xref: /llvm-project/llvm/include/llvm/ADT/DenseMap.h (revision 390b82dd4c485ec64cf8a6c52fb73e391792262e)
1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the DenseMap class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_DENSEMAP_H
15 #define LLVM_ADT_DENSEMAP_H
16 
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/EpochTracker.h"
19 #include "llvm/Support/AlignOf.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/MemAlloc.h"
23 #include "llvm/Support/ReverseIteration.h"
24 #include "llvm/Support/type_traits.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstring>
29 #include <initializer_list>
30 #include <iterator>
31 #include <new>
32 #include <type_traits>
33 #include <utility>
34 
35 namespace llvm {
36 
37 namespace detail {
38 
39 // We extend a pair to allow users to override the bucket type with their own
40 // implementation without requiring two members.
41 template <typename KeyT, typename ValueT>
42 struct DenseMapPair : public std::pair<KeyT, ValueT> {
43   using std::pair<KeyT, ValueT>::pair;
44 
45   KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
46   const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
47   ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
48   const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
49 };
50 
51 } // end namespace detail
52 
53 template <typename KeyT, typename ValueT,
54           typename KeyInfoT = DenseMapInfo<KeyT>,
55           typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
56           bool IsConst = false>
57 class DenseMapIterator;
58 
59 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
60           typename BucketT>
61 class DenseMapBase : public DebugEpochBase {
62   template <typename T>
63   using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
64 
65 public:
66   using size_type = unsigned;
67   using key_type = KeyT;
68   using mapped_type = ValueT;
69   using value_type = BucketT;
70 
71   using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
72   using const_iterator =
73       DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
74 
75   inline iterator begin() {
76     // When the map is empty, avoid the overhead of advancing/retreating past
77     // empty buckets.
78     if (empty())
79       return end();
80     if (shouldReverseIterate<KeyT>())
81       return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
82     return makeIterator(getBuckets(), getBucketsEnd(), *this);
83   }
84   inline iterator end() {
85     return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
86   }
87   inline const_iterator begin() const {
88     if (empty())
89       return end();
90     if (shouldReverseIterate<KeyT>())
91       return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
92     return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
93   }
94   inline const_iterator end() const {
95     return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
96   }
97 
98   [[nodiscard]] bool empty() const { return getNumEntries() == 0; }
99   unsigned size() const { return getNumEntries(); }
100 
101   /// Grow the densemap so that it can contain at least \p NumEntries items
102   /// before resizing again.
103   void reserve(size_type NumEntries) {
104     auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
105     incrementEpoch();
106     if (NumBuckets > getNumBuckets())
107       grow(NumBuckets);
108   }
109 
110   void clear() {
111     incrementEpoch();
112     if (getNumEntries() == 0 && getNumTombstones() == 0)
113       return;
114 
115     // If the capacity of the array is huge, and the # elements used is small,
116     // shrink the array.
117     if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
118       shrink_and_clear();
119       return;
120     }
121 
122     const KeyT EmptyKey = getEmptyKey();
123     if constexpr (std::is_trivially_destructible_v<ValueT>) {
124       // Use a simpler loop when values don't need destruction.
125       for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
126         P->getFirst() = EmptyKey;
127     } else {
128       const KeyT TombstoneKey = getTombstoneKey();
129       unsigned NumEntries = getNumEntries();
130       for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
131         if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
132           if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
133             P->getSecond().~ValueT();
134             --NumEntries;
135           }
136           P->getFirst() = EmptyKey;
137         }
138       }
139       assert(NumEntries == 0 && "Node count imbalance!");
140       (void)NumEntries;
141     }
142     setNumEntries(0);
143     setNumTombstones(0);
144   }
145 
146   /// Return true if the specified key is in the map, false otherwise.
147   bool contains(const_arg_type_t<KeyT> Val) const {
148     return doFind(Val) != nullptr;
149   }
150 
151   /// Return 1 if the specified key is in the map, 0 otherwise.
152   size_type count(const_arg_type_t<KeyT> Val) const {
153     return contains(Val) ? 1 : 0;
154   }
155 
156   iterator find(const_arg_type_t<KeyT> Val) {
157     if (BucketT *Bucket = doFind(Val))
158       return makeIterator(
159           Bucket, shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(),
160           *this, true);
161     return end();
162   }
163   const_iterator find(const_arg_type_t<KeyT> Val) const {
164     if (const BucketT *Bucket = doFind(Val))
165       return makeConstIterator(
166           Bucket, shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(),
167           *this, true);
168     return end();
169   }
170 
171   /// Alternate version of find() which allows a different, and possibly
172   /// less expensive, key type.
173   /// The DenseMapInfo is responsible for supplying methods
174   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
175   /// type used.
176   template <class LookupKeyT> iterator find_as(const LookupKeyT &Val) {
177     if (BucketT *Bucket = doFind(Val))
178       return makeIterator(
179           Bucket, shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(),
180           *this, true);
181     return end();
182   }
183   template <class LookupKeyT>
184   const_iterator find_as(const LookupKeyT &Val) const {
185     if (const BucketT *Bucket = doFind(Val))
186       return makeConstIterator(
187           Bucket, shouldReverseIterate<KeyT>() ? getBuckets() : getBucketsEnd(),
188           *this, true);
189     return end();
190   }
191 
192   /// lookup - Return the entry for the specified key, or a default
193   /// constructed value if no such entry exists.
194   ValueT lookup(const_arg_type_t<KeyT> Val) const {
195     if (const BucketT *Bucket = doFind(Val))
196       return Bucket->getSecond();
197     return ValueT();
198   }
199 
200   /// at - Return the entry for the specified key, or abort if no such
201   /// entry exists.
202   const ValueT &at(const_arg_type_t<KeyT> Val) const {
203     auto Iter = this->find(std::move(Val));
204     assert(Iter != this->end() && "DenseMap::at failed due to a missing key");
205     return Iter->second;
206   }
207 
208   // Inserts key,value pair into the map if the key isn't already in the map.
209   // If the key is already in the map, it returns false and doesn't update the
210   // value.
211   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
212     return try_emplace(KV.first, KV.second);
213   }
214 
215   // Inserts key,value pair into the map if the key isn't already in the map.
216   // If the key is already in the map, it returns false and doesn't update the
217   // value.
218   std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
219     return try_emplace(std::move(KV.first), std::move(KV.second));
220   }
221 
222   // Inserts key,value pair into the map if the key isn't already in the map.
223   // The value is constructed in-place if the key is not in the map, otherwise
224   // it is not moved.
225   template <typename... Ts>
226   std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&...Args) {
227     BucketT *TheBucket;
228     if (LookupBucketFor(Key, TheBucket))
229       return std::make_pair(makeIterator(TheBucket,
230                                          shouldReverseIterate<KeyT>()
231                                              ? getBuckets()
232                                              : getBucketsEnd(),
233                                          *this, true),
234                             false); // Already in map.
235 
236     // Otherwise, insert the new element.
237     TheBucket =
238         InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
239     return std::make_pair(makeIterator(TheBucket,
240                                        shouldReverseIterate<KeyT>()
241                                            ? getBuckets()
242                                            : getBucketsEnd(),
243                                        *this, true),
244                           true);
245   }
246 
247   // Inserts key,value pair into the map if the key isn't already in the map.
248   // The value is constructed in-place if the key is not in the map, otherwise
249   // it is not moved.
250   template <typename... Ts>
251   std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&...Args) {
252     BucketT *TheBucket;
253     if (LookupBucketFor(Key, TheBucket))
254       return std::make_pair(makeIterator(TheBucket,
255                                          shouldReverseIterate<KeyT>()
256                                              ? getBuckets()
257                                              : getBucketsEnd(),
258                                          *this, true),
259                             false); // Already in map.
260 
261     // Otherwise, insert the new element.
262     TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
263     return std::make_pair(makeIterator(TheBucket,
264                                        shouldReverseIterate<KeyT>()
265                                            ? getBuckets()
266                                            : getBucketsEnd(),
267                                        *this, true),
268                           true);
269   }
270 
271   /// Alternate version of insert() which allows a different, and possibly
272   /// less expensive, key type.
273   /// The DenseMapInfo is responsible for supplying methods
274   /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
275   /// type used.
276   template <typename LookupKeyT>
277   std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
278                                       const LookupKeyT &Val) {
279     BucketT *TheBucket;
280     if (LookupBucketFor(Val, TheBucket))
281       return std::make_pair(makeIterator(TheBucket,
282                                          shouldReverseIterate<KeyT>()
283                                              ? getBuckets()
284                                              : getBucketsEnd(),
285                                          *this, true),
286                             false); // Already in map.
287 
288     // Otherwise, insert the new element.
289     TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
290                                            std::move(KV.second), Val);
291     return std::make_pair(makeIterator(TheBucket,
292                                        shouldReverseIterate<KeyT>()
293                                            ? getBuckets()
294                                            : getBucketsEnd(),
295                                        *this, true),
296                           true);
297   }
298 
299   /// insert - Range insertion of pairs.
300   template <typename InputIt> void insert(InputIt I, InputIt E) {
301     for (; I != E; ++I)
302       insert(*I);
303   }
304 
305   template <typename V>
306   std::pair<iterator, bool> insert_or_assign(const KeyT &Key, V &&Val) {
307     auto Ret = try_emplace(Key, std::forward<V>(Val));
308     if (!Ret.second)
309       Ret.first->second = std::forward<V>(Val);
310     return Ret;
311   }
312 
313   template <typename V>
314   std::pair<iterator, bool> insert_or_assign(KeyT &&Key, V &&Val) {
315     auto Ret = try_emplace(std::move(Key), std::forward<V>(Val));
316     if (!Ret.second)
317       Ret.first->second = std::forward<V>(Val);
318     return Ret;
319   }
320 
321   bool erase(const KeyT &Val) {
322     BucketT *TheBucket = doFind(Val);
323     if (!TheBucket)
324       return false; // not in map.
325 
326     TheBucket->getSecond().~ValueT();
327     TheBucket->getFirst() = getTombstoneKey();
328     decrementNumEntries();
329     incrementNumTombstones();
330     return true;
331   }
332   void erase(iterator I) {
333     BucketT *TheBucket = &*I;
334     TheBucket->getSecond().~ValueT();
335     TheBucket->getFirst() = getTombstoneKey();
336     decrementNumEntries();
337     incrementNumTombstones();
338   }
339 
340   ValueT &operator[](const KeyT &Key) {
341     BucketT *TheBucket;
342     if (LookupBucketFor(Key, TheBucket))
343       return TheBucket->second;
344 
345     return InsertIntoBucket(TheBucket, Key)->second;
346   }
347 
348   ValueT &operator[](KeyT &&Key) {
349     BucketT *TheBucket;
350     if (LookupBucketFor(Key, TheBucket))
351       return TheBucket->second;
352 
353     return InsertIntoBucket(TheBucket, std::move(Key))->second;
354   }
355 
356   /// isPointerIntoBucketsArray - Return true if the specified pointer points
357   /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
358   /// value in the DenseMap).
359   bool isPointerIntoBucketsArray(const void *Ptr) const {
360     return Ptr >= getBuckets() && Ptr < getBucketsEnd();
361   }
362 
363   /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
364   /// array.  In conjunction with the previous method, this can be used to
365   /// determine whether an insertion caused the DenseMap to reallocate.
366   const void *getPointerIntoBucketsArray() const { return getBuckets(); }
367 
368 protected:
369   DenseMapBase() = default;
370 
371   void destroyAll() {
372     if (getNumBuckets() == 0) // Nothing to do.
373       return;
374 
375     const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
376     for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
377       if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
378           !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
379         P->getSecond().~ValueT();
380       P->getFirst().~KeyT();
381     }
382   }
383 
384   void initEmpty() {
385     setNumEntries(0);
386     setNumTombstones(0);
387 
388     assert((getNumBuckets() & (getNumBuckets() - 1)) == 0 &&
389            "# initial buckets must be a power of two!");
390     const KeyT EmptyKey = getEmptyKey();
391     for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
392       ::new (&B->getFirst()) KeyT(EmptyKey);
393   }
394 
395   /// Returns the number of buckets to allocate to ensure that the DenseMap can
396   /// accommodate \p NumEntries without need to grow().
397   unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
398     // Ensure that "NumEntries * 4 < NumBuckets * 3"
399     if (NumEntries == 0)
400       return 0;
401     // +1 is required because of the strict equality.
402     // For example if NumEntries is 48, we need to return 401.
403     return NextPowerOf2(NumEntries * 4 / 3 + 1);
404   }
405 
406   void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
407     initEmpty();
408 
409     // Insert all the old elements.
410     const KeyT EmptyKey = getEmptyKey();
411     const KeyT TombstoneKey = getTombstoneKey();
412     for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
413       if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
414           !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
415         // Insert the key/value into the new table.
416         BucketT *DestBucket;
417         bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
418         (void)FoundVal; // silence warning.
419         assert(!FoundVal && "Key already in new map?");
420         DestBucket->getFirst() = std::move(B->getFirst());
421         ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
422         incrementNumEntries();
423 
424         // Free the value.
425         B->getSecond().~ValueT();
426       }
427       B->getFirst().~KeyT();
428     }
429   }
430 
431   template <typename OtherBaseT>
432   void copyFrom(
433       const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
434     assert(&other != this);
435     assert(getNumBuckets() == other.getNumBuckets());
436 
437     setNumEntries(other.getNumEntries());
438     setNumTombstones(other.getNumTombstones());
439 
440     BucketT *Buckets = getBuckets();
441     const BucketT *OtherBuckets = other.getBuckets();
442     const size_t NumBuckets = getNumBuckets();
443     if constexpr (std::is_trivially_copyable_v<KeyT> &&
444                   std::is_trivially_copyable_v<ValueT>) {
445       memcpy(reinterpret_cast<void *>(Buckets), OtherBuckets,
446              NumBuckets * sizeof(BucketT));
447     } else {
448       const KeyT EmptyKey = getEmptyKey();
449       const KeyT TombstoneKey = getTombstoneKey();
450       for (size_t I = 0; I < NumBuckets; ++I) {
451         ::new (&Buckets[I].getFirst()) KeyT(OtherBuckets[I].getFirst());
452         if (!KeyInfoT::isEqual(Buckets[I].getFirst(), EmptyKey) &&
453             !KeyInfoT::isEqual(Buckets[I].getFirst(), TombstoneKey))
454           ::new (&Buckets[I].getSecond()) ValueT(OtherBuckets[I].getSecond());
455       }
456     }
457   }
458 
459   static unsigned getHashValue(const KeyT &Val) {
460     return KeyInfoT::getHashValue(Val);
461   }
462 
463   template <typename LookupKeyT>
464   static unsigned getHashValue(const LookupKeyT &Val) {
465     return KeyInfoT::getHashValue(Val);
466   }
467 
468   static const KeyT getEmptyKey() {
469     static_assert(std::is_base_of_v<DenseMapBase, DerivedT>,
470                   "Must pass the derived type to this template!");
471     return KeyInfoT::getEmptyKey();
472   }
473 
474   static const KeyT getTombstoneKey() { return KeyInfoT::getTombstoneKey(); }
475 
476 private:
477   iterator makeIterator(BucketT *P, BucketT *E, DebugEpochBase &Epoch,
478                         bool NoAdvance = false) {
479     if (shouldReverseIterate<KeyT>()) {
480       BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
481       return iterator(B, E, Epoch, NoAdvance);
482     }
483     return iterator(P, E, Epoch, NoAdvance);
484   }
485 
486   const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
487                                    const DebugEpochBase &Epoch,
488                                    const bool NoAdvance = false) const {
489     if (shouldReverseIterate<KeyT>()) {
490       const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
491       return const_iterator(B, E, Epoch, NoAdvance);
492     }
493     return const_iterator(P, E, Epoch, NoAdvance);
494   }
495 
496   unsigned getNumEntries() const {
497     return static_cast<const DerivedT *>(this)->getNumEntries();
498   }
499 
500   void setNumEntries(unsigned Num) {
501     static_cast<DerivedT *>(this)->setNumEntries(Num);
502   }
503 
504   void incrementNumEntries() { setNumEntries(getNumEntries() + 1); }
505 
506   void decrementNumEntries() { setNumEntries(getNumEntries() - 1); }
507 
508   unsigned getNumTombstones() const {
509     return static_cast<const DerivedT *>(this)->getNumTombstones();
510   }
511 
512   void setNumTombstones(unsigned Num) {
513     static_cast<DerivedT *>(this)->setNumTombstones(Num);
514   }
515 
516   void incrementNumTombstones() { setNumTombstones(getNumTombstones() + 1); }
517 
518   void decrementNumTombstones() { setNumTombstones(getNumTombstones() - 1); }
519 
520   const BucketT *getBuckets() const {
521     return static_cast<const DerivedT *>(this)->getBuckets();
522   }
523 
524   BucketT *getBuckets() { return static_cast<DerivedT *>(this)->getBuckets(); }
525 
526   unsigned getNumBuckets() const {
527     return static_cast<const DerivedT *>(this)->getNumBuckets();
528   }
529 
530   BucketT *getBucketsEnd() { return getBuckets() + getNumBuckets(); }
531 
532   const BucketT *getBucketsEnd() const {
533     return getBuckets() + getNumBuckets();
534   }
535 
536   void grow(unsigned AtLeast) { static_cast<DerivedT *>(this)->grow(AtLeast); }
537 
538   void shrink_and_clear() { static_cast<DerivedT *>(this)->shrink_and_clear(); }
539 
540   template <typename KeyArg, typename... ValueArgs>
541   BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
542                             ValueArgs &&...Values) {
543     TheBucket = InsertIntoBucketImpl(Key, TheBucket);
544 
545     TheBucket->getFirst() = std::forward<KeyArg>(Key);
546     ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
547     return TheBucket;
548   }
549 
550   template <typename LookupKeyT>
551   BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
552                                       ValueT &&Value, LookupKeyT &Lookup) {
553     TheBucket = InsertIntoBucketImpl(Lookup, TheBucket);
554 
555     TheBucket->getFirst() = std::move(Key);
556     ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
557     return TheBucket;
558   }
559 
560   template <typename LookupKeyT>
561   BucketT *InsertIntoBucketImpl(const LookupKeyT &Lookup, BucketT *TheBucket) {
562     incrementEpoch();
563 
564     // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
565     // the buckets are empty (meaning that many are filled with tombstones),
566     // grow the table.
567     //
568     // The later case is tricky.  For example, if we had one empty bucket with
569     // tons of tombstones, failing lookups (e.g. for insertion) would have to
570     // probe almost the entire table until it found the empty bucket.  If the
571     // table completely filled with tombstones, no lookup would ever succeed,
572     // causing infinite loops in lookup.
573     unsigned NewNumEntries = getNumEntries() + 1;
574     unsigned NumBuckets = getNumBuckets();
575     if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
576       this->grow(NumBuckets * 2);
577       LookupBucketFor(Lookup, TheBucket);
578       NumBuckets = getNumBuckets();
579     } else if (LLVM_UNLIKELY(NumBuckets -
580                                  (NewNumEntries + getNumTombstones()) <=
581                              NumBuckets / 8)) {
582       this->grow(NumBuckets);
583       LookupBucketFor(Lookup, TheBucket);
584     }
585     assert(TheBucket);
586 
587     // Only update the state after we've grown our bucket space appropriately
588     // so that when growing buckets we have self-consistent entry count.
589     incrementNumEntries();
590 
591     // If we are writing over a tombstone, remember this.
592     const KeyT EmptyKey = getEmptyKey();
593     if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
594       decrementNumTombstones();
595 
596     return TheBucket;
597   }
598 
599   template <typename LookupKeyT> BucketT *doFind(const LookupKeyT &Val) {
600     BucketT *BucketsPtr = getBuckets();
601     const unsigned NumBuckets = getNumBuckets();
602     if (NumBuckets == 0)
603       return nullptr;
604 
605     const KeyT EmptyKey = getEmptyKey();
606     unsigned BucketNo = getHashValue(Val) & (NumBuckets - 1);
607     unsigned ProbeAmt = 1;
608     while (true) {
609       BucketT *Bucket = BucketsPtr + BucketNo;
610       if (LLVM_LIKELY(KeyInfoT::isEqual(Val, Bucket->getFirst())))
611         return Bucket;
612       if (LLVM_LIKELY(KeyInfoT::isEqual(Bucket->getFirst(), EmptyKey)))
613         return nullptr;
614 
615       // Otherwise, it's a hash collision or a tombstone, continue quadratic
616       // probing.
617       BucketNo += ProbeAmt++;
618       BucketNo &= NumBuckets - 1;
619     }
620   }
621 
622   template <typename LookupKeyT>
623   const BucketT *doFind(const LookupKeyT &Val) const {
624     return const_cast<DenseMapBase *>(this)->doFind(Val); // NOLINT
625   }
626 
627   /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
628   /// FoundBucket.  If the bucket contains the key and a value, this returns
629   /// true, otherwise it returns a bucket with an empty marker or tombstone and
630   /// returns false.
631   template <typename LookupKeyT>
632   bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
633     BucketT *BucketsPtr = getBuckets();
634     const unsigned NumBuckets = getNumBuckets();
635 
636     if (NumBuckets == 0) {
637       FoundBucket = nullptr;
638       return false;
639     }
640 
641     // FoundTombstone - Keep track of whether we find a tombstone while probing.
642     BucketT *FoundTombstone = nullptr;
643     const KeyT EmptyKey = getEmptyKey();
644     const KeyT TombstoneKey = getTombstoneKey();
645     assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
646            !KeyInfoT::isEqual(Val, TombstoneKey) &&
647            "Empty/Tombstone value shouldn't be inserted into map!");
648 
649     unsigned BucketNo = getHashValue(Val) & (NumBuckets - 1);
650     unsigned ProbeAmt = 1;
651     while (true) {
652       BucketT *ThisBucket = BucketsPtr + BucketNo;
653       // Found Val's bucket?  If so, return it.
654       if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
655         FoundBucket = ThisBucket;
656         return true;
657       }
658 
659       // If we found an empty bucket, the key doesn't exist in the set.
660       // Insert it and return the default value.
661       if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
662         // If we've already seen a tombstone while probing, fill it in instead
663         // of the empty bucket we eventually probed to.
664         FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
665         return false;
666       }
667 
668       // If this is a tombstone, remember it.  If Val ends up not in the map, we
669       // prefer to return it than something that would require more probing.
670       if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
671           !FoundTombstone)
672         FoundTombstone = ThisBucket; // Remember the first tombstone found.
673 
674       // Otherwise, it's a hash collision or a tombstone, continue quadratic
675       // probing.
676       BucketNo += ProbeAmt++;
677       BucketNo &= (NumBuckets - 1);
678     }
679   }
680 
681 public:
682   /// Return the approximate size (in bytes) of the actual map.
683   /// This is just the raw memory used by DenseMap.
684   /// If entries are pointers to objects, the size of the referenced objects
685   /// are not included.
686   size_t getMemorySize() const { return getNumBuckets() * sizeof(BucketT); }
687 };
688 
689 /// Equality comparison for DenseMap.
690 ///
691 /// Iterates over elements of LHS confirming that each (key, value) pair in LHS
692 /// is also in RHS, and that no additional pairs are in RHS.
693 /// Equivalent to N calls to RHS.find and N value comparisons. Amortized
694 /// complexity is linear, worst case is O(N^2) (if every hash collides).
695 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
696           typename BucketT>
697 bool operator==(
698     const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
699     const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
700   if (LHS.size() != RHS.size())
701     return false;
702 
703   for (auto &KV : LHS) {
704     auto I = RHS.find(KV.first);
705     if (I == RHS.end() || I->second != KV.second)
706       return false;
707   }
708 
709   return true;
710 }
711 
712 /// Inequality comparison for DenseMap.
713 ///
714 /// Equivalent to !(LHS == RHS). See operator== for performance notes.
715 template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
716           typename BucketT>
717 bool operator!=(
718     const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
719     const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
720   return !(LHS == RHS);
721 }
722 
723 template <typename KeyT, typename ValueT,
724           typename KeyInfoT = DenseMapInfo<KeyT>,
725           typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
726 class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
727                                      KeyT, ValueT, KeyInfoT, BucketT> {
728   friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
729 
730   // Lift some types from the dependent base class into this class for
731   // simplicity of referring to them.
732   using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
733 
734   BucketT *Buckets;
735   unsigned NumEntries;
736   unsigned NumTombstones;
737   unsigned NumBuckets;
738 
739 public:
740   /// Create a DenseMap with an optional \p InitialReserve that guarantee that
741   /// this number of elements can be inserted in the map without grow()
742   explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
743 
744   DenseMap(const DenseMap &other) : BaseT() {
745     init(0);
746     copyFrom(other);
747   }
748 
749   DenseMap(DenseMap &&other) : BaseT() {
750     init(0);
751     swap(other);
752   }
753 
754   template <typename InputIt> DenseMap(const InputIt &I, const InputIt &E) {
755     init(std::distance(I, E));
756     this->insert(I, E);
757   }
758 
759   DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
760     init(Vals.size());
761     this->insert(Vals.begin(), Vals.end());
762   }
763 
764   ~DenseMap() {
765     this->destroyAll();
766     deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
767   }
768 
769   void swap(DenseMap &RHS) {
770     this->incrementEpoch();
771     RHS.incrementEpoch();
772     std::swap(Buckets, RHS.Buckets);
773     std::swap(NumEntries, RHS.NumEntries);
774     std::swap(NumTombstones, RHS.NumTombstones);
775     std::swap(NumBuckets, RHS.NumBuckets);
776   }
777 
778   DenseMap &operator=(const DenseMap &other) {
779     if (&other != this)
780       copyFrom(other);
781     return *this;
782   }
783 
784   DenseMap &operator=(DenseMap &&other) {
785     this->destroyAll();
786     deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
787     init(0);
788     swap(other);
789     return *this;
790   }
791 
792   void copyFrom(const DenseMap &other) {
793     this->destroyAll();
794     deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
795     if (allocateBuckets(other.NumBuckets)) {
796       this->BaseT::copyFrom(other);
797     } else {
798       NumEntries = 0;
799       NumTombstones = 0;
800     }
801   }
802 
803   void init(unsigned InitNumEntries) {
804     auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
805     if (allocateBuckets(InitBuckets)) {
806       this->BaseT::initEmpty();
807     } else {
808       NumEntries = 0;
809       NumTombstones = 0;
810     }
811   }
812 
813   void grow(unsigned AtLeast) {
814     unsigned OldNumBuckets = NumBuckets;
815     BucketT *OldBuckets = Buckets;
816 
817     allocateBuckets(std::max<unsigned>(
818         64, static_cast<unsigned>(NextPowerOf2(AtLeast - 1))));
819     assert(Buckets);
820     if (!OldBuckets) {
821       this->BaseT::initEmpty();
822       return;
823     }
824 
825     this->moveFromOldBuckets(OldBuckets, OldBuckets + OldNumBuckets);
826 
827     // Free the old table.
828     deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
829                       alignof(BucketT));
830   }
831 
832   void shrink_and_clear() {
833     unsigned OldNumBuckets = NumBuckets;
834     unsigned OldNumEntries = NumEntries;
835     this->destroyAll();
836 
837     // Reduce the number of buckets.
838     unsigned NewNumBuckets = 0;
839     if (OldNumEntries)
840       NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
841     if (NewNumBuckets == NumBuckets) {
842       this->BaseT::initEmpty();
843       return;
844     }
845 
846     deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
847                       alignof(BucketT));
848     init(NewNumBuckets);
849   }
850 
851 private:
852   unsigned getNumEntries() const { return NumEntries; }
853 
854   void setNumEntries(unsigned Num) { NumEntries = Num; }
855 
856   unsigned getNumTombstones() const { return NumTombstones; }
857 
858   void setNumTombstones(unsigned Num) { NumTombstones = Num; }
859 
860   BucketT *getBuckets() const { return Buckets; }
861 
862   unsigned getNumBuckets() const { return NumBuckets; }
863 
864   bool allocateBuckets(unsigned Num) {
865     NumBuckets = Num;
866     if (NumBuckets == 0) {
867       Buckets = nullptr;
868       return false;
869     }
870 
871     Buckets = static_cast<BucketT *>(
872         allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
873     return true;
874   }
875 };
876 
877 template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
878           typename KeyInfoT = DenseMapInfo<KeyT>,
879           typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
880 class SmallDenseMap
881     : public DenseMapBase<
882           SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
883           ValueT, KeyInfoT, BucketT> {
884   friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
885 
886   // Lift some types from the dependent base class into this class for
887   // simplicity of referring to them.
888   using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
889 
890   static_assert(isPowerOf2_64(InlineBuckets),
891                 "InlineBuckets must be a power of 2.");
892 
893   unsigned Small : 1;
894   unsigned NumEntries : 31;
895   unsigned NumTombstones;
896 
897   struct LargeRep {
898     BucketT *Buckets;
899     unsigned NumBuckets;
900   };
901 
902   /// A "union" of an inline bucket array and the struct representing
903   /// a large bucket. This union will be discriminated by the 'Small' bit.
904   AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
905 
906 public:
907   explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
908     if (NumInitBuckets > InlineBuckets)
909       NumInitBuckets = llvm::bit_ceil(NumInitBuckets);
910     init(NumInitBuckets);
911   }
912 
913   SmallDenseMap(const SmallDenseMap &other) : BaseT() {
914     init(0);
915     copyFrom(other);
916   }
917 
918   SmallDenseMap(SmallDenseMap &&other) : BaseT() {
919     init(0);
920     swap(other);
921   }
922 
923   template <typename InputIt>
924   SmallDenseMap(const InputIt &I, const InputIt &E) {
925     init(NextPowerOf2(std::distance(I, E)));
926     this->insert(I, E);
927   }
928 
929   SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals)
930       : SmallDenseMap(Vals.begin(), Vals.end()) {}
931 
932   ~SmallDenseMap() {
933     this->destroyAll();
934     deallocateBuckets();
935   }
936 
937   void swap(SmallDenseMap &RHS) {
938     unsigned TmpNumEntries = RHS.NumEntries;
939     RHS.NumEntries = NumEntries;
940     NumEntries = TmpNumEntries;
941     std::swap(NumTombstones, RHS.NumTombstones);
942 
943     const KeyT EmptyKey = this->getEmptyKey();
944     const KeyT TombstoneKey = this->getTombstoneKey();
945     if (Small && RHS.Small) {
946       // If we're swapping inline bucket arrays, we have to cope with some of
947       // the tricky bits of DenseMap's storage system: the buckets are not
948       // fully initialized. Thus we swap every key, but we may have
949       // a one-directional move of the value.
950       for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
951         BucketT *LHSB = &getInlineBuckets()[i],
952                 *RHSB = &RHS.getInlineBuckets()[i];
953         bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
954                             !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
955         bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
956                             !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
957         if (hasLHSValue && hasRHSValue) {
958           // Swap together if we can...
959           std::swap(*LHSB, *RHSB);
960           continue;
961         }
962         // Swap separately and handle any asymmetry.
963         std::swap(LHSB->getFirst(), RHSB->getFirst());
964         if (hasLHSValue) {
965           ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
966           LHSB->getSecond().~ValueT();
967         } else if (hasRHSValue) {
968           ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
969           RHSB->getSecond().~ValueT();
970         }
971       }
972       return;
973     }
974     if (!Small && !RHS.Small) {
975       std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
976       std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
977       return;
978     }
979 
980     SmallDenseMap &SmallSide = Small ? *this : RHS;
981     SmallDenseMap &LargeSide = Small ? RHS : *this;
982 
983     // First stash the large side's rep and move the small side across.
984     LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
985     LargeSide.getLargeRep()->~LargeRep();
986     LargeSide.Small = true;
987     // This is similar to the standard move-from-old-buckets, but the bucket
988     // count hasn't actually rotated in this case. So we have to carefully
989     // move construct the keys and values into their new locations, but there
990     // is no need to re-hash things.
991     for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
992       BucketT *NewB = &LargeSide.getInlineBuckets()[i],
993               *OldB = &SmallSide.getInlineBuckets()[i];
994       ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
995       OldB->getFirst().~KeyT();
996       if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
997           !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
998         ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
999         OldB->getSecond().~ValueT();
1000       }
1001     }
1002 
1003     // The hard part of moving the small buckets across is done, just move
1004     // the TmpRep into its new home.
1005     SmallSide.Small = false;
1006     new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
1007   }
1008 
1009   SmallDenseMap &operator=(const SmallDenseMap &other) {
1010     if (&other != this)
1011       copyFrom(other);
1012     return *this;
1013   }
1014 
1015   SmallDenseMap &operator=(SmallDenseMap &&other) {
1016     this->destroyAll();
1017     deallocateBuckets();
1018     init(0);
1019     swap(other);
1020     return *this;
1021   }
1022 
1023   void copyFrom(const SmallDenseMap &other) {
1024     this->destroyAll();
1025     deallocateBuckets();
1026     Small = true;
1027     if (other.getNumBuckets() > InlineBuckets) {
1028       Small = false;
1029       new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
1030     }
1031     this->BaseT::copyFrom(other);
1032   }
1033 
1034   void init(unsigned InitBuckets) {
1035     Small = true;
1036     if (InitBuckets > InlineBuckets) {
1037       Small = false;
1038       new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
1039     }
1040     this->BaseT::initEmpty();
1041   }
1042 
1043   void grow(unsigned AtLeast) {
1044     if (AtLeast > InlineBuckets)
1045       AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast - 1));
1046 
1047     if (Small) {
1048       // First move the inline buckets into a temporary storage.
1049       AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
1050       BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage);
1051       BucketT *TmpEnd = TmpBegin;
1052 
1053       // Loop over the buckets, moving non-empty, non-tombstones into the
1054       // temporary storage. Have the loop move the TmpEnd forward as it goes.
1055       const KeyT EmptyKey = this->getEmptyKey();
1056       const KeyT TombstoneKey = this->getTombstoneKey();
1057       for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
1058         if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
1059             !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
1060           assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
1061                  "Too many inline buckets!");
1062           ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
1063           ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
1064           ++TmpEnd;
1065           P->getSecond().~ValueT();
1066         }
1067         P->getFirst().~KeyT();
1068       }
1069 
1070       // AtLeast == InlineBuckets can happen if there are many tombstones,
1071       // and grow() is used to remove them. Usually we always switch to the
1072       // large rep here.
1073       if (AtLeast > InlineBuckets) {
1074         Small = false;
1075         new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1076       }
1077       this->moveFromOldBuckets(TmpBegin, TmpEnd);
1078       return;
1079     }
1080 
1081     LargeRep OldRep = std::move(*getLargeRep());
1082     getLargeRep()->~LargeRep();
1083     if (AtLeast <= InlineBuckets) {
1084       Small = true;
1085     } else {
1086       new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
1087     }
1088 
1089     this->moveFromOldBuckets(OldRep.Buckets,
1090                              OldRep.Buckets + OldRep.NumBuckets);
1091 
1092     // Free the old table.
1093     deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
1094                       alignof(BucketT));
1095   }
1096 
1097   void shrink_and_clear() {
1098     unsigned OldSize = this->size();
1099     this->destroyAll();
1100 
1101     // Reduce the number of buckets.
1102     unsigned NewNumBuckets = 0;
1103     if (OldSize) {
1104       NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
1105       if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
1106         NewNumBuckets = 64;
1107     }
1108     if ((Small && NewNumBuckets <= InlineBuckets) ||
1109         (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
1110       this->BaseT::initEmpty();
1111       return;
1112     }
1113 
1114     deallocateBuckets();
1115     init(NewNumBuckets);
1116   }
1117 
1118 private:
1119   unsigned getNumEntries() const { return NumEntries; }
1120 
1121   void setNumEntries(unsigned Num) {
1122     // NumEntries is hardcoded to be 31 bits wide.
1123     assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
1124     NumEntries = Num;
1125   }
1126 
1127   unsigned getNumTombstones() const { return NumTombstones; }
1128 
1129   void setNumTombstones(unsigned Num) { NumTombstones = Num; }
1130 
1131   const BucketT *getInlineBuckets() const {
1132     assert(Small);
1133     // Note that this cast does not violate aliasing rules as we assert that
1134     // the memory's dynamic type is the small, inline bucket buffer, and the
1135     // 'storage' is a POD containing a char buffer.
1136     return reinterpret_cast<const BucketT *>(&storage);
1137   }
1138 
1139   BucketT *getInlineBuckets() {
1140     return const_cast<BucketT *>(
1141         const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
1142   }
1143 
1144   const LargeRep *getLargeRep() const {
1145     assert(!Small);
1146     // Note, same rule about aliasing as with getInlineBuckets.
1147     return reinterpret_cast<const LargeRep *>(&storage);
1148   }
1149 
1150   LargeRep *getLargeRep() {
1151     return const_cast<LargeRep *>(
1152         const_cast<const SmallDenseMap *>(this)->getLargeRep());
1153   }
1154 
1155   const BucketT *getBuckets() const {
1156     return Small ? getInlineBuckets() : getLargeRep()->Buckets;
1157   }
1158 
1159   BucketT *getBuckets() {
1160     return const_cast<BucketT *>(
1161         const_cast<const SmallDenseMap *>(this)->getBuckets());
1162   }
1163 
1164   unsigned getNumBuckets() const {
1165     return Small ? InlineBuckets : getLargeRep()->NumBuckets;
1166   }
1167 
1168   void deallocateBuckets() {
1169     if (Small)
1170       return;
1171 
1172     deallocate_buffer(getLargeRep()->Buckets,
1173                       sizeof(BucketT) * getLargeRep()->NumBuckets,
1174                       alignof(BucketT));
1175     getLargeRep()->~LargeRep();
1176   }
1177 
1178   LargeRep allocateBuckets(unsigned Num) {
1179     assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
1180     LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
1181                         sizeof(BucketT) * Num, alignof(BucketT))),
1182                     Num};
1183     return Rep;
1184   }
1185 };
1186 
1187 template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
1188           bool IsConst>
1189 class DenseMapIterator : DebugEpochBase::HandleBase {
1190   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
1191   friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
1192 
1193 public:
1194   using difference_type = ptrdiff_t;
1195   using value_type = std::conditional_t<IsConst, const Bucket, Bucket>;
1196   using pointer = value_type *;
1197   using reference = value_type &;
1198   using iterator_category = std::forward_iterator_tag;
1199 
1200 private:
1201   pointer Ptr = nullptr;
1202   pointer End = nullptr;
1203 
1204 public:
1205   DenseMapIterator() = default;
1206 
1207   DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
1208                    bool NoAdvance = false)
1209       : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
1210     assert(isHandleInSync() && "invalid construction!");
1211 
1212     if (NoAdvance)
1213       return;
1214     if (shouldReverseIterate<KeyT>()) {
1215       RetreatPastEmptyBuckets();
1216       return;
1217     }
1218     AdvancePastEmptyBuckets();
1219   }
1220 
1221   // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1222   // for const iterator destinations so it doesn't end up as a user defined copy
1223   // constructor.
1224   template <bool IsConstSrc,
1225             typename = std::enable_if_t<!IsConstSrc && IsConst>>
1226   DenseMapIterator(
1227       const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
1228       : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
1229 
1230   reference operator*() const {
1231     assert(isHandleInSync() && "invalid iterator access!");
1232     assert(Ptr != End && "dereferencing end() iterator");
1233     if (shouldReverseIterate<KeyT>())
1234       return Ptr[-1];
1235     return *Ptr;
1236   }
1237   pointer operator->() const {
1238     assert(isHandleInSync() && "invalid iterator access!");
1239     assert(Ptr != End && "dereferencing end() iterator");
1240     if (shouldReverseIterate<KeyT>())
1241       return &(Ptr[-1]);
1242     return Ptr;
1243   }
1244 
1245   friend bool operator==(const DenseMapIterator &LHS,
1246                          const DenseMapIterator &RHS) {
1247     assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!");
1248     assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
1249     assert(LHS.getEpochAddress() == RHS.getEpochAddress() &&
1250            "comparing incomparable iterators!");
1251     return LHS.Ptr == RHS.Ptr;
1252   }
1253 
1254   friend bool operator!=(const DenseMapIterator &LHS,
1255                          const DenseMapIterator &RHS) {
1256     return !(LHS == RHS);
1257   }
1258 
1259   inline DenseMapIterator &operator++() { // Preincrement
1260     assert(isHandleInSync() && "invalid iterator access!");
1261     assert(Ptr != End && "incrementing end() iterator");
1262     if (shouldReverseIterate<KeyT>()) {
1263       --Ptr;
1264       RetreatPastEmptyBuckets();
1265       return *this;
1266     }
1267     ++Ptr;
1268     AdvancePastEmptyBuckets();
1269     return *this;
1270   }
1271   DenseMapIterator operator++(int) { // Postincrement
1272     assert(isHandleInSync() && "invalid iterator access!");
1273     DenseMapIterator tmp = *this;
1274     ++*this;
1275     return tmp;
1276   }
1277 
1278 private:
1279   void AdvancePastEmptyBuckets() {
1280     assert(Ptr <= End);
1281     const KeyT Empty = KeyInfoT::getEmptyKey();
1282     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1283 
1284     while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
1285                           KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
1286       ++Ptr;
1287   }
1288 
1289   void RetreatPastEmptyBuckets() {
1290     assert(Ptr >= End);
1291     const KeyT Empty = KeyInfoT::getEmptyKey();
1292     const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1293 
1294     while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
1295                           KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
1296       --Ptr;
1297   }
1298 };
1299 
1300 template <typename KeyT, typename ValueT, typename KeyInfoT>
1301 inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1302   return X.getMemorySize();
1303 }
1304 
1305 } // end namespace llvm
1306 
1307 #endif // LLVM_ADT_DENSEMAP_H
1308