 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2601 const SDLoc &dl, MVT ValTy,
2602 SelectionDAG &DAG) const {
2603 MVT VecTy = ty(VecV);
2604 if (VecTy.getVectorElementType() == MVT::i1) {
2605 MVT ValTy = ty(ValV);
2606 assert(ValTy.getVectorElementType() == MVT::i1);
2607 SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2608 unsigned VecLen = VecTy.getVectorNumElements();
2609 unsigned Scale = VecLen / ValTy.getVectorNumElements();
2610 assert(Scale > 1);
2611
2612 for (unsigned R = Scale; R > 1; R /= 2) {
2613 ValR = contractPredicate(ValR, dl, DAG);
2614 ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2615 DAG.getUNDEF(MVT::i32), ValR);
2616 }
2617 // The longest possible subvector is at most 32 bits, so it is always
2618 // contained in the low subregister.
2619 ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2620
2621 unsigned ValBytes = 64 / Scale;
2622 SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2623 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2624 DAG.getConstant(8, dl, MVT::i32));
2625 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2626 SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2627 {VecR, ValR, Width, Idx});
2628 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2629 }
2630
2631 unsigned VecWidth = VecTy.getSizeInBits();
2632 unsigned ValWidth = ValTy.getSizeInBits();
2633 assert(VecWidth == 32 || VecWidth == 64);
2634 assert((VecWidth % ValWidth) == 0);
2635
2636 // Cast everything to scalar integer types.
2637 MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2638 // The actual type of ValV may be different than ValTy (which is related
2639 // to the vector type).
2640 unsigned VW = ty(ValV).getSizeInBits();
2641 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2642 VecV = DAG.getBitcast(ScalarTy, VecV);
2643 if (VW != VecWidth)
2644 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2645
2646 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2647 SDValue InsV;
2648
2649 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2650 unsigned W = C->getZExtValue() * ValWidth;
2651 SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2652 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2653 {VecV, ValV, WidthV, OffV});
2654 } else {
2655 if (ty(IdxV) != MVT::i32)
2656 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2657 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2658 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2659 {VecV, ValV, WidthV, OffV});
2660 }
2661
2662 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2663 }
2664
2665 SDValue
expandPredicate(SDValue Vec32,const SDLoc & dl,SelectionDAG & DAG) const2666 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2667 SelectionDAG &DAG) const {
2668 assert(ty(Vec32).getSizeInBits() == 32);
2669 if (isUndef(Vec32))
2670 return DAG.getUNDEF(MVT::i64);
2671 return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2672 }
2673
2674 SDValue
contractPredicate(SDValue Vec64,const SDLoc & dl,SelectionDAG & DAG) const2675 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2676 SelectionDAG &DAG) const {
2677 assert(ty(Vec64).getSizeInBits() == 64);
2678 if (isUndef(Vec64))
2679 return DAG.getUNDEF(MVT::i32);
2680 return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2681 }
2682
2683 SDValue
getZero(const SDLoc & dl,MVT Ty,SelectionDAG & DAG) const2684 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2685 const {
2686 if (Ty.isVector()) {
2687 assert(Ty.isInteger() && "Only integer vectors are supported here");
2688 unsigned W = Ty.getSizeInBits();
2689 if (W <= 64)
2690 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2691 return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG));
2692 }
2693
2694 if (Ty.isInteger())
2695 return DAG.getConstant(0, dl, Ty);
2696 if (Ty.isFloatingPoint())
2697 return DAG.getConstantFP(0.0, dl, Ty);
2698 llvm_unreachable("Invalid type for zero");
2699 }
2700
2701 SDValue
appendUndef(SDValue Val,MVT ResTy,SelectionDAG & DAG) const2702 HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
2703 const {
2704 MVT ValTy = ty(Val);
2705 assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());
2706
2707 unsigned ValLen = ValTy.getVectorNumElements();
2708 unsigned ResLen = ResTy.getVectorNumElements();
2709 if (ValLen == ResLen)
2710 return Val;
2711
2712 const SDLoc &dl(Val);
2713 assert(ValLen < ResLen);
2714 assert(ResLen % ValLen == 0);
2715
2716 SmallVector<SDValue, 4> Concats = {Val};
2717 for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
2718 Concats.push_back(DAG.getUNDEF(ValTy));
2719
2720 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
2721 }
2722
2723 SDValue
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const2724 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2725 MVT VecTy = ty(Op);
2726 unsigned BW = VecTy.getSizeInBits();
2727 const SDLoc &dl(Op);
2728 SmallVector<SDValue,8> Ops;
2729 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2730 Ops.push_back(Op.getOperand(i));
2731
2732 if (BW == 32)
2733 return buildVector32(Ops, dl, VecTy, DAG);
2734 if (BW == 64)
2735 return buildVector64(Ops, dl, VecTy, DAG);
2736
2737 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2738 // Check if this is a special case or all-0 or all-1.
2739 bool All0 = true, All1 = true;
2740 for (SDValue P : Ops) {
2741 auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2742 if (CN == nullptr) {
2743 All0 = All1 = false;
2744 break;
2745 }
2746 uint32_t C = CN->getZExtValue();
2747 All0 &= (C == 0);
2748 All1 &= (C == 1);
2749 }
2750 if (All0)
2751 return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2752 if (All1)
2753 return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2754
2755 // For each i1 element in the resulting predicate register, put 1
2756 // shifted by the index of the element into a general-purpose register,
2757 // then or them together and transfer it back into a predicate register.
2758 SDValue Rs[8];
2759 SDValue Z = getZero(dl, MVT::i32, DAG);
2760 // Always produce 8 bits, repeat inputs if necessary.
2761 unsigned Rep = 8 / VecTy.getVectorNumElements();
2762 for (unsigned i = 0; i != 8; ++i) {
2763 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2764 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2765 }
2766 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2767 for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2768 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2769 }
2770 // Move the value directly to a predicate register.
2771 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2772 }
2773
2774 return SDValue();
2775 }
2776
2777 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const2778 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2779 SelectionDAG &DAG) const {
2780 MVT VecTy = ty(Op);
2781 const SDLoc &dl(Op);
2782 if (VecTy.getSizeInBits() == 64) {
2783 assert(Op.getNumOperands() == 2);
2784 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2785 Op.getOperand(0));
2786 }
2787
2788 MVT ElemTy = VecTy.getVectorElementType();
2789 if (ElemTy == MVT::i1) {
2790 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2791 MVT OpTy = ty(Op.getOperand(0));
2792 // Scale is how many times the operands need to be contracted to match
2793 // the representation in the target register.
2794 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2795 assert(Scale == Op.getNumOperands() && Scale > 1);
2796
2797 // First, convert all bool vectors to integers, then generate pairwise
2798 // inserts to form values of doubled length. Up until there are only
2799 // two values left to concatenate, all of these values will fit in a
2800 // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2801 SmallVector<SDValue,4> Words[2];
2802 unsigned IdxW = 0;
2803
2804 for (SDValue P : Op.getNode()->op_values()) {
2805 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2806 for (unsigned R = Scale; R > 1; R /= 2) {
2807 W = contractPredicate(W, dl, DAG);
2808 W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2809 DAG.getUNDEF(MVT::i32), W);
2810 }
2811 W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2812 Words[IdxW].push_back(W);
2813 }
2814
2815 while (Scale > 2) {
2816 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2817 Words[IdxW ^ 1].clear();
2818
2819 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2820 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2821 // Insert W1 into W0 right next to the significant bits of W0.
2822 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2823 {W0, W1, WidthV, WidthV});
2824 Words[IdxW ^ 1].push_back(T);
2825 }
2826 IdxW ^= 1;
2827 Scale /= 2;
2828 }
2829
2830 // Another sanity check. At this point there should only be two words
2831 // left, and Scale should be 2.
2832 assert(Scale == 2 && Words[IdxW].size() == 2);
2833
2834 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2835 Words[IdxW][1], Words[IdxW][0]);
2836 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2837 }
2838
2839 return SDValue();
2840 }
2841
2842 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2843 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2844 SelectionDAG &DAG) const {
2845 SDValue Vec = Op.getOperand(0);
2846 MVT ElemTy = ty(Vec).getVectorElementType();
2847 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2848 }
2849
2850 SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const2851 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2852 SelectionDAG &DAG) const {
2853 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2854 ty(Op), ty(Op), DAG);
2855 }
2856
2857 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const2858 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2859 SelectionDAG &DAG) const {
2860 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2861 SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2862 }
2863
2864 SDValue
LowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const2865 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2866 SelectionDAG &DAG) const {
2867 SDValue ValV = Op.getOperand(1);
2868 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2869 SDLoc(Op), ty(ValV), DAG);
2870 }
2871
2872 bool
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const2873 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2874 // Assuming the caller does not have either a signext or zeroext modifier, and
2875 // only one value is accepted, any reasonable truncation is allowed.
2876 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2877 return false;
2878
2879 // FIXME: in principle up to 64-bit could be made safe, but it would be very
2880 // fragile at the moment: any support for multiple value returns would be
2881 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2882 return Ty1->getPrimitiveSizeInBits() <= 32;
2883 }
2884
2885 SDValue
LowerLoad(SDValue Op,SelectionDAG & DAG) const2886 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
2887 MVT Ty = ty(Op);
2888 const SDLoc &dl(Op);
2889 // Lower loads of scalar predicate vectors (v2i1, v4i1, v8i1) to loads of i1
2890 // followed by a TYPECAST.
2891 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2892 bool DoCast = (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1);
2893 if (DoCast) {
2894 SDValue NL = DAG.getLoad(
2895 LN->getAddressingMode(), LN->getExtensionType(), MVT::i1, dl,
2896 LN->getChain(), LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(),
2897 /*MemoryVT*/ MVT::i1, LN->getAlign(), LN->getMemOperand()->getFlags(),
2898 LN->getAAInfo(), LN->getRanges());
2899 LN = cast<LoadSDNode>(NL.getNode());
2900 }
2901
2902 unsigned ClaimAlign = LN->getAlignment();
2903 validateConstPtrAlignment(LN->getBasePtr(), dl, ClaimAlign);
2904 // Call LowerUnalignedLoad for all loads, it recognizes loads that
2905 // don't need extra aligning.
2906 SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG);
2907 if (DoCast) {
2908 SDValue TC = DAG.getNode(HexagonISD::TYPECAST, dl, Ty, LU);
2909 SDValue Ch = cast<LoadSDNode>(LU.getNode())->getChain();
2910 return DAG.getMergeValues({TC, Ch}, dl);
2911 }
2912 return LU;
2913 }
2914
2915 SDValue
LowerStore(SDValue Op,SelectionDAG & DAG) const2916 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
2917 const SDLoc &dl(Op);
2918 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
2919 SDValue Val = SN->getValue();
2920 MVT Ty = ty(Val);
2921
2922 bool DoCast = (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1);
2923 if (DoCast) {
2924 SDValue TC = DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, Val);
2925 SDValue NS = DAG.getStore(SN->getChain(), dl, TC, SN->getBasePtr(),
2926 SN->getMemOperand());
2927 if (SN->isIndexed()) {
2928 NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(),
2929 SN->getAddressingMode());
2930 }
2931 SN = cast<StoreSDNode>(NS.getNode());
2932 }
2933
2934 unsigned ClaimAlign = SN->getAlignment();
2935 SDValue Ptr = SN->getBasePtr();
2936 validateConstPtrAlignment(Ptr, dl, ClaimAlign);
2937
2938 MVT StoreTy = SN->getMemoryVT().getSimpleVT();
2939 unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
2940 if (ClaimAlign < NeedAlign)
2941 return expandUnalignedStore(SN, DAG);
2942 return SDValue(SN, 0);
2943 }
2944
2945 SDValue
LowerUnalignedLoad(SDValue Op,SelectionDAG & DAG) const2946 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2947 const {
2948 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2949 MVT LoadTy = ty(Op);
2950 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2951 unsigned HaveAlign = LN->getAlignment();
2952 if (HaveAlign >= NeedAlign)
2953 return Op;
2954
2955 const SDLoc &dl(Op);
2956 const DataLayout &DL = DAG.getDataLayout();
2957 LLVMContext &Ctx = *DAG.getContext();
2958
2959 // If the load aligning is disabled or the load can be broken up into two
2960 // smaller legal loads, do the default (target-independent) expansion.
2961 bool DoDefault = false;
2962 // Handle it in the default way if this is an indexed load.
2963 if (!LN->isUnindexed())
2964 DoDefault = true;
2965
2966 if (!AlignLoads) {
2967 if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
2968 *LN->getMemOperand()))
2969 return Op;
2970 DoDefault = true;
2971 }
2972 if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
2973 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2974 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
2975 : MVT::getVectorVT(MVT::i8, HaveAlign);
2976 DoDefault =
2977 allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
2978 }
2979 if (DoDefault) {
2980 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2981 return DAG.getMergeValues({P.first, P.second}, dl);
2982 }
2983
2984 // The code below generates two loads, both aligned as NeedAlign, and
2985 // with the distance of NeedAlign between them. For that to cover the
2986 // bits that need to be loaded (and without overlapping), the size of
2987 // the loads should be equal to NeedAlign. This is true for all loadable
2988 // types, but add an assertion in case something changes in the future.
2989 assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2990
2991 unsigned LoadLen = NeedAlign;
2992 SDValue Base = LN->getBasePtr();
2993 SDValue Chain = LN->getChain();
2994 auto BO = getBaseAndOffset(Base);
2995 unsigned BaseOpc = BO.first.getOpcode();
2996 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2997 return Op;
2998
2999 if (BO.second % LoadLen != 0) {
3000 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
3001 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
3002 BO.second -= BO.second % LoadLen;
3003 }
3004 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
3005 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
3006 DAG.getConstant(NeedAlign, dl, MVT::i32))
3007 : BO.first;
3008 SDValue Base0 =
3009 DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::Fixed(BO.second), dl);
3010 SDValue Base1 = DAG.getMemBasePlusOffset(
3011 BaseNoOff, TypeSize::Fixed(BO.second + LoadLen), dl);
3012
3013 MachineMemOperand *WideMMO = nullptr;
3014 if (MachineMemOperand *MMO = LN->getMemOperand()) {
3015 MachineFunction &MF = DAG.getMachineFunction();
3016 WideMMO = MF.getMachineMemOperand(
3017 MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
3018 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
3019 MMO->getOrdering(), MMO->getFailureOrdering());
3020 }
3021
3022 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
3023 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
3024
3025 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
3026 {Load1, Load0, BaseNoOff.getOperand(0)});
3027 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3028 Load0.getValue(1), Load1.getValue(1));
3029 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
3030 return M;
3031 }
3032
3033 SDValue
LowerUAddSubO(SDValue Op,SelectionDAG & DAG) const3034 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
3035 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
3036 auto *CY = dyn_cast<ConstantSDNode>(Y);
3037 if (!CY)
3038 return SDValue();
3039
3040 const SDLoc &dl(Op);
3041 SDVTList VTs = Op.getNode()->getVTList();
3042 assert(VTs.NumVTs == 2);
3043 assert(VTs.VTs[1] == MVT::i1);
3044 unsigned Opc = Op.getOpcode();
3045
3046 if (CY) {
3047 uint32_t VY = CY->getZExtValue();
3048 assert(VY != 0 && "This should have been folded");
3049 // X +/- 1
3050 if (VY != 1)
3051 return SDValue();
3052
3053 if (Opc == ISD::UADDO) {
3054 SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
3055 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
3056 ISD::SETEQ);
3057 return DAG.getMergeValues({Op, Ov}, dl);
3058 }
3059 if (Opc == ISD::USUBO) {
3060 SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
3061 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
3062 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
3063 return DAG.getMergeValues({Op, Ov}, dl);
3064 }
3065 }
3066
3067 return SDValue();
3068 }
3069
3070 SDValue
LowerAddSubCarry(SDValue Op,SelectionDAG & DAG) const3071 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
3072 const SDLoc &dl(Op);
3073 unsigned Opc = Op.getOpcode();
3074 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
3075
3076 if (Opc == ISD::ADDCARRY)
3077 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
3078 { X, Y, C });
3079
3080 EVT CarryTy = C.getValueType();
3081 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
3082 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
3083 SDValue Out[] = { SubC.getValue(0),
3084 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
3085 return DAG.getMergeValues(Out, dl);
3086 }
3087
3088 SDValue
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const3089 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
3090 SDValue Chain = Op.getOperand(0);
3091 SDValue Offset = Op.getOperand(1);
3092 SDValue Handler = Op.getOperand(2);
3093 SDLoc dl(Op);
3094 auto PtrVT = getPointerTy(DAG.getDataLayout());
3095
3096 // Mark function as containing a call to EH_RETURN.
3097 HexagonMachineFunctionInfo *FuncInfo =
3098 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
3099 FuncInfo->setHasEHReturn();
3100
3101 unsigned OffsetReg = Hexagon::R28;
3102
3103 SDValue StoreAddr =
3104 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
3105 DAG.getIntPtrConstant(4, dl));
3106 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
3107 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
3108
3109 // Not needed we already use it as explict input to EH_RETURN.
3110 // MF.getRegInfo().addLiveOut(OffsetReg);
3111
3112 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
3113 }
3114
3115 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const3116 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3117 unsigned Opc = Op.getOpcode();
3118
3119 // Handle INLINEASM first.
3120 if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
3121 return LowerINLINEASM(Op, DAG);
3122
3123 if (isHvxOperation(Op.getNode(), DAG)) {
3124 // If HVX lowering returns nothing, try the default lowering.
3125 if (SDValue V = LowerHvxOperation(Op, DAG))
3126 return V;
3127 }
3128
3129 switch (Opc) {
3130 default:
3131 #ifndef NDEBUG
3132 Op.getNode()->dumpr(&DAG);
3133 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
3134 errs() << "Error: check for a non-legal type in this operation\n";
3135 #endif
3136 llvm_unreachable("Should not custom lower this!");
3137 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3138 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
3139 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
3140 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
3141 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3142 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3143 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3144 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
3145 case ISD::LOAD: return LowerLoad(Op, DAG);
3146 case ISD::STORE: return LowerStore(Op, DAG);
3147 case ISD::UADDO:
3148 case ISD::USUBO: return LowerUAddSubO(Op, DAG);
3149 case ISD::ADDCARRY:
3150 case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG);
3151 case ISD::SRA:
3152 case ISD::SHL:
3153 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
3154 case ISD::ROTL: return LowerROTL(Op, DAG);
3155 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3156 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3157 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
3158 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
3159 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3160 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3161 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
3162 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
3163 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
3164 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3165 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
3166 case ISD::VASTART: return LowerVASTART(Op, DAG);
3167 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
3168 case ISD::SETCC: return LowerSETCC(Op, DAG);
3169 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
3170 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3171 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
3172 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
3173 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
3174 break;
3175 }
3176
3177 return SDValue();
3178 }
3179
3180 void
LowerOperationWrapper(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const3181 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
3182 SmallVectorImpl<SDValue> &Results,
3183 SelectionDAG &DAG) const {
3184 if (isHvxOperation(N, DAG)) {
3185 LowerHvxOperationWrapper(N, Results, DAG);
3186 if (!Results.empty())
3187 return;
3188 }
3189
3190 // We are only custom-lowering stores to verify the alignment of the
3191 // address if it is a compile-time constant. Since a store can be modified
3192 // during type-legalization (the value being stored may need legalization),
3193 // return empty Results here to indicate that we don't really make any
3194 // changes in the custom lowering.
3195 if (N->getOpcode() != ISD::STORE)
3196 return TargetLowering::LowerOperationWrapper(N, Results, DAG);
3197 }
3198
3199 void
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const3200 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
3201 SmallVectorImpl<SDValue> &Results,
3202 SelectionDAG &DAG) const {
3203 if (isHvxOperation(N, DAG)) {
3204 ReplaceHvxNodeResults(N, Results, DAG);
3205 if (!Results.empty())
3206 return;
3207 }
3208
3209 const SDLoc &dl(N);
3210 switch (N->getOpcode()) {
3211 case ISD::SRL:
3212 case ISD::SRA:
3213 case ISD::SHL:
3214 return;
3215 case ISD::BITCAST:
3216 // Handle a bitcast from v8i1 to i8.
3217 if (N->getValueType(0) == MVT::i8) {
3218 if (N->getOperand(0).getValueType() == MVT::v8i1) {
3219 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
3220 N->getOperand(0), DAG);
3221 SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
3222 Results.push_back(T);
3223 }
3224 }
3225 break;
3226 }
3227 }
3228
3229 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const3230 HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
3231 const {
3232 if (isHvxOperation(N, DCI.DAG)) {
3233 if (SDValue V = PerformHvxDAGCombine(N, DCI))
3234 return V;
3235 return SDValue();
3236 }
3237
3238 if (DCI.isBeforeLegalizeOps())
3239 return SDValue();
3240
3241 SDValue Op(N, 0);
3242 const SDLoc &dl(Op);
3243 unsigned Opc = Op.getOpcode();
3244
3245 if (Opc == HexagonISD::P2D) {
3246 SDValue P = Op.getOperand(0);
3247 switch (P.getOpcode()) {
3248 case HexagonISD::PTRUE:
3249 return DCI.DAG.getConstant(-1, dl, ty(Op));
3250 case HexagonISD::PFALSE:
3251 return getZero(dl, ty(Op), DCI.DAG);
3252 default:
3253 break;
3254 }
3255 } else if (Opc == ISD::VSELECT) {
3256 // This is pretty much duplicated in HexagonISelLoweringHVX...
3257 //
3258 // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3259 SDValue Cond = Op.getOperand(0);
3260 if (Cond->getOpcode() == ISD::XOR) {
3261 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3262 if (C1->getOpcode() == HexagonISD::PTRUE) {
3263 SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3264 Op.getOperand(2), Op.getOperand(1));
3265 return VSel;
3266 }
3267 }
3268 }
3269
3270 return SDValue();
3271 }
3272
3273 /// Returns relocation base for the given PIC jumptable.
3274 SDValue
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const3275 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3276 SelectionDAG &DAG) const {
3277 int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3278 EVT VT = Table.getValueType();
3279 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3280 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3281 }
3282
3283 //===----------------------------------------------------------------------===//
3284 // Inline Assembly Support
3285 //===----------------------------------------------------------------------===//
3286
3287 TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3288 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3289 if (Constraint.size() == 1) {
3290 switch (Constraint[0]) {
3291 case 'q':
3292 case 'v':
3293 if (Subtarget.useHVXOps())
3294 return C_RegisterClass;
3295 break;
3296 case 'a':
3297 return C_RegisterClass;
3298 default:
3299 break;
3300 }
3301 }
3302 return TargetLowering::getConstraintType(Constraint);
3303 }
3304
3305 std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3306 HexagonTargetLowering::getRegForInlineAsmConstraint(
3307 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3308
3309 if (Constraint.size() == 1) {
3310 switch (Constraint[0]) {
3311 case 'r': // R0-R31
3312 switch (VT.SimpleTy) {
3313 default:
3314 return {0u, nullptr};
3315 case MVT::i1:
3316 case MVT::i8:
3317 case MVT::i16:
3318 case MVT::i32:
3319 case MVT::f32:
3320 return {0u, &Hexagon::IntRegsRegClass};
3321 case MVT::i64:
3322 case MVT::f64:
3323 return {0u, &Hexagon::DoubleRegsRegClass};
3324 }
3325 break;
3326 case 'a': // M0-M1
3327 if (VT != MVT::i32)
3328 return {0u, nullptr};
3329 return {0u, &Hexagon::ModRegsRegClass};
3330 case 'q': // q0-q3
3331 switch (VT.getSizeInBits()) {
3332 default:
3333 return {0u, nullptr};
3334 case 64:
3335 case 128:
3336 return {0u, &Hexagon::HvxQRRegClass};
3337 }
3338 break;
3339 case 'v': // V0-V31
3340 switch (VT.getSizeInBits()) {
3341 default:
3342 return {0u, nullptr};
3343 case 512:
3344 return {0u, &Hexagon::HvxVRRegClass};
3345 case 1024:
3346 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3347 return {0u, &Hexagon::HvxVRRegClass};
3348 return {0u, &Hexagon::HvxWRRegClass};
3349 case 2048:
3350 return {0u, &Hexagon::HvxWRRegClass};
3351 }
3352 break;
3353 default:
3354 return {0u, nullptr};
3355 }
3356 }
3357
3358 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3359 }
3360
3361 /// isFPImmLegal - Returns true if the target can instruction select the
3362 /// specified FP immediate natively. If false, the legalizer will
3363 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const3364 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3365 bool ForCodeSize) const {
3366 return true;
3367 }
3368
3369 /// isLegalAddressingMode - Return true if the addressing mode represented by
3370 /// AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const3371 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3372 const AddrMode &AM, Type *Ty,
3373 unsigned AS, Instruction *I) const {
3374 if (Ty->isSized()) {
3375 // When LSR detects uses of the same base address to access different
3376 // types (e.g. unions), it will assume a conservative type for these
3377 // uses:
3378 // LSR Use: Kind=Address of void in addrspace(4294967295), ...
3379 // The type Ty passed here would then be "void". Skip the alignment
3380 // checks, but do not return false right away, since that confuses
3381 // LSR into crashing.
3382 Align A = DL.getABITypeAlign(Ty);
3383 // The base offset must be a multiple of the alignment.
3384 if (!isAligned(A, AM.BaseOffs))
3385 return false;
3386 // The shifted offset must fit in 11 bits.
3387 if (!isInt<11>(AM.BaseOffs >> Log2(A)))
3388 return false;
3389 }
3390
3391 // No global is ever allowed as a base.
3392 if (AM.BaseGV)
3393 return false;
3394
3395 int Scale = AM.Scale;
3396 if (Scale < 0)
3397 Scale = -Scale;
3398 switch (Scale) {
3399 case 0: // No scale reg, "r+i", "r", or just "i".
3400 break;
3401 default: // No scaled addressing mode.
3402 return false;
3403 }
3404 return true;
3405 }
3406
3407 /// Return true if folding a constant offset with the given GlobalAddress is
3408 /// legal. It is frequently not legal in PIC relocation models.
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const3409 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3410 const {
3411 return HTM.getRelocationModel() == Reloc::Static;
3412 }
3413
3414 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3415 /// icmp immediate, that is the target has icmp instructions which can compare
3416 /// a register against the immediate without having to materialize the
3417 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const3418 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3419 return Imm >= -512 && Imm <= 511;
3420 }
3421
3422 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3423 /// for tail call optimization. Targets which want to do tail call
3424 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool IsVarArg,bool IsCalleeStructRet,bool IsCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const3425 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3426 SDValue Callee,
3427 CallingConv::ID CalleeCC,
3428 bool IsVarArg,
3429 bool IsCalleeStructRet,
3430 bool IsCallerStructRet,
3431 const SmallVectorImpl<ISD::OutputArg> &Outs,
3432 const SmallVectorImpl<SDValue> &OutVals,
3433 const SmallVectorImpl<ISD::InputArg> &Ins,
3434 SelectionDAG& DAG) const {
3435 const Function &CallerF = DAG.getMachineFunction().getFunction();
3436 CallingConv::ID CallerCC = CallerF.getCallingConv();
3437 bool CCMatch = CallerCC == CalleeCC;
3438
3439 // ***************************************************************************
3440 // Look for obvious safe cases to perform tail call optimization that do not
3441 // require ABI changes.
3442 // ***************************************************************************
3443
3444 // If this is a tail call via a function pointer, then don't do it!
3445 if (!isa<GlobalAddressSDNode>(Callee) &&
3446 !isa<ExternalSymbolSDNode>(Callee)) {
3447 return false;
3448 }
3449
3450 // Do not optimize if the calling conventions do not match and the conventions
3451 // used are not C or Fast.
3452 if (!CCMatch) {
3453 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3454 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3455 // If R & E, then ok.
3456 if (!R || !E)
3457 return false;
3458 }
3459
3460 // Do not tail call optimize vararg calls.
3461 if (IsVarArg)
3462 return false;
3463
3464 // Also avoid tail call optimization if either caller or callee uses struct
3465 // return semantics.
3466 if (IsCalleeStructRet || IsCallerStructRet)
3467 return false;
3468
3469 // In addition to the cases above, we also disable Tail Call Optimization if
3470 // the calling convention code that at least one outgoing argument needs to
3471 // go on the stack. We cannot check that here because at this point that
3472 // information is not available.
3473 return true;
3474 }
3475
3476 /// Returns the target specific optimal type for load and store operations as
3477 /// a result of memset, memcpy, and memmove lowering.
3478 ///
3479 /// If DstAlign is zero that means it's safe to destination alignment can
3480 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3481 /// a need to check it against alignment requirement, probably because the
3482 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3483 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3484 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3485 /// does not need to be loaded. It returns EVT::Other if the type should be
3486 /// determined using generic target-independent logic.
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const3487 EVT HexagonTargetLowering::getOptimalMemOpType(
3488 const MemOp &Op, const AttributeList &FuncAttributes) const {
3489 if (Op.size() >= 8 && Op.isAligned(Align(8)))
3490 return MVT::i64;
3491 if (Op.size() >= 4 && Op.isAligned(Align(4)))
3492 return MVT::i32;
3493 if (Op.size() >= 2 && Op.isAligned(Align(2)))
3494 return MVT::i16;
3495 return MVT::Other;
3496 }
3497
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const3498 bool HexagonTargetLowering::allowsMemoryAccess(
3499 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
3500 Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
3501 MVT SVT = VT.getSimpleVT();
3502 if (Subtarget.isHVXVectorType(SVT, true))
3503 return allowsHvxMemoryAccess(SVT, Flags, Fast);
3504 return TargetLoweringBase::allowsMemoryAccess(
3505 Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
3506 }
3507
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const3508 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3509 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
3510 bool *Fast) const {
3511 MVT SVT = VT.getSimpleVT();
3512 if (Subtarget.isHVXVectorType(SVT, true))
3513 return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
3514 if (Fast)
3515 *Fast = false;
3516 return false;
3517 }
3518
3519 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const3520 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3521 MVT VT) const {
3522 if (Subtarget.isHVXVectorType(VT, true)) {
3523 unsigned BitWidth = VT.getSizeInBits();
3524 unsigned VecWidth = Subtarget.getVectorLength() * 8;
3525
3526 if (VT.getVectorElementType() == MVT::i1)
3527 return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3528 if (BitWidth == VecWidth)
3529 return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3530 assert(BitWidth == 2 * VecWidth);
3531 return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3532 }
3533
3534 return TargetLowering::findRepresentativeClass(TRI, VT);
3535 }
3536
shouldReduceLoadWidth(SDNode * Load,ISD::LoadExtType ExtTy,EVT NewVT) const3537 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3538 ISD::LoadExtType ExtTy, EVT NewVT) const {
3539 // TODO: This may be worth removing. Check regression tests for diffs.
3540 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3541 return false;
3542
3543 auto *L = cast<LoadSDNode>(Load);
3544 std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3545 // Small-data object, do not shrink.
3546 if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3547 return false;
3548 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3549 auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3550 const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3551 return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3552 }
3553 return true;
3554 }
3555
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const3556 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3557 AtomicOrdering Ord) const {
3558 BasicBlock *BB = Builder.GetInsertBlock();
3559 Module *M = BB->getParent()->getParent();
3560 auto PT = cast<PointerType>(Addr->getType());
3561 Type *Ty = PT->getElementType();
3562 unsigned SZ = Ty->getPrimitiveSizeInBits();
3563 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3564 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3565 : Intrinsic::hexagon_L4_loadd_locked;
3566 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3567
3568 PointerType *NewPtrTy
3569 = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
3570 Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3571
3572 Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3573
3574 return Builder.CreateBitCast(Call, Ty);
3575 }
3576
3577 /// Perform a store-conditional operation to Addr. Return the status of the
3578 /// store. This should be 0 if the store succeeded, non-zero otherwise.
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const3579 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3580 Value *Val, Value *Addr, AtomicOrdering Ord) const {
3581 BasicBlock *BB = Builder.GetInsertBlock();
3582 Module *M = BB->getParent()->getParent();
3583 Type *Ty = Val->getType();
3584 unsigned SZ = Ty->getPrimitiveSizeInBits();
3585
3586 Type *CastTy = Builder.getIntNTy(SZ);
3587 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3588 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3589 : Intrinsic::hexagon_S4_stored_locked;
3590 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3591
3592 unsigned AS = Addr->getType()->getPointerAddressSpace();
3593 Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3594 Val = Builder.CreateBitCast(Val, CastTy);
3595
3596 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3597 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3598 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3599 return Ext;
3600 }
3601
3602 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const3603 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3604 // Do not expand loads and stores that don't exceed 64 bits.
3605 return LI->getType()->getPrimitiveSizeInBits() > 64
3606 ? AtomicExpansionKind::LLOnly
3607 : AtomicExpansionKind::None;
3608 }
3609
shouldExpandAtomicStoreInIR(StoreInst * SI) const3610 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3611 // Do not expand loads and stores that don't exceed 64 bits.
3612 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3613 }
3614
3615 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const3616 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3617 AtomicCmpXchgInst *AI) const {
3618 return AtomicExpansionKind::LLSC;
3619 }
3620