xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own.  Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.
20 ///
21 /// There are two possible memory layouts. In the first one, each byte of
22 /// application memory is backed by a shadow memory byte. The shadow byte can
23 /// represent up to 8 labels. To enable this you must specify the
24 /// -dfsan-fast-8-labels flag. On Linux/x86_64, memory is then laid out as
25 /// follows:
26 ///
27 /// +--------------------+ 0x800000000000 (top of memory)
28 /// | application memory |
29 /// +--------------------+ 0x700000008000 (kAppAddr)
30 /// |                    |
31 /// |       unused       |
32 /// |                    |
33 /// +--------------------+ 0x300200000000 (kUnusedAddr)
34 /// |    union table     |
35 /// +--------------------+ 0x300000000000 (kUnionTableAddr)
36 /// |       origin       |
37 /// +--------------------+ 0x200000008000 (kOriginAddr)
38 /// |   shadow memory    |
39 /// +--------------------+ 0x100000008000 (kShadowAddr)
40 /// |       unused       |
41 /// +--------------------+ 0x000000010000
42 /// | reserved by kernel |
43 /// +--------------------+ 0x000000000000
44 ///
45 ///
46 /// In the second memory layout, each byte of application memory is backed by
47 /// two bytes of shadow memory which hold the label. That means we can represent
48 /// either 16 labels (with -dfsan-fast-16-labels flag) or 2^16 labels (on the
49 /// default legacy mode) per byte. On Linux/x86_64, memory is then laid out as
50 /// follows:
51 ///
52 /// +--------------------+ 0x800000000000 (top of memory)
53 /// | application memory |
54 /// +--------------------+ 0x700000008000 (kAppAddr)
55 /// |                    |
56 /// |       unused       |
57 /// |                    |
58 /// +--------------------+ 0x300200000000 (kUnusedAddr)
59 /// |    union table     |
60 /// +--------------------+ 0x300000000000 (kUnionTableAddr)
61 /// |       origin       |
62 /// +--------------------+ 0x200000008000 (kOriginAddr)
63 /// |   shadow memory    |
64 /// +--------------------+ 0x000000010000 (kShadowAddr)
65 /// | reserved by kernel |
66 /// +--------------------+ 0x000000000000
67 ///
68 ///
69 /// To derive a shadow memory address from an application memory address,
70 /// bits 44-46 are cleared to bring the address into the range
71 /// [0x000000008000,0x100000000000).  Then the address is shifted left by 1 to
72 /// account for the double byte representation of shadow labels and move the
73 /// address into the shadow memory range.  See the function
74 /// DataFlowSanitizer::getShadowAddress below.
75 ///
76 /// For more information, please refer to the design document:
77 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
78 //
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
82 #include "llvm/ADT/DenseMap.h"
83 #include "llvm/ADT/DenseSet.h"
84 #include "llvm/ADT/DepthFirstIterator.h"
85 #include "llvm/ADT/None.h"
86 #include "llvm/ADT/SmallPtrSet.h"
87 #include "llvm/ADT/SmallVector.h"
88 #include "llvm/ADT/StringExtras.h"
89 #include "llvm/ADT/StringRef.h"
90 #include "llvm/ADT/Triple.h"
91 #include "llvm/ADT/iterator.h"
92 #include "llvm/Analysis/ValueTracking.h"
93 #include "llvm/IR/Argument.h"
94 #include "llvm/IR/Attributes.h"
95 #include "llvm/IR/BasicBlock.h"
96 #include "llvm/IR/Constant.h"
97 #include "llvm/IR/Constants.h"
98 #include "llvm/IR/DataLayout.h"
99 #include "llvm/IR/DerivedTypes.h"
100 #include "llvm/IR/Dominators.h"
101 #include "llvm/IR/Function.h"
102 #include "llvm/IR/GlobalAlias.h"
103 #include "llvm/IR/GlobalValue.h"
104 #include "llvm/IR/GlobalVariable.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InlineAsm.h"
107 #include "llvm/IR/InstVisitor.h"
108 #include "llvm/IR/InstrTypes.h"
109 #include "llvm/IR/Instruction.h"
110 #include "llvm/IR/Instructions.h"
111 #include "llvm/IR/IntrinsicInst.h"
112 #include "llvm/IR/LLVMContext.h"
113 #include "llvm/IR/MDBuilder.h"
114 #include "llvm/IR/Module.h"
115 #include "llvm/IR/PassManager.h"
116 #include "llvm/IR/Type.h"
117 #include "llvm/IR/User.h"
118 #include "llvm/IR/Value.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Alignment.h"
122 #include "llvm/Support/Casting.h"
123 #include "llvm/Support/CommandLine.h"
124 #include "llvm/Support/ErrorHandling.h"
125 #include "llvm/Support/SpecialCaseList.h"
126 #include "llvm/Support/VirtualFileSystem.h"
127 #include "llvm/Transforms/Instrumentation.h"
128 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
129 #include "llvm/Transforms/Utils/Local.h"
130 #include <algorithm>
131 #include <cassert>
132 #include <cstddef>
133 #include <cstdint>
134 #include <iterator>
135 #include <memory>
136 #include <set>
137 #include <string>
138 #include <utility>
139 #include <vector>
140 
141 using namespace llvm;
142 
143 // This must be consistent with ShadowWidthBits.
144 static const Align ShadowTLSAlignment = Align(2);
145 
146 static const Align MinOriginAlignment = Align(4);
147 
148 // The size of TLS variables. These constants must be kept in sync with the ones
149 // in dfsan.cpp.
150 static const unsigned ArgTLSSize = 800;
151 static const unsigned RetvalTLSSize = 800;
152 
153 // External symbol to be used when generating the shadow address for
154 // architectures with multiple VMAs. Instead of using a constant integer
155 // the runtime will set the external mask based on the VMA range.
156 const char DFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask";
157 
158 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
159 // alignment requirements provided by the input IR are correct.  For example,
160 // if the input IR contains a load with alignment 8, this flag will cause
161 // the shadow load to have alignment 16.  This flag is disabled by default as
162 // we have unfortunately encountered too much code (including Clang itself;
163 // see PR14291) which performs misaligned access.
164 static cl::opt<bool> ClPreserveAlignment(
165     "dfsan-preserve-alignment",
166     cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
167     cl::init(false));
168 
169 // The ABI list files control how shadow parameters are passed. The pass treats
170 // every function labelled "uninstrumented" in the ABI list file as conforming
171 // to the "native" (i.e. unsanitized) ABI.  Unless the ABI list contains
172 // additional annotations for those functions, a call to one of those functions
173 // will produce a warning message, as the labelling behaviour of the function is
174 // unknown.  The other supported annotations are "functional" and "discard",
175 // which are described below under DataFlowSanitizer::WrapperKind.
176 static cl::list<std::string> ClABIListFiles(
177     "dfsan-abilist",
178     cl::desc("File listing native ABI functions and how the pass treats them"),
179     cl::Hidden);
180 
181 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
182 // functions (see DataFlowSanitizer::InstrumentedABI below).
183 static cl::opt<bool>
184     ClArgsABI("dfsan-args-abi",
185               cl::desc("Use the argument ABI rather than the TLS ABI"),
186               cl::Hidden);
187 
188 // Controls whether the pass includes or ignores the labels of pointers in load
189 // instructions.
190 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
191     "dfsan-combine-pointer-labels-on-load",
192     cl::desc("Combine the label of the pointer with the label of the data when "
193              "loading from memory."),
194     cl::Hidden, cl::init(true));
195 
196 // Controls whether the pass includes or ignores the labels of pointers in
197 // stores instructions.
198 static cl::opt<bool> ClCombinePointerLabelsOnStore(
199     "dfsan-combine-pointer-labels-on-store",
200     cl::desc("Combine the label of the pointer with the label of the data when "
201              "storing in memory."),
202     cl::Hidden, cl::init(false));
203 
204 static cl::opt<bool> ClDebugNonzeroLabels(
205     "dfsan-debug-nonzero-labels",
206     cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
207              "load or return with a nonzero label"),
208     cl::Hidden);
209 
210 // Experimental feature that inserts callbacks for certain data events.
211 // Currently callbacks are only inserted for loads, stores, memory transfers
212 // (i.e. memcpy and memmove), and comparisons.
213 //
214 // If this flag is set to true, the user must provide definitions for the
215 // following callback functions:
216 //   void __dfsan_load_callback(dfsan_label Label, void* addr);
217 //   void __dfsan_store_callback(dfsan_label Label, void* addr);
218 //   void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
219 //   void __dfsan_cmp_callback(dfsan_label CombinedLabel);
220 static cl::opt<bool> ClEventCallbacks(
221     "dfsan-event-callbacks",
222     cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
223     cl::Hidden, cl::init(false));
224 
225 // Use a distinct bit for each base label, enabling faster unions with less
226 // instrumentation.  Limits the max number of base labels to 16.
227 static cl::opt<bool> ClFast16Labels(
228     "dfsan-fast-16-labels",
229     cl::desc("Use more efficient instrumentation, limiting the number of "
230              "labels to 16."),
231     cl::Hidden, cl::init(false));
232 
233 // Use a distinct bit for each base label, enabling faster unions with less
234 // instrumentation.  Limits the max number of base labels to 8.
235 static cl::opt<bool> ClFast8Labels(
236     "dfsan-fast-8-labels",
237     cl::desc("Use more efficient instrumentation, limiting the number of "
238              "labels to 8."),
239     cl::Hidden, cl::init(false));
240 
241 // Controls whether the pass tracks the control flow of select instructions.
242 static cl::opt<bool> ClTrackSelectControlFlow(
243     "dfsan-track-select-control-flow",
244     cl::desc("Propagate labels from condition values of select instructions "
245              "to results."),
246     cl::Hidden, cl::init(true));
247 
248 // TODO: This default value follows MSan. DFSan may use a different value.
249 static cl::opt<int> ClInstrumentWithCallThreshold(
250     "dfsan-instrument-with-call-threshold",
251     cl::desc("If the function being instrumented requires more than "
252              "this number of origin stores, use callbacks instead of "
253              "inline checks (-1 means never use callbacks)."),
254     cl::Hidden, cl::init(3500));
255 
256 // Controls how to track origins.
257 // * 0: do not track origins.
258 // * 1: track origins at memory store operations.
259 // * 2: track origins at memory load and store operations.
260 //      TODO: track callsites.
261 static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
262                                    cl::desc("Track origins of labels"),
263                                    cl::Hidden, cl::init(0));
264 
getGlobalTypeString(const GlobalValue & G)265 static StringRef getGlobalTypeString(const GlobalValue &G) {
266   // Types of GlobalVariables are always pointer types.
267   Type *GType = G.getValueType();
268   // For now we support excluding struct types only.
269   if (StructType *SGType = dyn_cast<StructType>(GType)) {
270     if (!SGType->isLiteral())
271       return SGType->getName();
272   }
273   return "<unknown type>";
274 }
275 
276 namespace {
277 
278 class DFSanABIList {
279   std::unique_ptr<SpecialCaseList> SCL;
280 
281 public:
282   DFSanABIList() = default;
283 
set(std::unique_ptr<SpecialCaseList> List)284   void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
285 
286   /// Returns whether either this function or its source file are listed in the
287   /// given category.
isIn(const Function & F,StringRef Category) const288   bool isIn(const Function &F, StringRef Category) const {
289     return isIn(*F.getParent(), Category) ||
290            SCL->inSection("dataflow", "fun", F.getName(), Category);
291   }
292 
293   /// Returns whether this global alias is listed in the given category.
294   ///
295   /// If GA aliases a function, the alias's name is matched as a function name
296   /// would be.  Similarly, aliases of globals are matched like globals.
isIn(const GlobalAlias & GA,StringRef Category) const297   bool isIn(const GlobalAlias &GA, StringRef Category) const {
298     if (isIn(*GA.getParent(), Category))
299       return true;
300 
301     if (isa<FunctionType>(GA.getValueType()))
302       return SCL->inSection("dataflow", "fun", GA.getName(), Category);
303 
304     return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
305            SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
306                           Category);
307   }
308 
309   /// Returns whether this module is listed in the given category.
isIn(const Module & M,StringRef Category) const310   bool isIn(const Module &M, StringRef Category) const {
311     return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
312   }
313 };
314 
315 /// TransformedFunction is used to express the result of transforming one
316 /// function type into another.  This struct is immutable.  It holds metadata
317 /// useful for updating calls of the old function to the new type.
318 struct TransformedFunction {
TransformedFunction__anond47758270111::TransformedFunction319   TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
320                       std::vector<unsigned> ArgumentIndexMapping)
321       : OriginalType(OriginalType), TransformedType(TransformedType),
322         ArgumentIndexMapping(ArgumentIndexMapping) {}
323 
324   // Disallow copies.
325   TransformedFunction(const TransformedFunction &) = delete;
326   TransformedFunction &operator=(const TransformedFunction &) = delete;
327 
328   // Allow moves.
329   TransformedFunction(TransformedFunction &&) = default;
330   TransformedFunction &operator=(TransformedFunction &&) = default;
331 
332   /// Type of the function before the transformation.
333   FunctionType *OriginalType;
334 
335   /// Type of the function after the transformation.
336   FunctionType *TransformedType;
337 
338   /// Transforming a function may change the position of arguments.  This
339   /// member records the mapping from each argument's old position to its new
340   /// position.  Argument positions are zero-indexed.  If the transformation
341   /// from F to F' made the first argument of F into the third argument of F',
342   /// then ArgumentIndexMapping[0] will equal 2.
343   std::vector<unsigned> ArgumentIndexMapping;
344 };
345 
346 /// Given function attributes from a call site for the original function,
347 /// return function attributes appropriate for a call to the transformed
348 /// function.
349 AttributeList
transformFunctionAttributes(const TransformedFunction & TransformedFunction,LLVMContext & Ctx,AttributeList CallSiteAttrs)350 transformFunctionAttributes(const TransformedFunction &TransformedFunction,
351                             LLVMContext &Ctx, AttributeList CallSiteAttrs) {
352 
353   // Construct a vector of AttributeSet for each function argument.
354   std::vector<llvm::AttributeSet> ArgumentAttributes(
355       TransformedFunction.TransformedType->getNumParams());
356 
357   // Copy attributes from the parameter of the original function to the
358   // transformed version.  'ArgumentIndexMapping' holds the mapping from
359   // old argument position to new.
360   for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
361        I < IE; ++I) {
362     unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
363     ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(I);
364   }
365 
366   // Copy annotations on varargs arguments.
367   for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
368                 IE = CallSiteAttrs.getNumAttrSets();
369        I < IE; ++I) {
370     ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(I));
371   }
372 
373   return AttributeList::get(Ctx, CallSiteAttrs.getFnAttributes(),
374                             CallSiteAttrs.getRetAttributes(),
375                             llvm::makeArrayRef(ArgumentAttributes));
376 }
377 
378 class DataFlowSanitizer {
379   friend struct DFSanFunction;
380   friend class DFSanVisitor;
381 
382   enum {
383     OriginWidthBits = 32,
384     OriginWidthBytes = OriginWidthBits / 8
385   };
386 
387   /// Which ABI should be used for instrumented functions?
388   enum InstrumentedABI {
389     /// Argument and return value labels are passed through additional
390     /// arguments and by modifying the return type.
391     IA_Args,
392 
393     /// Argument and return value labels are passed through TLS variables
394     /// __dfsan_arg_tls and __dfsan_retval_tls.
395     IA_TLS
396   };
397 
398   /// How should calls to uninstrumented functions be handled?
399   enum WrapperKind {
400     /// This function is present in an uninstrumented form but we don't know
401     /// how it should be handled.  Print a warning and call the function anyway.
402     /// Don't label the return value.
403     WK_Warning,
404 
405     /// This function does not write to (user-accessible) memory, and its return
406     /// value is unlabelled.
407     WK_Discard,
408 
409     /// This function does not write to (user-accessible) memory, and the label
410     /// of its return value is the union of the label of its arguments.
411     WK_Functional,
412 
413     /// Instead of calling the function, a custom wrapper __dfsw_F is called,
414     /// where F is the name of the function.  This function may wrap the
415     /// original function or provide its own implementation.  This is similar to
416     /// the IA_Args ABI, except that IA_Args uses a struct return type to
417     /// pass the return value shadow in a register, while WK_Custom uses an
418     /// extra pointer argument to return the shadow.  This allows the wrapped
419     /// form of the function type to be expressed in C.
420     WK_Custom
421   };
422 
423   unsigned ShadowWidthBits;
424   unsigned ShadowWidthBytes;
425 
426   Module *Mod;
427   LLVMContext *Ctx;
428   Type *Int8Ptr;
429   IntegerType *OriginTy;
430   PointerType *OriginPtrTy;
431   ConstantInt *OriginBase;
432   ConstantInt *ZeroOrigin;
433   /// The shadow type for all primitive types and vector types.
434   IntegerType *PrimitiveShadowTy;
435   PointerType *PrimitiveShadowPtrTy;
436   IntegerType *IntptrTy;
437   ConstantInt *ZeroPrimitiveShadow;
438   ConstantInt *ShadowPtrMask;
439   ConstantInt *ShadowPtrMul;
440   Constant *ArgTLS;
441   ArrayType *ArgOriginTLSTy;
442   Constant *ArgOriginTLS;
443   Constant *RetvalTLS;
444   Constant *RetvalOriginTLS;
445   Constant *ExternalShadowMask;
446   FunctionType *DFSanUnionFnTy;
447   FunctionType *DFSanUnionLoadFnTy;
448   FunctionType *DFSanLoadLabelAndOriginFnTy;
449   FunctionType *DFSanUnimplementedFnTy;
450   FunctionType *DFSanSetLabelFnTy;
451   FunctionType *DFSanNonzeroLabelFnTy;
452   FunctionType *DFSanVarargWrapperFnTy;
453   FunctionType *DFSanCmpCallbackFnTy;
454   FunctionType *DFSanLoadStoreCallbackFnTy;
455   FunctionType *DFSanMemTransferCallbackFnTy;
456   FunctionType *DFSanChainOriginFnTy;
457   FunctionType *DFSanChainOriginIfTaintedFnTy;
458   FunctionType *DFSanMemOriginTransferFnTy;
459   FunctionType *DFSanMaybeStoreOriginFnTy;
460   FunctionCallee DFSanUnionFn;
461   FunctionCallee DFSanCheckedUnionFn;
462   FunctionCallee DFSanUnionLoadFn;
463   FunctionCallee DFSanUnionLoadFastLabelsFn;
464   FunctionCallee DFSanLoadLabelAndOriginFn;
465   FunctionCallee DFSanUnimplementedFn;
466   FunctionCallee DFSanSetLabelFn;
467   FunctionCallee DFSanNonzeroLabelFn;
468   FunctionCallee DFSanVarargWrapperFn;
469   FunctionCallee DFSanLoadCallbackFn;
470   FunctionCallee DFSanStoreCallbackFn;
471   FunctionCallee DFSanMemTransferCallbackFn;
472   FunctionCallee DFSanCmpCallbackFn;
473   FunctionCallee DFSanChainOriginFn;
474   FunctionCallee DFSanChainOriginIfTaintedFn;
475   FunctionCallee DFSanMemOriginTransferFn;
476   FunctionCallee DFSanMaybeStoreOriginFn;
477   SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
478   MDNode *ColdCallWeights;
479   MDNode *OriginStoreWeights;
480   DFSanABIList ABIList;
481   DenseMap<Value *, Function *> UnwrappedFnMap;
482   AttrBuilder ReadOnlyNoneAttrs;
483   bool DFSanRuntimeShadowMask = false;
484 
485   Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
486   Value *getShadowAddress(Value *Addr, Instruction *Pos);
487   Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
488   std::pair<Value *, Value *>
489   getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
490   bool isInstrumented(const Function *F);
491   bool isInstrumented(const GlobalAlias *GA);
492   FunctionType *getArgsFunctionType(FunctionType *T);
493   FunctionType *getTrampolineFunctionType(FunctionType *T);
494   TransformedFunction getCustomFunctionType(FunctionType *T);
495   InstrumentedABI getInstrumentedABI();
496   WrapperKind getWrapperKind(Function *F);
497   void addGlobalNamePrefix(GlobalValue *GV);
498   Function *buildWrapperFunction(Function *F, StringRef NewFName,
499                                  GlobalValue::LinkageTypes NewFLink,
500                                  FunctionType *NewFT);
501   Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
502   void initializeCallbackFunctions(Module &M);
503   void initializeRuntimeFunctions(Module &M);
504   void injectMetadataGlobals(Module &M);
505 
506   bool init(Module &M);
507 
508   /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
509   /// from it. Returns the origin's loaded value.
510   Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
511                         Value **OriginAddr);
512 
513   /// Returns whether fast8 or fast16 mode has been specified.
514   bool hasFastLabelsEnabled();
515 
516   /// Returns whether the given load byte size is amenable to inlined
517   /// optimization patterns.
518   bool hasLoadSizeForFastPath(uint64_t Size);
519 
520   /// Returns whether the pass tracks origins. Support only fast16 mode in TLS
521   /// ABI mode.
522   bool shouldTrackOrigins();
523 
524   /// Returns whether the pass tracks labels for struct fields and array
525   /// indices. Support only fast16 mode in TLS ABI mode.
526   bool shouldTrackFieldsAndIndices();
527 
528   /// Returns a zero constant with the shadow type of OrigTy.
529   ///
530   /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
531   /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
532   /// getZeroShadow(other type) = i16(0)
533   ///
534   /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices
535   /// returns false.
536   Constant *getZeroShadow(Type *OrigTy);
537   /// Returns a zero constant with the shadow type of V's type.
538   Constant *getZeroShadow(Value *V);
539 
540   /// Checks if V is a zero shadow.
541   bool isZeroShadow(Value *V);
542 
543   /// Returns the shadow type of OrigTy.
544   ///
545   /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
546   /// getShadowTy([n x T]) = [n x getShadowTy(T)]
547   /// getShadowTy(other type) = i16
548   ///
549   /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices
550   /// returns false.
551   Type *getShadowTy(Type *OrigTy);
552   /// Returns the shadow type of of V's type.
553   Type *getShadowTy(Value *V);
554 
555   const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
556 
557 public:
558   DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
559 
560   bool runImpl(Module &M);
561 };
562 
563 struct DFSanFunction {
564   DataFlowSanitizer &DFS;
565   Function *F;
566   DominatorTree DT;
567   DataFlowSanitizer::InstrumentedABI IA;
568   bool IsNativeABI;
569   AllocaInst *LabelReturnAlloca = nullptr;
570   AllocaInst *OriginReturnAlloca = nullptr;
571   DenseMap<Value *, Value *> ValShadowMap;
572   DenseMap<Value *, Value *> ValOriginMap;
573   DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
574   DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
575 
576   struct PHIFixupElement {
577     PHINode *Phi;
578     PHINode *ShadowPhi;
579     PHINode *OriginPhi;
580   };
581   std::vector<PHIFixupElement> PHIFixups;
582 
583   DenseSet<Instruction *> SkipInsts;
584   std::vector<Value *> NonZeroChecks;
585   bool AvoidNewBlocks;
586 
587   struct CachedShadow {
588     BasicBlock *Block; // The block where Shadow is defined.
589     Value *Shadow;
590   };
591   /// Maps a value to its latest shadow value in terms of domination tree.
592   DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
593   /// Maps a value to its latest collapsed shadow value it was converted to in
594   /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
595   /// used at a post process where CFG blocks are split. So it does not cache
596   /// BasicBlock like CachedShadows, but uses domination between values.
597   DenseMap<Value *, Value *> CachedCollapsedShadows;
598   DenseMap<Value *, std::set<Value *>> ShadowElements;
599 
DFSanFunction__anond47758270111::DFSanFunction600   DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
601       : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
602     DT.recalculate(*F);
603     // FIXME: Need to track down the register allocator issue which causes poor
604     // performance in pathological cases with large numbers of basic blocks.
605     AvoidNewBlocks = F->size() > 1000;
606   }
607 
608   /// Computes the shadow address for a given function argument.
609   ///
610   /// Shadow = ArgTLS+ArgOffset.
611   Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
612 
613   /// Computes the shadow address for a return value.
614   Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
615 
616   /// Computes the origin address for a given function argument.
617   ///
618   /// Origin = ArgOriginTLS[ArgNo].
619   Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
620 
621   /// Computes the origin address for a return value.
622   Value *getRetvalOriginTLS();
623 
624   Value *getOrigin(Value *V);
625   void setOrigin(Instruction *I, Value *Origin);
626   /// Generates IR to compute the origin of the last operand with a taint label.
627   Value *combineOperandOrigins(Instruction *Inst);
628   /// Before the instruction Pos, generates IR to compute the last origin with a
629   /// taint label. Labels and origins are from vectors Shadows and Origins
630   /// correspondingly. The generated IR is like
631   ///   Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
632   /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
633   /// zeros with other bitwidths.
634   Value *combineOrigins(const std::vector<Value *> &Shadows,
635                         const std::vector<Value *> &Origins, Instruction *Pos,
636                         ConstantInt *Zero = nullptr);
637 
638   Value *getShadow(Value *V);
639   void setShadow(Instruction *I, Value *Shadow);
640   /// Generates IR to compute the union of the two given shadows, inserting it
641   /// before Pos. The combined value is with primitive type.
642   Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
643   /// Combines the shadow values of V1 and V2, then converts the combined value
644   /// with primitive type into a shadow value with the original type T.
645   Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
646                                    Instruction *Pos);
647   Value *combineOperandShadows(Instruction *Inst);
648 
649   /// Generates IR to load shadow and origin corresponding to bytes [\p
650   /// Addr, \p Addr + \p Size), where addr has alignment \p
651   /// InstAlignment, and take the union of each of those shadows. The returned
652   /// shadow always has primitive type.
653   ///
654   /// When tracking loads is enabled, the returned origin is a chain at the
655   /// current stack if the returned shadow is tainted.
656   std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
657                                                Align InstAlignment,
658                                                Instruction *Pos);
659 
660   void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
661                                   Align InstAlignment, Value *PrimitiveShadow,
662                                   Value *Origin, Instruction *Pos);
663   /// Applies PrimitiveShadow to all primitive subtypes of T, returning
664   /// the expanded shadow value.
665   ///
666   /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
667   /// EFP([n x T], PS) = [n x EFP(T,PS)]
668   /// EFP(other types, PS) = PS
669   Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
670                                    Instruction *Pos);
671   /// Collapses Shadow into a single primitive shadow value, unioning all
672   /// primitive shadow values in the process. Returns the final primitive
673   /// shadow value.
674   ///
675   /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
676   /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
677   /// CTP(other types, PS) = PS
678   Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
679 
680   void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
681                                 Instruction *Pos);
682 
683   Align getShadowAlign(Align InstAlignment);
684 
685 private:
686   /// Collapses the shadow with aggregate type into a single primitive shadow
687   /// value.
688   template <class AggregateType>
689   Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
690                                  IRBuilder<> &IRB);
691 
692   Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
693 
694   /// Returns the shadow value of an argument A.
695   Value *getShadowForTLSArgument(Argument *A);
696 
697   /// The fast path of loading shadow in legacy mode.
698   Value *loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size,
699                               Align ShadowAlign, Instruction *Pos);
700 
701   /// The fast path of loading shadow in fast-16-label mode.
702   std::pair<Value *, Value *>
703   loadFast16ShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
704                        Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
705                        Instruction *Pos);
706 
707   Align getOriginAlign(Align InstAlignment);
708 
709   /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
710   /// is __dfsan_load_label_and_origin. This function returns the union of all
711   /// labels and the origin of the first taint label. However this is an
712   /// additional call with many instructions. To ensure common cases are fast,
713   /// checks if it is possible to load labels and origins without using the
714   /// callback function.
715   ///
716   /// When enabling tracking load instructions, we always use
717   /// __dfsan_load_label_and_origin to reduce code size.
718   bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
719 
720   /// Returns a chain at the current stack with previous origin V.
721   Value *updateOrigin(Value *V, IRBuilder<> &IRB);
722 
723   /// Returns a chain at the current stack with previous origin V if Shadow is
724   /// tainted.
725   Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
726 
727   /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
728   /// Origin otherwise.
729   Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
730 
731   /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
732   /// Size).
733   void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
734                    uint64_t StoreOriginSize, Align Alignment);
735 
736   /// Stores Origin in terms of its Shadow value.
737   /// * Do not write origins for zero shadows because we do not trace origins
738   ///   for untainted sinks.
739   /// * Use __dfsan_maybe_store_origin if there are too many origin store
740   ///   instrumentations.
741   void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
742                    Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
743 
744   /// Convert a scalar value to an i1 by comparing with 0.
745   Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
746 
747   bool shouldInstrumentWithCall();
748 
749   /// Generates IR to load shadow and origin corresponding to bytes [\p
750   /// Addr, \p Addr + \p Size), where addr has alignment \p
751   /// InstAlignment, and take the union of each of those shadows. The returned
752   /// shadow always has primitive type.
753   std::pair<Value *, Value *>
754   loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
755                                    Align InstAlignment, Instruction *Pos);
756   int NumOriginStores = 0;
757 };
758 
759 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
760 public:
761   DFSanFunction &DFSF;
762 
DFSanVisitor(DFSanFunction & DFSF)763   DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
764 
getDataLayout() const765   const DataLayout &getDataLayout() const {
766     return DFSF.F->getParent()->getDataLayout();
767   }
768 
769   // Combines shadow values and origins for all of I's operands.
770   void visitInstOperands(Instruction &I);
771 
772   void visitUnaryOperator(UnaryOperator &UO);
773   void visitBinaryOperator(BinaryOperator &BO);
774   void visitCastInst(CastInst &CI);
775   void visitCmpInst(CmpInst &CI);
776   void visitGetElementPtrInst(GetElementPtrInst &GEPI);
777   void visitLoadInst(LoadInst &LI);
778   void visitStoreInst(StoreInst &SI);
779   void visitAtomicRMWInst(AtomicRMWInst &I);
780   void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
781   void visitReturnInst(ReturnInst &RI);
782   void visitCallBase(CallBase &CB);
783   void visitPHINode(PHINode &PN);
784   void visitExtractElementInst(ExtractElementInst &I);
785   void visitInsertElementInst(InsertElementInst &I);
786   void visitShuffleVectorInst(ShuffleVectorInst &I);
787   void visitExtractValueInst(ExtractValueInst &I);
788   void visitInsertValueInst(InsertValueInst &I);
789   void visitAllocaInst(AllocaInst &I);
790   void visitSelectInst(SelectInst &I);
791   void visitMemSetInst(MemSetInst &I);
792   void visitMemTransferInst(MemTransferInst &I);
793 
794 private:
795   void visitCASOrRMW(Align InstAlignment, Instruction &I);
796 
797   // Returns false when this is an invoke of a custom function.
798   bool visitWrappedCallBase(Function &F, CallBase &CB);
799 
800   // Combines origins for all of I's operands.
801   void visitInstOperandOrigins(Instruction &I);
802 
803   void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
804                           IRBuilder<> &IRB);
805 
806   void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
807                           IRBuilder<> &IRB);
808 };
809 
810 } // end anonymous namespace
811 
DataFlowSanitizer(const std::vector<std::string> & ABIListFiles)812 DataFlowSanitizer::DataFlowSanitizer(
813     const std::vector<std::string> &ABIListFiles) {
814   if (ClFast8Labels && ClFast16Labels) {
815     report_fatal_error(
816         "cannot set both -dfsan-fast-8-labels and -dfsan-fast-16-labels");
817   }
818 
819   ShadowWidthBits = ClFast8Labels ? 8 : 16;
820   ShadowWidthBytes = ShadowWidthBits / 8;
821 
822   std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
823   llvm::append_range(AllABIListFiles, ClABIListFiles);
824   // FIXME: should we propagate vfs::FileSystem to this constructor?
825   ABIList.set(
826       SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
827 }
828 
getArgsFunctionType(FunctionType * T)829 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
830   SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
831   ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
832   if (T->isVarArg())
833     ArgTypes.push_back(PrimitiveShadowPtrTy);
834   Type *RetType = T->getReturnType();
835   if (!RetType->isVoidTy())
836     RetType = StructType::get(RetType, PrimitiveShadowTy);
837   return FunctionType::get(RetType, ArgTypes, T->isVarArg());
838 }
839 
getTrampolineFunctionType(FunctionType * T)840 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
841   assert(!T->isVarArg());
842   SmallVector<Type *, 4> ArgTypes;
843   ArgTypes.push_back(T->getPointerTo());
844   ArgTypes.append(T->param_begin(), T->param_end());
845   ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
846   Type *RetType = T->getReturnType();
847   if (!RetType->isVoidTy())
848     ArgTypes.push_back(PrimitiveShadowPtrTy);
849 
850   if (shouldTrackOrigins()) {
851     ArgTypes.append(T->getNumParams(), OriginTy);
852     if (!RetType->isVoidTy())
853       ArgTypes.push_back(OriginPtrTy);
854   }
855 
856   return FunctionType::get(T->getReturnType(), ArgTypes, false);
857 }
858 
getCustomFunctionType(FunctionType * T)859 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
860   SmallVector<Type *, 4> ArgTypes;
861 
862   // Some parameters of the custom function being constructed are
863   // parameters of T.  Record the mapping from parameters of T to
864   // parameters of the custom function, so that parameter attributes
865   // at call sites can be updated.
866   std::vector<unsigned> ArgumentIndexMapping;
867   for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
868     Type *ParamType = T->getParamType(I);
869     FunctionType *FT;
870     if (isa<PointerType>(ParamType) &&
871         (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) {
872       ArgumentIndexMapping.push_back(ArgTypes.size());
873       ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
874       ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
875     } else {
876       ArgumentIndexMapping.push_back(ArgTypes.size());
877       ArgTypes.push_back(ParamType);
878     }
879   }
880   for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
881     ArgTypes.push_back(PrimitiveShadowTy);
882   if (T->isVarArg())
883     ArgTypes.push_back(PrimitiveShadowPtrTy);
884   Type *RetType = T->getReturnType();
885   if (!RetType->isVoidTy())
886     ArgTypes.push_back(PrimitiveShadowPtrTy);
887 
888   if (shouldTrackOrigins()) {
889     for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
890       ArgTypes.push_back(OriginTy);
891     if (T->isVarArg())
892       ArgTypes.push_back(OriginPtrTy);
893     if (!RetType->isVoidTy())
894       ArgTypes.push_back(OriginPtrTy);
895   }
896 
897   return TransformedFunction(
898       T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
899       ArgumentIndexMapping);
900 }
901 
isZeroShadow(Value * V)902 bool DataFlowSanitizer::isZeroShadow(Value *V) {
903   if (!shouldTrackFieldsAndIndices())
904     return ZeroPrimitiveShadow == V;
905 
906   Type *T = V->getType();
907   if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
908     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
909       return CI->isZero();
910     return false;
911   }
912 
913   return isa<ConstantAggregateZero>(V);
914 }
915 
hasFastLabelsEnabled()916 bool DataFlowSanitizer::hasFastLabelsEnabled() {
917   static const bool HasFastLabelsEnabled = ClFast8Labels || ClFast16Labels;
918   return HasFastLabelsEnabled;
919 }
920 
hasLoadSizeForFastPath(uint64_t Size)921 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
922   uint64_t ShadowSize = Size * ShadowWidthBytes;
923   return ShadowSize % 8 == 0 || ShadowSize == 4;
924 }
925 
shouldTrackOrigins()926 bool DataFlowSanitizer::shouldTrackOrigins() {
927   static const bool ShouldTrackOrigins =
928       ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS &&
929       hasFastLabelsEnabled();
930   return ShouldTrackOrigins;
931 }
932 
shouldTrackFieldsAndIndices()933 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() {
934   return getInstrumentedABI() == DataFlowSanitizer::IA_TLS &&
935          hasFastLabelsEnabled();
936 }
937 
getZeroShadow(Type * OrigTy)938 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
939   if (!shouldTrackFieldsAndIndices())
940     return ZeroPrimitiveShadow;
941 
942   if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
943     return ZeroPrimitiveShadow;
944   Type *ShadowTy = getShadowTy(OrigTy);
945   return ConstantAggregateZero::get(ShadowTy);
946 }
947 
getZeroShadow(Value * V)948 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
949   return getZeroShadow(V->getType());
950 }
951 
expandFromPrimitiveShadowRecursive(Value * Shadow,SmallVector<unsigned,4> & Indices,Type * SubShadowTy,Value * PrimitiveShadow,IRBuilder<> & IRB)952 static Value *expandFromPrimitiveShadowRecursive(
953     Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
954     Value *PrimitiveShadow, IRBuilder<> &IRB) {
955   if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
956     return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
957 
958   if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
959     for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
960       Indices.push_back(Idx);
961       Shadow = expandFromPrimitiveShadowRecursive(
962           Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
963       Indices.pop_back();
964     }
965     return Shadow;
966   }
967 
968   if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
969     for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
970       Indices.push_back(Idx);
971       Shadow = expandFromPrimitiveShadowRecursive(
972           Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
973       Indices.pop_back();
974     }
975     return Shadow;
976   }
977   llvm_unreachable("Unexpected shadow type");
978 }
979 
shouldInstrumentWithCall()980 bool DFSanFunction::shouldInstrumentWithCall() {
981   return ClInstrumentWithCallThreshold >= 0 &&
982          NumOriginStores >= ClInstrumentWithCallThreshold;
983 }
984 
expandFromPrimitiveShadow(Type * T,Value * PrimitiveShadow,Instruction * Pos)985 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
986                                                 Instruction *Pos) {
987   Type *ShadowTy = DFS.getShadowTy(T);
988 
989   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
990     return PrimitiveShadow;
991 
992   if (DFS.isZeroShadow(PrimitiveShadow))
993     return DFS.getZeroShadow(ShadowTy);
994 
995   IRBuilder<> IRB(Pos);
996   SmallVector<unsigned, 4> Indices;
997   Value *Shadow = UndefValue::get(ShadowTy);
998   Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
999                                               PrimitiveShadow, IRB);
1000 
1001   // Caches the primitive shadow value that built the shadow value.
1002   CachedCollapsedShadows[Shadow] = PrimitiveShadow;
1003   return Shadow;
1004 }
1005 
1006 template <class AggregateType>
collapseAggregateShadow(AggregateType * AT,Value * Shadow,IRBuilder<> & IRB)1007 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
1008                                               IRBuilder<> &IRB) {
1009   if (!AT->getNumElements())
1010     return DFS.ZeroPrimitiveShadow;
1011 
1012   Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
1013   Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
1014 
1015   for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
1016     Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
1017     Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
1018     Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
1019   }
1020   return Aggregator;
1021 }
1022 
collapseToPrimitiveShadow(Value * Shadow,IRBuilder<> & IRB)1023 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1024                                                 IRBuilder<> &IRB) {
1025   Type *ShadowTy = Shadow->getType();
1026   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1027     return Shadow;
1028   if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
1029     return collapseAggregateShadow<>(AT, Shadow, IRB);
1030   if (StructType *ST = dyn_cast<StructType>(ShadowTy))
1031     return collapseAggregateShadow<>(ST, Shadow, IRB);
1032   llvm_unreachable("Unexpected shadow type");
1033 }
1034 
collapseToPrimitiveShadow(Value * Shadow,Instruction * Pos)1035 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
1036                                                 Instruction *Pos) {
1037   Type *ShadowTy = Shadow->getType();
1038   if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
1039     return Shadow;
1040 
1041   assert(DFS.shouldTrackFieldsAndIndices());
1042 
1043   // Checks if the cached collapsed shadow value dominates Pos.
1044   Value *&CS = CachedCollapsedShadows[Shadow];
1045   if (CS && DT.dominates(CS, Pos))
1046     return CS;
1047 
1048   IRBuilder<> IRB(Pos);
1049   Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
1050   // Caches the converted primitive shadow value.
1051   CS = PrimitiveShadow;
1052   return PrimitiveShadow;
1053 }
1054 
getShadowTy(Type * OrigTy)1055 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
1056   if (!shouldTrackFieldsAndIndices())
1057     return PrimitiveShadowTy;
1058 
1059   if (!OrigTy->isSized())
1060     return PrimitiveShadowTy;
1061   if (isa<IntegerType>(OrigTy))
1062     return PrimitiveShadowTy;
1063   if (isa<VectorType>(OrigTy))
1064     return PrimitiveShadowTy;
1065   if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
1066     return ArrayType::get(getShadowTy(AT->getElementType()),
1067                           AT->getNumElements());
1068   if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1069     SmallVector<Type *, 4> Elements;
1070     for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
1071       Elements.push_back(getShadowTy(ST->getElementType(I)));
1072     return StructType::get(*Ctx, Elements);
1073   }
1074   return PrimitiveShadowTy;
1075 }
1076 
getShadowTy(Value * V)1077 Type *DataFlowSanitizer::getShadowTy(Value *V) {
1078   return getShadowTy(V->getType());
1079 }
1080 
init(Module & M)1081 bool DataFlowSanitizer::init(Module &M) {
1082   Triple TargetTriple(M.getTargetTriple());
1083   const DataLayout &DL = M.getDataLayout();
1084 
1085   Mod = &M;
1086   Ctx = &M.getContext();
1087   Int8Ptr = Type::getInt8PtrTy(*Ctx);
1088   OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
1089   OriginPtrTy = PointerType::getUnqual(OriginTy);
1090   PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1091   PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
1092   IntptrTy = DL.getIntPtrType(*Ctx);
1093   ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
1094   ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes);
1095   OriginBase = ConstantInt::get(IntptrTy, 0x200000000000LL);
1096   ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
1097 
1098   switch (TargetTriple.getArch()) {
1099   case Triple::x86_64:
1100     ShadowPtrMask = ClFast8Labels
1101                         ? ConstantInt::getSigned(IntptrTy, ~0x600000000000LL)
1102                         : ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
1103     break;
1104   case Triple::mips64:
1105   case Triple::mips64el:
1106     ShadowPtrMask = ClFast8Labels
1107                         ? ConstantInt::getSigned(IntptrTy, ~0xE000000000LL)
1108                         : ConstantInt::getSigned(IntptrTy, ~0xF000000000LL);
1109     break;
1110   case Triple::aarch64:
1111   case Triple::aarch64_be:
1112     // AArch64 supports multiple VMAs and the shadow mask is set at runtime.
1113     DFSanRuntimeShadowMask = true;
1114     break;
1115   default:
1116     report_fatal_error("unsupported triple");
1117   }
1118 
1119   Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy};
1120   DFSanUnionFnTy =
1121       FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false);
1122   Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1123   DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
1124                                          /*isVarArg=*/false);
1125   Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
1126   DFSanLoadLabelAndOriginFnTy =
1127       FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
1128                         /*isVarArg=*/false);
1129   DFSanUnimplementedFnTy = FunctionType::get(
1130       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1131   Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
1132                                 Type::getInt8PtrTy(*Ctx), IntptrTy};
1133   DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
1134                                         DFSanSetLabelArgs, /*isVarArg=*/false);
1135   DFSanNonzeroLabelFnTy =
1136       FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
1137   DFSanVarargWrapperFnTy = FunctionType::get(
1138       Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1139   DFSanCmpCallbackFnTy =
1140       FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1141                         /*isVarArg=*/false);
1142   DFSanChainOriginFnTy =
1143       FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
1144   Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
1145   DFSanChainOriginIfTaintedFnTy = FunctionType::get(
1146       OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
1147   Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
1148                                         Int8Ptr, IntptrTy, OriginTy};
1149   DFSanMaybeStoreOriginFnTy = FunctionType::get(
1150       Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
1151   Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1152   DFSanMemOriginTransferFnTy = FunctionType::get(
1153       Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
1154   Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
1155   DFSanLoadStoreCallbackFnTy =
1156       FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
1157                         /*isVarArg=*/false);
1158   Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1159   DFSanMemTransferCallbackFnTy =
1160       FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
1161                         /*isVarArg=*/false);
1162 
1163   ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1164   OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1165   return true;
1166 }
1167 
isInstrumented(const Function * F)1168 bool DataFlowSanitizer::isInstrumented(const Function *F) {
1169   return !ABIList.isIn(*F, "uninstrumented");
1170 }
1171 
isInstrumented(const GlobalAlias * GA)1172 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
1173   return !ABIList.isIn(*GA, "uninstrumented");
1174 }
1175 
getInstrumentedABI()1176 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
1177   return ClArgsABI ? IA_Args : IA_TLS;
1178 }
1179 
getWrapperKind(Function * F)1180 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
1181   if (ABIList.isIn(*F, "functional"))
1182     return WK_Functional;
1183   if (ABIList.isIn(*F, "discard"))
1184     return WK_Discard;
1185   if (ABIList.isIn(*F, "custom"))
1186     return WK_Custom;
1187 
1188   return WK_Warning;
1189 }
1190 
addGlobalNamePrefix(GlobalValue * GV)1191 void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
1192   std::string GVName = std::string(GV->getName()), Prefix = "dfs$";
1193   GV->setName(Prefix + GVName);
1194 
1195   // Try to change the name of the function in module inline asm.  We only do
1196   // this for specific asm directives, currently only ".symver", to try to avoid
1197   // corrupting asm which happens to contain the symbol name as a substring.
1198   // Note that the substitution for .symver assumes that the versioned symbol
1199   // also has an instrumented name.
1200   std::string Asm = GV->getParent()->getModuleInlineAsm();
1201   std::string SearchStr = ".symver " + GVName + ",";
1202   size_t Pos = Asm.find(SearchStr);
1203   if (Pos != std::string::npos) {
1204     Asm.replace(Pos, SearchStr.size(),
1205                 ".symver " + Prefix + GVName + "," + Prefix);
1206     GV->getParent()->setModuleInlineAsm(Asm);
1207   }
1208 }
1209 
1210 Function *
buildWrapperFunction(Function * F,StringRef NewFName,GlobalValue::LinkageTypes NewFLink,FunctionType * NewFT)1211 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
1212                                         GlobalValue::LinkageTypes NewFLink,
1213                                         FunctionType *NewFT) {
1214   FunctionType *FT = F->getFunctionType();
1215   Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
1216                                     NewFName, F->getParent());
1217   NewF->copyAttributesFrom(F);
1218   NewF->removeAttributes(
1219       AttributeList::ReturnIndex,
1220       AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1221 
1222   BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
1223   if (F->isVarArg()) {
1224     NewF->removeAttributes(AttributeList::FunctionIndex,
1225                            AttrBuilder().addAttribute("split-stack"));
1226     CallInst::Create(DFSanVarargWrapperFn,
1227                      IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
1228                      BB);
1229     new UnreachableInst(*Ctx, BB);
1230   } else {
1231     auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
1232     std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
1233 
1234     CallInst *CI = CallInst::Create(F, Args, "", BB);
1235     if (FT->getReturnType()->isVoidTy())
1236       ReturnInst::Create(*Ctx, BB);
1237     else
1238       ReturnInst::Create(*Ctx, CI, BB);
1239   }
1240 
1241   return NewF;
1242 }
1243 
getOrBuildTrampolineFunction(FunctionType * FT,StringRef FName)1244 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
1245                                                           StringRef FName) {
1246   FunctionType *FTT = getTrampolineFunctionType(FT);
1247   FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
1248   Function *F = dyn_cast<Function>(C.getCallee());
1249   if (F && F->isDeclaration()) {
1250     F->setLinkage(GlobalValue::LinkOnceODRLinkage);
1251     BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
1252     std::vector<Value *> Args;
1253     Function::arg_iterator AI = F->arg_begin() + 1;
1254     for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
1255       Args.push_back(&*AI);
1256     CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
1257     Type *RetType = FT->getReturnType();
1258     ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB)
1259                                          : ReturnInst::Create(*Ctx, CI, BB);
1260 
1261     // F is called by a wrapped custom function with primitive shadows. So
1262     // its arguments and return value need conversion.
1263     DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
1264     Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI;
1265     ++ValAI;
1266     for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) {
1267       Value *Shadow =
1268           DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI);
1269       DFSF.ValShadowMap[&*ValAI] = Shadow;
1270     }
1271     Function::arg_iterator RetShadowAI = ShadowAI;
1272     const bool ShouldTrackOrigins = shouldTrackOrigins();
1273     if (ShouldTrackOrigins) {
1274       ValAI = F->arg_begin();
1275       ++ValAI;
1276       Function::arg_iterator OriginAI = ShadowAI;
1277       if (!RetType->isVoidTy())
1278         ++OriginAI;
1279       for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) {
1280         DFSF.ValOriginMap[&*ValAI] = &*OriginAI;
1281       }
1282     }
1283     DFSanVisitor(DFSF).visitCallInst(*CI);
1284     if (!RetType->isVoidTy()) {
1285       Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(
1286           DFSF.getShadow(RI->getReturnValue()), RI);
1287       new StoreInst(PrimitiveShadow, &*RetShadowAI, RI);
1288       if (ShouldTrackOrigins) {
1289         Value *Origin = DFSF.getOrigin(RI->getReturnValue());
1290         new StoreInst(Origin, &*std::prev(F->arg_end()), RI);
1291       }
1292     }
1293   }
1294 
1295   return cast<Constant>(C.getCallee());
1296 }
1297 
1298 // Initialize DataFlowSanitizer runtime functions and declare them in the module
initializeRuntimeFunctions(Module & M)1299 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
1300   {
1301     AttributeList AL;
1302     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1303                          Attribute::NoUnwind);
1304     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1305                          Attribute::ReadNone);
1306     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1307                          Attribute::ZExt);
1308     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1309     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1310     DFSanUnionFn =
1311         Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL);
1312   }
1313   {
1314     AttributeList AL;
1315     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1316                          Attribute::NoUnwind);
1317     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1318                          Attribute::ReadNone);
1319     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1320                          Attribute::ZExt);
1321     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1322     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1323     DFSanCheckedUnionFn =
1324         Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL);
1325   }
1326   {
1327     AttributeList AL;
1328     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1329                          Attribute::NoUnwind);
1330     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1331                          Attribute::ReadOnly);
1332     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1333                          Attribute::ZExt);
1334     DFSanUnionLoadFn =
1335         Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1336   }
1337   {
1338     AttributeList AL;
1339     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1340                          Attribute::NoUnwind);
1341     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1342                          Attribute::ReadOnly);
1343     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1344                          Attribute::ZExt);
1345     DFSanUnionLoadFastLabelsFn = Mod->getOrInsertFunction(
1346         "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL);
1347   }
1348   {
1349     AttributeList AL;
1350     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1351                          Attribute::NoUnwind);
1352     AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex,
1353                          Attribute::ReadOnly);
1354     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1355                          Attribute::ZExt);
1356     DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
1357         "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
1358   }
1359   DFSanUnimplementedFn =
1360       Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1361   {
1362     AttributeList AL;
1363     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1364     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1365     DFSanSetLabelFn =
1366         Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1367   }
1368   DFSanNonzeroLabelFn =
1369       Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1370   DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1371                                                   DFSanVarargWrapperFnTy);
1372   {
1373     AttributeList AL;
1374     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1375     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1376                          Attribute::ZExt);
1377     DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
1378                                                   DFSanChainOriginFnTy, AL);
1379   }
1380   {
1381     AttributeList AL;
1382     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1383     AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1384     AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex,
1385                          Attribute::ZExt);
1386     DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
1387         "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
1388   }
1389   DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
1390       "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
1391 
1392   {
1393     AttributeList AL;
1394     AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1395     AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
1396     DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
1397         "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
1398   }
1399 
1400   DFSanRuntimeFunctions.insert(DFSanUnionFn.getCallee()->stripPointerCasts());
1401   DFSanRuntimeFunctions.insert(
1402       DFSanCheckedUnionFn.getCallee()->stripPointerCasts());
1403   DFSanRuntimeFunctions.insert(
1404       DFSanUnionLoadFn.getCallee()->stripPointerCasts());
1405   DFSanRuntimeFunctions.insert(
1406       DFSanUnionLoadFastLabelsFn.getCallee()->stripPointerCasts());
1407   DFSanRuntimeFunctions.insert(
1408       DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
1409   DFSanRuntimeFunctions.insert(
1410       DFSanUnimplementedFn.getCallee()->stripPointerCasts());
1411   DFSanRuntimeFunctions.insert(
1412       DFSanSetLabelFn.getCallee()->stripPointerCasts());
1413   DFSanRuntimeFunctions.insert(
1414       DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
1415   DFSanRuntimeFunctions.insert(
1416       DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
1417   DFSanRuntimeFunctions.insert(
1418       DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
1419   DFSanRuntimeFunctions.insert(
1420       DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
1421   DFSanRuntimeFunctions.insert(
1422       DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
1423   DFSanRuntimeFunctions.insert(
1424       DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
1425   DFSanRuntimeFunctions.insert(
1426       DFSanChainOriginFn.getCallee()->stripPointerCasts());
1427   DFSanRuntimeFunctions.insert(
1428       DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
1429   DFSanRuntimeFunctions.insert(
1430       DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
1431   DFSanRuntimeFunctions.insert(
1432       DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
1433 }
1434 
1435 // Initializes event callback functions and declare them in the module
initializeCallbackFunctions(Module & M)1436 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1437   DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
1438                                                  DFSanLoadStoreCallbackFnTy);
1439   DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
1440                                                   DFSanLoadStoreCallbackFnTy);
1441   DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1442       "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1443   DFSanCmpCallbackFn =
1444       Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
1445 }
1446 
injectMetadataGlobals(Module & M)1447 void DataFlowSanitizer::injectMetadataGlobals(Module &M) {
1448   // These variables can be used:
1449   // - by the runtime (to discover what the shadow width was, during
1450   //   compilation)
1451   // - in testing (to avoid hardcoding the shadow width and type but instead
1452   //   extract them by pattern matching)
1453   Type *IntTy = Type::getInt32Ty(*Ctx);
1454   (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] {
1455     return new GlobalVariable(
1456         M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage,
1457         ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits");
1458   });
1459   (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] {
1460     return new GlobalVariable(M, IntTy, /*isConstant=*/true,
1461                               GlobalValue::WeakODRLinkage,
1462                               ConstantInt::get(IntTy, ShadowWidthBytes),
1463                               "__dfsan_shadow_width_bytes");
1464   });
1465 }
1466 
runImpl(Module & M)1467 bool DataFlowSanitizer::runImpl(Module &M) {
1468   init(M);
1469 
1470   if (ABIList.isIn(M, "skip"))
1471     return false;
1472 
1473   const unsigned InitialGlobalSize = M.global_size();
1474   const unsigned InitialModuleSize = M.size();
1475 
1476   bool Changed = false;
1477 
1478   auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
1479                                             Type *Ty) -> Constant * {
1480     Constant *C = Mod->getOrInsertGlobal(Name, Ty);
1481     if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1482       Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1483       G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1484     }
1485     return C;
1486   };
1487 
1488   // These globals must be kept in sync with the ones in dfsan.cpp.
1489   ArgTLS =
1490       GetOrInsertGlobal("__dfsan_arg_tls",
1491                         ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
1492   RetvalTLS = GetOrInsertGlobal(
1493       "__dfsan_retval_tls",
1494       ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
1495   ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
1496   ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
1497   RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
1498 
1499   (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
1500     Changed = true;
1501     return new GlobalVariable(
1502         M, OriginTy, true, GlobalValue::WeakODRLinkage,
1503         ConstantInt::getSigned(OriginTy, shouldTrackOrigins()),
1504         "__dfsan_track_origins");
1505   });
1506 
1507   injectMetadataGlobals(M);
1508 
1509   ExternalShadowMask =
1510       Mod->getOrInsertGlobal(DFSanExternShadowPtrMask, IntptrTy);
1511 
1512   initializeCallbackFunctions(M);
1513   initializeRuntimeFunctions(M);
1514 
1515   std::vector<Function *> FnsToInstrument;
1516   SmallPtrSet<Function *, 2> FnsWithNativeABI;
1517   for (Function &F : M)
1518     if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F))
1519       FnsToInstrument.push_back(&F);
1520 
1521   // Give function aliases prefixes when necessary, and build wrappers where the
1522   // instrumentedness is inconsistent.
1523   for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end();
1524        AI != AE;) {
1525     GlobalAlias *GA = &*AI;
1526     ++AI;
1527     // Don't stop on weak.  We assume people aren't playing games with the
1528     // instrumentedness of overridden weak aliases.
1529     auto *F = dyn_cast<Function>(GA->getBaseObject());
1530     if (!F)
1531       continue;
1532 
1533     bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
1534     if (GAInst && FInst) {
1535       addGlobalNamePrefix(GA);
1536     } else if (GAInst != FInst) {
1537       // Non-instrumented alias of an instrumented function, or vice versa.
1538       // Replace the alias with a native-ABI wrapper of the aliasee.  The pass
1539       // below will take care of instrumenting it.
1540       Function *NewF =
1541           buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
1542       GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
1543       NewF->takeName(GA);
1544       GA->eraseFromParent();
1545       FnsToInstrument.push_back(NewF);
1546     }
1547   }
1548 
1549   ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
1550       .addAttribute(Attribute::ReadNone);
1551 
1552   // First, change the ABI of every function in the module.  ABI-listed
1553   // functions keep their original ABI and get a wrapper function.
1554   for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
1555                                          FE = FnsToInstrument.end();
1556        FI != FE; ++FI) {
1557     Function &F = **FI;
1558     FunctionType *FT = F.getFunctionType();
1559 
1560     bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1561                               FT->getReturnType()->isVoidTy());
1562 
1563     if (isInstrumented(&F)) {
1564       // Instrumented functions get a 'dfs$' prefix.  This allows us to more
1565       // easily identify cases of mismatching ABIs.
1566       if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
1567         FunctionType *NewFT = getArgsFunctionType(FT);
1568         Function *NewF = Function::Create(NewFT, F.getLinkage(),
1569                                           F.getAddressSpace(), "", &M);
1570         NewF->copyAttributesFrom(&F);
1571         NewF->removeAttributes(
1572             AttributeList::ReturnIndex,
1573             AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1574         for (Function::arg_iterator FArg = F.arg_begin(),
1575                                     NewFArg = NewF->arg_begin(),
1576                                     FArgEnd = F.arg_end();
1577              FArg != FArgEnd; ++FArg, ++NewFArg) {
1578           FArg->replaceAllUsesWith(&*NewFArg);
1579         }
1580         NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
1581 
1582         for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
1583              UI != UE;) {
1584           BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
1585           ++UI;
1586           if (BA) {
1587             BA->replaceAllUsesWith(
1588                 BlockAddress::get(NewF, BA->getBasicBlock()));
1589             delete BA;
1590           }
1591         }
1592         F.replaceAllUsesWith(
1593             ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
1594         NewF->takeName(&F);
1595         F.eraseFromParent();
1596         *FI = NewF;
1597         addGlobalNamePrefix(NewF);
1598       } else {
1599         addGlobalNamePrefix(&F);
1600       }
1601     } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1602       // Build a wrapper function for F.  The wrapper simply calls F, and is
1603       // added to FnsToInstrument so that any instrumentation according to its
1604       // WrapperKind is done in the second pass below.
1605       FunctionType *NewFT =
1606           getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT;
1607 
1608       // If the function being wrapped has local linkage, then preserve the
1609       // function's linkage in the wrapper function.
1610       GlobalValue::LinkageTypes WrapperLinkage =
1611           F.hasLocalLinkage() ? F.getLinkage()
1612                               : GlobalValue::LinkOnceODRLinkage;
1613 
1614       Function *NewF = buildWrapperFunction(
1615           &F,
1616           (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
1617               std::string(F.getName()),
1618           WrapperLinkage, NewFT);
1619       if (getInstrumentedABI() == IA_TLS)
1620         NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs);
1621 
1622       Value *WrappedFnCst =
1623           ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
1624       F.replaceAllUsesWith(WrappedFnCst);
1625 
1626       UnwrappedFnMap[WrappedFnCst] = &F;
1627       *FI = NewF;
1628 
1629       if (!F.isDeclaration()) {
1630         // This function is probably defining an interposition of an
1631         // uninstrumented function and hence needs to keep the original ABI.
1632         // But any functions it may call need to use the instrumented ABI, so
1633         // we instrument it in a mode which preserves the original ABI.
1634         FnsWithNativeABI.insert(&F);
1635 
1636         // This code needs to rebuild the iterators, as they may be invalidated
1637         // by the push_back, taking care that the new range does not include
1638         // any functions added by this code.
1639         size_t N = FI - FnsToInstrument.begin(),
1640                Count = FE - FnsToInstrument.begin();
1641         FnsToInstrument.push_back(&F);
1642         FI = FnsToInstrument.begin() + N;
1643         FE = FnsToInstrument.begin() + Count;
1644       }
1645       // Hopefully, nobody will try to indirectly call a vararg
1646       // function... yet.
1647     } else if (FT->isVarArg()) {
1648       UnwrappedFnMap[&F] = &F;
1649       *FI = nullptr;
1650     }
1651   }
1652 
1653   for (Function *F : FnsToInstrument) {
1654     if (!F || F->isDeclaration())
1655       continue;
1656 
1657     removeUnreachableBlocks(*F);
1658 
1659     DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F));
1660 
1661     // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1662     // Build a copy of the list before iterating over it.
1663     SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
1664 
1665     for (BasicBlock *BB : BBList) {
1666       Instruction *Inst = &BB->front();
1667       while (true) {
1668         // DFSanVisitor may split the current basic block, changing the current
1669         // instruction's next pointer and moving the next instruction to the
1670         // tail block from which we should continue.
1671         Instruction *Next = Inst->getNextNode();
1672         // DFSanVisitor may delete Inst, so keep track of whether it was a
1673         // terminator.
1674         bool IsTerminator = Inst->isTerminator();
1675         if (!DFSF.SkipInsts.count(Inst))
1676           DFSanVisitor(DFSF).visit(Inst);
1677         if (IsTerminator)
1678           break;
1679         Inst = Next;
1680       }
1681     }
1682 
1683     // We will not necessarily be able to compute the shadow for every phi node
1684     // until we have visited every block.  Therefore, the code that handles phi
1685     // nodes adds them to the PHIFixups list so that they can be properly
1686     // handled here.
1687     for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
1688       for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
1689            ++Val) {
1690         P.ShadowPhi->setIncomingValue(
1691             Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
1692         if (P.OriginPhi)
1693           P.OriginPhi->setIncomingValue(
1694               Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
1695       }
1696     }
1697 
1698     // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1699     // places (i.e. instructions in basic blocks we haven't even begun visiting
1700     // yet).  To make our life easier, do this work in a pass after the main
1701     // instrumentation.
1702     if (ClDebugNonzeroLabels) {
1703       for (Value *V : DFSF.NonZeroChecks) {
1704         Instruction *Pos;
1705         if (Instruction *I = dyn_cast<Instruction>(V))
1706           Pos = I->getNextNode();
1707         else
1708           Pos = &DFSF.F->getEntryBlock().front();
1709         while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1710           Pos = Pos->getNextNode();
1711         IRBuilder<> IRB(Pos);
1712         Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1713         Value *Ne =
1714             IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1715         BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1716             Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1717         IRBuilder<> ThenIRB(BI);
1718         ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1719       }
1720     }
1721   }
1722 
1723   return Changed || !FnsToInstrument.empty() ||
1724          M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1725 }
1726 
getArgTLS(Type * T,unsigned ArgOffset,IRBuilder<> & IRB)1727 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1728   Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1729   if (ArgOffset)
1730     Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1731   return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1732                             "_dfsarg");
1733 }
1734 
getRetvalTLS(Type * T,IRBuilder<> & IRB)1735 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1736   return IRB.CreatePointerCast(
1737       DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1738 }
1739 
getRetvalOriginTLS()1740 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
1741 
getArgOriginTLS(unsigned ArgNo,IRBuilder<> & IRB)1742 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
1743   return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
1744                                 "_dfsarg_o");
1745 }
1746 
getOrigin(Value * V)1747 Value *DFSanFunction::getOrigin(Value *V) {
1748   assert(DFS.shouldTrackOrigins());
1749   if (!isa<Argument>(V) && !isa<Instruction>(V))
1750     return DFS.ZeroOrigin;
1751   Value *&Origin = ValOriginMap[V];
1752   if (!Origin) {
1753     if (Argument *A = dyn_cast<Argument>(V)) {
1754       if (IsNativeABI)
1755         return DFS.ZeroOrigin;
1756       switch (IA) {
1757       case DataFlowSanitizer::IA_TLS: {
1758         if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
1759           Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
1760           IRBuilder<> IRB(ArgOriginTLSPos);
1761           Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
1762           Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
1763         } else {
1764           // Overflow
1765           Origin = DFS.ZeroOrigin;
1766         }
1767         break;
1768       }
1769       case DataFlowSanitizer::IA_Args: {
1770         Origin = DFS.ZeroOrigin;
1771         break;
1772       }
1773       }
1774     } else {
1775       Origin = DFS.ZeroOrigin;
1776     }
1777   }
1778   return Origin;
1779 }
1780 
setOrigin(Instruction * I,Value * Origin)1781 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
1782   if (!DFS.shouldTrackOrigins())
1783     return;
1784   assert(!ValOriginMap.count(I));
1785   assert(Origin->getType() == DFS.OriginTy);
1786   ValOriginMap[I] = Origin;
1787 }
1788 
getShadowForTLSArgument(Argument * A)1789 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1790   unsigned ArgOffset = 0;
1791   const DataLayout &DL = F->getParent()->getDataLayout();
1792   for (auto &FArg : F->args()) {
1793     if (!FArg.getType()->isSized()) {
1794       if (A == &FArg)
1795         break;
1796       continue;
1797     }
1798 
1799     unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1800     if (A != &FArg) {
1801       ArgOffset += alignTo(Size, ShadowTLSAlignment);
1802       if (ArgOffset > ArgTLSSize)
1803         break; // ArgTLS overflows, uses a zero shadow.
1804       continue;
1805     }
1806 
1807     if (ArgOffset + Size > ArgTLSSize)
1808       break; // ArgTLS overflows, uses a zero shadow.
1809 
1810     Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1811     IRBuilder<> IRB(ArgTLSPos);
1812     Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1813     return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1814                                  ShadowTLSAlignment);
1815   }
1816 
1817   return DFS.getZeroShadow(A);
1818 }
1819 
getShadow(Value * V)1820 Value *DFSanFunction::getShadow(Value *V) {
1821   if (!isa<Argument>(V) && !isa<Instruction>(V))
1822     return DFS.getZeroShadow(V);
1823   Value *&Shadow = ValShadowMap[V];
1824   if (!Shadow) {
1825     if (Argument *A = dyn_cast<Argument>(V)) {
1826       if (IsNativeABI)
1827         return DFS.getZeroShadow(V);
1828       switch (IA) {
1829       case DataFlowSanitizer::IA_TLS: {
1830         Shadow = getShadowForTLSArgument(A);
1831         break;
1832       }
1833       case DataFlowSanitizer::IA_Args: {
1834         unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1835         Function::arg_iterator Arg = F->arg_begin();
1836         std::advance(Arg, ArgIdx);
1837         Shadow = &*Arg;
1838         assert(Shadow->getType() == DFS.PrimitiveShadowTy);
1839         break;
1840       }
1841       }
1842       NonZeroChecks.push_back(Shadow);
1843     } else {
1844       Shadow = DFS.getZeroShadow(V);
1845     }
1846   }
1847   return Shadow;
1848 }
1849 
setShadow(Instruction * I,Value * Shadow)1850 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1851   assert(!ValShadowMap.count(I));
1852   assert(DFS.shouldTrackFieldsAndIndices() ||
1853          Shadow->getType() == DFS.PrimitiveShadowTy);
1854   ValShadowMap[I] = Shadow;
1855 }
1856 
getShadowOffset(Value * Addr,IRBuilder<> & IRB)1857 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
1858   // Returns Addr & shadow_mask
1859   assert(Addr != RetvalTLS && "Reinstrumenting?");
1860   Value *ShadowPtrMaskValue;
1861   if (DFSanRuntimeShadowMask)
1862     ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask);
1863   else
1864     ShadowPtrMaskValue = ShadowPtrMask;
1865   return IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy),
1866                        IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy));
1867 }
1868 
1869 std::pair<Value *, Value *>
getShadowOriginAddress(Value * Addr,Align InstAlignment,Instruction * Pos)1870 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
1871                                           Instruction *Pos) {
1872   // Returns ((Addr & shadow_mask) + origin_base) & ~4UL
1873   IRBuilder<> IRB(Pos);
1874   Value *ShadowOffset = getShadowOffset(Addr, IRB);
1875   Value *ShadowPtr = getShadowAddress(Addr, Pos, ShadowOffset);
1876   Value *OriginPtr = nullptr;
1877   if (shouldTrackOrigins()) {
1878     Value *OriginLong = IRB.CreateAdd(ShadowOffset, OriginBase);
1879     const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1880     // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
1881     // So Mask is unnecessary.
1882     if (Alignment < MinOriginAlignment) {
1883       uint64_t Mask = MinOriginAlignment.value() - 1;
1884       OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
1885     }
1886     OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
1887   }
1888   return {ShadowPtr, OriginPtr};
1889 }
1890 
getShadowAddress(Value * Addr,Instruction * Pos,Value * ShadowOffset)1891 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
1892                                            Value *ShadowOffset) {
1893   IRBuilder<> IRB(Pos);
1894 
1895   if (!ShadowPtrMul->isOne())
1896     ShadowOffset = IRB.CreateMul(ShadowOffset, ShadowPtrMul);
1897 
1898   return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
1899 }
1900 
getShadowAddress(Value * Addr,Instruction * Pos)1901 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1902   // Returns (Addr & shadow_mask) x 2
1903   IRBuilder<> IRB(Pos);
1904   Value *ShadowOffset = getShadowOffset(Addr, IRB);
1905   return getShadowAddress(Addr, Pos, ShadowOffset);
1906 }
1907 
combineShadowsThenConvert(Type * T,Value * V1,Value * V2,Instruction * Pos)1908 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1909                                                 Instruction *Pos) {
1910   Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1911   return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1912 }
1913 
1914 // Generates IR to compute the union of the two given shadows, inserting it
1915 // before Pos. The combined value is with primitive type.
combineShadows(Value * V1,Value * V2,Instruction * Pos)1916 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1917   if (DFS.isZeroShadow(V1))
1918     return collapseToPrimitiveShadow(V2, Pos);
1919   if (DFS.isZeroShadow(V2))
1920     return collapseToPrimitiveShadow(V1, Pos);
1921   if (V1 == V2)
1922     return collapseToPrimitiveShadow(V1, Pos);
1923 
1924   auto V1Elems = ShadowElements.find(V1);
1925   auto V2Elems = ShadowElements.find(V2);
1926   if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1927     if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1928                       V2Elems->second.begin(), V2Elems->second.end())) {
1929       return collapseToPrimitiveShadow(V1, Pos);
1930     }
1931     if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1932                       V1Elems->second.begin(), V1Elems->second.end())) {
1933       return collapseToPrimitiveShadow(V2, Pos);
1934     }
1935   } else if (V1Elems != ShadowElements.end()) {
1936     if (V1Elems->second.count(V2))
1937       return collapseToPrimitiveShadow(V1, Pos);
1938   } else if (V2Elems != ShadowElements.end()) {
1939     if (V2Elems->second.count(V1))
1940       return collapseToPrimitiveShadow(V2, Pos);
1941   }
1942 
1943   auto Key = std::make_pair(V1, V2);
1944   if (V1 > V2)
1945     std::swap(Key.first, Key.second);
1946   CachedShadow &CCS = CachedShadows[Key];
1947   if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1948     return CCS.Shadow;
1949 
1950   // Converts inputs shadows to shadows with primitive types.
1951   Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
1952   Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
1953 
1954   IRBuilder<> IRB(Pos);
1955   if (DFS.hasFastLabelsEnabled()) {
1956     CCS.Block = Pos->getParent();
1957     CCS.Shadow = IRB.CreateOr(PV1, PV2);
1958   } else if (AvoidNewBlocks) {
1959     CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2});
1960     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1961     Call->addParamAttr(0, Attribute::ZExt);
1962     Call->addParamAttr(1, Attribute::ZExt);
1963 
1964     CCS.Block = Pos->getParent();
1965     CCS.Shadow = Call;
1966   } else {
1967     BasicBlock *Head = Pos->getParent();
1968     Value *Ne = IRB.CreateICmpNE(PV1, PV2);
1969     BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1970         Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT));
1971     IRBuilder<> ThenIRB(BI);
1972     CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2});
1973     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
1974     Call->addParamAttr(0, Attribute::ZExt);
1975     Call->addParamAttr(1, Attribute::ZExt);
1976 
1977     BasicBlock *Tail = BI->getSuccessor(0);
1978     PHINode *Phi =
1979         PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front());
1980     Phi->addIncoming(Call, Call->getParent());
1981     Phi->addIncoming(PV1, Head);
1982 
1983     CCS.Block = Tail;
1984     CCS.Shadow = Phi;
1985   }
1986 
1987   std::set<Value *> UnionElems;
1988   if (V1Elems != ShadowElements.end()) {
1989     UnionElems = V1Elems->second;
1990   } else {
1991     UnionElems.insert(V1);
1992   }
1993   if (V2Elems != ShadowElements.end()) {
1994     UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1995   } else {
1996     UnionElems.insert(V2);
1997   }
1998   ShadowElements[CCS.Shadow] = std::move(UnionElems);
1999 
2000   return CCS.Shadow;
2001 }
2002 
2003 // A convenience function which folds the shadows of each of the operands
2004 // of the provided instruction Inst, inserting the IR before Inst.  Returns
2005 // the computed union Value.
combineOperandShadows(Instruction * Inst)2006 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
2007   if (Inst->getNumOperands() == 0)
2008     return DFS.getZeroShadow(Inst);
2009 
2010   Value *Shadow = getShadow(Inst->getOperand(0));
2011   for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
2012     Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
2013 
2014   return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
2015 }
2016 
visitInstOperands(Instruction & I)2017 void DFSanVisitor::visitInstOperands(Instruction &I) {
2018   Value *CombinedShadow = DFSF.combineOperandShadows(&I);
2019   DFSF.setShadow(&I, CombinedShadow);
2020   visitInstOperandOrigins(I);
2021 }
2022 
combineOrigins(const std::vector<Value * > & Shadows,const std::vector<Value * > & Origins,Instruction * Pos,ConstantInt * Zero)2023 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
2024                                      const std::vector<Value *> &Origins,
2025                                      Instruction *Pos, ConstantInt *Zero) {
2026   assert(Shadows.size() == Origins.size());
2027   size_t Size = Origins.size();
2028   if (Size == 0)
2029     return DFS.ZeroOrigin;
2030   Value *Origin = nullptr;
2031   if (!Zero)
2032     Zero = DFS.ZeroPrimitiveShadow;
2033   for (size_t I = 0; I != Size; ++I) {
2034     Value *OpOrigin = Origins[I];
2035     Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
2036     if (ConstOpOrigin && ConstOpOrigin->isNullValue())
2037       continue;
2038     if (!Origin) {
2039       Origin = OpOrigin;
2040       continue;
2041     }
2042     Value *OpShadow = Shadows[I];
2043     Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
2044     IRBuilder<> IRB(Pos);
2045     Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
2046     Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
2047   }
2048   return Origin ? Origin : DFS.ZeroOrigin;
2049 }
2050 
combineOperandOrigins(Instruction * Inst)2051 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
2052   size_t Size = Inst->getNumOperands();
2053   std::vector<Value *> Shadows(Size);
2054   std::vector<Value *> Origins(Size);
2055   for (unsigned I = 0; I != Size; ++I) {
2056     Shadows[I] = getShadow(Inst->getOperand(I));
2057     Origins[I] = getOrigin(Inst->getOperand(I));
2058   }
2059   return combineOrigins(Shadows, Origins, Inst);
2060 }
2061 
visitInstOperandOrigins(Instruction & I)2062 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
2063   if (!DFSF.DFS.shouldTrackOrigins())
2064     return;
2065   Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
2066   DFSF.setOrigin(&I, CombinedOrigin);
2067 }
2068 
getShadowAlign(Align InstAlignment)2069 Align DFSanFunction::getShadowAlign(Align InstAlignment) {
2070   const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
2071   return Align(Alignment.value() * DFS.ShadowWidthBytes);
2072 }
2073 
getOriginAlign(Align InstAlignment)2074 Align DFSanFunction::getOriginAlign(Align InstAlignment) {
2075   const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2076   return Align(std::max(MinOriginAlignment, Alignment));
2077 }
2078 
useCallbackLoadLabelAndOrigin(uint64_t Size,Align InstAlignment)2079 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
2080                                                   Align InstAlignment) {
2081   // When enabling tracking load instructions, we always use
2082   // __dfsan_load_label_and_origin to reduce code size.
2083   if (ClTrackOrigins == 2)
2084     return true;
2085 
2086   assert(Size != 0);
2087   // * if Size == 1, it is sufficient to load its origin aligned at 4.
2088   // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
2089   //   load its origin aligned at 4. If not, although origins may be lost, it
2090   //   should not happen very often.
2091   // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
2092   //   Size % 4 == 0, it is more efficient to load origins without callbacks.
2093   // * Otherwise we use __dfsan_load_label_and_origin.
2094   // This should ensure that common cases run efficiently.
2095   if (Size <= 2)
2096     return false;
2097 
2098   const Align Alignment = llvm::assumeAligned(InstAlignment.value());
2099   return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
2100 }
2101 
loadNextOrigin(Instruction * Pos,Align OriginAlign,Value ** OriginAddr)2102 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
2103                                          Value **OriginAddr) {
2104   IRBuilder<> IRB(Pos);
2105   *OriginAddr =
2106       IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
2107   return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
2108 }
2109 
loadFast16ShadowFast(Value * ShadowAddr,Value * OriginAddr,uint64_t Size,Align ShadowAlign,Align OriginAlign,Value * FirstOrigin,Instruction * Pos)2110 std::pair<Value *, Value *> DFSanFunction::loadFast16ShadowFast(
2111     Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
2112     Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
2113   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2114   const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
2115 
2116   assert(Size >= 4 && "Not large enough load size for fast path!");
2117 
2118   // Used for origin tracking.
2119   std::vector<Value *> Shadows;
2120   std::vector<Value *> Origins;
2121 
2122   // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
2123   // but this function is only used in a subset of cases that make it possible
2124   // to optimize the instrumentation.
2125   //
2126   // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
2127   // per byte) is either:
2128   // - a multiple of 8  (common)
2129   // - equal to 4       (only for load32 in fast-8 mode)
2130   //
2131   // For the second case, we can fit the wide shadow in a 32-bit integer. In all
2132   // other cases, we use a 64-bit integer to hold the wide shadow.
2133   Type *WideShadowTy =
2134       ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
2135 
2136   IRBuilder<> IRB(Pos);
2137   Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
2138   Value *CombinedWideShadow =
2139       IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2140 
2141   unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
2142   const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
2143 
2144   auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
2145     if (BytesPerWideShadow > 4) {
2146       assert(BytesPerWideShadow == 8);
2147       // The wide shadow relates to two origin pointers: one for the first four
2148       // application bytes, and one for the latest four. We use a left shift to
2149       // get just the shadow bytes that correspond to the first origin pointer,
2150       // and then the entire shadow for the second origin pointer (which will be
2151       // chosen by combineOrigins() iff the least-significant half of the wide
2152       // shadow was empty but the other half was not).
2153       Value *WideShadowLo = IRB.CreateShl(
2154           WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
2155       Shadows.push_back(WideShadow);
2156       Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
2157 
2158       Shadows.push_back(WideShadowLo);
2159       Origins.push_back(Origin);
2160     } else {
2161       Shadows.push_back(WideShadow);
2162       Origins.push_back(Origin);
2163     }
2164   };
2165 
2166   if (ShouldTrackOrigins)
2167     AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
2168 
2169   // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
2170   // then OR individual shadows within the combined WideShadow by binary ORing.
2171   // This is fewer instructions than ORing shadows individually, since it
2172   // needs logN shift/or instructions (N being the bytes of the combined wide
2173   // shadow).
2174   for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
2175        ByteOfs += BytesPerWideShadow) {
2176     WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
2177                              ConstantInt::get(DFS.IntptrTy, 1));
2178     Value *NextWideShadow =
2179         IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2180     CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
2181     if (ShouldTrackOrigins) {
2182       Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
2183       AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
2184     }
2185   }
2186   for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
2187        Width >>= 1) {
2188     Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
2189     CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
2190   }
2191   return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
2192           ShouldTrackOrigins
2193               ? combineOrigins(Shadows, Origins, Pos,
2194                                ConstantInt::getSigned(IRB.getInt64Ty(), 0))
2195               : DFS.ZeroOrigin};
2196 }
2197 
loadLegacyShadowFast(Value * ShadowAddr,uint64_t Size,Align ShadowAlign,Instruction * Pos)2198 Value *DFSanFunction::loadLegacyShadowFast(Value *ShadowAddr, uint64_t Size,
2199                                            Align ShadowAlign,
2200                                            Instruction *Pos) {
2201   // Fast path for the common case where each byte has identical shadow: load
2202   // shadow 64 (or 32) bits at a time, fall out to a __dfsan_union_load call if
2203   // any shadow is non-equal.
2204   BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
2205   IRBuilder<> FallbackIRB(FallbackBB);
2206   CallInst *FallbackCall = FallbackIRB.CreateCall(
2207       DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2208   FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
2209 
2210   const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
2211   assert(Size >= 4 && "Not large enough load size for fast path!");
2212 
2213   // Same as in loadFast16AShadowsFast. In the case of load32, we can fit the
2214   // wide shadow in a 32-bit integer instead.
2215   Type *WideShadowTy =
2216       ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
2217 
2218   // Compare each of the shadows stored in the loaded 64 bits to each other,
2219   // by computing (WideShadow rotl ShadowWidthBits) == WideShadow.
2220   IRBuilder<> IRB(Pos);
2221   unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
2222   Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
2223   Value *WideShadow =
2224       IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2225   Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy);
2226   Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits);
2227   Value *ShrShadow =
2228       IRB.CreateLShr(WideShadow, WideShadowBitWidth - DFS.ShadowWidthBits);
2229   Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
2230   Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
2231 
2232   BasicBlock *Head = Pos->getParent();
2233   BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator());
2234 
2235   if (DomTreeNode *OldNode = DT.getNode(Head)) {
2236     std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
2237 
2238     DomTreeNode *NewNode = DT.addNewBlock(Tail, Head);
2239     for (auto *Child : Children)
2240       DT.changeImmediateDominator(Child, NewNode);
2241   }
2242 
2243   // In the following code LastBr will refer to the previous basic block's
2244   // conditional branch instruction, whose true successor is fixed up to point
2245   // to the next block during the loop below or to the tail after the final
2246   // iteration.
2247   BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
2248   ReplaceInstWithInst(Head->getTerminator(), LastBr);
2249   DT.addNewBlock(FallbackBB, Head);
2250 
2251   const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
2252 
2253   for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
2254        ByteOfs += BytesPerWideShadow) {
2255     BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
2256     DT.addNewBlock(NextBB, LastBr->getParent());
2257     IRBuilder<> NextIRB(NextBB);
2258     WideAddr = NextIRB.CreateGEP(WideShadowTy, WideAddr,
2259                                  ConstantInt::get(DFS.IntptrTy, 1));
2260     Value *NextWideShadow =
2261         NextIRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2262     ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
2263     LastBr->setSuccessor(0, NextBB);
2264     LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
2265   }
2266 
2267   LastBr->setSuccessor(0, Tail);
2268   FallbackIRB.CreateBr(Tail);
2269   PHINode *Shadow =
2270       PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front());
2271   Shadow->addIncoming(FallbackCall, FallbackBB);
2272   Shadow->addIncoming(TruncShadow, LastBr->getParent());
2273   return Shadow;
2274 }
2275 
loadShadowOriginSansLoadTracking(Value * Addr,uint64_t Size,Align InstAlignment,Instruction * Pos)2276 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
2277     Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
2278   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2279 
2280   // Non-escaped loads.
2281   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2282     const auto SI = AllocaShadowMap.find(AI);
2283     if (SI != AllocaShadowMap.end()) {
2284       IRBuilder<> IRB(Pos);
2285       Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
2286       const auto OI = AllocaOriginMap.find(AI);
2287       assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
2288       return {ShadowLI, ShouldTrackOrigins
2289                             ? IRB.CreateLoad(DFS.OriginTy, OI->second)
2290                             : nullptr};
2291     }
2292   }
2293 
2294   // Load from constant addresses.
2295   SmallVector<const Value *, 2> Objs;
2296   getUnderlyingObjects(Addr, Objs);
2297   bool AllConstants = true;
2298   for (const Value *Obj : Objs) {
2299     if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
2300       continue;
2301     if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
2302       continue;
2303 
2304     AllConstants = false;
2305     break;
2306   }
2307   if (AllConstants)
2308     return {DFS.ZeroPrimitiveShadow,
2309             ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2310 
2311   if (Size == 0)
2312     return {DFS.ZeroPrimitiveShadow,
2313             ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2314 
2315   // Use callback to load if this is not an optimizable case for origin
2316   // tracking.
2317   if (ShouldTrackOrigins &&
2318       useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
2319     IRBuilder<> IRB(Pos);
2320     CallInst *Call =
2321         IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
2322                        {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2323                         ConstantInt::get(DFS.IntptrTy, Size)});
2324     Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
2325     return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
2326                             DFS.PrimitiveShadowTy),
2327             IRB.CreateTrunc(Call, DFS.OriginTy)};
2328   }
2329 
2330   // Other cases that support loading shadows or origins in a fast way.
2331   Value *ShadowAddr, *OriginAddr;
2332   std::tie(ShadowAddr, OriginAddr) =
2333       DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2334 
2335   const Align ShadowAlign = getShadowAlign(InstAlignment);
2336   const Align OriginAlign = getOriginAlign(InstAlignment);
2337   Value *Origin = nullptr;
2338   if (ShouldTrackOrigins) {
2339     IRBuilder<> IRB(Pos);
2340     Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
2341   }
2342 
2343   // When the byte size is small enough, we can load the shadow directly with
2344   // just a few instructions.
2345   switch (Size) {
2346   case 1: {
2347     LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
2348     LI->setAlignment(ShadowAlign);
2349     return {LI, Origin};
2350   }
2351   case 2: {
2352     IRBuilder<> IRB(Pos);
2353     Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
2354                                        ConstantInt::get(DFS.IntptrTy, 1));
2355     Value *Load =
2356         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
2357     Value *Load1 =
2358         IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
2359     return {combineShadows(Load, Load1, Pos), Origin};
2360   }
2361   }
2362   bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
2363   bool HasFastLabelsEnabled = DFS.hasFastLabelsEnabled();
2364 
2365   if (HasFastLabelsEnabled && HasSizeForFastPath)
2366     return loadFast16ShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
2367                                 OriginAlign, Origin, Pos);
2368 
2369   if (!AvoidNewBlocks && HasSizeForFastPath)
2370     return {loadLegacyShadowFast(ShadowAddr, Size, ShadowAlign, Pos), Origin};
2371 
2372   IRBuilder<> IRB(Pos);
2373   FunctionCallee &UnionLoadFn = HasFastLabelsEnabled
2374                                     ? DFS.DFSanUnionLoadFastLabelsFn
2375                                     : DFS.DFSanUnionLoadFn;
2376   CallInst *FallbackCall = IRB.CreateCall(
2377       UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2378   FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt);
2379   return {FallbackCall, Origin};
2380 }
2381 
loadShadowOrigin(Value * Addr,uint64_t Size,Align InstAlignment,Instruction * Pos)2382 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
2383                                                             uint64_t Size,
2384                                                             Align InstAlignment,
2385                                                             Instruction *Pos) {
2386   Value *PrimitiveShadow, *Origin;
2387   std::tie(PrimitiveShadow, Origin) =
2388       loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
2389   if (DFS.shouldTrackOrigins()) {
2390     if (ClTrackOrigins == 2) {
2391       IRBuilder<> IRB(Pos);
2392       auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
2393       if (!ConstantShadow || !ConstantShadow->isZeroValue())
2394         Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
2395     }
2396   }
2397   return {PrimitiveShadow, Origin};
2398 }
2399 
addAcquireOrdering(AtomicOrdering AO)2400 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
2401   switch (AO) {
2402   case AtomicOrdering::NotAtomic:
2403     return AtomicOrdering::NotAtomic;
2404   case AtomicOrdering::Unordered:
2405   case AtomicOrdering::Monotonic:
2406   case AtomicOrdering::Acquire:
2407     return AtomicOrdering::Acquire;
2408   case AtomicOrdering::Release:
2409   case AtomicOrdering::AcquireRelease:
2410     return AtomicOrdering::AcquireRelease;
2411   case AtomicOrdering::SequentiallyConsistent:
2412     return AtomicOrdering::SequentiallyConsistent;
2413   }
2414   llvm_unreachable("Unknown ordering");
2415 }
2416 
visitLoadInst(LoadInst & LI)2417 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
2418   auto &DL = LI.getModule()->getDataLayout();
2419   uint64_t Size = DL.getTypeStoreSize(LI.getType());
2420   if (Size == 0) {
2421     DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
2422     DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
2423     return;
2424   }
2425 
2426   // When an application load is atomic, increase atomic ordering between
2427   // atomic application loads and stores to ensure happen-before order; load
2428   // shadow data after application data; store zero shadow data before
2429   // application data. This ensure shadow loads return either labels of the
2430   // initial application data or zeros.
2431   if (LI.isAtomic())
2432     LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
2433 
2434   Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
2435   std::vector<Value *> Shadows;
2436   std::vector<Value *> Origins;
2437   Value *PrimitiveShadow, *Origin;
2438   std::tie(PrimitiveShadow, Origin) =
2439       DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
2440   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2441   if (ShouldTrackOrigins) {
2442     Shadows.push_back(PrimitiveShadow);
2443     Origins.push_back(Origin);
2444   }
2445   if (ClCombinePointerLabelsOnLoad) {
2446     Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
2447     PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
2448     if (ShouldTrackOrigins) {
2449       Shadows.push_back(PtrShadow);
2450       Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
2451     }
2452   }
2453   if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
2454     DFSF.NonZeroChecks.push_back(PrimitiveShadow);
2455 
2456   Value *Shadow =
2457       DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
2458   DFSF.setShadow(&LI, Shadow);
2459 
2460   if (ShouldTrackOrigins) {
2461     DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
2462   }
2463 
2464   if (ClEventCallbacks) {
2465     IRBuilder<> IRB(Pos);
2466     Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2467     IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
2468   }
2469 }
2470 
updateOriginIfTainted(Value * Shadow,Value * Origin,IRBuilder<> & IRB)2471 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
2472                                             IRBuilder<> &IRB) {
2473   assert(DFS.shouldTrackOrigins());
2474   return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
2475 }
2476 
updateOrigin(Value * V,IRBuilder<> & IRB)2477 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
2478   if (!DFS.shouldTrackOrigins())
2479     return V;
2480   return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
2481 }
2482 
originToIntptr(IRBuilder<> & IRB,Value * Origin)2483 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
2484   const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2485   const DataLayout &DL = F->getParent()->getDataLayout();
2486   unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2487   if (IntptrSize == OriginSize)
2488     return Origin;
2489   assert(IntptrSize == OriginSize * 2);
2490   Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
2491   return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
2492 }
2493 
paintOrigin(IRBuilder<> & IRB,Value * Origin,Value * StoreOriginAddr,uint64_t StoreOriginSize,Align Alignment)2494 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
2495                                 Value *StoreOriginAddr,
2496                                 uint64_t StoreOriginSize, Align Alignment) {
2497   const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2498   const DataLayout &DL = F->getParent()->getDataLayout();
2499   const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
2500   unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2501   assert(IntptrAlignment >= MinOriginAlignment);
2502   assert(IntptrSize >= OriginSize);
2503 
2504   unsigned Ofs = 0;
2505   Align CurrentAlignment = Alignment;
2506   if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
2507     Value *IntptrOrigin = originToIntptr(IRB, Origin);
2508     Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
2509         StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
2510     for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
2511       Value *Ptr =
2512           I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
2513             : IntptrStoreOriginPtr;
2514       IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
2515       Ofs += IntptrSize / OriginSize;
2516       CurrentAlignment = IntptrAlignment;
2517     }
2518   }
2519 
2520   for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
2521        ++I) {
2522     Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
2523                    : StoreOriginAddr;
2524     IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
2525     CurrentAlignment = MinOriginAlignment;
2526   }
2527 }
2528 
convertToBool(Value * V,IRBuilder<> & IRB,const Twine & Name)2529 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
2530                                     const Twine &Name) {
2531   Type *VTy = V->getType();
2532   assert(VTy->isIntegerTy());
2533   if (VTy->getIntegerBitWidth() == 1)
2534     // Just converting a bool to a bool, so do nothing.
2535     return V;
2536   return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
2537 }
2538 
storeOrigin(Instruction * Pos,Value * Addr,uint64_t Size,Value * Shadow,Value * Origin,Value * StoreOriginAddr,Align InstAlignment)2539 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
2540                                 Value *Shadow, Value *Origin,
2541                                 Value *StoreOriginAddr, Align InstAlignment) {
2542   // Do not write origins for zero shadows because we do not trace origins for
2543   // untainted sinks.
2544   const Align OriginAlignment = getOriginAlign(InstAlignment);
2545   Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
2546   IRBuilder<> IRB(Pos);
2547   if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
2548     if (!ConstantShadow->isZeroValue())
2549       paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
2550                   OriginAlignment);
2551     return;
2552   }
2553 
2554   if (shouldInstrumentWithCall()) {
2555     IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
2556                    {CollapsedShadow,
2557                     IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2558                     ConstantInt::get(DFS.IntptrTy, Size), Origin});
2559   } else {
2560     Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
2561     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
2562         Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT);
2563     IRBuilder<> IRBNew(CheckTerm);
2564     paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
2565                 OriginAlignment);
2566     ++NumOriginStores;
2567   }
2568 }
2569 
storeZeroPrimitiveShadow(Value * Addr,uint64_t Size,Align ShadowAlign,Instruction * Pos)2570 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
2571                                              Align ShadowAlign,
2572                                              Instruction *Pos) {
2573   IRBuilder<> IRB(Pos);
2574   IntegerType *ShadowTy =
2575       IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
2576   Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
2577   Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
2578   Value *ExtShadowAddr =
2579       IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
2580   IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
2581   // Do not write origins for 0 shadows because we do not trace origins for
2582   // untainted sinks.
2583 }
2584 
storePrimitiveShadowOrigin(Value * Addr,uint64_t Size,Align InstAlignment,Value * PrimitiveShadow,Value * Origin,Instruction * Pos)2585 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
2586                                                Align InstAlignment,
2587                                                Value *PrimitiveShadow,
2588                                                Value *Origin,
2589                                                Instruction *Pos) {
2590   const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
2591 
2592   if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2593     const auto SI = AllocaShadowMap.find(AI);
2594     if (SI != AllocaShadowMap.end()) {
2595       IRBuilder<> IRB(Pos);
2596       IRB.CreateStore(PrimitiveShadow, SI->second);
2597 
2598       // Do not write origins for 0 shadows because we do not trace origins for
2599       // untainted sinks.
2600       if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
2601         const auto OI = AllocaOriginMap.find(AI);
2602         assert(OI != AllocaOriginMap.end() && Origin);
2603         IRB.CreateStore(Origin, OI->second);
2604       }
2605       return;
2606     }
2607   }
2608 
2609   const Align ShadowAlign = getShadowAlign(InstAlignment);
2610   if (DFS.isZeroShadow(PrimitiveShadow)) {
2611     storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
2612     return;
2613   }
2614 
2615   IRBuilder<> IRB(Pos);
2616   Value *ShadowAddr, *OriginAddr;
2617   std::tie(ShadowAddr, OriginAddr) =
2618       DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2619 
2620   const unsigned ShadowVecSize = 8;
2621   assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
2622          "Shadow vector is too large!");
2623 
2624   uint64_t Offset = 0;
2625   uint64_t LeftSize = Size;
2626   if (LeftSize >= ShadowVecSize) {
2627     auto *ShadowVecTy =
2628         FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
2629     Value *ShadowVec = UndefValue::get(ShadowVecTy);
2630     for (unsigned I = 0; I != ShadowVecSize; ++I) {
2631       ShadowVec = IRB.CreateInsertElement(
2632           ShadowVec, PrimitiveShadow,
2633           ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
2634     }
2635     Value *ShadowVecAddr =
2636         IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
2637     do {
2638       Value *CurShadowVecAddr =
2639           IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
2640       IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
2641       LeftSize -= ShadowVecSize;
2642       ++Offset;
2643     } while (LeftSize >= ShadowVecSize);
2644     Offset *= ShadowVecSize;
2645   }
2646   while (LeftSize > 0) {
2647     Value *CurShadowAddr =
2648         IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
2649     IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
2650     --LeftSize;
2651     ++Offset;
2652   }
2653 
2654   if (ShouldTrackOrigins) {
2655     storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
2656                 InstAlignment);
2657   }
2658 }
2659 
addReleaseOrdering(AtomicOrdering AO)2660 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
2661   switch (AO) {
2662   case AtomicOrdering::NotAtomic:
2663     return AtomicOrdering::NotAtomic;
2664   case AtomicOrdering::Unordered:
2665   case AtomicOrdering::Monotonic:
2666   case AtomicOrdering::Release:
2667     return AtomicOrdering::Release;
2668   case AtomicOrdering::Acquire:
2669   case AtomicOrdering::AcquireRelease:
2670     return AtomicOrdering::AcquireRelease;
2671   case AtomicOrdering::SequentiallyConsistent:
2672     return AtomicOrdering::SequentiallyConsistent;
2673   }
2674   llvm_unreachable("Unknown ordering");
2675 }
2676 
visitStoreInst(StoreInst & SI)2677 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
2678   auto &DL = SI.getModule()->getDataLayout();
2679   Value *Val = SI.getValueOperand();
2680   uint64_t Size = DL.getTypeStoreSize(Val->getType());
2681   if (Size == 0)
2682     return;
2683 
2684   // When an application store is atomic, increase atomic ordering between
2685   // atomic application loads and stores to ensure happen-before order; load
2686   // shadow data after application data; store zero shadow data before
2687   // application data. This ensure shadow loads return either labels of the
2688   // initial application data or zeros.
2689   if (SI.isAtomic())
2690     SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
2691 
2692   const bool ShouldTrackOrigins =
2693       DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
2694   std::vector<Value *> Shadows;
2695   std::vector<Value *> Origins;
2696 
2697   Value *Shadow =
2698       SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
2699 
2700   if (ShouldTrackOrigins) {
2701     Shadows.push_back(Shadow);
2702     Origins.push_back(DFSF.getOrigin(Val));
2703   }
2704 
2705   Value *PrimitiveShadow;
2706   if (ClCombinePointerLabelsOnStore) {
2707     Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
2708     if (ShouldTrackOrigins) {
2709       Shadows.push_back(PtrShadow);
2710       Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
2711     }
2712     PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
2713   } else {
2714     PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
2715   }
2716   Value *Origin = nullptr;
2717   if (ShouldTrackOrigins)
2718     Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
2719   DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
2720                                   PrimitiveShadow, Origin, &SI);
2721   if (ClEventCallbacks) {
2722     IRBuilder<> IRB(&SI);
2723     Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2724     IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
2725   }
2726 }
2727 
visitCASOrRMW(Align InstAlignment,Instruction & I)2728 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
2729   assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2730 
2731   Value *Val = I.getOperand(1);
2732   const auto &DL = I.getModule()->getDataLayout();
2733   uint64_t Size = DL.getTypeStoreSize(Val->getType());
2734   if (Size == 0)
2735     return;
2736 
2737   // Conservatively set data at stored addresses and return with zero shadow to
2738   // prevent shadow data races.
2739   IRBuilder<> IRB(&I);
2740   Value *Addr = I.getOperand(0);
2741   const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
2742   DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
2743   DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
2744   DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2745 }
2746 
visitAtomicRMWInst(AtomicRMWInst & I)2747 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
2748   visitCASOrRMW(I.getAlign(), I);
2749   // TODO: The ordering change follows MSan. It is possible not to change
2750   // ordering because we always set and use 0 shadows.
2751   I.setOrdering(addReleaseOrdering(I.getOrdering()));
2752 }
2753 
visitAtomicCmpXchgInst(AtomicCmpXchgInst & I)2754 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2755   visitCASOrRMW(I.getAlign(), I);
2756   // TODO: The ordering change follows MSan. It is possible not to change
2757   // ordering because we always set and use 0 shadows.
2758   I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2759 }
2760 
visitUnaryOperator(UnaryOperator & UO)2761 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
2762   visitInstOperands(UO);
2763 }
2764 
visitBinaryOperator(BinaryOperator & BO)2765 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
2766   visitInstOperands(BO);
2767 }
2768 
visitCastInst(CastInst & CI)2769 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
2770 
visitCmpInst(CmpInst & CI)2771 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
2772   visitInstOperands(CI);
2773   if (ClEventCallbacks) {
2774     IRBuilder<> IRB(&CI);
2775     Value *CombinedShadow = DFSF.getShadow(&CI);
2776     IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
2777   }
2778 }
2779 
visitGetElementPtrInst(GetElementPtrInst & GEPI)2780 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2781   visitInstOperands(GEPI);
2782 }
2783 
visitExtractElementInst(ExtractElementInst & I)2784 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
2785   visitInstOperands(I);
2786 }
2787 
visitInsertElementInst(InsertElementInst & I)2788 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
2789   visitInstOperands(I);
2790 }
2791 
visitShuffleVectorInst(ShuffleVectorInst & I)2792 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
2793   visitInstOperands(I);
2794 }
2795 
visitExtractValueInst(ExtractValueInst & I)2796 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
2797   if (!DFSF.DFS.shouldTrackFieldsAndIndices()) {
2798     visitInstOperands(I);
2799     return;
2800   }
2801 
2802   IRBuilder<> IRB(&I);
2803   Value *Agg = I.getAggregateOperand();
2804   Value *AggShadow = DFSF.getShadow(Agg);
2805   Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2806   DFSF.setShadow(&I, ResShadow);
2807   visitInstOperandOrigins(I);
2808 }
2809 
visitInsertValueInst(InsertValueInst & I)2810 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
2811   if (!DFSF.DFS.shouldTrackFieldsAndIndices()) {
2812     visitInstOperands(I);
2813     return;
2814   }
2815 
2816   IRBuilder<> IRB(&I);
2817   Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
2818   Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
2819   Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2820   DFSF.setShadow(&I, Res);
2821   visitInstOperandOrigins(I);
2822 }
2823 
visitAllocaInst(AllocaInst & I)2824 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
2825   bool AllLoadsStores = true;
2826   for (User *U : I.users()) {
2827     if (isa<LoadInst>(U))
2828       continue;
2829 
2830     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
2831       if (SI->getPointerOperand() == &I)
2832         continue;
2833     }
2834 
2835     AllLoadsStores = false;
2836     break;
2837   }
2838   if (AllLoadsStores) {
2839     IRBuilder<> IRB(&I);
2840     DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
2841     if (DFSF.DFS.shouldTrackOrigins()) {
2842       DFSF.AllocaOriginMap[&I] =
2843           IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
2844     }
2845   }
2846   DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
2847   DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2848 }
2849 
visitSelectInst(SelectInst & I)2850 void DFSanVisitor::visitSelectInst(SelectInst &I) {
2851   Value *CondShadow = DFSF.getShadow(I.getCondition());
2852   Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
2853   Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
2854   Value *ShadowSel = nullptr;
2855   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2856   std::vector<Value *> Shadows;
2857   std::vector<Value *> Origins;
2858   Value *TrueOrigin =
2859       ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
2860   Value *FalseOrigin =
2861       ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
2862 
2863   if (isa<VectorType>(I.getCondition()->getType())) {
2864     ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
2865                                                FalseShadow, &I);
2866     if (ShouldTrackOrigins) {
2867       Shadows.push_back(TrueShadow);
2868       Shadows.push_back(FalseShadow);
2869       Origins.push_back(TrueOrigin);
2870       Origins.push_back(FalseOrigin);
2871     }
2872   } else {
2873     if (TrueShadow == FalseShadow) {
2874       ShadowSel = TrueShadow;
2875       if (ShouldTrackOrigins) {
2876         Shadows.push_back(TrueShadow);
2877         Origins.push_back(TrueOrigin);
2878       }
2879     } else {
2880       ShadowSel =
2881           SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
2882       if (ShouldTrackOrigins) {
2883         Shadows.push_back(ShadowSel);
2884         Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
2885                                              FalseOrigin, "", &I));
2886       }
2887     }
2888   }
2889   DFSF.setShadow(&I, ClTrackSelectControlFlow
2890                          ? DFSF.combineShadowsThenConvert(
2891                                I.getType(), CondShadow, ShadowSel, &I)
2892                          : ShadowSel);
2893   if (ShouldTrackOrigins) {
2894     if (ClTrackSelectControlFlow) {
2895       Shadows.push_back(CondShadow);
2896       Origins.push_back(DFSF.getOrigin(I.getCondition()));
2897     }
2898     DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
2899   }
2900 }
2901 
visitMemSetInst(MemSetInst & I)2902 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
2903   IRBuilder<> IRB(&I);
2904   Value *ValShadow = DFSF.getShadow(I.getValue());
2905   Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
2906                          ? DFSF.getOrigin(I.getValue())
2907                          : DFSF.DFS.ZeroOrigin;
2908   IRB.CreateCall(
2909       DFSF.DFS.DFSanSetLabelFn,
2910       {ValShadow, ValOrigin,
2911        IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
2912        IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2913 }
2914 
visitMemTransferInst(MemTransferInst & I)2915 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
2916   IRBuilder<> IRB(&I);
2917 
2918   // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
2919   // need to move origins before moving shadows.
2920   if (DFSF.DFS.shouldTrackOrigins()) {
2921     IRB.CreateCall(
2922         DFSF.DFS.DFSanMemOriginTransferFn,
2923         {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2924          IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2925          IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
2926   }
2927 
2928   Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
2929   Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
2930   Value *LenShadow =
2931       IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
2932                                                     DFSF.DFS.ShadowWidthBytes));
2933   Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
2934   Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
2935   SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
2936   auto *MTI = cast<MemTransferInst>(
2937       IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2938                      {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
2939   if (ClPreserveAlignment) {
2940     MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
2941     MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
2942   } else {
2943     MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
2944     MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
2945   }
2946   if (ClEventCallbacks) {
2947     IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
2948                    {RawDestShadow,
2949                     IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2950   }
2951 }
2952 
visitReturnInst(ReturnInst & RI)2953 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
2954   if (!DFSF.IsNativeABI && RI.getReturnValue()) {
2955     switch (DFSF.IA) {
2956     case DataFlowSanitizer::IA_TLS: {
2957       Value *S = DFSF.getShadow(RI.getReturnValue());
2958       IRBuilder<> IRB(&RI);
2959       Type *RT = DFSF.F->getFunctionType()->getReturnType();
2960       unsigned Size =
2961           getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
2962       if (Size <= RetvalTLSSize) {
2963         // If the size overflows, stores nothing. At callsite, oversized return
2964         // shadows are set to zero.
2965         IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB),
2966                                ShadowTLSAlignment);
2967       }
2968       if (DFSF.DFS.shouldTrackOrigins()) {
2969         Value *O = DFSF.getOrigin(RI.getReturnValue());
2970         IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
2971       }
2972       break;
2973     }
2974     case DataFlowSanitizer::IA_Args: {
2975       IRBuilder<> IRB(&RI);
2976       Type *RT = DFSF.F->getFunctionType()->getReturnType();
2977       Value *InsVal =
2978           IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
2979       Value *InsShadow =
2980           IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
2981       RI.setOperand(0, InsShadow);
2982       break;
2983     }
2984     }
2985   }
2986 }
2987 
addShadowArguments(Function & F,CallBase & CB,std::vector<Value * > & Args,IRBuilder<> & IRB)2988 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
2989                                       std::vector<Value *> &Args,
2990                                       IRBuilder<> &IRB) {
2991   FunctionType *FT = F.getFunctionType();
2992 
2993   auto *I = CB.arg_begin();
2994 
2995   // Adds non-variable argument shadows.
2996   for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
2997     Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
2998 
2999   // Adds variable argument shadows.
3000   if (FT->isVarArg()) {
3001     auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
3002                                      CB.arg_size() - FT->getNumParams());
3003     auto *LabelVAAlloca =
3004         new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
3005                        "labelva", &DFSF.F->getEntryBlock().front());
3006 
3007     for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3008       auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
3009       IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
3010                       LabelVAPtr);
3011     }
3012 
3013     Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
3014   }
3015 
3016   // Adds the return value shadow.
3017   if (!FT->getReturnType()->isVoidTy()) {
3018     if (!DFSF.LabelReturnAlloca) {
3019       DFSF.LabelReturnAlloca = new AllocaInst(
3020           DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
3021           "labelreturn", &DFSF.F->getEntryBlock().front());
3022     }
3023     Args.push_back(DFSF.LabelReturnAlloca);
3024   }
3025 }
3026 
addOriginArguments(Function & F,CallBase & CB,std::vector<Value * > & Args,IRBuilder<> & IRB)3027 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
3028                                       std::vector<Value *> &Args,
3029                                       IRBuilder<> &IRB) {
3030   FunctionType *FT = F.getFunctionType();
3031 
3032   auto *I = CB.arg_begin();
3033 
3034   // Add non-variable argument origins.
3035   for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
3036     Args.push_back(DFSF.getOrigin(*I));
3037 
3038   // Add variable argument origins.
3039   if (FT->isVarArg()) {
3040     auto *OriginVATy =
3041         ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
3042     auto *OriginVAAlloca =
3043         new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
3044                        "originva", &DFSF.F->getEntryBlock().front());
3045 
3046     for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
3047       auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
3048       IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
3049     }
3050 
3051     Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
3052   }
3053 
3054   // Add the return value origin.
3055   if (!FT->getReturnType()->isVoidTy()) {
3056     if (!DFSF.OriginReturnAlloca) {
3057       DFSF.OriginReturnAlloca = new AllocaInst(
3058           DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
3059           "originreturn", &DFSF.F->getEntryBlock().front());
3060     }
3061     Args.push_back(DFSF.OriginReturnAlloca);
3062   }
3063 }
3064 
visitWrappedCallBase(Function & F,CallBase & CB)3065 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
3066   IRBuilder<> IRB(&CB);
3067   switch (DFSF.DFS.getWrapperKind(&F)) {
3068   case DataFlowSanitizer::WK_Warning:
3069     CB.setCalledFunction(&F);
3070     IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
3071                    IRB.CreateGlobalStringPtr(F.getName()));
3072     DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3073     DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3074     return true;
3075   case DataFlowSanitizer::WK_Discard:
3076     CB.setCalledFunction(&F);
3077     DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3078     DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
3079     return true;
3080   case DataFlowSanitizer::WK_Functional:
3081     CB.setCalledFunction(&F);
3082     visitInstOperands(CB);
3083     return true;
3084   case DataFlowSanitizer::WK_Custom:
3085     // Don't try to handle invokes of custom functions, it's too complicated.
3086     // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
3087     // wrapper.
3088     CallInst *CI = dyn_cast<CallInst>(&CB);
3089     if (!CI)
3090       return false;
3091 
3092     const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3093     FunctionType *FT = F.getFunctionType();
3094     TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
3095     std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
3096     CustomFName += F.getName();
3097     FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
3098         CustomFName, CustomFn.TransformedType);
3099     if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
3100       CustomFn->copyAttributesFrom(&F);
3101 
3102       // Custom functions returning non-void will write to the return label.
3103       if (!FT->getReturnType()->isVoidTy()) {
3104         CustomFn->removeAttributes(AttributeList::FunctionIndex,
3105                                    DFSF.DFS.ReadOnlyNoneAttrs);
3106       }
3107     }
3108 
3109     std::vector<Value *> Args;
3110 
3111     // Adds non-variable arguments.
3112     auto *I = CB.arg_begin();
3113     for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
3114       Type *T = (*I)->getType();
3115       FunctionType *ParamFT;
3116       if (isa<PointerType>(T) &&
3117           (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) {
3118         std::string TName = "dfst";
3119         TName += utostr(FT->getNumParams() - N);
3120         TName += "$";
3121         TName += F.getName();
3122         Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
3123         Args.push_back(T);
3124         Args.push_back(
3125             IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
3126       } else {
3127         Args.push_back(*I);
3128       }
3129     }
3130 
3131     // Adds shadow arguments.
3132     const unsigned ShadowArgStart = Args.size();
3133     addShadowArguments(F, CB, Args, IRB);
3134 
3135     // Adds origin arguments.
3136     const unsigned OriginArgStart = Args.size();
3137     if (ShouldTrackOrigins)
3138       addOriginArguments(F, CB, Args, IRB);
3139 
3140     // Adds variable arguments.
3141     append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
3142 
3143     CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
3144     CustomCI->setCallingConv(CI->getCallingConv());
3145     CustomCI->setAttributes(transformFunctionAttributes(
3146         CustomFn, CI->getContext(), CI->getAttributes()));
3147 
3148     // Update the parameter attributes of the custom call instruction to
3149     // zero extend the shadow parameters. This is required for targets
3150     // which consider PrimitiveShadowTy an illegal type.
3151     for (unsigned N = 0; N < FT->getNumParams(); N++) {
3152       const unsigned ArgNo = ShadowArgStart + N;
3153       if (CustomCI->getArgOperand(ArgNo)->getType() ==
3154           DFSF.DFS.PrimitiveShadowTy)
3155         CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
3156       if (ShouldTrackOrigins) {
3157         const unsigned OriginArgNo = OriginArgStart + N;
3158         if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
3159             DFSF.DFS.OriginTy)
3160           CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
3161       }
3162     }
3163 
3164     // Loads the return value shadow and origin.
3165     if (!FT->getReturnType()->isVoidTy()) {
3166       LoadInst *LabelLoad =
3167           IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
3168       DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
3169                                    FT->getReturnType(), LabelLoad, &CB));
3170       if (ShouldTrackOrigins) {
3171         LoadInst *OriginLoad =
3172             IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
3173         DFSF.setOrigin(CustomCI, OriginLoad);
3174       }
3175     }
3176 
3177     CI->replaceAllUsesWith(CustomCI);
3178     CI->eraseFromParent();
3179     return true;
3180   }
3181   return false;
3182 }
3183 
visitCallBase(CallBase & CB)3184 void DFSanVisitor::visitCallBase(CallBase &CB) {
3185   Function *F = CB.getCalledFunction();
3186   if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
3187     visitInstOperands(CB);
3188     return;
3189   }
3190 
3191   // Calls to this function are synthesized in wrappers, and we shouldn't
3192   // instrument them.
3193   if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
3194     return;
3195 
3196   DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
3197       DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
3198   if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
3199     if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
3200       return;
3201 
3202   IRBuilder<> IRB(&CB);
3203 
3204   const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3205   FunctionType *FT = CB.getFunctionType();
3206   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
3207     // Stores argument shadows.
3208     unsigned ArgOffset = 0;
3209     const DataLayout &DL = getDataLayout();
3210     for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
3211       if (ShouldTrackOrigins) {
3212         // Ignore overflowed origins
3213         Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
3214         if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
3215             !DFSF.DFS.isZeroShadow(ArgShadow))
3216           IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
3217                           DFSF.getArgOriginTLS(I, IRB));
3218       }
3219 
3220       unsigned Size =
3221           DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
3222       // Stop storing if arguments' size overflows. Inside a function, arguments
3223       // after overflow have zero shadow values.
3224       if (ArgOffset + Size > ArgTLSSize)
3225         break;
3226       IRB.CreateAlignedStore(
3227           DFSF.getShadow(CB.getArgOperand(I)),
3228           DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
3229           ShadowTLSAlignment);
3230       ArgOffset += alignTo(Size, ShadowTLSAlignment);
3231     }
3232   }
3233 
3234   Instruction *Next = nullptr;
3235   if (!CB.getType()->isVoidTy()) {
3236     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3237       if (II->getNormalDest()->getSinglePredecessor()) {
3238         Next = &II->getNormalDest()->front();
3239       } else {
3240         BasicBlock *NewBB =
3241             SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
3242         Next = &NewBB->front();
3243       }
3244     } else {
3245       assert(CB.getIterator() != CB.getParent()->end());
3246       Next = CB.getNextNode();
3247     }
3248 
3249     if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
3250       // Loads the return value shadow.
3251       IRBuilder<> NextIRB(Next);
3252       const DataLayout &DL = getDataLayout();
3253       unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
3254       if (Size > RetvalTLSSize) {
3255         // Set overflowed return shadow to be zero.
3256         DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3257       } else {
3258         LoadInst *LI = NextIRB.CreateAlignedLoad(
3259             DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
3260             ShadowTLSAlignment, "_dfsret");
3261         DFSF.SkipInsts.insert(LI);
3262         DFSF.setShadow(&CB, LI);
3263         DFSF.NonZeroChecks.push_back(LI);
3264       }
3265 
3266       if (ShouldTrackOrigins) {
3267         LoadInst *LI = NextIRB.CreateLoad(
3268             DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o");
3269         DFSF.SkipInsts.insert(LI);
3270         DFSF.setOrigin(&CB, LI);
3271       }
3272     }
3273   }
3274 
3275   // Do all instrumentation for IA_Args down here to defer tampering with the
3276   // CFG in a way that SplitEdge may be able to detect.
3277   if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
3278     FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
3279     Value *Func =
3280         IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT));
3281 
3282     const unsigned NumParams = FT->getNumParams();
3283 
3284     // Copy original arguments.
3285     auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end();
3286     std::vector<Value *> Args(NumParams);
3287     std::copy_n(ArgIt, NumParams, Args.begin());
3288 
3289     // Add shadow arguments by transforming original arguments.
3290     std::generate_n(std::back_inserter(Args), NumParams,
3291                     [&]() { return DFSF.getShadow(*ArgIt++); });
3292 
3293     if (FT->isVarArg()) {
3294       unsigned VarArgSize = CB.arg_size() - NumParams;
3295       ArrayType *VarArgArrayTy =
3296           ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize);
3297       AllocaInst *VarArgShadow =
3298           new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
3299                          "", &DFSF.F->getEntryBlock().front());
3300       Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
3301 
3302       // Copy remaining var args.
3303       unsigned GepIndex = 0;
3304       std::for_each(ArgIt, ArgEnd, [&](Value *Arg) {
3305         IRB.CreateStore(
3306             DFSF.getShadow(Arg),
3307             IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++));
3308         Args.push_back(Arg);
3309       });
3310     }
3311 
3312     CallBase *NewCB;
3313     if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3314       NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(),
3315                                II->getUnwindDest(), Args);
3316     } else {
3317       NewCB = IRB.CreateCall(NewFT, Func, Args);
3318     }
3319     NewCB->setCallingConv(CB.getCallingConv());
3320     NewCB->setAttributes(CB.getAttributes().removeAttributes(
3321         *DFSF.DFS.Ctx, AttributeList::ReturnIndex,
3322         AttributeFuncs::typeIncompatible(NewCB->getType())));
3323 
3324     if (Next) {
3325       ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next);
3326       DFSF.SkipInsts.insert(ExVal);
3327       ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next);
3328       DFSF.SkipInsts.insert(ExShadow);
3329       DFSF.setShadow(ExVal, ExShadow);
3330       DFSF.NonZeroChecks.push_back(ExShadow);
3331 
3332       CB.replaceAllUsesWith(ExVal);
3333     }
3334 
3335     CB.eraseFromParent();
3336   }
3337 }
3338 
visitPHINode(PHINode & PN)3339 void DFSanVisitor::visitPHINode(PHINode &PN) {
3340   Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
3341   PHINode *ShadowPN =
3342       PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
3343 
3344   // Give the shadow phi node valid predecessors to fool SplitEdge into working.
3345   Value *UndefShadow = UndefValue::get(ShadowTy);
3346   for (BasicBlock *BB : PN.blocks())
3347     ShadowPN->addIncoming(UndefShadow, BB);
3348 
3349   DFSF.setShadow(&PN, ShadowPN);
3350 
3351   PHINode *OriginPN = nullptr;
3352   if (DFSF.DFS.shouldTrackOrigins()) {
3353     OriginPN =
3354         PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
3355     Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
3356     for (BasicBlock *BB : PN.blocks())
3357       OriginPN->addIncoming(UndefOrigin, BB);
3358     DFSF.setOrigin(&PN, OriginPN);
3359   }
3360 
3361   DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
3362 }
3363 
3364 namespace {
3365 class DataFlowSanitizerLegacyPass : public ModulePass {
3366 private:
3367   std::vector<std::string> ABIListFiles;
3368 
3369 public:
3370   static char ID;
3371 
DataFlowSanitizerLegacyPass(const std::vector<std::string> & ABIListFiles=std::vector<std::string> ())3372   DataFlowSanitizerLegacyPass(
3373       const std::vector<std::string> &ABIListFiles = std::vector<std::string>())
3374       : ModulePass(ID), ABIListFiles(ABIListFiles) {}
3375 
runOnModule(Module & M)3376   bool runOnModule(Module &M) override {
3377     return DataFlowSanitizer(ABIListFiles).runImpl(M);
3378   }
3379 };
3380 } // namespace
3381 
3382 char DataFlowSanitizerLegacyPass::ID;
3383 
3384 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan",
3385                 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
3386 
createDataFlowSanitizerLegacyPassPass(const std::vector<std::string> & ABIListFiles)3387 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass(
3388     const std::vector<std::string> &ABIListFiles) {
3389   return new DataFlowSanitizerLegacyPass(ABIListFiles);
3390 }
3391 
run(Module & M,ModuleAnalysisManager & AM)3392 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
3393                                              ModuleAnalysisManager &AM) {
3394   if (DataFlowSanitizer(ABIListFiles).runImpl(M)) {
3395     return PreservedAnalyses::none();
3396   }
3397   return PreservedAnalyses::all();
3398 }
3399