xref: /netbsd-src/external/apache2/llvm/dist/llvm/include/llvm/Object/ELFTypes.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_OBJECT_ELFTYPES_H
10 #define LLVM_OBJECT_ELFTYPES_H
11 
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Object/Error.h"
16 #include "llvm/Support/Endian.h"
17 #include "llvm/Support/Error.h"
18 #include <cassert>
19 #include <cstdint>
20 #include <cstring>
21 #include <type_traits>
22 
23 namespace llvm {
24 namespace object {
25 
26 using support::endianness;
27 
28 template <class ELFT> struct Elf_Ehdr_Impl;
29 template <class ELFT> struct Elf_Shdr_Impl;
30 template <class ELFT> struct Elf_Sym_Impl;
31 template <class ELFT> struct Elf_Dyn_Impl;
32 template <class ELFT> struct Elf_Phdr_Impl;
33 template <class ELFT, bool isRela> struct Elf_Rel_Impl;
34 template <class ELFT> struct Elf_Verdef_Impl;
35 template <class ELFT> struct Elf_Verdaux_Impl;
36 template <class ELFT> struct Elf_Verneed_Impl;
37 template <class ELFT> struct Elf_Vernaux_Impl;
38 template <class ELFT> struct Elf_Versym_Impl;
39 template <class ELFT> struct Elf_Hash_Impl;
40 template <class ELFT> struct Elf_GnuHash_Impl;
41 template <class ELFT> struct Elf_Chdr_Impl;
42 template <class ELFT> struct Elf_Nhdr_Impl;
43 template <class ELFT> class Elf_Note_Impl;
44 template <class ELFT> class Elf_Note_Iterator_Impl;
45 template <class ELFT> struct Elf_CGProfile_Impl;
46 template <class ELFT> struct Elf_BBAddrMap_Impl;
47 
48 template <endianness E, bool Is64> struct ELFType {
49 private:
50   template <typename Ty>
51   using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>;
52 
53 public:
54   static const endianness TargetEndianness = E;
55   static const bool Is64Bits = Is64;
56 
57   using uint = std::conditional_t<Is64, uint64_t, uint32_t>;
58   using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
59   using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
60   using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
61   using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
62   using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
63   using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
64   using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
65   using Relr = packed<uint>;
66   using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
67   using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
68   using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
69   using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
70   using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
71   using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
72   using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
73   using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
74   using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>;
75   using Note = Elf_Note_Impl<ELFType<E, Is64>>;
76   using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>;
77   using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>;
78   using BBAddrMap = Elf_BBAddrMap_Impl<ELFType<E, Is64>>;
79   using DynRange = ArrayRef<Dyn>;
80   using ShdrRange = ArrayRef<Shdr>;
81   using SymRange = ArrayRef<Sym>;
82   using RelRange = ArrayRef<Rel>;
83   using RelaRange = ArrayRef<Rela>;
84   using RelrRange = ArrayRef<Relr>;
85   using PhdrRange = ArrayRef<Phdr>;
86 
87   using Half = packed<uint16_t>;
88   using Word = packed<uint32_t>;
89   using Sword = packed<int32_t>;
90   using Xword = packed<uint64_t>;
91   using Sxword = packed<int64_t>;
92   using Addr = packed<uint>;
93   using Off = packed<uint>;
94 };
95 
96 using ELF32LE = ELFType<support::little, false>;
97 using ELF32BE = ELFType<support::big, false>;
98 using ELF64LE = ELFType<support::little, true>;
99 using ELF64BE = ELFType<support::big, true>;
100 
101 // Use an alignment of 2 for the typedefs since that is the worst case for
102 // ELF files in archives.
103 
104 // I really don't like doing this, but the alternative is copypasta.
105 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
106   using Elf_Addr = typename ELFT::Addr;                                        \
107   using Elf_Off = typename ELFT::Off;                                          \
108   using Elf_Half = typename ELFT::Half;                                        \
109   using Elf_Word = typename ELFT::Word;                                        \
110   using Elf_Sword = typename ELFT::Sword;                                      \
111   using Elf_Xword = typename ELFT::Xword;                                      \
112   using Elf_Sxword = typename ELFT::Sxword;                                    \
113   using uintX_t = typename ELFT::uint;                                         \
114   using Elf_Ehdr = typename ELFT::Ehdr;                                        \
115   using Elf_Shdr = typename ELFT::Shdr;                                        \
116   using Elf_Sym = typename ELFT::Sym;                                          \
117   using Elf_Dyn = typename ELFT::Dyn;                                          \
118   using Elf_Phdr = typename ELFT::Phdr;                                        \
119   using Elf_Rel = typename ELFT::Rel;                                          \
120   using Elf_Rela = typename ELFT::Rela;                                        \
121   using Elf_Relr = typename ELFT::Relr;                                        \
122   using Elf_Verdef = typename ELFT::Verdef;                                    \
123   using Elf_Verdaux = typename ELFT::Verdaux;                                  \
124   using Elf_Verneed = typename ELFT::Verneed;                                  \
125   using Elf_Vernaux = typename ELFT::Vernaux;                                  \
126   using Elf_Versym = typename ELFT::Versym;                                    \
127   using Elf_Hash = typename ELFT::Hash;                                        \
128   using Elf_GnuHash = typename ELFT::GnuHash;                                  \
129   using Elf_Nhdr = typename ELFT::Nhdr;                                        \
130   using Elf_Note = typename ELFT::Note;                                        \
131   using Elf_Note_Iterator = typename ELFT::NoteIterator;                       \
132   using Elf_CGProfile = typename ELFT::CGProfile;                              \
133   using Elf_BBAddrMap = typename ELFT::BBAddrMap;                              \
134   using Elf_Dyn_Range = typename ELFT::DynRange;                               \
135   using Elf_Shdr_Range = typename ELFT::ShdrRange;                             \
136   using Elf_Sym_Range = typename ELFT::SymRange;                               \
137   using Elf_Rel_Range = typename ELFT::RelRange;                               \
138   using Elf_Rela_Range = typename ELFT::RelaRange;                             \
139   using Elf_Relr_Range = typename ELFT::RelrRange;                             \
140   using Elf_Phdr_Range = typename ELFT::PhdrRange;
141 
142 #define LLVM_ELF_COMMA ,
143 #define LLVM_ELF_IMPORT_TYPES(E, W)                                            \
144   LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>)
145 
146 // Section header.
147 template <class ELFT> struct Elf_Shdr_Base;
148 
149 template <endianness TargetEndianness>
150 struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
151   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
152   Elf_Word sh_name;      // Section name (index into string table)
153   Elf_Word sh_type;      // Section type (SHT_*)
154   Elf_Word sh_flags;     // Section flags (SHF_*)
155   Elf_Addr sh_addr;      // Address where section is to be loaded
156   Elf_Off sh_offset;     // File offset of section data, in bytes
157   Elf_Word sh_size;      // Size of section, in bytes
158   Elf_Word sh_link;      // Section type-specific header table index link
159   Elf_Word sh_info;      // Section type-specific extra information
160   Elf_Word sh_addralign; // Section address alignment
161   Elf_Word sh_entsize;   // Size of records contained within the section
162 };
163 
164 template <endianness TargetEndianness>
165 struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
166   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
167   Elf_Word sh_name;       // Section name (index into string table)
168   Elf_Word sh_type;       // Section type (SHT_*)
169   Elf_Xword sh_flags;     // Section flags (SHF_*)
170   Elf_Addr sh_addr;       // Address where section is to be loaded
171   Elf_Off sh_offset;      // File offset of section data, in bytes
172   Elf_Xword sh_size;      // Size of section, in bytes
173   Elf_Word sh_link;       // Section type-specific header table index link
174   Elf_Word sh_info;       // Section type-specific extra information
175   Elf_Xword sh_addralign; // Section address alignment
176   Elf_Xword sh_entsize;   // Size of records contained within the section
177 };
178 
179 template <class ELFT>
180 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
181   using Elf_Shdr_Base<ELFT>::sh_entsize;
182   using Elf_Shdr_Base<ELFT>::sh_size;
183 
184   /// Get the number of entities this section contains if it has any.
185   unsigned getEntityCount() const {
186     if (sh_entsize == 0)
187       return 0;
188     return sh_size / sh_entsize;
189   }
190 };
191 
192 template <class ELFT> struct Elf_Sym_Base;
193 
194 template <endianness TargetEndianness>
195 struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
196   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
197   Elf_Word st_name;       // Symbol name (index into string table)
198   Elf_Addr st_value;      // Value or address associated with the symbol
199   Elf_Word st_size;       // Size of the symbol
200   unsigned char st_info;  // Symbol's type and binding attributes
201   unsigned char st_other; // Must be zero; reserved
202   Elf_Half st_shndx;      // Which section (header table index) it's defined in
203 };
204 
205 template <endianness TargetEndianness>
206 struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
207   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
208   Elf_Word st_name;       // Symbol name (index into string table)
209   unsigned char st_info;  // Symbol's type and binding attributes
210   unsigned char st_other; // Must be zero; reserved
211   Elf_Half st_shndx;      // Which section (header table index) it's defined in
212   Elf_Addr st_value;      // Value or address associated with the symbol
213   Elf_Xword st_size;      // Size of the symbol
214 };
215 
216 template <class ELFT>
217 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
218   using Elf_Sym_Base<ELFT>::st_info;
219   using Elf_Sym_Base<ELFT>::st_shndx;
220   using Elf_Sym_Base<ELFT>::st_other;
221   using Elf_Sym_Base<ELFT>::st_value;
222 
223   // These accessors and mutators correspond to the ELF32_ST_BIND,
224   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
225   unsigned char getBinding() const { return st_info >> 4; }
226   unsigned char getType() const { return st_info & 0x0f; }
227   uint64_t getValue() const { return st_value; }
228   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
229   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
230 
231   void setBindingAndType(unsigned char b, unsigned char t) {
232     st_info = (b << 4) + (t & 0x0f);
233   }
234 
235   /// Access to the STV_xxx flag stored in the first two bits of st_other.
236   /// STV_DEFAULT: 0
237   /// STV_INTERNAL: 1
238   /// STV_HIDDEN: 2
239   /// STV_PROTECTED: 3
240   unsigned char getVisibility() const { return st_other & 0x3; }
241   void setVisibility(unsigned char v) {
242     assert(v < 4 && "Invalid value for visibility");
243     st_other = (st_other & ~0x3) | v;
244   }
245 
246   bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
247 
248   bool isCommon() const {
249     return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
250   }
251 
252   bool isDefined() const { return !isUndefined(); }
253 
254   bool isProcessorSpecific() const {
255     return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
256   }
257 
258   bool isOSSpecific() const {
259     return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
260   }
261 
262   bool isReserved() const {
263     // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
264     // true and some compilers warn about it.
265     return st_shndx >= ELF::SHN_LORESERVE;
266   }
267 
268   bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
269 
270   bool isExternal() const {
271     return getBinding() != ELF::STB_LOCAL;
272   }
273 
274   Expected<StringRef> getName(StringRef StrTab) const;
275 };
276 
277 template <class ELFT>
278 Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
279   uint32_t Offset = this->st_name;
280   if (Offset >= StrTab.size())
281     return createStringError(object_error::parse_failed,
282                              "st_name (0x%" PRIx32
283                              ") is past the end of the string table"
284                              " of size 0x%zx",
285                              Offset, StrTab.size());
286   return StringRef(StrTab.data() + Offset);
287 }
288 
289 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
290 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
291 template <class ELFT>
292 struct Elf_Versym_Impl {
293   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
294   Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
295 };
296 
297 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
298 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
299 template <class ELFT>
300 struct Elf_Verdef_Impl {
301   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
302   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
303   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
304   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
305   Elf_Half vd_cnt;     // Number of Verdaux entries
306   Elf_Word vd_hash;    // Hash of name
307   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
308   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
309 
310   /// Get the first Verdaux entry for this Verdef.
311   const Elf_Verdaux *getAux() const {
312     return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
313   }
314 };
315 
316 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
317 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
318 template <class ELFT>
319 struct Elf_Verdaux_Impl {
320   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
321   Elf_Word vda_name; // Version name (offset in string table)
322   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
323 };
324 
325 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
326 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
327 template <class ELFT>
328 struct Elf_Verneed_Impl {
329   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
330   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
331   Elf_Half vn_cnt;     // Number of associated Vernaux entries
332   Elf_Word vn_file;    // Library name (string table offset)
333   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
334   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
335 };
336 
337 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
338 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
339 template <class ELFT>
340 struct Elf_Vernaux_Impl {
341   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
342   Elf_Word vna_hash;  // Hash of dependency name
343   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
344   Elf_Half vna_other; // Version index, used in .gnu.version entries
345   Elf_Word vna_name;  // Dependency name
346   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
347 };
348 
349 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
350 ///               table section (.dynamic) look like.
351 template <class ELFT> struct Elf_Dyn_Base;
352 
353 template <endianness TargetEndianness>
354 struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
355   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
356   Elf_Sword d_tag;
357   union {
358     Elf_Word d_val;
359     Elf_Addr d_ptr;
360   } d_un;
361 };
362 
363 template <endianness TargetEndianness>
364 struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
365   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
366   Elf_Sxword d_tag;
367   union {
368     Elf_Xword d_val;
369     Elf_Addr d_ptr;
370   } d_un;
371 };
372 
373 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
374 template <class ELFT>
375 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
376   using Elf_Dyn_Base<ELFT>::d_tag;
377   using Elf_Dyn_Base<ELFT>::d_un;
378   using intX_t = std::conditional_t<ELFT::Is64Bits, int64_t, int32_t>;
379   using uintX_t = std::conditional_t<ELFT::Is64Bits, uint64_t, uint32_t>;
380   intX_t getTag() const { return d_tag; }
381   uintX_t getVal() const { return d_un.d_val; }
382   uintX_t getPtr() const { return d_un.d_ptr; }
383 };
384 
385 template <endianness TargetEndianness>
386 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
387   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
388   static const bool IsRela = false;
389   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
390   Elf_Word r_info;   // Symbol table index and type of relocation to apply
391 
392   uint32_t getRInfo(bool isMips64EL) const {
393     assert(!isMips64EL);
394     return r_info;
395   }
396   void setRInfo(uint32_t R, bool IsMips64EL) {
397     assert(!IsMips64EL);
398     r_info = R;
399   }
400 
401   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
402   // and ELF32_R_INFO macros defined in the ELF specification:
403   uint32_t getSymbol(bool isMips64EL) const {
404     return this->getRInfo(isMips64EL) >> 8;
405   }
406   unsigned char getType(bool isMips64EL) const {
407     return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
408   }
409   void setSymbol(uint32_t s, bool IsMips64EL) {
410     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
411   }
412   void setType(unsigned char t, bool IsMips64EL) {
413     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
414   }
415   void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
416     this->setRInfo((s << 8) + t, IsMips64EL);
417   }
418 };
419 
420 template <endianness TargetEndianness>
421 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
422     : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
423   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
424   static const bool IsRela = true;
425   Elf_Sword r_addend; // Compute value for relocatable field by adding this
426 };
427 
428 template <endianness TargetEndianness>
429 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
430   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
431   static const bool IsRela = false;
432   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
433   Elf_Xword r_info;  // Symbol table index and type of relocation to apply
434 
435   uint64_t getRInfo(bool isMips64EL) const {
436     uint64_t t = r_info;
437     if (!isMips64EL)
438       return t;
439     // Mips64 little endian has a "special" encoding of r_info. Instead of one
440     // 64 bit little endian number, it is a little endian 32 bit number followed
441     // by a 32 bit big endian number.
442     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
443            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
444   }
445 
446   void setRInfo(uint64_t R, bool IsMips64EL) {
447     if (IsMips64EL)
448       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
449                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
450     else
451       r_info = R;
452   }
453 
454   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
455   // and ELF64_R_INFO macros defined in the ELF specification:
456   uint32_t getSymbol(bool isMips64EL) const {
457     return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
458   }
459   uint32_t getType(bool isMips64EL) const {
460     return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
461   }
462   void setSymbol(uint32_t s, bool IsMips64EL) {
463     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
464   }
465   void setType(uint32_t t, bool IsMips64EL) {
466     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
467   }
468   void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
469     this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
470   }
471 };
472 
473 template <endianness TargetEndianness>
474 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
475     : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
476   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
477   static const bool IsRela = true;
478   Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
479 };
480 
481 template <class ELFT>
482 struct Elf_Ehdr_Impl {
483   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
484   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
485   Elf_Half e_type;                       // Type of file (see ET_*)
486   Elf_Half e_machine;   // Required architecture for this file (see EM_*)
487   Elf_Word e_version;   // Must be equal to 1
488   Elf_Addr e_entry;     // Address to jump to in order to start program
489   Elf_Off e_phoff;      // Program header table's file offset, in bytes
490   Elf_Off e_shoff;      // Section header table's file offset, in bytes
491   Elf_Word e_flags;     // Processor-specific flags
492   Elf_Half e_ehsize;    // Size of ELF header, in bytes
493   Elf_Half e_phentsize; // Size of an entry in the program header table
494   Elf_Half e_phnum;     // Number of entries in the program header table
495   Elf_Half e_shentsize; // Size of an entry in the section header table
496   Elf_Half e_shnum;     // Number of entries in the section header table
497   Elf_Half e_shstrndx;  // Section header table index of section name
498                         // string table
499 
500   bool checkMagic() const {
501     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
502   }
503 
504   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
505   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
506 };
507 
508 template <endianness TargetEndianness>
509 struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
510   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
511   Elf_Word p_type;   // Type of segment
512   Elf_Off p_offset;  // FileOffset where segment is located, in bytes
513   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
514   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
515   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
516   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
517   Elf_Word p_flags;  // Segment flags
518   Elf_Word p_align;  // Segment alignment constraint
519 };
520 
521 template <endianness TargetEndianness>
522 struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
523   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
524   Elf_Word p_type;    // Type of segment
525   Elf_Word p_flags;   // Segment flags
526   Elf_Off p_offset;   // FileOffset where segment is located, in bytes
527   Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
528   Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
529   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
530   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
531   Elf_Xword p_align;  // Segment alignment constraint
532 };
533 
534 // ELFT needed for endianness.
535 template <class ELFT>
536 struct Elf_Hash_Impl {
537   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
538   Elf_Word nbucket;
539   Elf_Word nchain;
540 
541   ArrayRef<Elf_Word> buckets() const {
542     return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
543   }
544 
545   ArrayRef<Elf_Word> chains() const {
546     return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
547                               &nbucket + 2 + nbucket + nchain);
548   }
549 };
550 
551 // .gnu.hash section
552 template <class ELFT>
553 struct Elf_GnuHash_Impl {
554   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
555   Elf_Word nbuckets;
556   Elf_Word symndx;
557   Elf_Word maskwords;
558   Elf_Word shift2;
559 
560   ArrayRef<Elf_Off> filter() const {
561     return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
562                              maskwords);
563   }
564 
565   ArrayRef<Elf_Word> buckets() const {
566     return ArrayRef<Elf_Word>(
567         reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
568   }
569 
570   ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
571     assert(DynamicSymCount >= symndx);
572     return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
573   }
574 };
575 
576 // Compressed section headers.
577 // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
578 template <endianness TargetEndianness>
579 struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
580   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
581   Elf_Word ch_type;
582   Elf_Word ch_size;
583   Elf_Word ch_addralign;
584 };
585 
586 template <endianness TargetEndianness>
587 struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
588   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
589   Elf_Word ch_type;
590   Elf_Word ch_reserved;
591   Elf_Xword ch_size;
592   Elf_Xword ch_addralign;
593 };
594 
595 /// Note header
596 template <class ELFT>
597 struct Elf_Nhdr_Impl {
598   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
599   Elf_Word n_namesz;
600   Elf_Word n_descsz;
601   Elf_Word n_type;
602 
603   /// The alignment of the name and descriptor.
604   ///
605   /// Implementations differ from the specification here: in practice all
606   /// variants align both the name and descriptor to 4-bytes.
607   static const unsigned int Align = 4;
608 
609   /// Get the size of the note, including name, descriptor, and padding.
610   size_t getSize() const {
611     return sizeof(*this) + alignTo<Align>(n_namesz) + alignTo<Align>(n_descsz);
612   }
613 };
614 
615 /// An ELF note.
616 ///
617 /// Wraps a note header, providing methods for accessing the name and
618 /// descriptor safely.
619 template <class ELFT>
620 class Elf_Note_Impl {
621   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
622 
623   const Elf_Nhdr_Impl<ELFT> &Nhdr;
624 
625   template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl;
626 
627 public:
628   Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {}
629 
630   /// Get the note's name, excluding the terminating null byte.
631   StringRef getName() const {
632     if (!Nhdr.n_namesz)
633       return StringRef();
634     return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr),
635                      Nhdr.n_namesz - 1);
636   }
637 
638   /// Get the note's descriptor.
639   ArrayRef<uint8_t> getDesc() const {
640     if (!Nhdr.n_descsz)
641       return ArrayRef<uint8_t>();
642     return ArrayRef<uint8_t>(
643         reinterpret_cast<const uint8_t *>(&Nhdr) + sizeof(Nhdr) +
644           alignTo<Elf_Nhdr_Impl<ELFT>::Align>(Nhdr.n_namesz),
645         Nhdr.n_descsz);
646   }
647 
648   /// Get the note's descriptor as StringRef
649   StringRef getDescAsStringRef() const {
650     ArrayRef<uint8_t> Desc = getDesc();
651     return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
652   }
653 
654   /// Get the note's type.
655   Elf_Word getType() const { return Nhdr.n_type; }
656 };
657 
658 template <class ELFT> class Elf_Note_Iterator_Impl {
659 public:
660   using iterator_category = std::forward_iterator_tag;
661   using value_type = Elf_Note_Impl<ELFT>;
662   using difference_type = std::ptrdiff_t;
663   using pointer = value_type *;
664   using reference = value_type &;
665 
666 private:
667   // Nhdr being a nullptr marks the end of iteration.
668   const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr;
669   size_t RemainingSize = 0u;
670   Error *Err = nullptr;
671 
672   template <class ELFFileELFT> friend class ELFFile;
673 
674   // Stop iteration and indicate an overflow.
675   void stopWithOverflowError() {
676     Nhdr = nullptr;
677     *Err = make_error<StringError>("ELF note overflows container",
678                                    object_error::parse_failed);
679   }
680 
681   // Advance Nhdr by NoteSize bytes, starting from NhdrPos.
682   //
683   // Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize
684   // upon returning. Handles stopping iteration when reaching the end of the
685   // container, either cleanly or with an overflow error.
686   void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) {
687     RemainingSize -= NoteSize;
688     if (RemainingSize == 0u) {
689       // Ensure that if the iterator walks to the end, the error is checked
690       // afterwards.
691       *Err = Error::success();
692       Nhdr = nullptr;
693     } else if (sizeof(*Nhdr) > RemainingSize)
694       stopWithOverflowError();
695     else {
696       Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize);
697       if (Nhdr->getSize() > RemainingSize)
698         stopWithOverflowError();
699       else
700         *Err = Error::success();
701     }
702   }
703 
704   Elf_Note_Iterator_Impl() {}
705   explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {}
706   Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, Error &Err)
707       : RemainingSize(Size), Err(&Err) {
708     consumeError(std::move(Err));
709     assert(Start && "ELF note iterator starting at NULL");
710     advanceNhdr(Start, 0u);
711   }
712 
713 public:
714   Elf_Note_Iterator_Impl &operator++() {
715     assert(Nhdr && "incremented ELF note end iterator");
716     const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr);
717     size_t NoteSize = Nhdr->getSize();
718     advanceNhdr(NhdrPos, NoteSize);
719     return *this;
720   }
721   bool operator==(Elf_Note_Iterator_Impl Other) const {
722     if (!Nhdr && Other.Err)
723       (void)(bool)(*Other.Err);
724     if (!Other.Nhdr && Err)
725       (void)(bool)(*Err);
726     return Nhdr == Other.Nhdr;
727   }
728   bool operator!=(Elf_Note_Iterator_Impl Other) const {
729     return !(*this == Other);
730   }
731   Elf_Note_Impl<ELFT> operator*() const {
732     assert(Nhdr && "dereferenced ELF note end iterator");
733     return Elf_Note_Impl<ELFT>(*Nhdr);
734   }
735 };
736 
737 template <class ELFT> struct Elf_CGProfile_Impl {
738   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
739   Elf_Word cgp_from;
740   Elf_Word cgp_to;
741   Elf_Xword cgp_weight;
742 };
743 
744 // MIPS .reginfo section
745 template <class ELFT>
746 struct Elf_Mips_RegInfo;
747 
748 template <support::endianness TargetEndianness>
749 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
750   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
751   Elf_Word ri_gprmask;     // bit-mask of used general registers
752   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
753   Elf_Addr ri_gp_value;    // gp register value
754 };
755 
756 template <support::endianness TargetEndianness>
757 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
758   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
759   Elf_Word ri_gprmask;     // bit-mask of used general registers
760   Elf_Word ri_pad;         // unused padding field
761   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
762   Elf_Addr ri_gp_value;    // gp register value
763 };
764 
765 // .MIPS.options section
766 template <class ELFT> struct Elf_Mips_Options {
767   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
768   uint8_t kind;     // Determines interpretation of variable part of descriptor
769   uint8_t size;     // Byte size of descriptor, including this header
770   Elf_Half section; // Section header index of section affected,
771                     // or 0 for global options
772   Elf_Word info;    // Kind-specific information
773 
774   Elf_Mips_RegInfo<ELFT> &getRegInfo() {
775     assert(kind == ELF::ODK_REGINFO);
776     return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
777         (uint8_t *)this + sizeof(Elf_Mips_Options));
778   }
779   const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
780     return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
781   }
782 };
783 
784 // .MIPS.abiflags section content
785 template <class ELFT> struct Elf_Mips_ABIFlags {
786   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
787   Elf_Half version;  // Version of the structure
788   uint8_t isa_level; // ISA level: 1-5, 32, and 64
789   uint8_t isa_rev;   // ISA revision (0 for MIPS I - MIPS V)
790   uint8_t gpr_size;  // General purpose registers size
791   uint8_t cpr1_size; // Co-processor 1 registers size
792   uint8_t cpr2_size; // Co-processor 2 registers size
793   uint8_t fp_abi;    // Floating-point ABI flag
794   Elf_Word isa_ext;  // Processor-specific extension
795   Elf_Word ases;     // ASEs flags
796   Elf_Word flags1;   // General flags
797   Elf_Word flags2;   // General flags
798 };
799 
800 // Struct representing the BBAddrMap for one function.
801 template <class ELFT> struct Elf_BBAddrMap_Impl {
802   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
803   uintX_t Addr; // Function address
804   // Struct representing the BBAddrMap information for one basic block.
805   struct BBEntry {
806     uint32_t Offset; // Offset of basic block relative to function start.
807     uint32_t Size;   // Size of the basic block.
808 
809     // The following fields are decoded from the Metadata field. The encoding
810     // happens in AsmPrinter.cpp:getBBAddrMapMetadata.
811     bool HasReturn;      // If this block ends with a return (or tail call).
812     bool HasTailCall;    // If this block ends with a tail call.
813     bool IsEHPad;        // If this is an exception handling block.
814     bool CanFallThrough; // If this block can fall through to its next.
815 
816     BBEntry(uint32_t Offset, uint32_t Size, uint32_t Metadata)
817         : Offset(Offset), Size(Size), HasReturn(Metadata & 1),
818           HasTailCall(Metadata & (1 << 1)), IsEHPad(Metadata & (1 << 2)),
819           CanFallThrough(Metadata & (1 << 3)){};
820   };
821   std::vector<BBEntry> BBEntries; // Basic block entries for this function.
822 };
823 
824 } // end namespace object.
825 } // end namespace llvm.
826 
827 #endif // LLVM_OBJECT_ELFTYPES_H
828