1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.
20 ///
21 /// Argument and return value labels are passed through TLS variables
22 /// __dfsan_arg_tls and __dfsan_retval_tls.
23 ///
24 /// Each byte of application memory is backed by a shadow memory byte. The
25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
26 /// laid out as follows:
27 ///
28 /// +--------------------+ 0x800000000000 (top of memory)
29 /// | application 3 |
30 /// +--------------------+ 0x700000000000
31 /// | invalid |
32 /// +--------------------+ 0x610000000000
33 /// | origin 1 |
34 /// +--------------------+ 0x600000000000
35 /// | application 2 |
36 /// +--------------------+ 0x510000000000
37 /// | shadow 1 |
38 /// +--------------------+ 0x500000000000
39 /// | invalid |
40 /// +--------------------+ 0x400000000000
41 /// | origin 3 |
42 /// +--------------------+ 0x300000000000
43 /// | shadow 3 |
44 /// +--------------------+ 0x200000000000
45 /// | origin 2 |
46 /// +--------------------+ 0x110000000000
47 /// | invalid |
48 /// +--------------------+ 0x100000000000
49 /// | shadow 2 |
50 /// +--------------------+ 0x010000000000
51 /// | application 1 |
52 /// +--------------------+ 0x000000000000
53 ///
54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
56 ///
57 /// For more information, please refer to the design document:
58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
59 //
60 //===----------------------------------------------------------------------===//
61
62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DenseSet.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/StringRef.h"
69 #include "llvm/ADT/StringSet.h"
70 #include "llvm/ADT/Triple.h"
71 #include "llvm/ADT/iterator.h"
72 #include "llvm/Analysis/GlobalsModRef.h"
73 #include "llvm/Analysis/TargetLibraryInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/IR/Argument.h"
76 #include "llvm/IR/Attributes.h"
77 #include "llvm/IR/BasicBlock.h"
78 #include "llvm/IR/Constant.h"
79 #include "llvm/IR/Constants.h"
80 #include "llvm/IR/DataLayout.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/Function.h"
84 #include "llvm/IR/GlobalAlias.h"
85 #include "llvm/IR/GlobalValue.h"
86 #include "llvm/IR/GlobalVariable.h"
87 #include "llvm/IR/IRBuilder.h"
88 #include "llvm/IR/InstVisitor.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/IntrinsicInst.h"
93 #include "llvm/IR/MDBuilder.h"
94 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/InitializePasses.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Alignment.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/SpecialCaseList.h"
106 #include "llvm/Support/VirtualFileSystem.h"
107 #include "llvm/Transforms/Instrumentation.h"
108 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <memory>
115 #include <set>
116 #include <string>
117 #include <utility>
118 #include <vector>
119
120 using namespace llvm;
121
122 // This must be consistent with ShadowWidthBits.
123 static const Align ShadowTLSAlignment = Align(2);
124
125 static const Align MinOriginAlignment = Align(4);
126
127 // The size of TLS variables. These constants must be kept in sync with the ones
128 // in dfsan.cpp.
129 static const unsigned ArgTLSSize = 800;
130 static const unsigned RetvalTLSSize = 800;
131
132 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
133 // alignment requirements provided by the input IR are correct. For example,
134 // if the input IR contains a load with alignment 8, this flag will cause
135 // the shadow load to have alignment 16. This flag is disabled by default as
136 // we have unfortunately encountered too much code (including Clang itself;
137 // see PR14291) which performs misaligned access.
138 static cl::opt<bool> ClPreserveAlignment(
139 "dfsan-preserve-alignment",
140 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
141 cl::init(false));
142
143 // The ABI list files control how shadow parameters are passed. The pass treats
144 // every function labelled "uninstrumented" in the ABI list file as conforming
145 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
146 // additional annotations for those functions, a call to one of those functions
147 // will produce a warning message, as the labelling behaviour of the function is
148 // unknown. The other supported annotations for uninstrumented functions are
149 // "functional" and "discard", which are described below under
150 // DataFlowSanitizer::WrapperKind.
151 // Functions will often be labelled with both "uninstrumented" and one of
152 // "functional" or "discard". This will leave the function unchanged by this
153 // pass, and create a wrapper function that will call the original.
154 //
155 // Instrumented functions can also be annotated as "force_zero_labels", which
156 // will make all shadow and return values set zero labels.
157 // Functions should never be labelled with both "force_zero_labels" and
158 // "uninstrumented" or any of the unistrumented wrapper kinds.
159 static cl::list<std::string> ClABIListFiles(
160 "dfsan-abilist",
161 cl::desc("File listing native ABI functions and how the pass treats them"),
162 cl::Hidden);
163
164 // Controls whether the pass includes or ignores the labels of pointers in load
165 // instructions.
166 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
167 "dfsan-combine-pointer-labels-on-load",
168 cl::desc("Combine the label of the pointer with the label of the data when "
169 "loading from memory."),
170 cl::Hidden, cl::init(true));
171
172 // Controls whether the pass includes or ignores the labels of pointers in
173 // stores instructions.
174 static cl::opt<bool> ClCombinePointerLabelsOnStore(
175 "dfsan-combine-pointer-labels-on-store",
176 cl::desc("Combine the label of the pointer with the label of the data when "
177 "storing in memory."),
178 cl::Hidden, cl::init(false));
179
180 // Controls whether the pass propagates labels of offsets in GEP instructions.
181 static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
182 "dfsan-combine-offset-labels-on-gep",
183 cl::desc(
184 "Combine the label of the offset with the label of the pointer when "
185 "doing pointer arithmetic."),
186 cl::Hidden, cl::init(true));
187
188 static cl::list<std::string> ClCombineTaintLookupTables(
189 "dfsan-combine-taint-lookup-table",
190 cl::desc(
191 "When dfsan-combine-offset-labels-on-gep and/or "
192 "dfsan-combine-pointer-labels-on-load are false, this flag can "
193 "be used to re-enable combining offset and/or pointer taint when "
194 "loading specific constant global variables (i.e. lookup tables)."),
195 cl::Hidden);
196
197 static cl::opt<bool> ClDebugNonzeroLabels(
198 "dfsan-debug-nonzero-labels",
199 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
200 "load or return with a nonzero label"),
201 cl::Hidden);
202
203 // Experimental feature that inserts callbacks for certain data events.
204 // Currently callbacks are only inserted for loads, stores, memory transfers
205 // (i.e. memcpy and memmove), and comparisons.
206 //
207 // If this flag is set to true, the user must provide definitions for the
208 // following callback functions:
209 // void __dfsan_load_callback(dfsan_label Label, void* addr);
210 // void __dfsan_store_callback(dfsan_label Label, void* addr);
211 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
212 // void __dfsan_cmp_callback(dfsan_label CombinedLabel);
213 static cl::opt<bool> ClEventCallbacks(
214 "dfsan-event-callbacks",
215 cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
216 cl::Hidden, cl::init(false));
217
218 // Experimental feature that inserts callbacks for conditionals, including:
219 // conditional branch, switch, select.
220 // This must be true for dfsan_set_conditional_callback() to have effect.
221 static cl::opt<bool> ClConditionalCallbacks(
222 "dfsan-conditional-callbacks",
223 cl::desc("Insert calls to callback functions on conditionals."), cl::Hidden,
224 cl::init(false));
225
226 // Experimental feature that inserts callbacks for data reaching a function,
227 // either via function arguments and loads.
228 // This must be true for dfsan_set_reaches_function_callback() to have effect.
229 static cl::opt<bool> ClReachesFunctionCallbacks(
230 "dfsan-reaches-function-callbacks",
231 cl::desc("Insert calls to callback functions on data reaching a function."),
232 cl::Hidden, cl::init(false));
233
234 // Controls whether the pass tracks the control flow of select instructions.
235 static cl::opt<bool> ClTrackSelectControlFlow(
236 "dfsan-track-select-control-flow",
237 cl::desc("Propagate labels from condition values of select instructions "
238 "to results."),
239 cl::Hidden, cl::init(true));
240
241 // TODO: This default value follows MSan. DFSan may use a different value.
242 static cl::opt<int> ClInstrumentWithCallThreshold(
243 "dfsan-instrument-with-call-threshold",
244 cl::desc("If the function being instrumented requires more than "
245 "this number of origin stores, use callbacks instead of "
246 "inline checks (-1 means never use callbacks)."),
247 cl::Hidden, cl::init(3500));
248
249 // Controls how to track origins.
250 // * 0: do not track origins.
251 // * 1: track origins at memory store operations.
252 // * 2: track origins at memory load and store operations.
253 // TODO: track callsites.
254 static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
255 cl::desc("Track origins of labels"),
256 cl::Hidden, cl::init(0));
257
258 static cl::opt<bool> ClIgnorePersonalityRoutine(
259 "dfsan-ignore-personality-routine",
260 cl::desc("If a personality routine is marked uninstrumented from the ABI "
261 "list, do not create a wrapper for it."),
262 cl::Hidden, cl::init(false));
263
getGlobalTypeString(const GlobalValue & G)264 static StringRef getGlobalTypeString(const GlobalValue &G) {
265 // Types of GlobalVariables are always pointer types.
266 Type *GType = G.getValueType();
267 // For now we support excluding struct types only.
268 if (StructType *SGType = dyn_cast<StructType>(GType)) {
269 if (!SGType->isLiteral())
270 return SGType->getName();
271 }
272 return "<unknown type>";
273 }
274
275 namespace {
276
277 // Memory map parameters used in application-to-shadow address calculation.
278 // Offset = (Addr & ~AndMask) ^ XorMask
279 // Shadow = ShadowBase + Offset
280 // Origin = (OriginBase + Offset) & ~3ULL
281 struct MemoryMapParams {
282 uint64_t AndMask;
283 uint64_t XorMask;
284 uint64_t ShadowBase;
285 uint64_t OriginBase;
286 };
287
288 } // end anonymous namespace
289
290 // NOLINTBEGIN(readability-identifier-naming)
291 // aarch64 Linux
292 const MemoryMapParams Linux_AArch64_MemoryMapParams = {
293 0, // AndMask (not used)
294 0x0B00000000000, // XorMask
295 0, // ShadowBase (not used)
296 0x0200000000000, // OriginBase
297 };
298
299 // x86_64 Linux
300 const MemoryMapParams Linux_X86_64_MemoryMapParams = {
301 0, // AndMask (not used)
302 0x500000000000, // XorMask
303 0, // ShadowBase (not used)
304 0x100000000000, // OriginBase
305 };
306 // NOLINTEND(readability-identifier-naming)
307
308 namespace {
309
310 class DFSanABIList {
311 std::unique_ptr<SpecialCaseList> SCL;
312
313 public:
314 DFSanABIList() = default;
315
set(std::unique_ptr<SpecialCaseList> List)316 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
317
318 /// Returns whether either this function or its source file are listed in the
319 /// given category.
isIn(const Function & F,StringRef Category) const320 bool isIn(const Function &F, StringRef Category) const {
321 return isIn(*F.getParent(), Category) ||
322 SCL->inSection("dataflow", "fun", F.getName(), Category);
323 }
324
325 /// Returns whether this global alias is listed in the given category.
326 ///
327 /// If GA aliases a function, the alias's name is matched as a function name
328 /// would be. Similarly, aliases of globals are matched like globals.
isIn(const GlobalAlias & GA,StringRef Category) const329 bool isIn(const GlobalAlias &GA, StringRef Category) const {
330 if (isIn(*GA.getParent(), Category))
331 return true;
332
333 if (isa<FunctionType>(GA.getValueType()))
334 return SCL->inSection("dataflow", "fun", GA.getName(), Category);
335
336 return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
337 SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
338 Category);
339 }
340
341 /// Returns whether this module is listed in the given category.
isIn(const Module & M,StringRef Category) const342 bool isIn(const Module &M, StringRef Category) const {
343 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
344 }
345 };
346
347 /// TransformedFunction is used to express the result of transforming one
348 /// function type into another. This struct is immutable. It holds metadata
349 /// useful for updating calls of the old function to the new type.
350 struct TransformedFunction {
TransformedFunction__anondac588f30211::TransformedFunction351 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
352 std::vector<unsigned> ArgumentIndexMapping)
353 : OriginalType(OriginalType), TransformedType(TransformedType),
354 ArgumentIndexMapping(ArgumentIndexMapping) {}
355
356 // Disallow copies.
357 TransformedFunction(const TransformedFunction &) = delete;
358 TransformedFunction &operator=(const TransformedFunction &) = delete;
359
360 // Allow moves.
361 TransformedFunction(TransformedFunction &&) = default;
362 TransformedFunction &operator=(TransformedFunction &&) = default;
363
364 /// Type of the function before the transformation.
365 FunctionType *OriginalType;
366
367 /// Type of the function after the transformation.
368 FunctionType *TransformedType;
369
370 /// Transforming a function may change the position of arguments. This
371 /// member records the mapping from each argument's old position to its new
372 /// position. Argument positions are zero-indexed. If the transformation
373 /// from F to F' made the first argument of F into the third argument of F',
374 /// then ArgumentIndexMapping[0] will equal 2.
375 std::vector<unsigned> ArgumentIndexMapping;
376 };
377
378 /// Given function attributes from a call site for the original function,
379 /// return function attributes appropriate for a call to the transformed
380 /// function.
381 AttributeList
transformFunctionAttributes(const TransformedFunction & TransformedFunction,LLVMContext & Ctx,AttributeList CallSiteAttrs)382 transformFunctionAttributes(const TransformedFunction &TransformedFunction,
383 LLVMContext &Ctx, AttributeList CallSiteAttrs) {
384
385 // Construct a vector of AttributeSet for each function argument.
386 std::vector<llvm::AttributeSet> ArgumentAttributes(
387 TransformedFunction.TransformedType->getNumParams());
388
389 // Copy attributes from the parameter of the original function to the
390 // transformed version. 'ArgumentIndexMapping' holds the mapping from
391 // old argument position to new.
392 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
393 I < IE; ++I) {
394 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
395 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
396 }
397
398 // Copy annotations on varargs arguments.
399 for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
400 IE = CallSiteAttrs.getNumAttrSets();
401 I < IE; ++I) {
402 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
403 }
404
405 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
406 CallSiteAttrs.getRetAttrs(),
407 llvm::ArrayRef(ArgumentAttributes));
408 }
409
410 class DataFlowSanitizer {
411 friend struct DFSanFunction;
412 friend class DFSanVisitor;
413
414 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
415
416 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
417
418 /// How should calls to uninstrumented functions be handled?
419 enum WrapperKind {
420 /// This function is present in an uninstrumented form but we don't know
421 /// how it should be handled. Print a warning and call the function anyway.
422 /// Don't label the return value.
423 WK_Warning,
424
425 /// This function does not write to (user-accessible) memory, and its return
426 /// value is unlabelled.
427 WK_Discard,
428
429 /// This function does not write to (user-accessible) memory, and the label
430 /// of its return value is the union of the label of its arguments.
431 WK_Functional,
432
433 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
434 /// where F is the name of the function. This function may wrap the
435 /// original function or provide its own implementation. WK_Custom uses an
436 /// extra pointer argument to return the shadow. This allows the wrapped
437 /// form of the function type to be expressed in C.
438 WK_Custom
439 };
440
441 Module *Mod;
442 LLVMContext *Ctx;
443 Type *Int8Ptr;
444 IntegerType *OriginTy;
445 PointerType *OriginPtrTy;
446 ConstantInt *ZeroOrigin;
447 /// The shadow type for all primitive types and vector types.
448 IntegerType *PrimitiveShadowTy;
449 PointerType *PrimitiveShadowPtrTy;
450 IntegerType *IntptrTy;
451 ConstantInt *ZeroPrimitiveShadow;
452 Constant *ArgTLS;
453 ArrayType *ArgOriginTLSTy;
454 Constant *ArgOriginTLS;
455 Constant *RetvalTLS;
456 Constant *RetvalOriginTLS;
457 FunctionType *DFSanUnionLoadFnTy;
458 FunctionType *DFSanLoadLabelAndOriginFnTy;
459 FunctionType *DFSanUnimplementedFnTy;
460 FunctionType *DFSanWrapperExternWeakNullFnTy;
461 FunctionType *DFSanSetLabelFnTy;
462 FunctionType *DFSanNonzeroLabelFnTy;
463 FunctionType *DFSanVarargWrapperFnTy;
464 FunctionType *DFSanConditionalCallbackFnTy;
465 FunctionType *DFSanConditionalCallbackOriginFnTy;
466 FunctionType *DFSanReachesFunctionCallbackFnTy;
467 FunctionType *DFSanReachesFunctionCallbackOriginFnTy;
468 FunctionType *DFSanCmpCallbackFnTy;
469 FunctionType *DFSanLoadStoreCallbackFnTy;
470 FunctionType *DFSanMemTransferCallbackFnTy;
471 FunctionType *DFSanChainOriginFnTy;
472 FunctionType *DFSanChainOriginIfTaintedFnTy;
473 FunctionType *DFSanMemOriginTransferFnTy;
474 FunctionType *DFSanMemShadowOriginTransferFnTy;
475 FunctionType *DFSanMemShadowOriginConditionalExchangeFnTy;
476 FunctionType *DFSanMaybeStoreOriginFnTy;
477 FunctionCallee DFSanUnionLoadFn;
478 FunctionCallee DFSanLoadLabelAndOriginFn;
479 FunctionCallee DFSanUnimplementedFn;
480 FunctionCallee DFSanWrapperExternWeakNullFn;
481 FunctionCallee DFSanSetLabelFn;
482 FunctionCallee DFSanNonzeroLabelFn;
483 FunctionCallee DFSanVarargWrapperFn;
484 FunctionCallee DFSanLoadCallbackFn;
485 FunctionCallee DFSanStoreCallbackFn;
486 FunctionCallee DFSanMemTransferCallbackFn;
487 FunctionCallee DFSanConditionalCallbackFn;
488 FunctionCallee DFSanConditionalCallbackOriginFn;
489 FunctionCallee DFSanReachesFunctionCallbackFn;
490 FunctionCallee DFSanReachesFunctionCallbackOriginFn;
491 FunctionCallee DFSanCmpCallbackFn;
492 FunctionCallee DFSanChainOriginFn;
493 FunctionCallee DFSanChainOriginIfTaintedFn;
494 FunctionCallee DFSanMemOriginTransferFn;
495 FunctionCallee DFSanMemShadowOriginTransferFn;
496 FunctionCallee DFSanMemShadowOriginConditionalExchangeFn;
497 FunctionCallee DFSanMaybeStoreOriginFn;
498 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
499 MDNode *ColdCallWeights;
500 MDNode *OriginStoreWeights;
501 DFSanABIList ABIList;
502 DenseMap<Value *, Function *> UnwrappedFnMap;
503 AttributeMask ReadOnlyNoneAttrs;
504 StringSet<> CombineTaintLookupTableNames;
505
506 /// Memory map parameters used in calculation mapping application addresses
507 /// to shadow addresses and origin addresses.
508 const MemoryMapParams *MapParams;
509
510 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
511 Value *getShadowAddress(Value *Addr, Instruction *Pos);
512 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
513 std::pair<Value *, Value *>
514 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
515 bool isInstrumented(const Function *F);
516 bool isInstrumented(const GlobalAlias *GA);
517 bool isForceZeroLabels(const Function *F);
518 TransformedFunction getCustomFunctionType(FunctionType *T);
519 WrapperKind getWrapperKind(Function *F);
520 void addGlobalNameSuffix(GlobalValue *GV);
521 void buildExternWeakCheckIfNeeded(IRBuilder<> &IRB, Function *F);
522 Function *buildWrapperFunction(Function *F, StringRef NewFName,
523 GlobalValue::LinkageTypes NewFLink,
524 FunctionType *NewFT);
525 void initializeCallbackFunctions(Module &M);
526 void initializeRuntimeFunctions(Module &M);
527 bool initializeModule(Module &M);
528
529 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
530 /// from it. Returns the origin's loaded value.
531 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
532 Value **OriginAddr);
533
534 /// Returns whether the given load byte size is amenable to inlined
535 /// optimization patterns.
536 bool hasLoadSizeForFastPath(uint64_t Size);
537
538 /// Returns whether the pass tracks origins. Supports only TLS ABI mode.
539 bool shouldTrackOrigins();
540
541 /// Returns a zero constant with the shadow type of OrigTy.
542 ///
543 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
544 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
545 /// getZeroShadow(other type) = i16(0)
546 Constant *getZeroShadow(Type *OrigTy);
547 /// Returns a zero constant with the shadow type of V's type.
548 Constant *getZeroShadow(Value *V);
549
550 /// Checks if V is a zero shadow.
551 bool isZeroShadow(Value *V);
552
553 /// Returns the shadow type of OrigTy.
554 ///
555 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
556 /// getShadowTy([n x T]) = [n x getShadowTy(T)]
557 /// getShadowTy(other type) = i16
558 Type *getShadowTy(Type *OrigTy);
559 /// Returns the shadow type of of V's type.
560 Type *getShadowTy(Value *V);
561
562 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
563
564 public:
565 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
566
567 bool runImpl(Module &M,
568 llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI);
569 };
570
571 struct DFSanFunction {
572 DataFlowSanitizer &DFS;
573 Function *F;
574 DominatorTree DT;
575 bool IsNativeABI;
576 bool IsForceZeroLabels;
577 TargetLibraryInfo &TLI;
578 AllocaInst *LabelReturnAlloca = nullptr;
579 AllocaInst *OriginReturnAlloca = nullptr;
580 DenseMap<Value *, Value *> ValShadowMap;
581 DenseMap<Value *, Value *> ValOriginMap;
582 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
583 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
584
585 struct PHIFixupElement {
586 PHINode *Phi;
587 PHINode *ShadowPhi;
588 PHINode *OriginPhi;
589 };
590 std::vector<PHIFixupElement> PHIFixups;
591
592 DenseSet<Instruction *> SkipInsts;
593 std::vector<Value *> NonZeroChecks;
594
595 struct CachedShadow {
596 BasicBlock *Block; // The block where Shadow is defined.
597 Value *Shadow;
598 };
599 /// Maps a value to its latest shadow value in terms of domination tree.
600 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
601 /// Maps a value to its latest collapsed shadow value it was converted to in
602 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
603 /// used at a post process where CFG blocks are split. So it does not cache
604 /// BasicBlock like CachedShadows, but uses domination between values.
605 DenseMap<Value *, Value *> CachedCollapsedShadows;
606 DenseMap<Value *, std::set<Value *>> ShadowElements;
607
DFSanFunction__anondac588f30211::DFSanFunction608 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI,
609 bool IsForceZeroLabels, TargetLibraryInfo &TLI)
610 : DFS(DFS), F(F), IsNativeABI(IsNativeABI),
611 IsForceZeroLabels(IsForceZeroLabels), TLI(TLI) {
612 DT.recalculate(*F);
613 }
614
615 /// Computes the shadow address for a given function argument.
616 ///
617 /// Shadow = ArgTLS+ArgOffset.
618 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
619
620 /// Computes the shadow address for a return value.
621 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
622
623 /// Computes the origin address for a given function argument.
624 ///
625 /// Origin = ArgOriginTLS[ArgNo].
626 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
627
628 /// Computes the origin address for a return value.
629 Value *getRetvalOriginTLS();
630
631 Value *getOrigin(Value *V);
632 void setOrigin(Instruction *I, Value *Origin);
633 /// Generates IR to compute the origin of the last operand with a taint label.
634 Value *combineOperandOrigins(Instruction *Inst);
635 /// Before the instruction Pos, generates IR to compute the last origin with a
636 /// taint label. Labels and origins are from vectors Shadows and Origins
637 /// correspondingly. The generated IR is like
638 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
639 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
640 /// zeros with other bitwidths.
641 Value *combineOrigins(const std::vector<Value *> &Shadows,
642 const std::vector<Value *> &Origins, Instruction *Pos,
643 ConstantInt *Zero = nullptr);
644
645 Value *getShadow(Value *V);
646 void setShadow(Instruction *I, Value *Shadow);
647 /// Generates IR to compute the union of the two given shadows, inserting it
648 /// before Pos. The combined value is with primitive type.
649 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
650 /// Combines the shadow values of V1 and V2, then converts the combined value
651 /// with primitive type into a shadow value with the original type T.
652 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
653 Instruction *Pos);
654 Value *combineOperandShadows(Instruction *Inst);
655
656 /// Generates IR to load shadow and origin corresponding to bytes [\p
657 /// Addr, \p Addr + \p Size), where addr has alignment \p
658 /// InstAlignment, and take the union of each of those shadows. The returned
659 /// shadow always has primitive type.
660 ///
661 /// When tracking loads is enabled, the returned origin is a chain at the
662 /// current stack if the returned shadow is tainted.
663 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
664 Align InstAlignment,
665 Instruction *Pos);
666
667 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
668 Align InstAlignment, Value *PrimitiveShadow,
669 Value *Origin, Instruction *Pos);
670 /// Applies PrimitiveShadow to all primitive subtypes of T, returning
671 /// the expanded shadow value.
672 ///
673 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
674 /// EFP([n x T], PS) = [n x EFP(T,PS)]
675 /// EFP(other types, PS) = PS
676 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
677 Instruction *Pos);
678 /// Collapses Shadow into a single primitive shadow value, unioning all
679 /// primitive shadow values in the process. Returns the final primitive
680 /// shadow value.
681 ///
682 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
683 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
684 /// CTP(other types, PS) = PS
685 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
686
687 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
688 Instruction *Pos);
689
690 Align getShadowAlign(Align InstAlignment);
691
692 // If ClConditionalCallbacks is enabled, insert a callback after a given
693 // branch instruction using the given conditional expression.
694 void addConditionalCallbacksIfEnabled(Instruction &I, Value *Condition);
695
696 // If ClReachesFunctionCallbacks is enabled, insert a callback for each
697 // argument and load instruction.
698 void addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB, Instruction &I,
699 Value *Data);
700
701 bool isLookupTableConstant(Value *P);
702
703 private:
704 /// Collapses the shadow with aggregate type into a single primitive shadow
705 /// value.
706 template <class AggregateType>
707 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
708 IRBuilder<> &IRB);
709
710 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
711
712 /// Returns the shadow value of an argument A.
713 Value *getShadowForTLSArgument(Argument *A);
714
715 /// The fast path of loading shadows.
716 std::pair<Value *, Value *>
717 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
718 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
719 Instruction *Pos);
720
721 Align getOriginAlign(Align InstAlignment);
722
723 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
724 /// is __dfsan_load_label_and_origin. This function returns the union of all
725 /// labels and the origin of the first taint label. However this is an
726 /// additional call with many instructions. To ensure common cases are fast,
727 /// checks if it is possible to load labels and origins without using the
728 /// callback function.
729 ///
730 /// When enabling tracking load instructions, we always use
731 /// __dfsan_load_label_and_origin to reduce code size.
732 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
733
734 /// Returns a chain at the current stack with previous origin V.
735 Value *updateOrigin(Value *V, IRBuilder<> &IRB);
736
737 /// Returns a chain at the current stack with previous origin V if Shadow is
738 /// tainted.
739 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
740
741 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
742 /// Origin otherwise.
743 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
744
745 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
746 /// Size).
747 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
748 uint64_t StoreOriginSize, Align Alignment);
749
750 /// Stores Origin in terms of its Shadow value.
751 /// * Do not write origins for zero shadows because we do not trace origins
752 /// for untainted sinks.
753 /// * Use __dfsan_maybe_store_origin if there are too many origin store
754 /// instrumentations.
755 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
756 Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
757
758 /// Convert a scalar value to an i1 by comparing with 0.
759 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
760
761 bool shouldInstrumentWithCall();
762
763 /// Generates IR to load shadow and origin corresponding to bytes [\p
764 /// Addr, \p Addr + \p Size), where addr has alignment \p
765 /// InstAlignment, and take the union of each of those shadows. The returned
766 /// shadow always has primitive type.
767 std::pair<Value *, Value *>
768 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
769 Align InstAlignment, Instruction *Pos);
770 int NumOriginStores = 0;
771 };
772
773 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
774 public:
775 DFSanFunction &DFSF;
776
DFSanVisitor(DFSanFunction & DFSF)777 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
778
getDataLayout() const779 const DataLayout &getDataLayout() const {
780 return DFSF.F->getParent()->getDataLayout();
781 }
782
783 // Combines shadow values and origins for all of I's operands.
784 void visitInstOperands(Instruction &I);
785
786 void visitUnaryOperator(UnaryOperator &UO);
787 void visitBinaryOperator(BinaryOperator &BO);
788 void visitBitCastInst(BitCastInst &BCI);
789 void visitCastInst(CastInst &CI);
790 void visitCmpInst(CmpInst &CI);
791 void visitLandingPadInst(LandingPadInst &LPI);
792 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
793 void visitLoadInst(LoadInst &LI);
794 void visitStoreInst(StoreInst &SI);
795 void visitAtomicRMWInst(AtomicRMWInst &I);
796 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
797 void visitReturnInst(ReturnInst &RI);
798 void visitLibAtomicLoad(CallBase &CB);
799 void visitLibAtomicStore(CallBase &CB);
800 void visitLibAtomicExchange(CallBase &CB);
801 void visitLibAtomicCompareExchange(CallBase &CB);
802 void visitCallBase(CallBase &CB);
803 void visitPHINode(PHINode &PN);
804 void visitExtractElementInst(ExtractElementInst &I);
805 void visitInsertElementInst(InsertElementInst &I);
806 void visitShuffleVectorInst(ShuffleVectorInst &I);
807 void visitExtractValueInst(ExtractValueInst &I);
808 void visitInsertValueInst(InsertValueInst &I);
809 void visitAllocaInst(AllocaInst &I);
810 void visitSelectInst(SelectInst &I);
811 void visitMemSetInst(MemSetInst &I);
812 void visitMemTransferInst(MemTransferInst &I);
813 void visitBranchInst(BranchInst &BR);
814 void visitSwitchInst(SwitchInst &SW);
815
816 private:
817 void visitCASOrRMW(Align InstAlignment, Instruction &I);
818
819 // Returns false when this is an invoke of a custom function.
820 bool visitWrappedCallBase(Function &F, CallBase &CB);
821
822 // Combines origins for all of I's operands.
823 void visitInstOperandOrigins(Instruction &I);
824
825 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
826 IRBuilder<> &IRB);
827
828 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
829 IRBuilder<> &IRB);
830
831 Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB);
832 Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB);
833 };
834
LibAtomicFunction(const Function & F)835 bool LibAtomicFunction(const Function &F) {
836 // This is a bit of a hack because TargetLibraryInfo is a function pass.
837 // The DFSan pass would need to be refactored to be function pass oriented
838 // (like MSan is) in order to fit together nicely with TargetLibraryInfo.
839 // We need this check to prevent them from being instrumented, or wrapped.
840 // Match on name and number of arguments.
841 if (!F.hasName() || F.isVarArg())
842 return false;
843 switch (F.arg_size()) {
844 case 4:
845 return F.getName() == "__atomic_load" || F.getName() == "__atomic_store";
846 case 5:
847 return F.getName() == "__atomic_exchange";
848 case 6:
849 return F.getName() == "__atomic_compare_exchange";
850 default:
851 return false;
852 }
853 }
854
855 } // end anonymous namespace
856
DataFlowSanitizer(const std::vector<std::string> & ABIListFiles)857 DataFlowSanitizer::DataFlowSanitizer(
858 const std::vector<std::string> &ABIListFiles) {
859 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
860 llvm::append_range(AllABIListFiles, ClABIListFiles);
861 // FIXME: should we propagate vfs::FileSystem to this constructor?
862 ABIList.set(
863 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
864
865 for (StringRef v : ClCombineTaintLookupTables)
866 CombineTaintLookupTableNames.insert(v);
867 }
868
getCustomFunctionType(FunctionType * T)869 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
870 SmallVector<Type *, 4> ArgTypes;
871
872 // Some parameters of the custom function being constructed are
873 // parameters of T. Record the mapping from parameters of T to
874 // parameters of the custom function, so that parameter attributes
875 // at call sites can be updated.
876 std::vector<unsigned> ArgumentIndexMapping;
877 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
878 Type *ParamType = T->getParamType(I);
879 ArgumentIndexMapping.push_back(ArgTypes.size());
880 ArgTypes.push_back(ParamType);
881 }
882 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
883 ArgTypes.push_back(PrimitiveShadowTy);
884 if (T->isVarArg())
885 ArgTypes.push_back(PrimitiveShadowPtrTy);
886 Type *RetType = T->getReturnType();
887 if (!RetType->isVoidTy())
888 ArgTypes.push_back(PrimitiveShadowPtrTy);
889
890 if (shouldTrackOrigins()) {
891 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
892 ArgTypes.push_back(OriginTy);
893 if (T->isVarArg())
894 ArgTypes.push_back(OriginPtrTy);
895 if (!RetType->isVoidTy())
896 ArgTypes.push_back(OriginPtrTy);
897 }
898
899 return TransformedFunction(
900 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
901 ArgumentIndexMapping);
902 }
903
isZeroShadow(Value * V)904 bool DataFlowSanitizer::isZeroShadow(Value *V) {
905 Type *T = V->getType();
906 if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
907 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
908 return CI->isZero();
909 return false;
910 }
911
912 return isa<ConstantAggregateZero>(V);
913 }
914
hasLoadSizeForFastPath(uint64_t Size)915 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
916 uint64_t ShadowSize = Size * ShadowWidthBytes;
917 return ShadowSize % 8 == 0 || ShadowSize == 4;
918 }
919
shouldTrackOrigins()920 bool DataFlowSanitizer::shouldTrackOrigins() {
921 static const bool ShouldTrackOrigins = ClTrackOrigins;
922 return ShouldTrackOrigins;
923 }
924
getZeroShadow(Type * OrigTy)925 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
926 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
927 return ZeroPrimitiveShadow;
928 Type *ShadowTy = getShadowTy(OrigTy);
929 return ConstantAggregateZero::get(ShadowTy);
930 }
931
getZeroShadow(Value * V)932 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
933 return getZeroShadow(V->getType());
934 }
935
expandFromPrimitiveShadowRecursive(Value * Shadow,SmallVector<unsigned,4> & Indices,Type * SubShadowTy,Value * PrimitiveShadow,IRBuilder<> & IRB)936 static Value *expandFromPrimitiveShadowRecursive(
937 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
938 Value *PrimitiveShadow, IRBuilder<> &IRB) {
939 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
940 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
941
942 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
943 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
944 Indices.push_back(Idx);
945 Shadow = expandFromPrimitiveShadowRecursive(
946 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
947 Indices.pop_back();
948 }
949 return Shadow;
950 }
951
952 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
953 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
954 Indices.push_back(Idx);
955 Shadow = expandFromPrimitiveShadowRecursive(
956 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
957 Indices.pop_back();
958 }
959 return Shadow;
960 }
961 llvm_unreachable("Unexpected shadow type");
962 }
963
shouldInstrumentWithCall()964 bool DFSanFunction::shouldInstrumentWithCall() {
965 return ClInstrumentWithCallThreshold >= 0 &&
966 NumOriginStores >= ClInstrumentWithCallThreshold;
967 }
968
expandFromPrimitiveShadow(Type * T,Value * PrimitiveShadow,Instruction * Pos)969 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
970 Instruction *Pos) {
971 Type *ShadowTy = DFS.getShadowTy(T);
972
973 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
974 return PrimitiveShadow;
975
976 if (DFS.isZeroShadow(PrimitiveShadow))
977 return DFS.getZeroShadow(ShadowTy);
978
979 IRBuilder<> IRB(Pos);
980 SmallVector<unsigned, 4> Indices;
981 Value *Shadow = UndefValue::get(ShadowTy);
982 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
983 PrimitiveShadow, IRB);
984
985 // Caches the primitive shadow value that built the shadow value.
986 CachedCollapsedShadows[Shadow] = PrimitiveShadow;
987 return Shadow;
988 }
989
990 template <class AggregateType>
collapseAggregateShadow(AggregateType * AT,Value * Shadow,IRBuilder<> & IRB)991 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
992 IRBuilder<> &IRB) {
993 if (!AT->getNumElements())
994 return DFS.ZeroPrimitiveShadow;
995
996 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
997 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
998
999 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
1000 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1001 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
1002 Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1003 }
1004 return Aggregator;
1005 }
1006
collapseToPrimitiveShadow(Value * Shadow,IRBuilder<> & IRB)1007 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1008 IRBuilder<> &IRB) {
1009 Type *ShadowTy = Shadow->getType();
1010 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1011 return Shadow;
1012 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
1013 return collapseAggregateShadow<>(AT, Shadow, IRB);
1014 if (StructType *ST = dyn_cast<StructType>(ShadowTy))
1015 return collapseAggregateShadow<>(ST, Shadow, IRB);
1016 llvm_unreachable("Unexpected shadow type");
1017 }
1018
collapseToPrimitiveShadow(Value * Shadow,Instruction * Pos)1019 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1020 Instruction *Pos) {
1021 Type *ShadowTy = Shadow->getType();
1022 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1023 return Shadow;
1024
1025 // Checks if the cached collapsed shadow value dominates Pos.
1026 Value *&CS = CachedCollapsedShadows[Shadow];
1027 if (CS && DT.dominates(CS, Pos))
1028 return CS;
1029
1030 IRBuilder<> IRB(Pos);
1031 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
1032 // Caches the converted primitive shadow value.
1033 CS = PrimitiveShadow;
1034 return PrimitiveShadow;
1035 }
1036
addConditionalCallbacksIfEnabled(Instruction & I,Value * Condition)1037 void DFSanFunction::addConditionalCallbacksIfEnabled(Instruction &I,
1038 Value *Condition) {
1039 if (!ClConditionalCallbacks) {
1040 return;
1041 }
1042 IRBuilder<> IRB(&I);
1043 Value *CondShadow = getShadow(Condition);
1044 CallInst *CI;
1045 if (DFS.shouldTrackOrigins()) {
1046 Value *CondOrigin = getOrigin(Condition);
1047 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackOriginFn,
1048 {CondShadow, CondOrigin});
1049 } else {
1050 CI = IRB.CreateCall(DFS.DFSanConditionalCallbackFn, {CondShadow});
1051 }
1052 CI->addParamAttr(0, Attribute::ZExt);
1053 }
1054
addReachesFunctionCallbacksIfEnabled(IRBuilder<> & IRB,Instruction & I,Value * Data)1055 void DFSanFunction::addReachesFunctionCallbacksIfEnabled(IRBuilder<> &IRB,
1056 Instruction &I,
1057 Value *Data) {
1058 if (!ClReachesFunctionCallbacks) {
1059 return;
1060 }
1061 const DebugLoc &dbgloc = I.getDebugLoc();
1062 Value *DataShadow = collapseToPrimitiveShadow(getShadow(Data), IRB);
1063 ConstantInt *CILine;
1064 llvm::Value *FilePathPtr;
1065
1066 if (dbgloc.get() == nullptr) {
1067 CILine = llvm::ConstantInt::get(I.getContext(), llvm::APInt(32, 0));
1068 FilePathPtr = IRB.CreateGlobalStringPtr(
1069 I.getFunction()->getParent()->getSourceFileName());
1070 } else {
1071 CILine = llvm::ConstantInt::get(I.getContext(),
1072 llvm::APInt(32, dbgloc.getLine()));
1073 FilePathPtr =
1074 IRB.CreateGlobalStringPtr(dbgloc->getFilename());
1075 }
1076
1077 llvm::Value *FunctionNamePtr =
1078 IRB.CreateGlobalStringPtr(I.getFunction()->getName());
1079
1080 CallInst *CB;
1081 std::vector<Value *> args;
1082
1083 if (DFS.shouldTrackOrigins()) {
1084 Value *DataOrigin = getOrigin(Data);
1085 args = { DataShadow, DataOrigin, FilePathPtr, CILine, FunctionNamePtr };
1086 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackOriginFn, args);
1087 } else {
1088 args = { DataShadow, FilePathPtr, CILine, FunctionNamePtr };
1089 CB = IRB.CreateCall(DFS.DFSanReachesFunctionCallbackFn, args);
1090 }
1091 CB->addParamAttr(0, Attribute::ZExt);
1092 CB->setDebugLoc(dbgloc);
1093 }
1094
getShadowTy(Type * OrigTy)1095 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
1096 if (!OrigTy->isSized())
1097 return PrimitiveShadowTy;
1098 if (isa<IntegerType>(OrigTy))
1099 return PrimitiveShadowTy;
1100 if (isa<VectorType>(OrigTy))
1101 return PrimitiveShadowTy;
1102 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
1103 return ArrayType::get(getShadowTy(AT->getElementType()),
1104 AT->getNumElements());
1105 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1106 SmallVector<Type *, 4> Elements;
1107 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
1108 Elements.push_back(getShadowTy(ST->getElementType(I)));
1109 return StructType::get(*Ctx, Elements);
1110 }
1111 return PrimitiveShadowTy;
1112 }
1113
getShadowTy(Value * V)1114 Type *DataFlowSanitizer::getShadowTy(Value *V) {
1115 return getShadowTy(V->getType());
1116 }
1117
initializeModule(Module & M)1118 bool DataFlowSanitizer::initializeModule(Module &M) {
1119 Triple TargetTriple(M.getTargetTriple());
1120 const DataLayout &DL = M.getDataLayout();
1121
1122 if (TargetTriple.getOS() != Triple::Linux)
1123 report_fatal_error("unsupported operating system");
1124 switch (TargetTriple.getArch()) {
1125 case Triple::aarch64:
1126 MapParams = &Linux_AArch64_MemoryMapParams;
1127 break;
1128 case Triple::x86_64:
1129 MapParams = &Linux_X86_64_MemoryMapParams;
1130 break;
1131 default:
1132 report_fatal_error("unsupported architecture");
1133 }
1134
1135 Mod = &M;
1136 Ctx = &M.getContext();
1137 Int8Ptr = Type::getInt8PtrTy(*Ctx);
1138 OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
1139 OriginPtrTy = PointerType::getUnqual(OriginTy);
1140 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1141 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
1142 IntptrTy = DL.getIntPtrType(*Ctx);
1143 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
1144 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
1145
1146 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1147 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
1148 /*isVarArg=*/false);
1149 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
1150 DFSanLoadLabelAndOriginFnTy =
1151 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
1152 /*isVarArg=*/false);
1153 DFSanUnimplementedFnTy = FunctionType::get(
1154 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1155 Type *DFSanWrapperExternWeakNullArgs[2] = {Int8Ptr, Int8Ptr};
1156 DFSanWrapperExternWeakNullFnTy =
1157 FunctionType::get(Type::getVoidTy(*Ctx), DFSanWrapperExternWeakNullArgs,
1158 /*isVarArg=*/false);
1159 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
1160 Type::getInt8PtrTy(*Ctx), IntptrTy};
1161 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
1162 DFSanSetLabelArgs, /*isVarArg=*/false);
1163 DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), std::nullopt,
1164 /*isVarArg=*/false);
1165 DFSanVarargWrapperFnTy = FunctionType::get(
1166 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1167 DFSanConditionalCallbackFnTy =
1168 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1169 /*isVarArg=*/false);
1170 Type *DFSanConditionalCallbackOriginArgs[2] = {PrimitiveShadowTy, OriginTy};
1171 DFSanConditionalCallbackOriginFnTy = FunctionType::get(
1172 Type::getVoidTy(*Ctx), DFSanConditionalCallbackOriginArgs,
1173 /*isVarArg=*/false);
1174 Type *DFSanReachesFunctionCallbackArgs[4] = {PrimitiveShadowTy, Int8Ptr,
1175 OriginTy, Int8Ptr};
1176 DFSanReachesFunctionCallbackFnTy =
1177 FunctionType::get(Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackArgs,
1178 /*isVarArg=*/false);
1179 Type *DFSanReachesFunctionCallbackOriginArgs[5] = {
1180 PrimitiveShadowTy, OriginTy, Int8Ptr, OriginTy, Int8Ptr};
1181 DFSanReachesFunctionCallbackOriginFnTy = FunctionType::get(
1182 Type::getVoidTy(*Ctx), DFSanReachesFunctionCallbackOriginArgs,
1183 /*isVarArg=*/false);
1184 DFSanCmpCallbackFnTy =
1185 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1186 /*isVarArg=*/false);
1187 DFSanChainOriginFnTy =
1188 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
1189 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
1190 DFSanChainOriginIfTaintedFnTy = FunctionType::get(
1191 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
1192 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
1193 Int8Ptr, IntptrTy, OriginTy};
1194 DFSanMaybeStoreOriginFnTy = FunctionType::get(
1195 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
1196 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1197 DFSanMemOriginTransferFnTy = FunctionType::get(
1198 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
1199 Type *DFSanMemShadowOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1200 DFSanMemShadowOriginTransferFnTy =
1201 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemShadowOriginTransferArgs,
1202 /*isVarArg=*/false);
1203 Type *DFSanMemShadowOriginConditionalExchangeArgs[5] = {
1204 IntegerType::get(*Ctx, 8), Int8Ptr, Int8Ptr, Int8Ptr, IntptrTy};
1205 DFSanMemShadowOriginConditionalExchangeFnTy = FunctionType::get(
1206 Type::getVoidTy(*Ctx), DFSanMemShadowOriginConditionalExchangeArgs,
1207 /*isVarArg=*/false);
1208 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
1209 DFSanLoadStoreCallbackFnTy =
1210 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
1211 /*isVarArg=*/false);
1212 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1213 DFSanMemTransferCallbackFnTy =
1214 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
1215 /*isVarArg=*/false);
1216
1217 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1218 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1219 return true;
1220 }
1221
isInstrumented(const Function * F)1222 bool DataFlowSanitizer::isInstrumented(const Function *F) {
1223 return !ABIList.isIn(*F, "uninstrumented");
1224 }
1225
isInstrumented(const GlobalAlias * GA)1226 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
1227 return !ABIList.isIn(*GA, "uninstrumented");
1228 }
1229
isForceZeroLabels(const Function * F)1230 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) {
1231 return ABIList.isIn(*F, "force_zero_labels");
1232 }
1233
getWrapperKind(Function * F)1234 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
1235 if (ABIList.isIn(*F, "functional"))
1236 return WK_Functional;
1237 if (ABIList.isIn(*F, "discard"))
1238 return WK_Discard;
1239 if (ABIList.isIn(*F, "custom"))
1240 return WK_Custom;
1241
1242 return WK_Warning;
1243 }
1244
addGlobalNameSuffix(GlobalValue * GV)1245 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
1246 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
1247 GV->setName(GVName + Suffix);
1248
1249 // Try to change the name of the function in module inline asm. We only do
1250 // this for specific asm directives, currently only ".symver", to try to avoid
1251 // corrupting asm which happens to contain the symbol name as a substring.
1252 // Note that the substitution for .symver assumes that the versioned symbol
1253 // also has an instrumented name.
1254 std::string Asm = GV->getParent()->getModuleInlineAsm();
1255 std::string SearchStr = ".symver " + GVName + ",";
1256 size_t Pos = Asm.find(SearchStr);
1257 if (Pos != std::string::npos) {
1258 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
1259 Pos = Asm.find("@");
1260
1261 if (Pos == std::string::npos)
1262 report_fatal_error(Twine("unsupported .symver: ", Asm));
1263
1264 Asm.replace(Pos, 1, Suffix + "@");
1265 GV->getParent()->setModuleInlineAsm(Asm);
1266 }
1267 }
1268
buildExternWeakCheckIfNeeded(IRBuilder<> & IRB,Function * F)1269 void DataFlowSanitizer::buildExternWeakCheckIfNeeded(IRBuilder<> &IRB,
1270 Function *F) {
1271 // If the function we are wrapping was ExternWeak, it may be null.
1272 // The original code before calling this wrapper may have checked for null,
1273 // but replacing with a known-to-not-be-null wrapper can break this check.
1274 // When replacing uses of the extern weak function with the wrapper we try
1275 // to avoid replacing uses in conditionals, but this is not perfect.
1276 // In the case where we fail, and accidentally optimize out a null check
1277 // for a extern weak function, add a check here to help identify the issue.
1278 if (GlobalValue::isExternalWeakLinkage(F->getLinkage())) {
1279 std::vector<Value *> Args;
1280 Args.push_back(IRB.CreatePointerCast(F, IRB.getInt8PtrTy()));
1281 Args.push_back(IRB.CreateGlobalStringPtr(F->getName()));
1282 IRB.CreateCall(DFSanWrapperExternWeakNullFn, Args);
1283 }
1284 }
1285
1286 Function *
buildWrapperFunction(Function * F,StringRef NewFName,GlobalValue::LinkageTypes NewFLink,FunctionType * NewFT)1287 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
1288 GlobalValue::LinkageTypes NewFLink,
1289 FunctionType *NewFT) {
1290 FunctionType *FT = F->getFunctionType();
1291 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
1292 NewFName, F->getParent());
1293 NewF->copyAttributesFrom(F);
1294 NewF->removeRetAttrs(
1295 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1296
1297 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
1298 if (F->isVarArg()) {
1299 NewF->removeFnAttr("split-stack");
1300 CallInst::Create(DFSanVarargWrapperFn,
1301 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
1302 BB);
1303 new UnreachableInst(*Ctx, BB);
1304 } else {
1305 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
1306 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
1307
1308 CallInst *CI = CallInst::Create(F, Args, "", BB);
1309 if (FT->getReturnType()->isVoidTy())
1310 ReturnInst::Create(*Ctx, BB);
1311 else
1312 ReturnInst::Create(*Ctx, CI, BB);
1313 }
1314
1315 return NewF;
1316 }
1317
1318 // Initialize DataFlowSanitizer runtime functions and declare them in the module
initializeRuntimeFunctions(Module & M)1319 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
1320 LLVMContext &C = M.getContext();
1321 {
1322 AttributeList AL;
1323 AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1324 AL = AL.addFnAttribute(
1325 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1326 AL = AL.addRetAttribute(C, Attribute::ZExt);
1327 DFSanUnionLoadFn =
1328 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1329 }
1330 {
1331 AttributeList AL;
1332 AL = AL.addFnAttribute(C, Attribute::NoUnwind);
1333 AL = AL.addFnAttribute(
1334 C, Attribute::getWithMemoryEffects(C, MemoryEffects::readOnly()));
1335 AL = AL.addRetAttribute(C, Attribute::ZExt);
1336 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
1337 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
1338 }
1339 DFSanUnimplementedFn =
1340 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1341 DFSanWrapperExternWeakNullFn = Mod->getOrInsertFunction(
1342 "__dfsan_wrapper_extern_weak_null", DFSanWrapperExternWeakNullFnTy);
1343 {
1344 AttributeList AL;
1345 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1346 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1347 DFSanSetLabelFn =
1348 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1349 }
1350 DFSanNonzeroLabelFn =
1351 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1352 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1353 DFSanVarargWrapperFnTy);
1354 {
1355 AttributeList AL;
1356 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1357 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1358 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
1359 DFSanChainOriginFnTy, AL);
1360 }
1361 {
1362 AttributeList AL;
1363 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1364 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1365 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1366 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
1367 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
1368 }
1369 DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
1370 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
1371
1372 DFSanMemShadowOriginTransferFn = Mod->getOrInsertFunction(
1373 "__dfsan_mem_shadow_origin_transfer", DFSanMemShadowOriginTransferFnTy);
1374
1375 DFSanMemShadowOriginConditionalExchangeFn =
1376 Mod->getOrInsertFunction("__dfsan_mem_shadow_origin_conditional_exchange",
1377 DFSanMemShadowOriginConditionalExchangeFnTy);
1378
1379 {
1380 AttributeList AL;
1381 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1382 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
1383 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
1384 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
1385 }
1386
1387 DFSanRuntimeFunctions.insert(
1388 DFSanUnionLoadFn.getCallee()->stripPointerCasts());
1389 DFSanRuntimeFunctions.insert(
1390 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
1391 DFSanRuntimeFunctions.insert(
1392 DFSanUnimplementedFn.getCallee()->stripPointerCasts());
1393 DFSanRuntimeFunctions.insert(
1394 DFSanWrapperExternWeakNullFn.getCallee()->stripPointerCasts());
1395 DFSanRuntimeFunctions.insert(
1396 DFSanSetLabelFn.getCallee()->stripPointerCasts());
1397 DFSanRuntimeFunctions.insert(
1398 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
1399 DFSanRuntimeFunctions.insert(
1400 DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
1401 DFSanRuntimeFunctions.insert(
1402 DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
1403 DFSanRuntimeFunctions.insert(
1404 DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
1405 DFSanRuntimeFunctions.insert(
1406 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
1407 DFSanRuntimeFunctions.insert(
1408 DFSanConditionalCallbackFn.getCallee()->stripPointerCasts());
1409 DFSanRuntimeFunctions.insert(
1410 DFSanConditionalCallbackOriginFn.getCallee()->stripPointerCasts());
1411 DFSanRuntimeFunctions.insert(
1412 DFSanReachesFunctionCallbackFn.getCallee()->stripPointerCasts());
1413 DFSanRuntimeFunctions.insert(
1414 DFSanReachesFunctionCallbackOriginFn.getCallee()->stripPointerCasts());
1415 DFSanRuntimeFunctions.insert(
1416 DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
1417 DFSanRuntimeFunctions.insert(
1418 DFSanChainOriginFn.getCallee()->stripPointerCasts());
1419 DFSanRuntimeFunctions.insert(
1420 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
1421 DFSanRuntimeFunctions.insert(
1422 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
1423 DFSanRuntimeFunctions.insert(
1424 DFSanMemShadowOriginTransferFn.getCallee()->stripPointerCasts());
1425 DFSanRuntimeFunctions.insert(
1426 DFSanMemShadowOriginConditionalExchangeFn.getCallee()
1427 ->stripPointerCasts());
1428 DFSanRuntimeFunctions.insert(
1429 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
1430 }
1431
1432 // Initializes event callback functions and declare them in the module
initializeCallbackFunctions(Module & M)1433 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1434 {
1435 AttributeList AL;
1436 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1437 DFSanLoadCallbackFn = Mod->getOrInsertFunction(
1438 "__dfsan_load_callback", DFSanLoadStoreCallbackFnTy, AL);
1439 }
1440 {
1441 AttributeList AL;
1442 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1443 DFSanStoreCallbackFn = Mod->getOrInsertFunction(
1444 "__dfsan_store_callback", DFSanLoadStoreCallbackFnTy, AL);
1445 }
1446 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1447 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1448 {
1449 AttributeList AL;
1450 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1451 DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback",
1452 DFSanCmpCallbackFnTy, AL);
1453 }
1454 {
1455 AttributeList AL;
1456 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1457 DFSanConditionalCallbackFn = Mod->getOrInsertFunction(
1458 "__dfsan_conditional_callback", DFSanConditionalCallbackFnTy, AL);
1459 }
1460 {
1461 AttributeList AL;
1462 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1463 DFSanConditionalCallbackOriginFn =
1464 Mod->getOrInsertFunction("__dfsan_conditional_callback_origin",
1465 DFSanConditionalCallbackOriginFnTy, AL);
1466 }
1467 {
1468 AttributeList AL;
1469 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1470 DFSanReachesFunctionCallbackFn =
1471 Mod->getOrInsertFunction("__dfsan_reaches_function_callback",
1472 DFSanReachesFunctionCallbackFnTy, AL);
1473 }
1474 {
1475 AttributeList AL;
1476 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1477 DFSanReachesFunctionCallbackOriginFn =
1478 Mod->getOrInsertFunction("__dfsan_reaches_function_callback_origin",
1479 DFSanReachesFunctionCallbackOriginFnTy, AL);
1480 }
1481 }
1482
runImpl(Module & M,llvm::function_ref<TargetLibraryInfo & (Function &)> GetTLI)1483 bool DataFlowSanitizer::runImpl(
1484 Module &M, llvm::function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1485 initializeModule(M);
1486
1487 if (ABIList.isIn(M, "skip"))
1488 return false;
1489
1490 const unsigned InitialGlobalSize = M.global_size();
1491 const unsigned InitialModuleSize = M.size();
1492
1493 bool Changed = false;
1494
1495 auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
1496 Type *Ty) -> Constant * {
1497 Constant *C = Mod->getOrInsertGlobal(Name, Ty);
1498 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1499 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1500 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1501 }
1502 return C;
1503 };
1504
1505 // These globals must be kept in sync with the ones in dfsan.cpp.
1506 ArgTLS =
1507 GetOrInsertGlobal("__dfsan_arg_tls",
1508 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
1509 RetvalTLS = GetOrInsertGlobal(
1510 "__dfsan_retval_tls",
1511 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
1512 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
1513 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
1514 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
1515
1516 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
1517 Changed = true;
1518 return new GlobalVariable(
1519 M, OriginTy, true, GlobalValue::WeakODRLinkage,
1520 ConstantInt::getSigned(OriginTy,
1521 shouldTrackOrigins() ? ClTrackOrigins : 0),
1522 "__dfsan_track_origins");
1523 });
1524
1525 initializeCallbackFunctions(M);
1526 initializeRuntimeFunctions(M);
1527
1528 std::vector<Function *> FnsToInstrument;
1529 SmallPtrSet<Function *, 2> FnsWithNativeABI;
1530 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel;
1531 SmallPtrSet<Constant *, 1> PersonalityFns;
1532 for (Function &F : M)
1533 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F) &&
1534 !LibAtomicFunction(F)) {
1535 FnsToInstrument.push_back(&F);
1536 if (F.hasPersonalityFn())
1537 PersonalityFns.insert(F.getPersonalityFn()->stripPointerCasts());
1538 }
1539
1540 if (ClIgnorePersonalityRoutine) {
1541 for (auto *C : PersonalityFns) {
1542 assert(isa<Function>(C) && "Personality routine is not a function!");
1543 Function *F = cast<Function>(C);
1544 if (!isInstrumented(F))
1545 llvm::erase_value(FnsToInstrument, F);
1546 }
1547 }
1548
1549 // Give function aliases prefixes when necessary, and build wrappers where the
1550 // instrumentedness is inconsistent.
1551 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) {
1552 // Don't stop on weak. We assume people aren't playing games with the
1553 // instrumentedness of overridden weak aliases.
1554 auto *F = dyn_cast<Function>(GA.getAliaseeObject());
1555 if (!F)
1556 continue;
1557
1558 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F);
1559 if (GAInst && FInst) {
1560 addGlobalNameSuffix(&GA);
1561 } else if (GAInst != FInst) {
1562 // Non-instrumented alias of an instrumented function, or vice versa.
1563 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
1564 // below will take care of instrumenting it.
1565 Function *NewF =
1566 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType());
1567 GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType()));
1568 NewF->takeName(&GA);
1569 GA.eraseFromParent();
1570 FnsToInstrument.push_back(NewF);
1571 }
1572 }
1573
1574 // TODO: This could be more precise.
1575 ReadOnlyNoneAttrs.addAttribute(Attribute::Memory);
1576
1577 // First, change the ABI of every function in the module. ABI-listed
1578 // functions keep their original ABI and get a wrapper function.
1579 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
1580 FE = FnsToInstrument.end();
1581 FI != FE; ++FI) {
1582 Function &F = **FI;
1583 FunctionType *FT = F.getFunctionType();
1584
1585 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1586 FT->getReturnType()->isVoidTy());
1587
1588 if (isInstrumented(&F)) {
1589 if (isForceZeroLabels(&F))
1590 FnsWithForceZeroLabel.insert(&F);
1591
1592 // Instrumented functions get a '.dfsan' suffix. This allows us to more
1593 // easily identify cases of mismatching ABIs. This naming scheme is
1594 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
1595 addGlobalNameSuffix(&F);
1596 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1597 // Build a wrapper function for F. The wrapper simply calls F, and is
1598 // added to FnsToInstrument so that any instrumentation according to its
1599 // WrapperKind is done in the second pass below.
1600
1601 // If the function being wrapped has local linkage, then preserve the
1602 // function's linkage in the wrapper function.
1603 GlobalValue::LinkageTypes WrapperLinkage =
1604 F.hasLocalLinkage() ? F.getLinkage()
1605 : GlobalValue::LinkOnceODRLinkage;
1606
1607 Function *NewF = buildWrapperFunction(
1608 &F,
1609 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
1610 std::string(F.getName()),
1611 WrapperLinkage, FT);
1612 NewF->removeFnAttrs(ReadOnlyNoneAttrs);
1613
1614 Value *WrappedFnCst =
1615 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
1616
1617 // Extern weak functions can sometimes be null at execution time.
1618 // Code will sometimes check if an extern weak function is null.
1619 // This could look something like:
1620 // declare extern_weak i8 @my_func(i8)
1621 // br i1 icmp ne (i8 (i8)* @my_func, i8 (i8)* null), label %use_my_func,
1622 // label %avoid_my_func
1623 // The @"dfsw$my_func" wrapper is never null, so if we replace this use
1624 // in the comparison, the icmp will simplify to false and we have
1625 // accidentally optimized away a null check that is necessary.
1626 // This can lead to a crash when the null extern_weak my_func is called.
1627 //
1628 // To prevent (the most common pattern of) this problem,
1629 // do not replace uses in comparisons with the wrapper.
1630 // We definitely want to replace uses in call instructions.
1631 // Other uses (e.g. store the function address somewhere) might be
1632 // called or compared or both - this case may not be handled correctly.
1633 // We will default to replacing with wrapper in cases we are unsure.
1634 auto IsNotCmpUse = [](Use &U) -> bool {
1635 User *Usr = U.getUser();
1636 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Usr)) {
1637 // This is the most common case for icmp ne null
1638 if (CE->getOpcode() == Instruction::ICmp) {
1639 return false;
1640 }
1641 }
1642 if (Instruction *I = dyn_cast<Instruction>(Usr)) {
1643 if (I->getOpcode() == Instruction::ICmp) {
1644 return false;
1645 }
1646 }
1647 return true;
1648 };
1649 F.replaceUsesWithIf(WrappedFnCst, IsNotCmpUse);
1650
1651 UnwrappedFnMap[WrappedFnCst] = &F;
1652 *FI = NewF;
1653
1654 if (!F.isDeclaration()) {
1655 // This function is probably defining an interposition of an
1656 // uninstrumented function and hence needs to keep the original ABI.
1657 // But any functions it may call need to use the instrumented ABI, so
1658 // we instrument it in a mode which preserves the original ABI.
1659 FnsWithNativeABI.insert(&F);
1660
1661 // This code needs to rebuild the iterators, as they may be invalidated
1662 // by the push_back, taking care that the new range does not include
1663 // any functions added by this code.
1664 size_t N = FI - FnsToInstrument.begin(),
1665 Count = FE - FnsToInstrument.begin();
1666 FnsToInstrument.push_back(&F);
1667 FI = FnsToInstrument.begin() + N;
1668 FE = FnsToInstrument.begin() + Count;
1669 }
1670 // Hopefully, nobody will try to indirectly call a vararg
1671 // function... yet.
1672 } else if (FT->isVarArg()) {
1673 UnwrappedFnMap[&F] = &F;
1674 *FI = nullptr;
1675 }
1676 }
1677
1678 for (Function *F : FnsToInstrument) {
1679 if (!F || F->isDeclaration())
1680 continue;
1681
1682 removeUnreachableBlocks(*F);
1683
1684 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F),
1685 FnsWithForceZeroLabel.count(F), GetTLI(*F));
1686
1687 if (ClReachesFunctionCallbacks) {
1688 // Add callback for arguments reaching this function.
1689 for (auto &FArg : F->args()) {
1690 Instruction *Next = &F->getEntryBlock().front();
1691 Value *FArgShadow = DFSF.getShadow(&FArg);
1692 if (isZeroShadow(FArgShadow))
1693 continue;
1694 if (Instruction *FArgShadowInst = dyn_cast<Instruction>(FArgShadow)) {
1695 Next = FArgShadowInst->getNextNode();
1696 }
1697 if (shouldTrackOrigins()) {
1698 if (Instruction *Origin =
1699 dyn_cast<Instruction>(DFSF.getOrigin(&FArg))) {
1700 // Ensure IRB insertion point is after loads for shadow and origin.
1701 Instruction *OriginNext = Origin->getNextNode();
1702 if (Next->comesBefore(OriginNext)) {
1703 Next = OriginNext;
1704 }
1705 }
1706 }
1707 IRBuilder<> IRB(Next);
1708 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, *Next, &FArg);
1709 }
1710 }
1711
1712 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1713 // Build a copy of the list before iterating over it.
1714 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
1715
1716 for (BasicBlock *BB : BBList) {
1717 Instruction *Inst = &BB->front();
1718 while (true) {
1719 // DFSanVisitor may split the current basic block, changing the current
1720 // instruction's next pointer and moving the next instruction to the
1721 // tail block from which we should continue.
1722 Instruction *Next = Inst->getNextNode();
1723 // DFSanVisitor may delete Inst, so keep track of whether it was a
1724 // terminator.
1725 bool IsTerminator = Inst->isTerminator();
1726 if (!DFSF.SkipInsts.count(Inst))
1727 DFSanVisitor(DFSF).visit(Inst);
1728 if (IsTerminator)
1729 break;
1730 Inst = Next;
1731 }
1732 }
1733
1734 // We will not necessarily be able to compute the shadow for every phi node
1735 // until we have visited every block. Therefore, the code that handles phi
1736 // nodes adds them to the PHIFixups list so that they can be properly
1737 // handled here.
1738 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
1739 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
1740 ++Val) {
1741 P.ShadowPhi->setIncomingValue(
1742 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
1743 if (P.OriginPhi)
1744 P.OriginPhi->setIncomingValue(
1745 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
1746 }
1747 }
1748
1749 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1750 // places (i.e. instructions in basic blocks we haven't even begun visiting
1751 // yet). To make our life easier, do this work in a pass after the main
1752 // instrumentation.
1753 if (ClDebugNonzeroLabels) {
1754 for (Value *V : DFSF.NonZeroChecks) {
1755 Instruction *Pos;
1756 if (Instruction *I = dyn_cast<Instruction>(V))
1757 Pos = I->getNextNode();
1758 else
1759 Pos = &DFSF.F->getEntryBlock().front();
1760 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1761 Pos = Pos->getNextNode();
1762 IRBuilder<> IRB(Pos);
1763 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1764 Value *Ne =
1765 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1766 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1767 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1768 IRBuilder<> ThenIRB(BI);
1769 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1770 }
1771 }
1772 }
1773
1774 return Changed || !FnsToInstrument.empty() ||
1775 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1776 }
1777
getArgTLS(Type * T,unsigned ArgOffset,IRBuilder<> & IRB)1778 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1779 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1780 if (ArgOffset)
1781 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1782 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1783 "_dfsarg");
1784 }
1785
getRetvalTLS(Type * T,IRBuilder<> & IRB)1786 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1787 return IRB.CreatePointerCast(
1788 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1789 }
1790
getRetvalOriginTLS()1791 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
1792
getArgOriginTLS(unsigned ArgNo,IRBuilder<> & IRB)1793 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
1794 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
1795 "_dfsarg_o");
1796 }
1797
getOrigin(Value * V)1798 Value *DFSanFunction::getOrigin(Value *V) {
1799 assert(DFS.shouldTrackOrigins());
1800 if (!isa<Argument>(V) && !isa<Instruction>(V))
1801 return DFS.ZeroOrigin;
1802 Value *&Origin = ValOriginMap[V];
1803 if (!Origin) {
1804 if (Argument *A = dyn_cast<Argument>(V)) {
1805 if (IsNativeABI)
1806 return DFS.ZeroOrigin;
1807 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
1808 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
1809 IRBuilder<> IRB(ArgOriginTLSPos);
1810 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
1811 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
1812 } else {
1813 // Overflow
1814 Origin = DFS.ZeroOrigin;
1815 }
1816 } else {
1817 Origin = DFS.ZeroOrigin;
1818 }
1819 }
1820 return Origin;
1821 }
1822
setOrigin(Instruction * I,Value * Origin)1823 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
1824 if (!DFS.shouldTrackOrigins())
1825 return;
1826 assert(!ValOriginMap.count(I));
1827 assert(Origin->getType() == DFS.OriginTy);
1828 ValOriginMap[I] = Origin;
1829 }
1830
getShadowForTLSArgument(Argument * A)1831 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1832 unsigned ArgOffset = 0;
1833 const DataLayout &DL = F->getParent()->getDataLayout();
1834 for (auto &FArg : F->args()) {
1835 if (!FArg.getType()->isSized()) {
1836 if (A == &FArg)
1837 break;
1838 continue;
1839 }
1840
1841 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1842 if (A != &FArg) {
1843 ArgOffset += alignTo(Size, ShadowTLSAlignment);
1844 if (ArgOffset > ArgTLSSize)
1845 break; // ArgTLS overflows, uses a zero shadow.
1846 continue;
1847 }
1848
1849 if (ArgOffset + Size > ArgTLSSize)
1850 break; // ArgTLS overflows, uses a zero shadow.
1851
1852 Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1853 IRBuilder<> IRB(ArgTLSPos);
1854 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1855 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1856 ShadowTLSAlignment);
1857 }
1858
1859 return DFS.getZeroShadow(A);
1860 }
1861
getShadow(Value * V)1862 Value *DFSanFunction::getShadow(Value *V) {
1863 if (!isa<Argument>(V) && !isa<Instruction>(V))
1864 return DFS.getZeroShadow(V);
1865 if (IsForceZeroLabels)
1866 return DFS.getZeroShadow(V);
1867 Value *&Shadow = ValShadowMap[V];
1868 if (!Shadow) {
1869 if (Argument *A = dyn_cast<Argument>(V)) {
1870 if (IsNativeABI)
1871 return DFS.getZeroShadow(V);
1872 Shadow = getShadowForTLSArgument(A);
1873 NonZeroChecks.push_back(Shadow);
1874 } else {
1875 Shadow = DFS.getZeroShadow(V);
1876 }
1877 }
1878 return Shadow;
1879 }
1880
setShadow(Instruction * I,Value * Shadow)1881 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1882 assert(!ValShadowMap.count(I));
1883 ValShadowMap[I] = Shadow;
1884 }
1885
1886 /// Compute the integer shadow offset that corresponds to a given
1887 /// application address.
1888 ///
1889 /// Offset = (Addr & ~AndMask) ^ XorMask
getShadowOffset(Value * Addr,IRBuilder<> & IRB)1890 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
1891 assert(Addr != RetvalTLS && "Reinstrumenting?");
1892 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1893
1894 uint64_t AndMask = MapParams->AndMask;
1895 if (AndMask)
1896 OffsetLong =
1897 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
1898
1899 uint64_t XorMask = MapParams->XorMask;
1900 if (XorMask)
1901 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
1902 return OffsetLong;
1903 }
1904
1905 std::pair<Value *, Value *>
getShadowOriginAddress(Value * Addr,Align InstAlignment,Instruction * Pos)1906 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
1907 Instruction *Pos) {
1908 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
1909 IRBuilder<> IRB(Pos);
1910 Value *ShadowOffset = getShadowOffset(Addr, IRB);
1911 Value *ShadowLong = ShadowOffset;
1912 uint64_t ShadowBase = MapParams->ShadowBase;
1913 if (ShadowBase != 0) {
1914 ShadowLong =
1915 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
1916 }
1917 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1918 Value *ShadowPtr =
1919 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1920 Value *OriginPtr = nullptr;
1921 if (shouldTrackOrigins()) {
1922 Value *OriginLong = ShadowOffset;
1923 uint64_t OriginBase = MapParams->OriginBase;
1924 if (OriginBase != 0)
1925 OriginLong =
1926 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
1927 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1928 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
1929 // So Mask is unnecessary.
1930 if (Alignment < MinOriginAlignment) {
1931 uint64_t Mask = MinOriginAlignment.value() - 1;
1932 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
1933 }
1934 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
1935 }
1936 return std::make_pair(ShadowPtr, OriginPtr);
1937 }
1938
getShadowAddress(Value * Addr,Instruction * Pos,Value * ShadowOffset)1939 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
1940 Value *ShadowOffset) {
1941 IRBuilder<> IRB(Pos);
1942 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
1943 }
1944
getShadowAddress(Value * Addr,Instruction * Pos)1945 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1946 IRBuilder<> IRB(Pos);
1947 Value *ShadowOffset = getShadowOffset(Addr, IRB);
1948 return getShadowAddress(Addr, Pos, ShadowOffset);
1949 }
1950
combineShadowsThenConvert(Type * T,Value * V1,Value * V2,Instruction * Pos)1951 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1952 Instruction *Pos) {
1953 Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1954 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1955 }
1956
1957 // Generates IR to compute the union of the two given shadows, inserting it
1958 // before Pos. The combined value is with primitive type.
combineShadows(Value * V1,Value * V2,Instruction * Pos)1959 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1960 if (DFS.isZeroShadow(V1))
1961 return collapseToPrimitiveShadow(V2, Pos);
1962 if (DFS.isZeroShadow(V2))
1963 return collapseToPrimitiveShadow(V1, Pos);
1964 if (V1 == V2)
1965 return collapseToPrimitiveShadow(V1, Pos);
1966
1967 auto V1Elems = ShadowElements.find(V1);
1968 auto V2Elems = ShadowElements.find(V2);
1969 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1970 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1971 V2Elems->second.begin(), V2Elems->second.end())) {
1972 return collapseToPrimitiveShadow(V1, Pos);
1973 }
1974 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1975 V1Elems->second.begin(), V1Elems->second.end())) {
1976 return collapseToPrimitiveShadow(V2, Pos);
1977 }
1978 } else if (V1Elems != ShadowElements.end()) {
1979 if (V1Elems->second.count(V2))
1980 return collapseToPrimitiveShadow(V1, Pos);
1981 } else if (V2Elems != ShadowElements.end()) {
1982 if (V2Elems->second.count(V1))
1983 return collapseToPrimitiveShadow(V2, Pos);
1984 }
1985
1986 auto Key = std::make_pair(V1, V2);
1987 if (V1 > V2)
1988 std::swap(Key.first, Key.second);
1989 CachedShadow &CCS = CachedShadows[Key];
1990 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1991 return CCS.Shadow;
1992
1993 // Converts inputs shadows to shadows with primitive types.
1994 Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
1995 Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
1996
1997 IRBuilder<> IRB(Pos);
1998 CCS.Block = Pos->getParent();
1999 CCS.Shadow = IRB.CreateOr(PV1, PV2);
2000
2001 std::set<Value *> UnionElems;
2002 if (V1Elems != ShadowElements.end()) {
2003 UnionElems = V1Elems->second;
2004 } else {
2005 UnionElems.insert(V1);
2006 }
2007 if (V2Elems != ShadowElements.end()) {
2008 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
2009 } else {
2010 UnionElems.insert(V2);
2011 }
2012 ShadowElements[CCS.Shadow] = std::move(UnionElems);
2013
2014 return CCS.Shadow;
2015 }
2016
2017 // A convenience function which folds the shadows of each of the operands
2018 // of the provided instruction Inst, inserting the IR before Inst. Returns
2019 // the computed union Value.
combineOperandShadows(Instruction * Inst)2020 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
2021 if (Inst->getNumOperands() == 0)
2022 return DFS.getZeroShadow(Inst);
2023
2024 Value *Shadow = getShadow(Inst->getOperand(0));
2025 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
2026 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
2027
2028 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
2029 }
2030
visitInstOperands(Instruction & I)2031 void DFSanVisitor::visitInstOperands(Instruction &I) {
2032 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
2033 DFSF.setShadow(&I, CombinedShadow);
2034 visitInstOperandOrigins(I);
2035 }
2036
combineOrigins(const std::vector<Value * > & Shadows,const std::vector<Value * > & Origins,Instruction * Pos,ConstantInt * Zero)2037 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
2038 const std::vector<Value *> &Origins,
2039 Instruction *Pos, ConstantInt *Zero) {
2040 assert(Shadows.size() == Origins.size());
2041 size_t Size = Origins.size();
2042 if (Size == 0)
2043 return DFS.ZeroOrigin;
2044 Value *Origin = nullptr;
2045 if (!Zero)
2046 Zero = DFS.ZeroPrimitiveShadow;
2047 for (size_t I = 0; I != Size; ++I) {
2048 Value *OpOrigin = Origins[I];
2049 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
2050 if (ConstOpOrigin && ConstOpOrigin->isNullValue())
2051 continue;
2052 if (!Origin) {
2053 Origin = OpOrigin;
2054 continue;
2055 }
2056 Value *OpShadow = Shadows[I];
2057 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
2058 IRBuilder<> IRB(Pos);
2059 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
2060 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2061 }
2062 return Origin ? Origin : DFS.ZeroOrigin;
2063 }
2064
combineOperandOrigins(Instruction * Inst)2065 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
2066 size_t Size = Inst->getNumOperands();
2067 std::vector<Value *> Shadows(Size);
2068 std::vector<Value *> Origins(Size);
2069 for (unsigned I = 0; I != Size; ++I) {
2070 Shadows[I] = getShadow(Inst->getOperand(I));
2071 Origins[I] = getOrigin(Inst->getOperand(I));
2072 }
2073 return combineOrigins(Shadows, Origins, Inst);
2074 }
2075
visitInstOperandOrigins(Instruction & I)2076 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
2077 if (!DFSF.DFS.shouldTrackOrigins())
2078 return;
2079 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
2080 DFSF.setOrigin(&I, CombinedOrigin);
2081 }
2082
getShadowAlign(Align InstAlignment)2083 Align DFSanFunction::getShadowAlign(Align InstAlignment) {
2084 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
2085 return Align(Alignment.value() * DFS.ShadowWidthBytes);
2086 }
2087
getOriginAlign(Align InstAlignment)2088 Align DFSanFunction::getOriginAlign(Align InstAlignment) {
2089 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2090 return Align(std::max(MinOriginAlignment, Alignment));
2091 }
2092
isLookupTableConstant(Value * P)2093 bool DFSanFunction::isLookupTableConstant(Value *P) {
2094 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P->stripPointerCasts()))
2095 if (GV->isConstant() && GV->hasName())
2096 return DFS.CombineTaintLookupTableNames.count(GV->getName());
2097
2098 return false;
2099 }
2100
useCallbackLoadLabelAndOrigin(uint64_t Size,Align InstAlignment)2101 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
2102 Align InstAlignment) {
2103 // When enabling tracking load instructions, we always use
2104 // __dfsan_load_label_and_origin to reduce code size.
2105 if (ClTrackOrigins == 2)
2106 return true;
2107
2108 assert(Size != 0);
2109 // * if Size == 1, it is sufficient to load its origin aligned at 4.
2110 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
2111 // load its origin aligned at 4. If not, although origins may be lost, it
2112 // should not happen very often.
2113 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
2114 // Size % 4 == 0, it is more efficient to load origins without callbacks.
2115 // * Otherwise we use __dfsan_load_label_and_origin.
2116 // This should ensure that common cases run efficiently.
2117 if (Size <= 2)
2118 return false;
2119
2120 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2121 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
2122 }
2123
loadNextOrigin(Instruction * Pos,Align OriginAlign,Value ** OriginAddr)2124 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
2125 Value **OriginAddr) {
2126 IRBuilder<> IRB(Pos);
2127 *OriginAddr =
2128 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
2129 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
2130 }
2131
loadShadowFast(Value * ShadowAddr,Value * OriginAddr,uint64_t Size,Align ShadowAlign,Align OriginAlign,Value * FirstOrigin,Instruction * Pos)2132 std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
2133 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
2134 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
2135 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2136 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
2137
2138 assert(Size >= 4 && "Not large enough load size for fast path!");
2139
2140 // Used for origin tracking.
2141 std::vector<Value *> Shadows;
2142 std::vector<Value *> Origins;
2143
2144 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
2145 // but this function is only used in a subset of cases that make it possible
2146 // to optimize the instrumentation.
2147 //
2148 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
2149 // per byte) is either:
2150 // - a multiple of 8 (common)
2151 // - equal to 4 (only for load32)
2152 //
2153 // For the second case, we can fit the wide shadow in a 32-bit integer. In all
2154 // other cases, we use a 64-bit integer to hold the wide shadow.
2155 Type *WideShadowTy =
2156 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
2157
2158 IRBuilder<> IRB(Pos);
2159 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
2160 Value *CombinedWideShadow =
2161 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2162
2163 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
2164 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
2165
2166 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
2167 if (BytesPerWideShadow > 4) {
2168 assert(BytesPerWideShadow == 8);
2169 // The wide shadow relates to two origin pointers: one for the first four
2170 // application bytes, and one for the latest four. We use a left shift to
2171 // get just the shadow bytes that correspond to the first origin pointer,
2172 // and then the entire shadow for the second origin pointer (which will be
2173 // chosen by combineOrigins() iff the least-significant half of the wide
2174 // shadow was empty but the other half was not).
2175 Value *WideShadowLo = IRB.CreateShl(
2176 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
2177 Shadows.push_back(WideShadow);
2178 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
2179
2180 Shadows.push_back(WideShadowLo);
2181 Origins.push_back(Origin);
2182 } else {
2183 Shadows.push_back(WideShadow);
2184 Origins.push_back(Origin);
2185 }
2186 };
2187
2188 if (ShouldTrackOrigins)
2189 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
2190
2191 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
2192 // then OR individual shadows within the combined WideShadow by binary ORing.
2193 // This is fewer instructions than ORing shadows individually, since it
2194 // needs logN shift/or instructions (N being the bytes of the combined wide
2195 // shadow).
2196 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
2197 ByteOfs += BytesPerWideShadow) {
2198 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
2199 ConstantInt::get(DFS.IntptrTy, 1));
2200 Value *NextWideShadow =
2201 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2202 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
2203 if (ShouldTrackOrigins) {
2204 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
2205 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
2206 }
2207 }
2208 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
2209 Width >>= 1) {
2210 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
2211 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
2212 }
2213 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
2214 ShouldTrackOrigins
2215 ? combineOrigins(Shadows, Origins, Pos,
2216 ConstantInt::getSigned(IRB.getInt64Ty(), 0))
2217 : DFS.ZeroOrigin};
2218 }
2219
loadShadowOriginSansLoadTracking(Value * Addr,uint64_t Size,Align InstAlignment,Instruction * Pos)2220 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
2221 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
2222 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2223
2224 // Non-escaped loads.
2225 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2226 const auto SI = AllocaShadowMap.find(AI);
2227 if (SI != AllocaShadowMap.end()) {
2228 IRBuilder<> IRB(Pos);
2229 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
2230 const auto OI = AllocaOriginMap.find(AI);
2231 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
2232 return {ShadowLI, ShouldTrackOrigins
2233 ? IRB.CreateLoad(DFS.OriginTy, OI->second)
2234 : nullptr};
2235 }
2236 }
2237
2238 // Load from constant addresses.
2239 SmallVector<const Value *, 2> Objs;
2240 getUnderlyingObjects(Addr, Objs);
2241 bool AllConstants = true;
2242 for (const Value *Obj : Objs) {
2243 if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
2244 continue;
2245 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
2246 continue;
2247
2248 AllConstants = false;
2249 break;
2250 }
2251 if (AllConstants)
2252 return {DFS.ZeroPrimitiveShadow,
2253 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2254
2255 if (Size == 0)
2256 return {DFS.ZeroPrimitiveShadow,
2257 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2258
2259 // Use callback to load if this is not an optimizable case for origin
2260 // tracking.
2261 if (ShouldTrackOrigins &&
2262 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
2263 IRBuilder<> IRB(Pos);
2264 CallInst *Call =
2265 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
2266 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2267 ConstantInt::get(DFS.IntptrTy, Size)});
2268 Call->addRetAttr(Attribute::ZExt);
2269 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
2270 DFS.PrimitiveShadowTy),
2271 IRB.CreateTrunc(Call, DFS.OriginTy)};
2272 }
2273
2274 // Other cases that support loading shadows or origins in a fast way.
2275 Value *ShadowAddr, *OriginAddr;
2276 std::tie(ShadowAddr, OriginAddr) =
2277 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2278
2279 const Align ShadowAlign = getShadowAlign(InstAlignment);
2280 const Align OriginAlign = getOriginAlign(InstAlignment);
2281 Value *Origin = nullptr;
2282 if (ShouldTrackOrigins) {
2283 IRBuilder<> IRB(Pos);
2284 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
2285 }
2286
2287 // When the byte size is small enough, we can load the shadow directly with
2288 // just a few instructions.
2289 switch (Size) {
2290 case 1: {
2291 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
2292 LI->setAlignment(ShadowAlign);
2293 return {LI, Origin};
2294 }
2295 case 2: {
2296 IRBuilder<> IRB(Pos);
2297 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
2298 ConstantInt::get(DFS.IntptrTy, 1));
2299 Value *Load =
2300 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
2301 Value *Load1 =
2302 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
2303 return {combineShadows(Load, Load1, Pos), Origin};
2304 }
2305 }
2306 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
2307
2308 if (HasSizeForFastPath)
2309 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
2310 OriginAlign, Origin, Pos);
2311
2312 IRBuilder<> IRB(Pos);
2313 CallInst *FallbackCall = IRB.CreateCall(
2314 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2315 FallbackCall->addRetAttr(Attribute::ZExt);
2316 return {FallbackCall, Origin};
2317 }
2318
loadShadowOrigin(Value * Addr,uint64_t Size,Align InstAlignment,Instruction * Pos)2319 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
2320 uint64_t Size,
2321 Align InstAlignment,
2322 Instruction *Pos) {
2323 Value *PrimitiveShadow, *Origin;
2324 std::tie(PrimitiveShadow, Origin) =
2325 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
2326 if (DFS.shouldTrackOrigins()) {
2327 if (ClTrackOrigins == 2) {
2328 IRBuilder<> IRB(Pos);
2329 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
2330 if (!ConstantShadow || !ConstantShadow->isZeroValue())
2331 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
2332 }
2333 }
2334 return {PrimitiveShadow, Origin};
2335 }
2336
addAcquireOrdering(AtomicOrdering AO)2337 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
2338 switch (AO) {
2339 case AtomicOrdering::NotAtomic:
2340 return AtomicOrdering::NotAtomic;
2341 case AtomicOrdering::Unordered:
2342 case AtomicOrdering::Monotonic:
2343 case AtomicOrdering::Acquire:
2344 return AtomicOrdering::Acquire;
2345 case AtomicOrdering::Release:
2346 case AtomicOrdering::AcquireRelease:
2347 return AtomicOrdering::AcquireRelease;
2348 case AtomicOrdering::SequentiallyConsistent:
2349 return AtomicOrdering::SequentiallyConsistent;
2350 }
2351 llvm_unreachable("Unknown ordering");
2352 }
2353
StripPointerGEPsAndCasts(Value * V)2354 Value *StripPointerGEPsAndCasts(Value *V) {
2355 if (!V->getType()->isPointerTy())
2356 return V;
2357
2358 // DFSan pass should be running on valid IR, but we'll
2359 // keep a seen set to ensure there are no issues.
2360 SmallPtrSet<const Value *, 4> Visited;
2361 Visited.insert(V);
2362 do {
2363 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
2364 V = GEP->getPointerOperand();
2365 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
2366 V = cast<Operator>(V)->getOperand(0);
2367 if (!V->getType()->isPointerTy())
2368 return V;
2369 } else if (isa<GlobalAlias>(V)) {
2370 V = cast<GlobalAlias>(V)->getAliasee();
2371 }
2372 } while (Visited.insert(V).second);
2373
2374 return V;
2375 }
2376
visitLoadInst(LoadInst & LI)2377 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
2378 auto &DL = LI.getModule()->getDataLayout();
2379 uint64_t Size = DL.getTypeStoreSize(LI.getType());
2380 if (Size == 0) {
2381 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
2382 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
2383 return;
2384 }
2385
2386 // When an application load is atomic, increase atomic ordering between
2387 // atomic application loads and stores to ensure happen-before order; load
2388 // shadow data after application data; store zero shadow data before
2389 // application data. This ensure shadow loads return either labels of the
2390 // initial application data or zeros.
2391 if (LI.isAtomic())
2392 LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
2393
2394 Instruction *AfterLi = LI.getNextNode();
2395 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
2396 std::vector<Value *> Shadows;
2397 std::vector<Value *> Origins;
2398 Value *PrimitiveShadow, *Origin;
2399 std::tie(PrimitiveShadow, Origin) =
2400 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
2401 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2402 if (ShouldTrackOrigins) {
2403 Shadows.push_back(PrimitiveShadow);
2404 Origins.push_back(Origin);
2405 }
2406 if (ClCombinePointerLabelsOnLoad ||
2407 DFSF.isLookupTableConstant(
2408 StripPointerGEPsAndCasts(LI.getPointerOperand()))) {
2409 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
2410 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
2411 if (ShouldTrackOrigins) {
2412 Shadows.push_back(PtrShadow);
2413 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
2414 }
2415 }
2416 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
2417 DFSF.NonZeroChecks.push_back(PrimitiveShadow);
2418
2419 Value *Shadow =
2420 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
2421 DFSF.setShadow(&LI, Shadow);
2422
2423 if (ShouldTrackOrigins) {
2424 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
2425 }
2426
2427 if (ClEventCallbacks) {
2428 IRBuilder<> IRB(Pos);
2429 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2430 CallInst *CI =
2431 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
2432 CI->addParamAttr(0, Attribute::ZExt);
2433 }
2434
2435 IRBuilder<> IRB(AfterLi);
2436 DFSF.addReachesFunctionCallbacksIfEnabled(IRB, LI, &LI);
2437 }
2438
updateOriginIfTainted(Value * Shadow,Value * Origin,IRBuilder<> & IRB)2439 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
2440 IRBuilder<> &IRB) {
2441 assert(DFS.shouldTrackOrigins());
2442 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
2443 }
2444
updateOrigin(Value * V,IRBuilder<> & IRB)2445 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
2446 if (!DFS.shouldTrackOrigins())
2447 return V;
2448 return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
2449 }
2450
originToIntptr(IRBuilder<> & IRB,Value * Origin)2451 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
2452 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2453 const DataLayout &DL = F->getParent()->getDataLayout();
2454 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2455 if (IntptrSize == OriginSize)
2456 return Origin;
2457 assert(IntptrSize == OriginSize * 2);
2458 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
2459 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
2460 }
2461
paintOrigin(IRBuilder<> & IRB,Value * Origin,Value * StoreOriginAddr,uint64_t StoreOriginSize,Align Alignment)2462 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
2463 Value *StoreOriginAddr,
2464 uint64_t StoreOriginSize, Align Alignment) {
2465 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2466 const DataLayout &DL = F->getParent()->getDataLayout();
2467 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
2468 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2469 assert(IntptrAlignment >= MinOriginAlignment);
2470 assert(IntptrSize >= OriginSize);
2471
2472 unsigned Ofs = 0;
2473 Align CurrentAlignment = Alignment;
2474 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
2475 Value *IntptrOrigin = originToIntptr(IRB, Origin);
2476 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
2477 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
2478 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
2479 Value *Ptr =
2480 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
2481 : IntptrStoreOriginPtr;
2482 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
2483 Ofs += IntptrSize / OriginSize;
2484 CurrentAlignment = IntptrAlignment;
2485 }
2486 }
2487
2488 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
2489 ++I) {
2490 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
2491 : StoreOriginAddr;
2492 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
2493 CurrentAlignment = MinOriginAlignment;
2494 }
2495 }
2496
convertToBool(Value * V,IRBuilder<> & IRB,const Twine & Name)2497 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
2498 const Twine &Name) {
2499 Type *VTy = V->getType();
2500 assert(VTy->isIntegerTy());
2501 if (VTy->getIntegerBitWidth() == 1)
2502 // Just converting a bool to a bool, so do nothing.
2503 return V;
2504 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
2505 }
2506
storeOrigin(Instruction * Pos,Value * Addr,uint64_t Size,Value * Shadow,Value * Origin,Value * StoreOriginAddr,Align InstAlignment)2507 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
2508 Value *Shadow, Value *Origin,
2509 Value *StoreOriginAddr, Align InstAlignment) {
2510 // Do not write origins for zero shadows because we do not trace origins for
2511 // untainted sinks.
2512 const Align OriginAlignment = getOriginAlign(InstAlignment);
2513 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
2514 IRBuilder<> IRB(Pos);
2515 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
2516 if (!ConstantShadow->isZeroValue())
2517 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
2518 OriginAlignment);
2519 return;
2520 }
2521
2522 if (shouldInstrumentWithCall()) {
2523 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
2524 {CollapsedShadow,
2525 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2526 ConstantInt::get(DFS.IntptrTy, Size), Origin});
2527 } else {
2528 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
2529 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
2530 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT);
2531 IRBuilder<> IRBNew(CheckTerm);
2532 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
2533 OriginAlignment);
2534 ++NumOriginStores;
2535 }
2536 }
2537
storeZeroPrimitiveShadow(Value * Addr,uint64_t Size,Align ShadowAlign,Instruction * Pos)2538 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
2539 Align ShadowAlign,
2540 Instruction *Pos) {
2541 IRBuilder<> IRB(Pos);
2542 IntegerType *ShadowTy =
2543 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
2544 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
2545 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
2546 Value *ExtShadowAddr =
2547 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
2548 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
2549 // Do not write origins for 0 shadows because we do not trace origins for
2550 // untainted sinks.
2551 }
2552
storePrimitiveShadowOrigin(Value * Addr,uint64_t Size,Align InstAlignment,Value * PrimitiveShadow,Value * Origin,Instruction * Pos)2553 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
2554 Align InstAlignment,
2555 Value *PrimitiveShadow,
2556 Value *Origin,
2557 Instruction *Pos) {
2558 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
2559
2560 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2561 const auto SI = AllocaShadowMap.find(AI);
2562 if (SI != AllocaShadowMap.end()) {
2563 IRBuilder<> IRB(Pos);
2564 IRB.CreateStore(PrimitiveShadow, SI->second);
2565
2566 // Do not write origins for 0 shadows because we do not trace origins for
2567 // untainted sinks.
2568 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
2569 const auto OI = AllocaOriginMap.find(AI);
2570 assert(OI != AllocaOriginMap.end() && Origin);
2571 IRB.CreateStore(Origin, OI->second);
2572 }
2573 return;
2574 }
2575 }
2576
2577 const Align ShadowAlign = getShadowAlign(InstAlignment);
2578 if (DFS.isZeroShadow(PrimitiveShadow)) {
2579 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
2580 return;
2581 }
2582
2583 IRBuilder<> IRB(Pos);
2584 Value *ShadowAddr, *OriginAddr;
2585 std::tie(ShadowAddr, OriginAddr) =
2586 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2587
2588 const unsigned ShadowVecSize = 8;
2589 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
2590 "Shadow vector is too large!");
2591
2592 uint64_t Offset = 0;
2593 uint64_t LeftSize = Size;
2594 if (LeftSize >= ShadowVecSize) {
2595 auto *ShadowVecTy =
2596 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
2597 Value *ShadowVec = PoisonValue::get(ShadowVecTy);
2598 for (unsigned I = 0; I != ShadowVecSize; ++I) {
2599 ShadowVec = IRB.CreateInsertElement(
2600 ShadowVec, PrimitiveShadow,
2601 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
2602 }
2603 Value *ShadowVecAddr =
2604 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
2605 do {
2606 Value *CurShadowVecAddr =
2607 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
2608 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
2609 LeftSize -= ShadowVecSize;
2610 ++Offset;
2611 } while (LeftSize >= ShadowVecSize);
2612 Offset *= ShadowVecSize;
2613 }
2614 while (LeftSize > 0) {
2615 Value *CurShadowAddr =
2616 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
2617 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
2618 --LeftSize;
2619 ++Offset;
2620 }
2621
2622 if (ShouldTrackOrigins) {
2623 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
2624 InstAlignment);
2625 }
2626 }
2627
addReleaseOrdering(AtomicOrdering AO)2628 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
2629 switch (AO) {
2630 case AtomicOrdering::NotAtomic:
2631 return AtomicOrdering::NotAtomic;
2632 case AtomicOrdering::Unordered:
2633 case AtomicOrdering::Monotonic:
2634 case AtomicOrdering::Release:
2635 return AtomicOrdering::Release;
2636 case AtomicOrdering::Acquire:
2637 case AtomicOrdering::AcquireRelease:
2638 return AtomicOrdering::AcquireRelease;
2639 case AtomicOrdering::SequentiallyConsistent:
2640 return AtomicOrdering::SequentiallyConsistent;
2641 }
2642 llvm_unreachable("Unknown ordering");
2643 }
2644
visitStoreInst(StoreInst & SI)2645 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
2646 auto &DL = SI.getModule()->getDataLayout();
2647 Value *Val = SI.getValueOperand();
2648 uint64_t Size = DL.getTypeStoreSize(Val->getType());
2649 if (Size == 0)
2650 return;
2651
2652 // When an application store is atomic, increase atomic ordering between
2653 // atomic application loads and stores to ensure happen-before order; load
2654 // shadow data after application data; store zero shadow data before
2655 // application data. This ensure shadow loads return either labels of the
2656 // initial application data or zeros.
2657 if (SI.isAtomic())
2658 SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
2659
2660 const bool ShouldTrackOrigins =
2661 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
2662 std::vector<Value *> Shadows;
2663 std::vector<Value *> Origins;
2664
2665 Value *Shadow =
2666 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
2667
2668 if (ShouldTrackOrigins) {
2669 Shadows.push_back(Shadow);
2670 Origins.push_back(DFSF.getOrigin(Val));
2671 }
2672
2673 Value *PrimitiveShadow;
2674 if (ClCombinePointerLabelsOnStore) {
2675 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
2676 if (ShouldTrackOrigins) {
2677 Shadows.push_back(PtrShadow);
2678 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
2679 }
2680 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
2681 } else {
2682 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
2683 }
2684 Value *Origin = nullptr;
2685 if (ShouldTrackOrigins)
2686 Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
2687 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
2688 PrimitiveShadow, Origin, &SI);
2689 if (ClEventCallbacks) {
2690 IRBuilder<> IRB(&SI);
2691 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2692 CallInst *CI =
2693 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
2694 CI->addParamAttr(0, Attribute::ZExt);
2695 }
2696 }
2697
visitCASOrRMW(Align InstAlignment,Instruction & I)2698 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
2699 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2700
2701 Value *Val = I.getOperand(1);
2702 const auto &DL = I.getModule()->getDataLayout();
2703 uint64_t Size = DL.getTypeStoreSize(Val->getType());
2704 if (Size == 0)
2705 return;
2706
2707 // Conservatively set data at stored addresses and return with zero shadow to
2708 // prevent shadow data races.
2709 IRBuilder<> IRB(&I);
2710 Value *Addr = I.getOperand(0);
2711 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
2712 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
2713 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
2714 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2715 }
2716
visitAtomicRMWInst(AtomicRMWInst & I)2717 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
2718 visitCASOrRMW(I.getAlign(), I);
2719 // TODO: The ordering change follows MSan. It is possible not to change
2720 // ordering because we always set and use 0 shadows.
2721 I.setOrdering(addReleaseOrdering(I.getOrdering()));
2722 }
2723
visitAtomicCmpXchgInst(AtomicCmpXchgInst & I)2724 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2725 visitCASOrRMW(I.getAlign(), I);
2726 // TODO: The ordering change follows MSan. It is possible not to change
2727 // ordering because we always set and use 0 shadows.
2728 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2729 }
2730
visitUnaryOperator(UnaryOperator & UO)2731 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
2732 visitInstOperands(UO);
2733 }
2734
visitBinaryOperator(BinaryOperator & BO)2735 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
2736 visitInstOperands(BO);
2737 }
2738
visitBitCastInst(BitCastInst & BCI)2739 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
2740 // Special case: if this is the bitcast (there is exactly 1 allowed) between
2741 // a musttail call and a ret, don't instrument. New instructions are not
2742 // allowed after a musttail call.
2743 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
2744 if (CI->isMustTailCall())
2745 return;
2746 visitInstOperands(BCI);
2747 }
2748
visitCastInst(CastInst & CI)2749 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
2750
visitCmpInst(CmpInst & CI)2751 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
2752 visitInstOperands(CI);
2753 if (ClEventCallbacks) {
2754 IRBuilder<> IRB(&CI);
2755 Value *CombinedShadow = DFSF.getShadow(&CI);
2756 CallInst *CallI =
2757 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
2758 CallI->addParamAttr(0, Attribute::ZExt);
2759 }
2760 }
2761
visitLandingPadInst(LandingPadInst & LPI)2762 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
2763 // We do not need to track data through LandingPadInst.
2764 //
2765 // For the C++ exceptions, if a value is thrown, this value will be stored
2766 // in a memory location provided by __cxa_allocate_exception(...) (on the
2767 // throw side) or __cxa_begin_catch(...) (on the catch side).
2768 // This memory will have a shadow, so with the loads and stores we will be
2769 // able to propagate labels on data thrown through exceptions, without any
2770 // special handling of the LandingPadInst.
2771 //
2772 // The second element in the pair result of the LandingPadInst is a
2773 // register value, but it is for a type ID and should never be tainted.
2774 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
2775 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
2776 }
2777
visitGetElementPtrInst(GetElementPtrInst & GEPI)2778 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2779 if (ClCombineOffsetLabelsOnGEP ||
2780 DFSF.isLookupTableConstant(
2781 StripPointerGEPsAndCasts(GEPI.getPointerOperand()))) {
2782 visitInstOperands(GEPI);
2783 return;
2784 }
2785
2786 // Only propagate shadow/origin of base pointer value but ignore those of
2787 // offset operands.
2788 Value *BasePointer = GEPI.getPointerOperand();
2789 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
2790 if (DFSF.DFS.shouldTrackOrigins())
2791 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
2792 }
2793
visitExtractElementInst(ExtractElementInst & I)2794 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
2795 visitInstOperands(I);
2796 }
2797
visitInsertElementInst(InsertElementInst & I)2798 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
2799 visitInstOperands(I);
2800 }
2801
visitShuffleVectorInst(ShuffleVectorInst & I)2802 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
2803 visitInstOperands(I);
2804 }
2805
visitExtractValueInst(ExtractValueInst & I)2806 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
2807 IRBuilder<> IRB(&I);
2808 Value *Agg = I.getAggregateOperand();
2809 Value *AggShadow = DFSF.getShadow(Agg);
2810 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2811 DFSF.setShadow(&I, ResShadow);
2812 visitInstOperandOrigins(I);
2813 }
2814
visitInsertValueInst(InsertValueInst & I)2815 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
2816 IRBuilder<> IRB(&I);
2817 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
2818 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
2819 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2820 DFSF.setShadow(&I, Res);
2821 visitInstOperandOrigins(I);
2822 }
2823
visitAllocaInst(AllocaInst & I)2824 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
2825 bool AllLoadsStores = true;
2826 for (User *U : I.users()) {
2827 if (isa<LoadInst>(U))
2828 continue;
2829
2830 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
2831 if (SI->getPointerOperand() == &I)
2832 continue;
2833 }
2834
2835 AllLoadsStores = false;
2836 break;
2837 }
2838 if (AllLoadsStores) {
2839 IRBuilder<> IRB(&I);
2840 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
2841 if (DFSF.DFS.shouldTrackOrigins()) {
2842 DFSF.AllocaOriginMap[&I] =
2843 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
2844 }
2845 }
2846 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
2847 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2848 }
2849
visitSelectInst(SelectInst & I)2850 void DFSanVisitor::visitSelectInst(SelectInst &I) {
2851 Value *CondShadow = DFSF.getShadow(I.getCondition());
2852 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
2853 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
2854 Value *ShadowSel = nullptr;
2855 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2856 std::vector<Value *> Shadows;
2857 std::vector<Value *> Origins;
2858 Value *TrueOrigin =
2859 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
2860 Value *FalseOrigin =
2861 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
2862
2863 DFSF.addConditionalCallbacksIfEnabled(I, I.getCondition());
2864
2865 if (isa<VectorType>(I.getCondition()->getType())) {
2866 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
2867 FalseShadow, &I);
2868 if (ShouldTrackOrigins) {
2869 Shadows.push_back(TrueShadow);
2870 Shadows.push_back(FalseShadow);
2871 Origins.push_back(TrueOrigin);
2872 Origins.push_back(FalseOrigin);
2873 }
2874 } else {
2875 if (TrueShadow == FalseShadow) {
2876 ShadowSel = TrueShadow;
2877 if (ShouldTrackOrigins) {
2878 Shadows.push_back(TrueShadow);
2879 Origins.push_back(TrueOrigin);
2880 }
2881 } else {
2882 ShadowSel =
2883 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
2884 if (ShouldTrackOrigins) {
2885 Shadows.push_back(ShadowSel);
2886 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
2887 FalseOrigin, "", &I));
2888 }
2889 }
2890 }
2891 DFSF.setShadow(&I, ClTrackSelectControlFlow
2892 ? DFSF.combineShadowsThenConvert(
2893 I.getType(), CondShadow, ShadowSel, &I)
2894 : ShadowSel);
2895 if (ShouldTrackOrigins) {
2896 if (ClTrackSelectControlFlow) {
2897 Shadows.push_back(CondShadow);
2898 Origins.push_back(DFSF.getOrigin(I.getCondition()));
2899 }
2900 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
2901 }
2902 }
2903
visitMemSetInst(MemSetInst & I)2904 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
2905 IRBuilder<> IRB(&I);
2906 Value *ValShadow = DFSF.getShadow(I.getValue());
2907 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
2908 ? DFSF.getOrigin(I.getValue())
2909 : DFSF.DFS.ZeroOrigin;
2910 IRB.CreateCall(
2911 DFSF.DFS.DFSanSetLabelFn,
2912 {ValShadow, ValOrigin,
2913 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
2914 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2915 }
2916
visitMemTransferInst(MemTransferInst & I)2917 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
2918 IRBuilder<> IRB(&I);
2919
2920 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
2921 // need to move origins before moving shadows.
2922 if (DFSF.DFS.shouldTrackOrigins()) {
2923 IRB.CreateCall(
2924 DFSF.DFS.DFSanMemOriginTransferFn,
2925 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2926 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2927 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
2928 }
2929
2930 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
2931 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
2932 Value *LenShadow =
2933 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
2934 DFSF.DFS.ShadowWidthBytes));
2935 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
2936 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
2937 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
2938 auto *MTI = cast<MemTransferInst>(
2939 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2940 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
2941 MTI->setDestAlignment(DFSF.getShadowAlign(I.getDestAlign().valueOrOne()));
2942 MTI->setSourceAlignment(DFSF.getShadowAlign(I.getSourceAlign().valueOrOne()));
2943 if (ClEventCallbacks) {
2944 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
2945 {RawDestShadow,
2946 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2947 }
2948 }
2949
visitBranchInst(BranchInst & BR)2950 void DFSanVisitor::visitBranchInst(BranchInst &BR) {
2951 if (!BR.isConditional())
2952 return;
2953
2954 DFSF.addConditionalCallbacksIfEnabled(BR, BR.getCondition());
2955 }
2956
visitSwitchInst(SwitchInst & SW)2957 void DFSanVisitor::visitSwitchInst(SwitchInst &SW) {
2958 DFSF.addConditionalCallbacksIfEnabled(SW, SW.getCondition());
2959 }
2960
isAMustTailRetVal(Value * RetVal)2961 static bool isAMustTailRetVal(Value *RetVal) {
2962 // Tail call may have a bitcast between return.
2963 if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2964 RetVal = I->getOperand(0);
2965 }
2966 if (auto *I = dyn_cast<CallInst>(RetVal)) {
2967 return I->isMustTailCall();
2968 }
2969 return false;
2970 }
2971
visitReturnInst(ReturnInst & RI)2972 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
2973 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
2974 // Don't emit the instrumentation for musttail call returns.
2975 if (isAMustTailRetVal(RI.getReturnValue()))
2976 return;
2977
2978 Value *S = DFSF.getShadow(RI.getReturnValue());
2979 IRBuilder<> IRB(&RI);
2980 Type *RT = DFSF.F->getFunctionType()->getReturnType();
2981 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
2982 if (Size <= RetvalTLSSize) {
2983 // If the size overflows, stores nothing. At callsite, oversized return
2984 // shadows are set to zero.
2985 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment);
2986 }
2987 if (DFSF.DFS.shouldTrackOrigins()) {
2988 Value *O = DFSF.getOrigin(RI.getReturnValue());
2989 IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
2990 }
2991 }
2992 }
2993
addShadowArguments(Function & F,CallBase & CB,std::vector<Value * > & Args,IRBuilder<> & IRB)2994 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
2995 std::vector<Value *> &Args,
2996 IRBuilder<> &IRB) {
2997 FunctionType *FT = F.getFunctionType();
2998
2999 auto *I = CB.arg_begin();
3000
3001 // Adds non-variable argument shadows.
3002 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3003 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
3004
3005 // Adds variable argument shadows.
3006 if (FT->isVarArg()) {
3007 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
3008 CB.arg_size() - FT->getNumParams());
3009 auto *LabelVAAlloca =
3010 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
3011 "labelva", &DFSF.F->getEntryBlock().front());
3012
3013 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3014 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
3015 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
3016 LabelVAPtr);
3017 }
3018
3019 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
3020 }
3021
3022 // Adds the return value shadow.
3023 if (!FT->getReturnType()->isVoidTy()) {
3024 if (!DFSF.LabelReturnAlloca) {
3025 DFSF.LabelReturnAlloca = new AllocaInst(
3026 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
3027 "labelreturn", &DFSF.F->getEntryBlock().front());
3028 }
3029 Args.push_back(DFSF.LabelReturnAlloca);
3030 }
3031 }
3032
addOriginArguments(Function & F,CallBase & CB,std::vector<Value * > & Args,IRBuilder<> & IRB)3033 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
3034 std::vector<Value *> &Args,
3035 IRBuilder<> &IRB) {
3036 FunctionType *FT = F.getFunctionType();
3037
3038 auto *I = CB.arg_begin();
3039
3040 // Add non-variable argument origins.
3041 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3042 Args.push_back(DFSF.getOrigin(*I));
3043
3044 // Add variable argument origins.
3045 if (FT->isVarArg()) {
3046 auto *OriginVATy =
3047 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
3048 auto *OriginVAAlloca =
3049 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
3050 "originva", &DFSF.F->getEntryBlock().front());
3051
3052 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3053 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
3054 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
3055 }
3056
3057 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
3058 }
3059
3060 // Add the return value origin.
3061 if (!FT->getReturnType()->isVoidTy()) {
3062 if (!DFSF.OriginReturnAlloca) {
3063 DFSF.OriginReturnAlloca = new AllocaInst(
3064 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
3065 "originreturn", &DFSF.F->getEntryBlock().front());
3066 }
3067 Args.push_back(DFSF.OriginReturnAlloca);
3068 }
3069 }
3070
visitWrappedCallBase(Function & F,CallBase & CB)3071 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
3072 IRBuilder<> IRB(&CB);
3073 switch (DFSF.DFS.getWrapperKind(&F)) {
3074 case DataFlowSanitizer::WK_Warning:
3075 CB.setCalledFunction(&F);
3076 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
3077 IRB.CreateGlobalStringPtr(F.getName()));
3078 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3079 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3080 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3081 return true;
3082 case DataFlowSanitizer::WK_Discard:
3083 CB.setCalledFunction(&F);
3084 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3085 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3086 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3087 return true;
3088 case DataFlowSanitizer::WK_Functional:
3089 CB.setCalledFunction(&F);
3090 DFSF.DFS.buildExternWeakCheckIfNeeded(IRB, &F);
3091 visitInstOperands(CB);
3092 return true;
3093 case DataFlowSanitizer::WK_Custom:
3094 // Don't try to handle invokes of custom functions, it's too complicated.
3095 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
3096 // wrapper.
3097 CallInst *CI = dyn_cast<CallInst>(&CB);
3098 if (!CI)
3099 return false;
3100
3101 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3102 FunctionType *FT = F.getFunctionType();
3103 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
3104 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
3105 CustomFName += F.getName();
3106 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
3107 CustomFName, CustomFn.TransformedType);
3108 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
3109 CustomFn->copyAttributesFrom(&F);
3110
3111 // Custom functions returning non-void will write to the return label.
3112 if (!FT->getReturnType()->isVoidTy()) {
3113 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
3114 }
3115 }
3116
3117 std::vector<Value *> Args;
3118
3119 // Adds non-variable arguments.
3120 auto *I = CB.arg_begin();
3121 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
3122 Args.push_back(*I);
3123 }
3124
3125 // Adds shadow arguments.
3126 const unsigned ShadowArgStart = Args.size();
3127 addShadowArguments(F, CB, Args, IRB);
3128
3129 // Adds origin arguments.
3130 const unsigned OriginArgStart = Args.size();
3131 if (ShouldTrackOrigins)
3132 addOriginArguments(F, CB, Args, IRB);
3133
3134 // Adds variable arguments.
3135 append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
3136
3137 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
3138 CustomCI->setCallingConv(CI->getCallingConv());
3139 CustomCI->setAttributes(transformFunctionAttributes(
3140 CustomFn, CI->getContext(), CI->getAttributes()));
3141
3142 // Update the parameter attributes of the custom call instruction to
3143 // zero extend the shadow parameters. This is required for targets
3144 // which consider PrimitiveShadowTy an illegal type.
3145 for (unsigned N = 0; N < FT->getNumParams(); N++) {
3146 const unsigned ArgNo = ShadowArgStart + N;
3147 if (CustomCI->getArgOperand(ArgNo)->getType() ==
3148 DFSF.DFS.PrimitiveShadowTy)
3149 CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
3150 if (ShouldTrackOrigins) {
3151 const unsigned OriginArgNo = OriginArgStart + N;
3152 if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
3153 DFSF.DFS.OriginTy)
3154 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
3155 }
3156 }
3157
3158 // Loads the return value shadow and origin.
3159 if (!FT->getReturnType()->isVoidTy()) {
3160 LoadInst *LabelLoad =
3161 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
3162 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
3163 FT->getReturnType(), LabelLoad, &CB));
3164 if (ShouldTrackOrigins) {
3165 LoadInst *OriginLoad =
3166 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
3167 DFSF.setOrigin(CustomCI, OriginLoad);
3168 }
3169 }
3170
3171 CI->replaceAllUsesWith(CustomCI);
3172 CI->eraseFromParent();
3173 return true;
3174 }
3175 return false;
3176 }
3177
makeAddAcquireOrderingTable(IRBuilder<> & IRB)3178 Value *DFSanVisitor::makeAddAcquireOrderingTable(IRBuilder<> &IRB) {
3179 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3180 uint32_t OrderingTable[NumOrderings] = {};
3181
3182 OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3183 OrderingTable[(int)AtomicOrderingCABI::acquire] =
3184 OrderingTable[(int)AtomicOrderingCABI::consume] =
3185 (int)AtomicOrderingCABI::acquire;
3186 OrderingTable[(int)AtomicOrderingCABI::release] =
3187 OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3188 (int)AtomicOrderingCABI::acq_rel;
3189 OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3190 (int)AtomicOrderingCABI::seq_cst;
3191
3192 return ConstantDataVector::get(IRB.getContext(),
3193 ArrayRef(OrderingTable, NumOrderings));
3194 }
3195
visitLibAtomicLoad(CallBase & CB)3196 void DFSanVisitor::visitLibAtomicLoad(CallBase &CB) {
3197 // Since we use getNextNode here, we can't have CB terminate the BB.
3198 assert(isa<CallInst>(CB));
3199
3200 IRBuilder<> IRB(&CB);
3201 Value *Size = CB.getArgOperand(0);
3202 Value *SrcPtr = CB.getArgOperand(1);
3203 Value *DstPtr = CB.getArgOperand(2);
3204 Value *Ordering = CB.getArgOperand(3);
3205 // Convert the call to have at least Acquire ordering to make sure
3206 // the shadow operations aren't reordered before it.
3207 Value *NewOrdering =
3208 IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering);
3209 CB.setArgOperand(3, NewOrdering);
3210
3211 IRBuilder<> NextIRB(CB.getNextNode());
3212 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3213
3214 // TODO: Support ClCombinePointerLabelsOnLoad
3215 // TODO: Support ClEventCallbacks
3216
3217 NextIRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3218 {NextIRB.CreatePointerCast(DstPtr, NextIRB.getInt8PtrTy()),
3219 NextIRB.CreatePointerCast(SrcPtr, NextIRB.getInt8PtrTy()),
3220 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3221 }
3222
makeAddReleaseOrderingTable(IRBuilder<> & IRB)3223 Value *DFSanVisitor::makeAddReleaseOrderingTable(IRBuilder<> &IRB) {
3224 constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1;
3225 uint32_t OrderingTable[NumOrderings] = {};
3226
3227 OrderingTable[(int)AtomicOrderingCABI::relaxed] =
3228 OrderingTable[(int)AtomicOrderingCABI::release] =
3229 (int)AtomicOrderingCABI::release;
3230 OrderingTable[(int)AtomicOrderingCABI::consume] =
3231 OrderingTable[(int)AtomicOrderingCABI::acquire] =
3232 OrderingTable[(int)AtomicOrderingCABI::acq_rel] =
3233 (int)AtomicOrderingCABI::acq_rel;
3234 OrderingTable[(int)AtomicOrderingCABI::seq_cst] =
3235 (int)AtomicOrderingCABI::seq_cst;
3236
3237 return ConstantDataVector::get(IRB.getContext(),
3238 ArrayRef(OrderingTable, NumOrderings));
3239 }
3240
visitLibAtomicStore(CallBase & CB)3241 void DFSanVisitor::visitLibAtomicStore(CallBase &CB) {
3242 IRBuilder<> IRB(&CB);
3243 Value *Size = CB.getArgOperand(0);
3244 Value *SrcPtr = CB.getArgOperand(1);
3245 Value *DstPtr = CB.getArgOperand(2);
3246 Value *Ordering = CB.getArgOperand(3);
3247 // Convert the call to have at least Release ordering to make sure
3248 // the shadow operations aren't reordered after it.
3249 Value *NewOrdering =
3250 IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering);
3251 CB.setArgOperand(3, NewOrdering);
3252
3253 // TODO: Support ClCombinePointerLabelsOnStore
3254 // TODO: Support ClEventCallbacks
3255
3256 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3257 {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()),
3258 IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()),
3259 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3260 }
3261
visitLibAtomicExchange(CallBase & CB)3262 void DFSanVisitor::visitLibAtomicExchange(CallBase &CB) {
3263 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, int
3264 // ordering)
3265 IRBuilder<> IRB(&CB);
3266 Value *Size = CB.getArgOperand(0);
3267 Value *TargetPtr = CB.getArgOperand(1);
3268 Value *SrcPtr = CB.getArgOperand(2);
3269 Value *DstPtr = CB.getArgOperand(3);
3270
3271 // This operation is not atomic for the shadow and origin memory.
3272 // This could result in DFSan false positives or false negatives.
3273 // For now we will assume these operations are rare, and
3274 // the additional complexity to address this is not warrented.
3275
3276 // Current Target to Dest
3277 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3278 {IRB.CreatePointerCast(DstPtr, IRB.getInt8PtrTy()),
3279 IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()),
3280 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3281
3282 // Current Src to Target (overriding)
3283 IRB.CreateCall(DFSF.DFS.DFSanMemShadowOriginTransferFn,
3284 {IRB.CreatePointerCast(TargetPtr, IRB.getInt8PtrTy()),
3285 IRB.CreatePointerCast(SrcPtr, IRB.getInt8PtrTy()),
3286 IRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3287 }
3288
visitLibAtomicCompareExchange(CallBase & CB)3289 void DFSanVisitor::visitLibAtomicCompareExchange(CallBase &CB) {
3290 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, void
3291 // *desired, int success_order, int failure_order)
3292 Value *Size = CB.getArgOperand(0);
3293 Value *TargetPtr = CB.getArgOperand(1);
3294 Value *ExpectedPtr = CB.getArgOperand(2);
3295 Value *DesiredPtr = CB.getArgOperand(3);
3296
3297 // This operation is not atomic for the shadow and origin memory.
3298 // This could result in DFSan false positives or false negatives.
3299 // For now we will assume these operations are rare, and
3300 // the additional complexity to address this is not warrented.
3301
3302 IRBuilder<> NextIRB(CB.getNextNode());
3303 NextIRB.SetCurrentDebugLocation(CB.getDebugLoc());
3304
3305 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3306
3307 // If original call returned true, copy Desired to Target.
3308 // If original call returned false, copy Target to Expected.
3309 NextIRB.CreateCall(
3310 DFSF.DFS.DFSanMemShadowOriginConditionalExchangeFn,
3311 {NextIRB.CreateIntCast(&CB, NextIRB.getInt8Ty(), false),
3312 NextIRB.CreatePointerCast(TargetPtr, NextIRB.getInt8PtrTy()),
3313 NextIRB.CreatePointerCast(ExpectedPtr, NextIRB.getInt8PtrTy()),
3314 NextIRB.CreatePointerCast(DesiredPtr, NextIRB.getInt8PtrTy()),
3315 NextIRB.CreateIntCast(Size, DFSF.DFS.IntptrTy, false)});
3316 }
3317
visitCallBase(CallBase & CB)3318 void DFSanVisitor::visitCallBase(CallBase &CB) {
3319 Function *F = CB.getCalledFunction();
3320 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
3321 visitInstOperands(CB);
3322 return;
3323 }
3324
3325 // Calls to this function are synthesized in wrappers, and we shouldn't
3326 // instrument them.
3327 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
3328 return;
3329
3330 LibFunc LF;
3331 if (DFSF.TLI.getLibFunc(CB, LF)) {
3332 // libatomic.a functions need to have special handling because there isn't
3333 // a good way to intercept them or compile the library with
3334 // instrumentation.
3335 switch (LF) {
3336 case LibFunc_atomic_load:
3337 if (!isa<CallInst>(CB)) {
3338 llvm::errs() << "DFSAN -- cannot instrument invoke of libatomic load. "
3339 "Ignoring!\n";
3340 break;
3341 }
3342 visitLibAtomicLoad(CB);
3343 return;
3344 case LibFunc_atomic_store:
3345 visitLibAtomicStore(CB);
3346 return;
3347 default:
3348 break;
3349 }
3350 }
3351
3352 // TODO: These are not supported by TLI? They are not in the enum.
3353 if (F && F->hasName() && !F->isVarArg()) {
3354 if (F->getName() == "__atomic_exchange") {
3355 visitLibAtomicExchange(CB);
3356 return;
3357 }
3358 if (F->getName() == "__atomic_compare_exchange") {
3359 visitLibAtomicCompareExchange(CB);
3360 return;
3361 }
3362 }
3363
3364 DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
3365 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
3366 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
3367 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
3368 return;
3369
3370 IRBuilder<> IRB(&CB);
3371
3372 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3373 FunctionType *FT = CB.getFunctionType();
3374 const DataLayout &DL = getDataLayout();
3375
3376 // Stores argument shadows.
3377 unsigned ArgOffset = 0;
3378 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
3379 if (ShouldTrackOrigins) {
3380 // Ignore overflowed origins
3381 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
3382 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
3383 !DFSF.DFS.isZeroShadow(ArgShadow))
3384 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
3385 DFSF.getArgOriginTLS(I, IRB));
3386 }
3387
3388 unsigned Size =
3389 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
3390 // Stop storing if arguments' size overflows. Inside a function, arguments
3391 // after overflow have zero shadow values.
3392 if (ArgOffset + Size > ArgTLSSize)
3393 break;
3394 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)),
3395 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
3396 ShadowTLSAlignment);
3397 ArgOffset += alignTo(Size, ShadowTLSAlignment);
3398 }
3399
3400 Instruction *Next = nullptr;
3401 if (!CB.getType()->isVoidTy()) {
3402 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3403 if (II->getNormalDest()->getSinglePredecessor()) {
3404 Next = &II->getNormalDest()->front();
3405 } else {
3406 BasicBlock *NewBB =
3407 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
3408 Next = &NewBB->front();
3409 }
3410 } else {
3411 assert(CB.getIterator() != CB.getParent()->end());
3412 Next = CB.getNextNode();
3413 }
3414
3415 // Don't emit the epilogue for musttail call returns.
3416 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3417 return;
3418
3419 // Loads the return value shadow.
3420 IRBuilder<> NextIRB(Next);
3421 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
3422 if (Size > RetvalTLSSize) {
3423 // Set overflowed return shadow to be zero.
3424 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3425 } else {
3426 LoadInst *LI = NextIRB.CreateAlignedLoad(
3427 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
3428 ShadowTLSAlignment, "_dfsret");
3429 DFSF.SkipInsts.insert(LI);
3430 DFSF.setShadow(&CB, LI);
3431 DFSF.NonZeroChecks.push_back(LI);
3432 }
3433
3434 if (ShouldTrackOrigins) {
3435 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy,
3436 DFSF.getRetvalOriginTLS(), "_dfsret_o");
3437 DFSF.SkipInsts.insert(LI);
3438 DFSF.setOrigin(&CB, LI);
3439 }
3440
3441 DFSF.addReachesFunctionCallbacksIfEnabled(NextIRB, CB, &CB);
3442 }
3443 }
3444
visitPHINode(PHINode & PN)3445 void DFSanVisitor::visitPHINode(PHINode &PN) {
3446 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
3447 PHINode *ShadowPN =
3448 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
3449
3450 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
3451 Value *UndefShadow = UndefValue::get(ShadowTy);
3452 for (BasicBlock *BB : PN.blocks())
3453 ShadowPN->addIncoming(UndefShadow, BB);
3454
3455 DFSF.setShadow(&PN, ShadowPN);
3456
3457 PHINode *OriginPN = nullptr;
3458 if (DFSF.DFS.shouldTrackOrigins()) {
3459 OriginPN =
3460 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
3461 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
3462 for (BasicBlock *BB : PN.blocks())
3463 OriginPN->addIncoming(UndefOrigin, BB);
3464 DFSF.setOrigin(&PN, OriginPN);
3465 }
3466
3467 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
3468 }
3469
run(Module & M,ModuleAnalysisManager & AM)3470 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
3471 ModuleAnalysisManager &AM) {
3472 auto GetTLI = [&](Function &F) -> TargetLibraryInfo & {
3473 auto &FAM =
3474 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3475 return FAM.getResult<TargetLibraryAnalysis>(F);
3476 };
3477 if (!DataFlowSanitizer(ABIListFiles).runImpl(M, GetTLI))
3478 return PreservedAnalyses::all();
3479
3480 PreservedAnalyses PA = PreservedAnalyses::none();
3481 // GlobalsAA is considered stateless and does not get invalidated unless
3482 // explicitly invalidated; PreservedAnalyses::none() is not enough. Sanitizers
3483 // make changes that require GlobalsAA to be invalidated.
3484 PA.abandon<GlobalsAA>();
3485 return PA;
3486 }
3487