xref: /llvm-project/llvm/utils/TableGen/Common/CodeGenSchedule.cpp (revision e19261faf5c771bd7951b987abe8de698469e9f1)
1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "Utils.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Regex.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include <algorithm>
28 #include <iterator>
29 #include <utility>
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "subtarget-emitter"
34 
35 #ifndef NDEBUG
36 static void dumpIdxVec(ArrayRef<unsigned> V) {
37   for (unsigned Idx : V)
38     dbgs() << Idx << ", ";
39 }
40 #endif
41 
42 namespace {
43 
44 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
45 struct InstrsOp : public SetTheory::Operator {
46   void apply(SetTheory &ST, const DagInit *Expr, SetTheory::RecSet &Elts,
47              ArrayRef<SMLoc> Loc) override {
48     ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
49   }
50 };
51 
52 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
53 struct InstRegexOp : public SetTheory::Operator {
54   const CodeGenTarget &Target;
55   InstRegexOp(const CodeGenTarget &t) : Target(t) {}
56 
57   /// Remove any text inside of parentheses from S.
58   static std::string removeParens(llvm::StringRef S) {
59     std::string Result;
60     unsigned Paren = 0;
61     // NB: We don't care about escaped parens here.
62     for (char C : S) {
63       switch (C) {
64       case '(':
65         ++Paren;
66         break;
67       case ')':
68         --Paren;
69         break;
70       default:
71         if (Paren == 0)
72           Result += C;
73       }
74     }
75     return Result;
76   }
77 
78   void apply(SetTheory &ST, const DagInit *Expr, SetTheory::RecSet &Elts,
79              ArrayRef<SMLoc> Loc) override {
80     ArrayRef<const CodeGenInstruction *> Instructions =
81         Target.getInstructionsByEnumValue();
82 
83     unsigned NumGeneric = Target.getNumFixedInstructions();
84     unsigned NumPseudos = Target.getNumPseudoInstructions();
85     auto Generics = Instructions.slice(0, NumGeneric);
86     auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
87     auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
88 
89     for (const Init *Arg : Expr->getArgs()) {
90       const StringInit *SI = dyn_cast<StringInit>(Arg);
91       if (!SI)
92         PrintFatalError(Loc, "instregex requires pattern string: " +
93                                  Expr->getAsString());
94       StringRef Original = SI->getValue();
95       // Drop an explicit ^ anchor to not interfere with prefix search.
96       bool HadAnchor = Original.consume_front("^");
97 
98       // Extract a prefix that we can binary search on.
99       static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
100       auto FirstMeta = Original.find_first_of(RegexMetachars);
101       if (FirstMeta != StringRef::npos && FirstMeta > 0) {
102         // If we have a regex like ABC* we can only use AB as the prefix, as
103         // the * acts on C.
104         switch (Original[FirstMeta]) {
105         case '+':
106         case '*':
107         case '?':
108           --FirstMeta;
109           break;
110         default:
111           break;
112         }
113       }
114 
115       // Look for top-level | or ?. We cannot optimize them to binary search.
116       if (removeParens(Original).find_first_of("|?") != std::string::npos)
117         FirstMeta = 0;
118 
119       std::optional<Regex> Regexpr;
120       StringRef Prefix = Original.substr(0, FirstMeta);
121       StringRef PatStr = Original.substr(FirstMeta);
122       if (!PatStr.empty()) {
123         // For the rest use a python-style prefix match.
124         std::string pat = std::string(PatStr);
125         // Add ^ anchor. If we had one originally, don't need the group.
126         if (HadAnchor) {
127           pat.insert(0, "^");
128         } else {
129           pat.insert(0, "^(");
130           pat.insert(pat.end(), ')');
131         }
132         Regexpr = Regex(pat);
133       }
134 
135       int NumMatches = 0;
136 
137       // The generic opcodes are unsorted, handle them manually.
138       for (auto *Inst : Generics) {
139         StringRef InstName = Inst->TheDef->getName();
140         if (InstName.starts_with(Prefix) &&
141             (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
142           Elts.insert(Inst->TheDef);
143           NumMatches++;
144         }
145       }
146 
147       // Target instructions are split into two ranges: pseudo instructions
148       // first, than non-pseudos. Each range is in lexicographical order
149       // sorted by name. Find the sub-ranges that start with our prefix.
150       struct Comp {
151         bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
152           return LHS->TheDef->getName() < RHS;
153         }
154         bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
155           return LHS < RHS->TheDef->getName() &&
156                  !RHS->TheDef->getName().starts_with(LHS);
157         }
158       };
159       auto Range1 =
160           std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
161       auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
162                                      Prefix, Comp());
163 
164       // For these ranges we know that instruction names start with the prefix.
165       // Check if there's a regex that needs to be checked.
166       const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
167         StringRef InstName = Inst->TheDef->getName();
168         if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
169           Elts.insert(Inst->TheDef);
170           NumMatches++;
171         }
172       };
173       std::for_each(Range1.first, Range1.second, HandleNonGeneric);
174       std::for_each(Range2.first, Range2.second, HandleNonGeneric);
175 
176       if (0 == NumMatches)
177         PrintFatalError(Loc, "instregex has no matches: " + Original);
178     }
179   }
180 };
181 
182 } // end anonymous namespace
183 
184 /// CodeGenModels ctor interprets machine model records and populates maps.
185 CodeGenSchedModels::CodeGenSchedModels(const RecordKeeper &RK,
186                                        const CodeGenTarget &TGT)
187     : Records(RK), Target(TGT) {
188 
189   Sets.addFieldExpander("InstRW", "Instrs");
190 
191   // Allow Set evaluation to recognize the dags used in InstRW records:
192   // (instrs Op1, Op1...)
193   Sets.addOperator("instrs", std::make_unique<InstrsOp>());
194   Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
195 
196   // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
197   // that are explicitly referenced in tablegen records. Resources associated
198   // with each processor will be derived later. Populate ProcModelMap with the
199   // CodeGenProcModel instances.
200   collectProcModels();
201 
202   // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
203   // defined, and populate SchedReads and SchedWrites vectors. Implicit
204   // SchedReadWrites that represent sequences derived from expanded variant will
205   // be inferred later.
206   collectSchedRW();
207 
208   // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
209   // required by an instruction definition, and populate SchedClassIdxMap. Set
210   // NumItineraryClasses to the number of explicit itinerary classes referenced
211   // by instructions. Set NumInstrSchedClasses to the number of itinerary
212   // classes plus any classes implied by instructions that derive from class
213   // Sched and provide SchedRW list. This does not infer any new classes from
214   // SchedVariant.
215   collectSchedClasses();
216 
217   // Find instruction itineraries for each processor. Sort and populate
218   // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
219   // all itinerary classes to be discovered.
220   collectProcItins();
221 
222   // Find ItinRW records for each processor and itinerary class.
223   // (For per-operand resources mapped to itinerary classes).
224   collectProcItinRW();
225 
226   // Find UnsupportedFeatures records for each processor.
227   // (For per-operand resources mapped to itinerary classes).
228   collectProcUnsupportedFeatures();
229 
230   // Infer new SchedClasses from SchedVariant.
231   inferSchedClasses();
232 
233   // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
234   // ProcResourceDefs.
235   LLVM_DEBUG(
236       dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
237   collectProcResources();
238 
239   // Collect optional processor description.
240   collectOptionalProcessorInfo();
241 
242   // Check MCInstPredicate definitions.
243   checkMCInstPredicates();
244 
245   // Check STIPredicate definitions.
246   checkSTIPredicates();
247 
248   // Find STIPredicate definitions for each processor model, and construct
249   // STIPredicateFunction objects.
250   collectSTIPredicates();
251 
252   checkCompleteness();
253 }
254 
255 void CodeGenSchedModels::checkSTIPredicates() const {
256   DenseMap<StringRef, const Record *> Declarations;
257 
258   // There cannot be multiple declarations with the same name.
259   for (const Record *R : Records.getAllDerivedDefinitions("STIPredicateDecl")) {
260     StringRef Name = R->getValueAsString("Name");
261     const auto [It, Inserted] = Declarations.try_emplace(Name, R);
262     if (Inserted)
263       continue;
264 
265     PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
266     PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
267   }
268 
269   // Disallow InstructionEquivalenceClasses with an empty instruction list.
270   for (const Record *R :
271        Records.getAllDerivedDefinitions("InstructionEquivalenceClass")) {
272     if (R->getValueAsListOfDefs("Opcodes").empty()) {
273       PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
274                                    "defined with an empty opcode list.");
275     }
276   }
277 }
278 
279 // Used by function `processSTIPredicate` to construct a mask of machine
280 // instruction operands.
281 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
282   APInt OperandMask;
283   if (Indices.empty())
284     return OperandMask;
285 
286   int64_t MaxIndex = *llvm::max_element(Indices);
287   assert(MaxIndex >= 0 && "Invalid negative indices in input!");
288   OperandMask = OperandMask.zext(MaxIndex + 1);
289   for (const int64_t Index : Indices) {
290     assert(Index >= 0 && "Invalid negative indices!");
291     OperandMask.setBit(Index);
292   }
293 
294   return OperandMask;
295 }
296 
297 static void processSTIPredicate(STIPredicateFunction &Fn,
298                                 const ProcModelMapTy &ProcModelMap) {
299   DenseMap<const Record *, unsigned> Opcode2Index;
300   using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
301   std::vector<OpcodeMapPair> OpcodeMappings;
302   std::vector<std::pair<APInt, APInt>> OpcodeMasks;
303 
304   DenseMap<const Record *, unsigned> Predicate2Index;
305   unsigned NumUniquePredicates = 0;
306 
307   // Number unique predicates and opcodes used by InstructionEquivalenceClass
308   // definitions. Each unique opcode will be associated with an OpcodeInfo
309   // object.
310   for (const Record *Def : Fn.getDefinitions()) {
311     ConstRecVec Classes = Def->getValueAsListOfDefs("Classes");
312     for (const Record *EC : Classes) {
313       const Record *Pred = EC->getValueAsDef("Predicate");
314       if (Predicate2Index.try_emplace(Pred, NumUniquePredicates).second)
315         ++NumUniquePredicates;
316 
317       ConstRecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
318       for (const Record *Opcode : Opcodes) {
319         if (Opcode2Index.try_emplace(Opcode, OpcodeMappings.size()).second)
320           OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
321       }
322     }
323   }
324 
325   // Initialize vector `OpcodeMasks` with default values.  We want to keep track
326   // of which processors "use" which opcodes.  We also want to be able to
327   // identify predicates that are used by different processors for a same
328   // opcode.
329   // This information is used later on by this algorithm to sort OpcodeMapping
330   // elements based on their processor and predicate sets.
331   OpcodeMasks.resize(OpcodeMappings.size());
332   APInt DefaultProcMask(ProcModelMap.size(), 0);
333   APInt DefaultPredMask(NumUniquePredicates, 0);
334   for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
335     MaskPair = {DefaultProcMask, DefaultPredMask};
336 
337   // Construct a OpcodeInfo object for every unique opcode declared by an
338   // InstructionEquivalenceClass definition.
339   for (const Record *Def : Fn.getDefinitions()) {
340     ConstRecVec Classes = Def->getValueAsListOfDefs("Classes");
341     const Record *SchedModel = Def->getValueAsDef("SchedModel");
342     unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
343     APInt ProcMask(ProcModelMap.size(), 0);
344     ProcMask.setBit(ProcIndex);
345 
346     for (const Record *EC : Classes) {
347       ConstRecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
348 
349       std::vector<int64_t> OpIndices =
350           EC->getValueAsListOfInts("OperandIndices");
351       APInt OperandMask = constructOperandMask(OpIndices);
352 
353       const Record *Pred = EC->getValueAsDef("Predicate");
354       APInt PredMask(NumUniquePredicates, 0);
355       PredMask.setBit(Predicate2Index[Pred]);
356 
357       for (const Record *Opcode : Opcodes) {
358         unsigned OpcodeIdx = Opcode2Index[Opcode];
359         if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
360           std::string Message =
361               "Opcode " + Opcode->getName().str() +
362               " used by multiple InstructionEquivalenceClass definitions.";
363           PrintFatalError(EC->getLoc(), Message);
364         }
365         OpcodeMasks[OpcodeIdx].first |= ProcMask;
366         OpcodeMasks[OpcodeIdx].second |= PredMask;
367         OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
368 
369         OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
370       }
371     }
372   }
373 
374   // Sort OpcodeMappings elements based on their CPU and predicate masks.
375   // As a last resort, order elements by opcode identifier.
376   llvm::sort(
377       OpcodeMappings, [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
378         unsigned LhsIdx = Opcode2Index[Lhs.first];
379         unsigned RhsIdx = Opcode2Index[Rhs.first];
380         const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
381         const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
382 
383         auto PopulationCountAndLeftBit =
384             [](const APInt &Other) -> std::pair<int, int> {
385           return {Other.popcount(), -Other.countl_zero()};
386         };
387         auto lhsmask_first = PopulationCountAndLeftBit(LhsMasks.first);
388         auto rhsmask_first = PopulationCountAndLeftBit(RhsMasks.first);
389         if (lhsmask_first != rhsmask_first)
390           return lhsmask_first < rhsmask_first;
391 
392         auto lhsmask_second = PopulationCountAndLeftBit(LhsMasks.second);
393         auto rhsmask_second = PopulationCountAndLeftBit(RhsMasks.second);
394         if (lhsmask_second != rhsmask_second)
395           return lhsmask_second < rhsmask_second;
396 
397         return LhsIdx < RhsIdx;
398       });
399 
400   // Now construct opcode groups. Groups are used by the SubtargetEmitter when
401   // expanding the body of a STIPredicate function. In particular, each opcode
402   // group is expanded into a sequence of labels in a switch statement.
403   // It identifies opcodes for which different processors define same predicates
404   // and same opcode masks.
405   for (OpcodeMapPair &Info : OpcodeMappings)
406     Fn.addOpcode(Info.first, std::move(Info.second));
407 }
408 
409 void CodeGenSchedModels::collectSTIPredicates() {
410   // Map STIPredicateDecl records to elements of vector
411   // CodeGenSchedModels::STIPredicates.
412   DenseMap<const Record *, unsigned> Decl2Index;
413   for (const Record *R : Records.getAllDerivedDefinitions("STIPredicate")) {
414     const Record *Decl = R->getValueAsDef("Declaration");
415 
416     const auto It = Decl2Index.find(Decl);
417     if (It == Decl2Index.end()) {
418       Decl2Index[Decl] = STIPredicates.size();
419       STIPredicateFunction Predicate(Decl);
420       Predicate.addDefinition(R);
421       STIPredicates.emplace_back(std::move(Predicate));
422       continue;
423     }
424 
425     STIPredicateFunction &PreviousDef = STIPredicates[It->second];
426     PreviousDef.addDefinition(R);
427   }
428 
429   for (STIPredicateFunction &Fn : STIPredicates)
430     processSTIPredicate(Fn, ProcModelMap);
431 }
432 
433 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
434                                           const llvm::APInt &OperandMask,
435                                           const Record *Predicate) {
436   auto It = llvm::find_if(
437       Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
438         return P.Predicate == Predicate && P.OperandMask == OperandMask;
439       });
440   if (It == Predicates.end()) {
441     Predicates.emplace_back(CpuMask, OperandMask, Predicate);
442     return;
443   }
444   It->ProcModelMask |= CpuMask;
445 }
446 
447 void CodeGenSchedModels::checkMCInstPredicates() const {
448   // A target cannot have multiple TIIPredicate definitions with a same name.
449   llvm::StringMap<const Record *> TIIPredicates;
450   for (const Record *TIIPred :
451        Records.getAllDerivedDefinitions("TIIPredicate")) {
452     StringRef Name = TIIPred->getValueAsString("FunctionName");
453     auto [It, Inserted] = TIIPredicates.try_emplace(Name, TIIPred);
454     if (Inserted)
455       continue;
456 
457     PrintError(TIIPred->getLoc(),
458                "TIIPredicate " + Name + " is multiply defined.");
459     PrintFatalNote(It->second->getLoc(),
460                    " Previous definition of " + Name + " was here.");
461   }
462 }
463 
464 void CodeGenSchedModels::collectRetireControlUnits() {
465   for (const Record *RCU :
466        Records.getAllDerivedDefinitions("RetireControlUnit")) {
467     CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
468     if (PM.RetireControlUnit) {
469       PrintError(RCU->getLoc(),
470                  "Expected a single RetireControlUnit definition");
471       PrintNote(PM.RetireControlUnit->getLoc(),
472                 "Previous definition of RetireControlUnit was here");
473     }
474     PM.RetireControlUnit = RCU;
475   }
476 }
477 
478 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
479   for (const Record *Queue : Records.getAllDerivedDefinitions("MemoryQueue")) {
480     CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
481     if (Queue->isSubClassOf("LoadQueue")) {
482       if (PM.LoadQueue) {
483         PrintError(Queue->getLoc(), "Expected a single LoadQueue definition");
484         PrintNote(PM.LoadQueue->getLoc(),
485                   "Previous definition of LoadQueue was here");
486       }
487 
488       PM.LoadQueue = Queue;
489     }
490 
491     if (Queue->isSubClassOf("StoreQueue")) {
492       if (PM.StoreQueue) {
493         PrintError(Queue->getLoc(), "Expected a single StoreQueue definition");
494         PrintNote(PM.StoreQueue->getLoc(),
495                   "Previous definition of StoreQueue was here");
496       }
497 
498       PM.StoreQueue = Queue;
499     }
500   }
501 }
502 
503 /// Collect optional processor information.
504 void CodeGenSchedModels::collectOptionalProcessorInfo() {
505   // Find register file definitions for each processor.
506   collectRegisterFiles();
507 
508   // Collect processor RetireControlUnit descriptors if available.
509   collectRetireControlUnits();
510 
511   // Collect information about load/store queues.
512   collectLoadStoreQueueInfo();
513 
514   checkCompleteness();
515 }
516 
517 /// Gather all processor models.
518 void CodeGenSchedModels::collectProcModels() {
519   std::vector<const Record *> ProcRecords =
520       Records.getAllDerivedDefinitions("Processor");
521 
522   // Sort and check duplicate Processor name.
523   sortAndReportDuplicates(ProcRecords, "Processor");
524 
525   // Reserve space because we can. Reallocation would be ok.
526   ProcModels.reserve(ProcRecords.size() + 1);
527 
528   // Use idx=0 for NoModel/NoItineraries.
529   const Record *NoModelDef = Records.getDef("NoSchedModel");
530   const Record *NoItinsDef = Records.getDef("NoItineraries");
531   ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
532   ProcModelMap[NoModelDef] = 0;
533 
534   // For each processor, find a unique machine model.
535   LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
536   for (const Record *ProcRecord : ProcRecords)
537     addProcModel(ProcRecord);
538 }
539 
540 /// Get a unique processor model based on the defined MachineModel and
541 /// ProcessorItineraries.
542 void CodeGenSchedModels::addProcModel(const Record *ProcDef) {
543   const Record *ModelKey = getModelOrItinDef(ProcDef);
544   if (!ProcModelMap.try_emplace(ModelKey, ProcModels.size()).second)
545     return;
546 
547   std::string Name = std::string(ModelKey->getName());
548   if (ModelKey->isSubClassOf("SchedMachineModel")) {
549     const Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
550     ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
551   } else {
552     // An itinerary is defined without a machine model. Infer a new model.
553     if (!ModelKey->getValueAsListOfDefs("IID").empty())
554       Name = Name + "Model";
555     ProcModels.emplace_back(ProcModels.size(), Name,
556                             ProcDef->getValueAsDef("SchedModel"), ModelKey);
557   }
558   LLVM_DEBUG(ProcModels.back().dump());
559 }
560 
561 // Recursively find all reachable SchedReadWrite records.
562 static void scanSchedRW(const Record *RWDef, ConstRecVec &RWDefs,
563                         SmallPtrSet<const Record *, 16> &RWSet) {
564   if (!RWSet.insert(RWDef).second)
565     return;
566   RWDefs.push_back(RWDef);
567   // Reads don't currently have sequence records, but it can be added later.
568   if (RWDef->isSubClassOf("WriteSequence")) {
569     for (const Record *WSRec : RWDef->getValueAsListOfDefs("Writes"))
570       scanSchedRW(WSRec, RWDefs, RWSet);
571   } else if (RWDef->isSubClassOf("SchedVariant")) {
572     // Visit each variant (guarded by a different predicate).
573     for (const Record *Variant : RWDef->getValueAsListOfDefs("Variants")) {
574       // Visit each RW in the sequence selected by the current variant.
575       for (const Record *SelDef : Variant->getValueAsListOfDefs("Selected"))
576         scanSchedRW(SelDef, RWDefs, RWSet);
577     }
578   }
579 }
580 
581 // Collect and sort all SchedReadWrites reachable via tablegen records.
582 // More may be inferred later when inferring new SchedClasses from variants.
583 void CodeGenSchedModels::collectSchedRW() {
584   // Reserve idx=0 for invalid writes/reads.
585   SchedWrites.resize(1);
586   SchedReads.resize(1);
587 
588   SmallPtrSet<const Record *, 16> RWSet;
589 
590   // Find all SchedReadWrites referenced by instruction defs.
591   ConstRecVec SWDefs, SRDefs;
592   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
593     const Record *SchedDef = Inst->TheDef;
594     if (SchedDef->isValueUnset("SchedRW"))
595       continue;
596     for (const Record *RW : SchedDef->getValueAsListOfDefs("SchedRW")) {
597       if (RW->isSubClassOf("SchedWrite"))
598         scanSchedRW(RW, SWDefs, RWSet);
599       else {
600         assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
601         scanSchedRW(RW, SRDefs, RWSet);
602       }
603     }
604   }
605   // Find all ReadWrites referenced by InstRW.
606   for (const Record *InstRWDef : Records.getAllDerivedDefinitions("InstRW")) {
607     // For all OperandReadWrites.
608     for (const Record *RWDef :
609          InstRWDef->getValueAsListOfDefs("OperandReadWrites")) {
610       if (RWDef->isSubClassOf("SchedWrite"))
611         scanSchedRW(RWDef, SWDefs, RWSet);
612       else {
613         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
614         scanSchedRW(RWDef, SRDefs, RWSet);
615       }
616     }
617   }
618   // Find all ReadWrites referenced by ItinRW.
619   for (const Record *ItinRWDef : Records.getAllDerivedDefinitions("ItinRW")) {
620     // For all OperandReadWrites.
621     for (const Record *RWDef :
622          ItinRWDef->getValueAsListOfDefs("OperandReadWrites")) {
623       if (RWDef->isSubClassOf("SchedWrite"))
624         scanSchedRW(RWDef, SWDefs, RWSet);
625       else {
626         assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
627         scanSchedRW(RWDef, SRDefs, RWSet);
628       }
629     }
630   }
631   // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
632   // for the loop below that initializes Alias vectors (which they already
633   // are by RecordKeeper::getAllDerivedDefinitions).
634   ArrayRef<const Record *> AliasDefs =
635       Records.getAllDerivedDefinitions("SchedAlias");
636   for (const Record *ADef : AliasDefs) {
637     const Record *MatchDef = ADef->getValueAsDef("MatchRW");
638     const Record *AliasDef = ADef->getValueAsDef("AliasRW");
639     if (MatchDef->isSubClassOf("SchedWrite")) {
640       if (!AliasDef->isSubClassOf("SchedWrite"))
641         PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
642       scanSchedRW(AliasDef, SWDefs, RWSet);
643     } else {
644       assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
645       if (!AliasDef->isSubClassOf("SchedRead"))
646         PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
647       scanSchedRW(AliasDef, SRDefs, RWSet);
648     }
649   }
650   // Sort and add the SchedReadWrites directly referenced by instructions or
651   // itinerary resources. Index reads and writes in separate domains.
652   llvm::sort(SWDefs, LessRecord());
653   for (const Record *SWDef : SWDefs) {
654     assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
655     SchedWrites.emplace_back(SchedWrites.size(), SWDef);
656   }
657   llvm::sort(SRDefs, LessRecord());
658   for (const Record *SRDef : SRDefs) {
659     assert(!getSchedRWIdx(SRDef, /*IsRead-*/ true) && "duplicate SchedWrite");
660     SchedReads.emplace_back(SchedReads.size(), SRDef);
661   }
662   // Initialize WriteSequence vectors.
663   for (CodeGenSchedRW &CGRW : SchedWrites) {
664     if (!CGRW.IsSequence)
665       continue;
666     findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
667             /*IsRead=*/false);
668   }
669   // Initialize Aliases vectors.
670   for (const Record *ADef : AliasDefs) {
671     const Record *AliasDef = ADef->getValueAsDef("AliasRW");
672     getSchedRW(AliasDef).IsAlias = true;
673     const Record *MatchDef = ADef->getValueAsDef("MatchRW");
674     CodeGenSchedRW &RW = getSchedRW(MatchDef);
675     if (RW.IsAlias)
676       PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
677     RW.Aliases.push_back(ADef);
678   }
679   LLVM_DEBUG(
680       dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
681       for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
682         dbgs() << WIdx << ": ";
683         SchedWrites[WIdx].dump();
684         dbgs() << '\n';
685       } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
686              ++RIdx) {
687         dbgs() << RIdx << ": ";
688         SchedReads[RIdx].dump();
689         dbgs() << '\n';
690       } for (const Record *RWDef
691              : Records.getAllDerivedDefinitions("SchedReadWrite")) {
692         if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
693           StringRef Name = RWDef->getName();
694           if (Name != "NoWrite" && Name != "ReadDefault")
695             dbgs() << "Unused SchedReadWrite " << Name << '\n';
696         }
697       });
698 }
699 
700 /// Compute a SchedWrite name from a sequence of writes.
701 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
702   std::string Name("(");
703   ListSeparator LS("_");
704   for (unsigned I : Seq) {
705     Name += LS;
706     Name += getSchedRW(I, IsRead).Name;
707   }
708   Name += ')';
709   return Name;
710 }
711 
712 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
713                                            bool IsRead) const {
714   const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
715   const auto I = find_if(
716       RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
717   return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
718 }
719 
720 static void splitSchedReadWrites(const ConstRecVec &RWDefs,
721                                  ConstRecVec &WriteDefs,
722                                  ConstRecVec &ReadDefs) {
723   for (const Record *RWDef : RWDefs) {
724     if (RWDef->isSubClassOf("SchedWrite"))
725       WriteDefs.push_back(RWDef);
726     else {
727       assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
728       ReadDefs.push_back(RWDef);
729     }
730   }
731 }
732 
733 // Split the SchedReadWrites defs and call findRWs for each list.
734 void CodeGenSchedModels::findRWs(const ConstRecVec &RWDefs, IdxVec &Writes,
735                                  IdxVec &Reads) const {
736   ConstRecVec WriteDefs;
737   ConstRecVec ReadDefs;
738   splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
739   findRWs(WriteDefs, Writes, false);
740   findRWs(ReadDefs, Reads, true);
741 }
742 
743 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
744 void CodeGenSchedModels::findRWs(const ConstRecVec &RWDefs, IdxVec &RWs,
745                                  bool IsRead) const {
746   for (const Record *RWDef : RWDefs) {
747     unsigned Idx = getSchedRWIdx(RWDef, IsRead);
748     assert(Idx && "failed to collect SchedReadWrite");
749     RWs.push_back(Idx);
750   }
751 }
752 
753 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
754                                           bool IsRead) const {
755   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
756   if (!SchedRW.IsSequence) {
757     RWSeq.push_back(RWIdx);
758     return;
759   }
760   int Repeat = SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
761   for (int i = 0; i < Repeat; ++i) {
762     for (unsigned I : SchedRW.Sequence) {
763       expandRWSequence(I, RWSeq, IsRead);
764     }
765   }
766 }
767 
768 // Expand a SchedWrite as a sequence following any aliases that coincide with
769 // the given processor model.
770 void CodeGenSchedModels::expandRWSeqForProc(
771     unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
772     const CodeGenProcModel &ProcModel) const {
773   const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
774   const Record *AliasDef = nullptr;
775   for (const Record *Rec : SchedWrite.Aliases) {
776     const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
777     if (Rec->getValueInit("SchedModel")->isComplete()) {
778       const Record *ModelDef = Rec->getValueAsDef("SchedModel");
779       if (&getProcModel(ModelDef) != &ProcModel)
780         continue;
781     }
782     if (AliasDef)
783       PrintFatalError(AliasRW.TheDef->getLoc(),
784                       "Multiple aliases "
785                       "defined for processor " +
786                           ProcModel.ModelName +
787                           " Ensure only one SchedAlias exists per RW.");
788     AliasDef = AliasRW.TheDef;
789   }
790   if (AliasDef) {
791     expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead), RWSeq, IsRead,
792                        ProcModel);
793     return;
794   }
795   if (!SchedWrite.IsSequence) {
796     RWSeq.push_back(RWIdx);
797     return;
798   }
799   int Repeat =
800       SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
801   for (int I = 0, E = Repeat; I < E; ++I) {
802     for (unsigned Idx : SchedWrite.Sequence) {
803       expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
804     }
805   }
806 }
807 
808 /// Add this ReadWrite if it doesn't already exist.
809 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
810                                             bool IsRead) {
811   assert(!Seq.empty() && "cannot insert empty sequence");
812   if (Seq.size() == 1)
813     return Seq.back();
814 
815   std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
816 
817   auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
818     return ArrayRef(RW.Sequence) == Seq;
819   });
820   if (I != RWVec.end())
821     return std::distance(RWVec.begin(), I);
822 
823   unsigned RWIdx = RWVec.size();
824   CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
825   RWVec.push_back(SchedRW);
826   return RWIdx;
827 }
828 
829 /// Visit all the instruction definitions for this target to gather and
830 /// enumerate the itinerary classes. These are the explicitly specified
831 /// SchedClasses. More SchedClasses may be inferred.
832 void CodeGenSchedModels::collectSchedClasses() {
833 
834   // NoItinerary is always the first class at Idx=0
835   assert(SchedClasses.empty() && "Expected empty sched class");
836   SchedClasses.emplace_back(0, "NoInstrModel", Records.getDef("NoItinerary"));
837   SchedClasses.back().ProcIndices.push_back(0);
838 
839   // Create a SchedClass for each unique combination of itinerary class and
840   // SchedRW list.
841   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
842     const Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
843     IdxVec Writes, Reads;
844     if (!Inst->TheDef->isValueUnset("SchedRW"))
845       findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
846 
847     // ProcIdx == 0 indicates the class applies to all processors.
848     unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/ {0});
849     InstrClassMap[Inst->TheDef] = SCIdx;
850   }
851   // Create classes for InstRW defs.
852   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
853   for (const Record *RWDef : Records.getAllDerivedDefinitions("InstRW"))
854     createInstRWClass(RWDef);
855 
856   NumInstrSchedClasses = SchedClasses.size();
857 
858   bool EnableDump = false;
859   LLVM_DEBUG(EnableDump = true);
860   if (!EnableDump)
861     return;
862 
863   LLVM_DEBUG(
864       dbgs()
865       << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
866   for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
867     StringRef InstName = Inst->TheDef->getName();
868     unsigned SCIdx = getSchedClassIdx(*Inst);
869     if (!SCIdx) {
870       LLVM_DEBUG({
871         if (!Inst->hasNoSchedulingInfo)
872           dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
873       });
874       continue;
875     }
876     CodeGenSchedClass &SC = getSchedClass(SCIdx);
877     if (SC.ProcIndices[0] != 0)
878       PrintFatalError(Inst->TheDef->getLoc(),
879                       "Instruction's sched class "
880                       "must not be subtarget specific.");
881 
882     IdxVec ProcIndices;
883     if (SC.ItinClassDef->getName() != "NoItinerary") {
884       ProcIndices.push_back(0);
885       dbgs() << "Itinerary for " << InstName << ": "
886              << SC.ItinClassDef->getName() << '\n';
887     }
888     if (!SC.Writes.empty()) {
889       ProcIndices.push_back(0);
890       LLVM_DEBUG({
891         dbgs() << "SchedRW machine model for " << InstName;
892         for (unsigned int Write : SC.Writes)
893           dbgs() << " " << SchedWrites[Write].Name;
894         for (unsigned int Read : SC.Reads)
895           dbgs() << " " << SchedReads[Read].Name;
896         dbgs() << '\n';
897       });
898     }
899     for (const Record *RWDef : SchedClasses[SCIdx].InstRWs) {
900       const CodeGenProcModel &ProcModel =
901           getProcModel(RWDef->getValueAsDef("SchedModel"));
902       ProcIndices.push_back(ProcModel.Index);
903       LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
904                         << InstName);
905       IdxVec Writes;
906       IdxVec Reads;
907       findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
908       LLVM_DEBUG({
909         for (unsigned WIdx : Writes)
910           dbgs() << " " << SchedWrites[WIdx].Name;
911         for (unsigned RIdx : Reads)
912           dbgs() << " " << SchedReads[RIdx].Name;
913         dbgs() << '\n';
914       });
915     }
916     // If ProcIndices contains zero, the class applies to all processors.
917     LLVM_DEBUG({
918       if (!llvm::is_contained(ProcIndices, 0)) {
919         for (const CodeGenProcModel &PM : ProcModels) {
920           if (!llvm::is_contained(ProcIndices, PM.Index))
921             dbgs() << "No machine model for " << Inst->TheDef->getName()
922                    << " on processor " << PM.ModelName << '\n';
923         }
924       }
925     });
926   }
927 }
928 
929 // Get the SchedClass index for an instruction.
930 unsigned
931 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
932   return InstrClassMap.lookup(Inst.TheDef);
933 }
934 
935 std::string
936 CodeGenSchedModels::createSchedClassName(const Record *ItinClassDef,
937                                          ArrayRef<unsigned> OperWrites,
938                                          ArrayRef<unsigned> OperReads) {
939   std::string Name;
940   if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
941     Name = std::string(ItinClassDef->getName());
942   for (unsigned Idx : OperWrites) {
943     if (!Name.empty())
944       Name += '_';
945     Name += SchedWrites[Idx].Name;
946   }
947   for (unsigned Idx : OperReads) {
948     Name += '_';
949     Name += SchedReads[Idx].Name;
950   }
951   return Name;
952 }
953 
954 std::string
955 CodeGenSchedModels::createSchedClassName(const ConstRecVec &InstDefs) {
956   std::string Name;
957   ListSeparator LS("_");
958   for (const Record *InstDef : InstDefs) {
959     Name += LS;
960     Name += InstDef->getName();
961   }
962   return Name;
963 }
964 
965 /// Add an inferred sched class from an itinerary class and per-operand list of
966 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
967 /// processors that may utilize this class.
968 unsigned CodeGenSchedModels::addSchedClass(const Record *ItinClassDef,
969                                            ArrayRef<unsigned> OperWrites,
970                                            ArrayRef<unsigned> OperReads,
971                                            ArrayRef<unsigned> ProcIndices) {
972   assert(!ProcIndices.empty() && "expect at least one ProcIdx");
973 
974   auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
975     return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
976   };
977 
978   auto I = find_if(SchedClasses, IsKeyEqual);
979   unsigned Idx =
980       I == SchedClasses.end() ? 0 : std::distance(SchedClasses.begin(), I);
981   if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
982     IdxVec PI;
983     std::set_union(SchedClasses[Idx].ProcIndices.begin(),
984                    SchedClasses[Idx].ProcIndices.end(), ProcIndices.begin(),
985                    ProcIndices.end(), std::back_inserter(PI));
986     SchedClasses[Idx].ProcIndices = std::move(PI);
987     return Idx;
988   }
989   Idx = SchedClasses.size();
990   SchedClasses.emplace_back(
991       Idx, createSchedClassName(ItinClassDef, OperWrites, OperReads),
992       ItinClassDef);
993   CodeGenSchedClass &SC = SchedClasses.back();
994   SC.Writes = OperWrites;
995   SC.Reads = OperReads;
996   SC.ProcIndices = ProcIndices;
997 
998   return Idx;
999 }
1000 
1001 // Create classes for each set of opcodes that are in the same InstReadWrite
1002 // definition across all processors.
1003 void CodeGenSchedModels::createInstRWClass(const Record *InstRWDef) {
1004   // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1005   // intersects with an existing class via a previous InstRWDef. Instrs that do
1006   // not intersect with an existing class refer back to their former class as
1007   // determined from ItinDef or SchedRW.
1008   SmallMapVector<unsigned, SmallVector<const Record *, 8>, 4> ClassInstrs;
1009   // Sort Instrs into sets.
1010   const ConstRecVec *InstDefs = Sets.expand(InstRWDef);
1011   if (InstDefs->empty())
1012     PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1013 
1014   for (const Record *InstDef : *InstDefs) {
1015     InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1016     if (Pos == InstrClassMap.end())
1017       PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1018     unsigned SCIdx = Pos->second;
1019     ClassInstrs[SCIdx].push_back(InstDef);
1020   }
1021   // For each set of Instrs, create a new class if necessary, and map or remap
1022   // the Instrs to it.
1023   for (auto &Entry : ClassInstrs) {
1024     unsigned OldSCIdx = Entry.first;
1025     ArrayRef<const Record *> InstDefs = Entry.second;
1026     // If the all instrs in the current class are accounted for, then leave
1027     // them mapped to their old class.
1028     if (OldSCIdx) {
1029       const ConstRecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1030       if (!RWDefs.empty()) {
1031         const ConstRecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1032         unsigned OrigNumInstrs =
1033             count_if(*OrigInstDefs, [&](const Record *OIDef) {
1034               return InstrClassMap[OIDef] == OldSCIdx;
1035             });
1036         if (OrigNumInstrs == InstDefs.size()) {
1037           assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1038                  "expected a generic SchedClass");
1039           const Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1040           // Make sure we didn't already have a InstRW containing this
1041           // instruction on this model.
1042           for (const Record *RWD : RWDefs) {
1043             if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1044                 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1045               assert(!InstDefs.empty()); // Checked at function start.
1046               PrintError(
1047                   InstRWDef->getLoc(),
1048                   "Overlapping InstRW definition for \"" +
1049                       InstDefs.front()->getName() +
1050                       "\" also matches previous \"" +
1051                       RWD->getValue("Instrs")->getValue()->getAsString() +
1052                       "\".");
1053               PrintFatalNote(RWD->getLoc(), "Previous match was here.");
1054             }
1055           }
1056           LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1057                             << SchedClasses[OldSCIdx].Name << " on "
1058                             << RWModelDef->getName() << "\n");
1059           SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1060           continue;
1061         }
1062       }
1063     }
1064     unsigned SCIdx = SchedClasses.size();
1065     SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1066     CodeGenSchedClass &SC = SchedClasses.back();
1067     LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1068                       << InstRWDef->getValueAsDef("SchedModel")->getName()
1069                       << "\n");
1070 
1071     // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1072     SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1073     SC.Writes = SchedClasses[OldSCIdx].Writes;
1074     SC.Reads = SchedClasses[OldSCIdx].Reads;
1075     SC.ProcIndices.push_back(0);
1076     // If we had an old class, copy it's InstRWs to this new class.
1077     if (OldSCIdx) {
1078       const Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1079       for (const Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1080         if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1081           assert(!InstDefs.empty()); // Checked at function start.
1082           PrintError(
1083               InstRWDef->getLoc(),
1084               "Overlapping InstRW definition for \"" +
1085                   InstDefs.front()->getName() + "\" also matches previous \"" +
1086                   OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1087                   "\".");
1088           PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
1089         }
1090         assert(OldRWDef != InstRWDef && "SchedClass has duplicate InstRW def");
1091         SC.InstRWs.push_back(OldRWDef);
1092       }
1093     }
1094     // Map each Instr to this new class.
1095     for (const Record *InstDef : InstDefs)
1096       InstrClassMap[InstDef] = SCIdx;
1097     SC.InstRWs.push_back(InstRWDef);
1098   }
1099 }
1100 
1101 // True if collectProcItins found anything.
1102 bool CodeGenSchedModels::hasItineraries() const {
1103   for (const CodeGenProcModel &PM : procModels())
1104     if (PM.hasItineraries())
1105       return true;
1106   return false;
1107 }
1108 
1109 // Gather the processor itineraries.
1110 void CodeGenSchedModels::collectProcItins() {
1111   LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1112   for (CodeGenProcModel &ProcModel : ProcModels) {
1113     if (!ProcModel.hasItineraries())
1114       continue;
1115 
1116     ConstRecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1117     assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1118 
1119     // Populate ItinDefList with Itinerary records.
1120     ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1121 
1122     // Insert each itinerary data record in the correct position within
1123     // the processor model's ItinDefList.
1124     for (const Record *ItinData : ItinRecords) {
1125       const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1126       bool FoundClass = false;
1127 
1128       for (const CodeGenSchedClass &SC : schedClasses()) {
1129         // Multiple SchedClasses may share an itinerary. Update all of them.
1130         if (SC.ItinClassDef == ItinDef) {
1131           ProcModel.ItinDefList[SC.Index] = ItinData;
1132           FoundClass = true;
1133         }
1134       }
1135       if (!FoundClass) {
1136         LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1137                           << " missing class for itinerary "
1138                           << ItinDef->getName() << '\n');
1139       }
1140     }
1141     // Check for missing itinerary entries.
1142     assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1143     LLVM_DEBUG(
1144         for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1145           if (!ProcModel.ItinDefList[i])
1146             dbgs() << ProcModel.ItinsDef->getName()
1147                    << " missing itinerary for class " << SchedClasses[i].Name
1148                    << '\n';
1149         });
1150   }
1151 }
1152 
1153 // Gather the read/write types for each itinerary class.
1154 void CodeGenSchedModels::collectProcItinRW() {
1155   for (const Record *RWDef : Records.getAllDerivedDefinitions("ItinRW")) {
1156     if (!RWDef->getValueInit("SchedModel")->isComplete())
1157       PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1158     const Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1159     ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1160     if (I == ProcModelMap.end()) {
1161       PrintFatalError(RWDef->getLoc(),
1162                       "Undefined SchedMachineModel " + ModelDef->getName());
1163     }
1164     ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1165   }
1166 }
1167 
1168 // Gather the unsupported features for processor models.
1169 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1170   for (CodeGenProcModel &ProcModel : ProcModels)
1171     append_range(
1172         ProcModel.UnsupportedFeaturesDefs,
1173         ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
1174 }
1175 
1176 /// Infer new classes from existing classes. In the process, this may create new
1177 /// SchedWrites from sequences of existing SchedWrites.
1178 void CodeGenSchedModels::inferSchedClasses() {
1179   LLVM_DEBUG(
1180       dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1181   LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1182 
1183   // Visit all existing classes and newly created classes.
1184   for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1185     assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1186 
1187     if (SchedClasses[Idx].ItinClassDef)
1188       inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1189     if (!SchedClasses[Idx].InstRWs.empty())
1190       inferFromInstRWs(Idx);
1191     if (!SchedClasses[Idx].Writes.empty()) {
1192       inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads, Idx,
1193                   SchedClasses[Idx].ProcIndices);
1194     }
1195     assert(SchedClasses.size() < (NumInstrSchedClasses * 6) &&
1196            "too many SchedVariants");
1197   }
1198 }
1199 
1200 /// Infer classes from per-processor itinerary resources.
1201 void CodeGenSchedModels::inferFromItinClass(const Record *ItinClassDef,
1202                                             unsigned FromClassIdx) {
1203   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1204     const CodeGenProcModel &PM = ProcModels[PIdx];
1205     // For all ItinRW entries.
1206     bool HasMatch = false;
1207     for (const Record *Rec : PM.ItinRWDefs) {
1208       ConstRecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1209       if (!llvm::is_contained(Matched, ItinClassDef))
1210         continue;
1211       if (HasMatch)
1212         PrintFatalError(Rec->getLoc(),
1213                         "Duplicate itinerary class " + ItinClassDef->getName() +
1214                             " in ItinResources for " + PM.ModelName);
1215       HasMatch = true;
1216       IdxVec Writes, Reads;
1217       findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1218       inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1219     }
1220   }
1221 }
1222 
1223 /// Infer classes from per-processor InstReadWrite definitions.
1224 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1225   for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1226     assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1227     const Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1228     const std::vector<const Record *> *InstDefs = Sets.expand(Rec);
1229     ConstRecIter II = InstDefs->begin(), IE = InstDefs->end();
1230     for (; II != IE; ++II) {
1231       if (InstrClassMap[*II] == SCIdx)
1232         break;
1233     }
1234     // If this class no longer has any instructions mapped to it, it has become
1235     // irrelevant.
1236     if (II == IE)
1237       continue;
1238     IdxVec Writes, Reads;
1239     findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1240     unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1241     inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1242     SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
1243   }
1244 }
1245 
1246 namespace {
1247 
1248 // Helper for substituteVariantOperand.
1249 struct TransVariant {
1250   const Record *VarOrSeqDef; // Variant or sequence.
1251   unsigned RWIdx;       // Index of this variant or sequence's matched type.
1252   unsigned ProcIdx;     // Processor model index or zero for any.
1253   unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1254 
1255   TransVariant(const Record *def, unsigned rwi, unsigned pi, unsigned ti)
1256       : VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1257 };
1258 
1259 // Associate a predicate with the SchedReadWrite that it guards.
1260 // RWIdx is the index of the read/write variant.
1261 struct PredCheck {
1262   bool IsRead;
1263   unsigned RWIdx;
1264   const Record *Predicate;
1265 
1266   PredCheck(bool r, unsigned w, const Record *p)
1267       : IsRead(r), RWIdx(w), Predicate(p) {}
1268 };
1269 
1270 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1271 struct PredTransition {
1272   // A predicate term is a conjunction of PredChecks.
1273   SmallVector<PredCheck, 4> PredTerm;
1274   SmallVector<SmallVector<unsigned, 4>, 16> WriteSequences;
1275   SmallVector<SmallVector<unsigned, 4>, 16> ReadSequences;
1276   unsigned ProcIndex = 0;
1277 
1278   PredTransition() = default;
1279   PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
1280     PredTerm.assign(PT.begin(), PT.end());
1281     ProcIndex = ProcId;
1282   }
1283 };
1284 
1285 // Encapsulate a set of partially constructed transitions.
1286 // The results are built by repeated calls to substituteVariants.
1287 class PredTransitions {
1288   CodeGenSchedModels &SchedModels;
1289 
1290 public:
1291   std::vector<PredTransition> TransVec;
1292 
1293   PredTransitions(CodeGenSchedModels &sm) : SchedModels(sm) {}
1294 
1295   bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1296                                 bool IsRead, unsigned StartIdx);
1297 
1298   bool substituteVariants(const PredTransition &Trans);
1299 
1300 #ifndef NDEBUG
1301   void dump() const;
1302 #endif
1303 
1304 private:
1305   bool mutuallyExclusive(const Record *PredDef, ArrayRef<const Record *> Preds,
1306                          ArrayRef<PredCheck> Term);
1307   void getIntersectingVariants(const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1308                                std::vector<TransVariant> &IntersectingVariants);
1309   void pushVariant(const TransVariant &VInfo, bool IsRead);
1310 };
1311 
1312 } // end anonymous namespace
1313 
1314 // Return true if this predicate is mutually exclusive with a PredTerm. This
1315 // degenerates into checking if the predicate is mutually exclusive with any
1316 // predicate in the Term's conjunction.
1317 //
1318 // All predicates associated with a given SchedRW are considered mutually
1319 // exclusive. This should work even if the conditions expressed by the
1320 // predicates are not exclusive because the predicates for a given SchedWrite
1321 // are always checked in the order they are defined in the .td file. Later
1322 // conditions implicitly negate any prior condition.
1323 bool PredTransitions::mutuallyExclusive(const Record *PredDef,
1324                                         ArrayRef<const Record *> Preds,
1325                                         ArrayRef<PredCheck> Term) {
1326   for (const PredCheck &PC : Term) {
1327     if (PC.Predicate == PredDef)
1328       return false;
1329 
1330     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1331     assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1332     ConstRecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1333     if (any_of(Variants, [PredDef](const Record *R) {
1334           return R->getValueAsDef("Predicate") == PredDef;
1335         })) {
1336       // To check if PredDef is mutually exclusive with PC we also need to
1337       // check that PC.Predicate is exclusive with all predicates from variant
1338       // we're expanding. Consider following RW sequence with two variants
1339       // (1 & 2), where A, B and C are predicates from corresponding SchedVars:
1340       //
1341       // 1:A/B - 2:C/B
1342       //
1343       // Here C is not mutually exclusive with variant (1), because A doesn't
1344       // exist in variant (2). This means we have possible transitions from A
1345       // to C and from A to B, and fully expanded sequence would look like:
1346       //
1347       // if (A & C) return ...;
1348       // if (A & B) return ...;
1349       // if (B) return ...;
1350       //
1351       // Now let's consider another sequence:
1352       //
1353       // 1:A/B - 2:A/B
1354       //
1355       // Here A in variant (2) is mutually exclusive with variant (1), because
1356       // A also exists in (2). This means A->B transition is impossible and
1357       // expanded sequence would look like:
1358       //
1359       // if (A) return ...;
1360       // if (B) return ...;
1361       if (!llvm::is_contained(Preds, PC.Predicate))
1362         continue;
1363       return true;
1364     }
1365   }
1366   return false;
1367 }
1368 
1369 static std::vector<const Record *>
1370 getAllPredicates(ArrayRef<TransVariant> Variants, unsigned ProcId) {
1371   std::vector<const Record *> Preds;
1372   for (auto &Variant : Variants) {
1373     if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
1374       continue;
1375     Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
1376   }
1377   return Preds;
1378 }
1379 
1380 // Populate IntersectingVariants with any variants or aliased sequences of the
1381 // given SchedRW whose processor indices and predicates are not mutually
1382 // exclusive with the given transition.
1383 void PredTransitions::getIntersectingVariants(
1384     const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1385     std::vector<TransVariant> &IntersectingVariants) {
1386 
1387   bool GenericRW = false;
1388 
1389   std::vector<TransVariant> Variants;
1390   if (SchedRW.HasVariants) {
1391     unsigned VarProcIdx = 0;
1392     if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1393       const Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1394       VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1395     }
1396     if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
1397       // Push each variant. Assign TransVecIdx later.
1398       for (const Record *VarDef :
1399            SchedRW.TheDef->getValueAsListOfDefs("Variants"))
1400         Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1401       if (VarProcIdx == 0)
1402         GenericRW = true;
1403     }
1404   }
1405   for (ConstRecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1406        AI != AE; ++AI) {
1407     // If either the SchedAlias itself or the SchedReadWrite that it aliases
1408     // to is defined within a processor model, constrain all variants to
1409     // that processor.
1410     unsigned AliasProcIdx = 0;
1411     if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1412       const Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1413       AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1414     }
1415     if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
1416       continue;
1417     if (!Variants.empty()) {
1418       const CodeGenProcModel &PM = SchedModels.procModels()[AliasProcIdx];
1419       PrintFatalError((*AI)->getLoc(),
1420                       "Multiple variants defined for processor " +
1421                           PM.ModelName +
1422                           " Ensure only one SchedAlias exists per RW.");
1423     }
1424 
1425     const CodeGenSchedRW &AliasRW =
1426         SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1427 
1428     if (AliasRW.HasVariants) {
1429       for (const Record *VD : AliasRW.TheDef->getValueAsListOfDefs("Variants"))
1430         Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1431     }
1432     if (AliasRW.IsSequence)
1433       Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1434     if (AliasProcIdx == 0)
1435       GenericRW = true;
1436   }
1437   std::vector<const Record *> AllPreds =
1438       getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
1439   for (TransVariant &Variant : Variants) {
1440     // Don't expand variants if the processor models don't intersect.
1441     // A zero processor index means any processor.
1442     if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1443       const Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1444       if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
1445         continue;
1446     }
1447 
1448     if (IntersectingVariants.empty()) {
1449       // The first variant builds on the existing transition.
1450       Variant.TransVecIdx = TransIdx;
1451       IntersectingVariants.push_back(Variant);
1452     } else {
1453       // Push another copy of the current transition for more variants.
1454       Variant.TransVecIdx = TransVec.size();
1455       IntersectingVariants.push_back(Variant);
1456       TransVec.push_back(TransVec[TransIdx]);
1457     }
1458   }
1459   if (GenericRW && IntersectingVariants.empty()) {
1460     PrintFatalError(SchedRW.TheDef->getLoc(),
1461                     "No variant of this type has "
1462                     "a matching predicate on any processor");
1463   }
1464 }
1465 
1466 // Push the Reads/Writes selected by this variant onto the PredTransition
1467 // specified by VInfo.
1468 void PredTransitions::pushVariant(const TransVariant &VInfo, bool IsRead) {
1469   PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1470 
1471   // If this operand transition is reached through a processor-specific alias,
1472   // then the whole transition is specific to this processor.
1473   IdxVec SelectedRWs;
1474   if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1475     const Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1476     Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx, PredDef);
1477     ConstRecVec SelectedDefs =
1478         VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1479     SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1480   } else {
1481     assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1482            "variant must be a SchedVariant or aliased WriteSequence");
1483     SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1484   }
1485 
1486   const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1487 
1488   SmallVectorImpl<SmallVector<unsigned, 4>> &RWSequences =
1489       IsRead ? Trans.ReadSequences : Trans.WriteSequences;
1490   if (SchedRW.IsVariadic) {
1491     unsigned OperIdx = RWSequences.size() - 1;
1492     // Make N-1 copies of this transition's last sequence.
1493     RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
1494     RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1495                        RWSequences[OperIdx]);
1496     // Push each of the N elements of the SelectedRWs onto a copy of the last
1497     // sequence (split the current operand into N operands).
1498     // Note that write sequences should be expanded within this loop--the entire
1499     // sequence belongs to a single operand.
1500     for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end(); RWI != RWE;
1501          ++RWI, ++OperIdx) {
1502       IdxVec ExpandedRWs;
1503       if (IsRead)
1504         ExpandedRWs.push_back(*RWI);
1505       else
1506         SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1507       llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
1508     }
1509     assert(OperIdx == RWSequences.size() && "missed a sequence");
1510   } else {
1511     // Push this transition's expanded sequence onto this transition's last
1512     // sequence (add to the current operand's sequence).
1513     SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1514     IdxVec ExpandedRWs;
1515     for (unsigned int SelectedRW : SelectedRWs) {
1516       if (IsRead)
1517         ExpandedRWs.push_back(SelectedRW);
1518       else
1519         SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
1520     }
1521     llvm::append_range(Seq, ExpandedRWs);
1522   }
1523 }
1524 
1525 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1526 // operand. StartIdx is an index into TransVec where partial results
1527 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1528 // of TransVec.
1529 bool PredTransitions::substituteVariantOperand(
1530     const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1531   bool Subst = false;
1532   // Visit each original RW within the current sequence.
1533   for (unsigned int RWI : RWSeq) {
1534     const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
1535     // Push this RW on all partial PredTransitions or distribute variants.
1536     // New PredTransitions may be pushed within this loop which should not be
1537     // revisited (TransEnd must be loop invariant).
1538     for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1539          TransIdx != TransEnd; ++TransIdx) {
1540       // Distribute this partial PredTransition across intersecting variants.
1541       // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1542       std::vector<TransVariant> IntersectingVariants;
1543       getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1544       // Now expand each variant on top of its copy of the transition.
1545       for (const TransVariant &IV : IntersectingVariants)
1546         pushVariant(IV, IsRead);
1547       if (IntersectingVariants.empty()) {
1548         if (IsRead)
1549           TransVec[TransIdx].ReadSequences.back().push_back(RWI);
1550         else
1551           TransVec[TransIdx].WriteSequences.back().push_back(RWI);
1552         continue;
1553       } else {
1554         Subst = true;
1555       }
1556     }
1557   }
1558   return Subst;
1559 }
1560 
1561 // For each variant of a Read/Write in Trans, substitute the sequence of
1562 // Read/Writes guarded by the variant. This is exponential in the number of
1563 // variant Read/Writes, but in practice detection of mutually exclusive
1564 // predicates should result in linear growth in the total number variants.
1565 //
1566 // This is one step in a breadth-first search of nested variants.
1567 bool PredTransitions::substituteVariants(const PredTransition &Trans) {
1568   // Build up a set of partial results starting at the back of
1569   // PredTransitions. Remember the first new transition.
1570   unsigned StartIdx = TransVec.size();
1571   bool Subst = false;
1572   assert(Trans.ProcIndex != 0);
1573   TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
1574 
1575   // Visit each original write sequence.
1576   for (const auto &WriteSequence : Trans.WriteSequences) {
1577     // Push a new (empty) write sequence onto all partial Transitions.
1578     for (auto &PT : drop_begin(TransVec, StartIdx))
1579       PT.WriteSequences.emplace_back();
1580     Subst |=
1581         substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
1582   }
1583   // Visit each original read sequence.
1584   for (const auto &ReadSequence : Trans.ReadSequences) {
1585     // Push a new (empty) read sequence onto all partial Transitions.
1586     for (auto &PT : drop_begin(TransVec, StartIdx))
1587       PT.ReadSequences.emplace_back();
1588     Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
1589   }
1590   return Subst;
1591 }
1592 
1593 static void addSequences(CodeGenSchedModels &SchedModels,
1594                          const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
1595                          IdxVec &Result, bool IsRead) {
1596   for (const auto &S : Seqs)
1597     if (!S.empty())
1598       Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
1599 }
1600 
1601 #ifndef NDEBUG
1602 static void dumpRecVec(const ConstRecVec &RV) {
1603   for (const Record *R : RV)
1604     dbgs() << R->getName() << ", ";
1605 }
1606 #endif
1607 
1608 static void dumpTransition(const CodeGenSchedModels &SchedModels,
1609                            const CodeGenSchedClass &FromSC,
1610                            const CodeGenSchedTransition &SCTrans,
1611                            const ConstRecVec &Preds) {
1612   LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
1613                     << FromSC.Index << ") to "
1614                     << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
1615                     << SCTrans.ToClassIdx << ") on pred term: (";
1616              dumpRecVec(Preds);
1617              dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
1618 }
1619 // Create a new SchedClass for each variant found by inferFromRW. Pass
1620 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1621                                  unsigned FromClassIdx,
1622                                  CodeGenSchedModels &SchedModels) {
1623   // For each PredTransition, create a new CodeGenSchedTransition, which usually
1624   // requires creating a new SchedClass.
1625   for (const auto &LastTransition : LastTransitions) {
1626     // Variant expansion (substituteVariants) may create unconditional
1627     // transitions. We don't need to build sched classes for them.
1628     if (LastTransition.PredTerm.empty())
1629       continue;
1630     IdxVec OperWritesVariant, OperReadsVariant;
1631     addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
1632                  false);
1633     addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
1634                  true);
1635     CodeGenSchedTransition SCTrans;
1636 
1637     // Transition should not contain processor indices already assigned to
1638     // InstRWs in this scheduling class.
1639     const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
1640     if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
1641       continue;
1642     SCTrans.ProcIndex = LastTransition.ProcIndex;
1643     SCTrans.ToClassIdx =
1644         SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1645                                   OperReadsVariant, LastTransition.ProcIndex);
1646 
1647     // The final PredTerm is unique set of predicates guarding the transition.
1648     ConstRecVec Preds;
1649     transform(LastTransition.PredTerm, std::back_inserter(Preds),
1650               [](const PredCheck &P) { return P.Predicate; });
1651     Preds.erase(llvm::unique(Preds), Preds.end());
1652     dumpTransition(SchedModels, FromSC, SCTrans, Preds);
1653     SCTrans.PredTerm = std::move(Preds);
1654     SchedModels.getSchedClass(FromClassIdx)
1655         .Transitions.push_back(std::move(SCTrans));
1656   }
1657 }
1658 
1659 std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
1660   std::vector<unsigned> ProcIdVec;
1661   for (const auto &PM : ProcModelMap)
1662     if (PM.second != 0)
1663       ProcIdVec.push_back(PM.second);
1664   // The order of the keys (Record pointers) of ProcModelMap are not stable.
1665   // Sort to stabalize the values.
1666   llvm::sort(ProcIdVec);
1667   return ProcIdVec;
1668 }
1669 
1670 static std::vector<PredTransition>
1671 makePerProcessorTransitions(const PredTransition &Trans,
1672                             ArrayRef<unsigned> ProcIndices) {
1673   std::vector<PredTransition> PerCpuTransVec;
1674   for (unsigned ProcId : ProcIndices) {
1675     assert(ProcId != 0);
1676     PerCpuTransVec.push_back(Trans);
1677     PerCpuTransVec.back().ProcIndex = ProcId;
1678   }
1679   return PerCpuTransVec;
1680 }
1681 
1682 // Create new SchedClasses for the given ReadWrite list. If any of the
1683 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1684 // of the ReadWrite list, following Aliases if necessary.
1685 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1686                                      ArrayRef<unsigned> OperReads,
1687                                      unsigned FromClassIdx,
1688                                      ArrayRef<unsigned> ProcIndices) {
1689   LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1690              dbgs() << ") ");
1691   // Create a seed transition with an empty PredTerm and the expanded sequences
1692   // of SchedWrites for the current SchedClass.
1693   std::vector<PredTransition> LastTransitions(1);
1694 
1695   for (unsigned WriteIdx : OperWrites) {
1696     IdxVec WriteSeq;
1697     expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1698     [[maybe_unused]] SmallVectorImpl<unsigned> &Seq =
1699         LastTransitions[0].WriteSequences.emplace_back(WriteSeq.begin(),
1700                                                        WriteSeq.end());
1701     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1702   }
1703   LLVM_DEBUG(dbgs() << " Reads: ");
1704   for (unsigned ReadIdx : OperReads) {
1705     IdxVec ReadSeq;
1706     expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1707     [[maybe_unused]] SmallVectorImpl<unsigned> &Seq =
1708         LastTransitions[0].ReadSequences.emplace_back(ReadSeq.begin(),
1709                                                       ReadSeq.end());
1710     LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1711   }
1712   LLVM_DEBUG(dbgs() << '\n');
1713 
1714   LastTransitions = makePerProcessorTransitions(
1715       LastTransitions[0], llvm::is_contained(ProcIndices, 0)
1716                               ? ArrayRef<unsigned>(getAllProcIndices())
1717                               : ProcIndices);
1718   // Collect all PredTransitions for individual operands.
1719   // Iterate until no variant writes remain.
1720   bool SubstitutedAny;
1721   do {
1722     SubstitutedAny = false;
1723     PredTransitions Transitions(*this);
1724     for (const PredTransition &Trans : LastTransitions)
1725       SubstitutedAny |= Transitions.substituteVariants(Trans);
1726     LLVM_DEBUG(Transitions.dump());
1727     LastTransitions = std::move(Transitions.TransVec);
1728   } while (SubstitutedAny);
1729 
1730   // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1731   // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1732   inferFromTransitions(LastTransitions, FromClassIdx, *this);
1733 }
1734 
1735 // Check if any processor resource group contains all resource records in
1736 // SubUnits.
1737 bool CodeGenSchedModels::hasSuperGroup(const ConstRecVec &SubUnits,
1738                                        const CodeGenProcModel &PM) {
1739   for (const Record *ProcResourceDef : PM.ProcResourceDefs) {
1740     if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
1741       continue;
1742     ConstRecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
1743     auto RI = SubUnits.begin(), RE = SubUnits.end();
1744     for (; RI != RE; ++RI) {
1745       if (!is_contained(SuperUnits, *RI)) {
1746         break;
1747       }
1748     }
1749     if (RI == RE)
1750       return true;
1751   }
1752   return false;
1753 }
1754 
1755 // Verify that overlapping groups have a common supergroup.
1756 void CodeGenSchedModels::verifyProcResourceGroups(const CodeGenProcModel &PM) {
1757   for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1758     if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1759       continue;
1760     ConstRecVec CheckUnits =
1761         PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1762     for (unsigned j = i + 1; j < e; ++j) {
1763       if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1764         continue;
1765       ConstRecVec OtherUnits =
1766           PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1767       if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1768                              OtherUnits.begin(),
1769                              OtherUnits.end()) != CheckUnits.end()) {
1770         // CheckUnits and OtherUnits overlap
1771         llvm::append_range(OtherUnits, CheckUnits);
1772         if (!hasSuperGroup(OtherUnits, PM)) {
1773           PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1774                           "proc resource group overlaps with " +
1775                               PM.ProcResourceDefs[j]->getName() +
1776                               " but no supergroup contains both.");
1777         }
1778       }
1779     }
1780   }
1781 }
1782 
1783 // Collect all the RegisterFile definitions available in this target.
1784 void CodeGenSchedModels::collectRegisterFiles() {
1785   // RegisterFiles is the vector of CodeGenRegisterFile.
1786   for (const Record *RF : Records.getAllDerivedDefinitions("RegisterFile")) {
1787     // For each register file definition, construct a CodeGenRegisterFile object
1788     // and add it to the appropriate scheduling model.
1789     CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1790     PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(), RF));
1791     CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1792     CGRF.MaxMovesEliminatedPerCycle =
1793         RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1794     CGRF.AllowZeroMoveEliminationOnly =
1795         RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1796 
1797     // Now set the number of physical registers as well as the cost of registers
1798     // in each register class.
1799     CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1800     if (!CGRF.NumPhysRegs) {
1801       PrintFatalError(RF->getLoc(),
1802                       "Invalid RegisterFile with zero physical registers");
1803     }
1804 
1805     ConstRecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1806     std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1807     const ListInit *MoveElimInfo =
1808         RF->getValueAsListInit("AllowMoveElimination");
1809     for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1810       int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1811 
1812       bool AllowMoveElim = false;
1813       if (MoveElimInfo->size() > I) {
1814         const BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1815         AllowMoveElim = Val->getValue();
1816       }
1817 
1818       CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1819     }
1820   }
1821 }
1822 
1823 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
1824 void CodeGenSchedModels::collectProcResources() {
1825   ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1826   ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1827 
1828   // Add any subtarget-specific SchedReadWrites that are directly associated
1829   // with processor resources. Refer to the parent SchedClass's ProcIndices to
1830   // determine which processors they apply to.
1831   for (const CodeGenSchedClass &SC : schedClasses()) {
1832     if (SC.ItinClassDef) {
1833       collectItinProcResources(SC.ItinClassDef);
1834       continue;
1835     }
1836 
1837     // This class may have a default ReadWrite list which can be overriden by
1838     // InstRW definitions.
1839     for (const Record *RW : SC.InstRWs) {
1840       const Record *RWModelDef = RW->getValueAsDef("SchedModel");
1841       unsigned PIdx = getProcModel(RWModelDef).Index;
1842       IdxVec Writes, Reads;
1843       findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1844       collectRWResources(Writes, Reads, PIdx);
1845     }
1846 
1847     collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1848   }
1849   // Add resources separately defined by each subtarget.
1850   for (const Record *WR : Records.getAllDerivedDefinitions("WriteRes")) {
1851     const Record *ModelDef = WR->getValueAsDef("SchedModel");
1852     addWriteRes(WR, getProcModel(ModelDef));
1853   }
1854   for (const Record *SWR : Records.getAllDerivedDefinitions("SchedWriteRes")) {
1855     const Record *ModelDef = SWR->getValueAsDef("SchedModel");
1856     addWriteRes(SWR, getProcModel(ModelDef));
1857   }
1858   for (const Record *RA : Records.getAllDerivedDefinitions("ReadAdvance")) {
1859     const Record *ModelDef = RA->getValueAsDef("SchedModel");
1860     addReadAdvance(RA, getProcModel(ModelDef));
1861   }
1862   for (const Record *SRA :
1863        Records.getAllDerivedDefinitions("SchedReadAdvance")) {
1864     if (SRA->getValueInit("SchedModel")->isComplete()) {
1865       const Record *ModelDef = SRA->getValueAsDef("SchedModel");
1866       addReadAdvance(SRA, getProcModel(ModelDef));
1867     }
1868   }
1869   // Add ProcResGroups that are defined within this processor model, which may
1870   // not be directly referenced but may directly specify a buffer size.
1871   for (const Record *PRG : Records.getAllDerivedDefinitions("ProcResGroup")) {
1872     if (!PRG->getValueInit("SchedModel")->isComplete())
1873       continue;
1874     CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1875     if (!is_contained(PM.ProcResourceDefs, PRG))
1876       PM.ProcResourceDefs.push_back(PRG);
1877   }
1878   // Add ProcResourceUnits unconditionally.
1879   for (const Record *PRU :
1880        Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1881     if (!PRU->getValueInit("SchedModel")->isComplete())
1882       continue;
1883     CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1884     if (!is_contained(PM.ProcResourceDefs, PRU))
1885       PM.ProcResourceDefs.push_back(PRU);
1886   }
1887   // Finalize each ProcModel by sorting the record arrays.
1888   for (CodeGenProcModel &PM : ProcModels) {
1889     llvm::sort(PM.WriteResDefs, LessRecord());
1890     llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1891     llvm::sort(PM.ProcResourceDefs, LessRecord());
1892     LLVM_DEBUG(
1893         PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
1894                                                     : PM.WriteResDefs) {
1895           if (WriteResDef->isSubClassOf("WriteRes"))
1896             dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
1897           else
1898             dbgs() << WriteResDef->getName() << " ";
1899         } dbgs() << "\nReadAdvanceDefs: ";
1900         for (const Record *ReadAdvanceDef
1901              : PM.ReadAdvanceDefs) {
1902           if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
1903             dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
1904                    << " ";
1905           else
1906             dbgs() << ReadAdvanceDef->getName() << " ";
1907         } dbgs()
1908         << "\nProcResourceDefs: ";
1909         for (const Record *ProcResourceDef
1910              : PM.ProcResourceDefs) {
1911           dbgs() << ProcResourceDef->getName() << " ";
1912         } dbgs()
1913         << '\n');
1914     verifyProcResourceGroups(PM);
1915   }
1916 
1917   ProcResourceDefs.clear();
1918   ProcResGroups.clear();
1919 }
1920 
1921 void CodeGenSchedModels::checkCompleteness() {
1922   bool Complete = true;
1923   for (const CodeGenProcModel &ProcModel : procModels()) {
1924     const bool HasItineraries = ProcModel.hasItineraries();
1925     if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1926       continue;
1927     for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1928       if (Inst->hasNoSchedulingInfo)
1929         continue;
1930       if (ProcModel.isUnsupported(*Inst))
1931         continue;
1932       unsigned SCIdx = getSchedClassIdx(*Inst);
1933       if (!SCIdx) {
1934         if (Inst->TheDef->isValueUnset("SchedRW")) {
1935           PrintError(Inst->TheDef->getLoc(),
1936                      "No schedule information for instruction '" +
1937                          Inst->TheDef->getName() + "' in SchedMachineModel '" +
1938                          ProcModel.ModelDef->getName() + "'");
1939           Complete = false;
1940         }
1941         continue;
1942       }
1943 
1944       const CodeGenSchedClass &SC = getSchedClass(SCIdx);
1945       if (!SC.Writes.empty())
1946         continue;
1947       if (HasItineraries && SC.ItinClassDef != nullptr &&
1948           SC.ItinClassDef->getName() != "NoItinerary")
1949         continue;
1950 
1951       const ConstRecVec &InstRWs = SC.InstRWs;
1952       auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
1953         return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
1954       });
1955       if (I == InstRWs.end()) {
1956         PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
1957                                                "' lacks information for '" +
1958                                                Inst->TheDef->getName() + "'");
1959         Complete = false;
1960       }
1961     }
1962   }
1963   if (!Complete) {
1964     errs()
1965         << "\n\nIncomplete schedule models found.\n"
1966         << "- Consider setting 'CompleteModel = 0' while developing new "
1967            "models.\n"
1968         << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = "
1969            "1'.\n"
1970         << "- Instructions should usually have Sched<[...]> as a superclass, "
1971            "you may temporarily use an empty list.\n"
1972         << "- Instructions related to unsupported features can be excluded "
1973            "with "
1974            "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
1975            "processor model.\n\n";
1976     PrintFatalError("Incomplete schedule model");
1977   }
1978 }
1979 
1980 // Collect itinerary class resources for each processor.
1981 void CodeGenSchedModels::collectItinProcResources(const Record *ItinClassDef) {
1982   for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1983     const CodeGenProcModel &PM = ProcModels[PIdx];
1984     // For all ItinRW entries.
1985     bool HasMatch = false;
1986     for (const Record *R : PM.ItinRWDefs) {
1987       ConstRecVec Matched = R->getValueAsListOfDefs("MatchedItinClasses");
1988       if (!llvm::is_contained(Matched, ItinClassDef))
1989         continue;
1990       if (HasMatch)
1991         PrintFatalError(R->getLoc(),
1992                         "Duplicate itinerary class " + ItinClassDef->getName() +
1993                             " in ItinResources for " + PM.ModelName);
1994       HasMatch = true;
1995       IdxVec Writes, Reads;
1996       findRWs(R->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1997       collectRWResources(Writes, Reads, PIdx);
1998     }
1999   }
2000 }
2001 
2002 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2003                                             ArrayRef<unsigned> ProcIndices) {
2004   const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2005   if (SchedRW.TheDef) {
2006     if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2007       for (unsigned Idx : ProcIndices)
2008         addWriteRes(SchedRW.TheDef, ProcModels[Idx]);
2009     } else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2010       for (unsigned Idx : ProcIndices)
2011         addReadAdvance(SchedRW.TheDef, ProcModels[Idx]);
2012     }
2013   }
2014   for (auto *Alias : SchedRW.Aliases) {
2015     IdxVec AliasProcIndices;
2016     if (Alias->getValueInit("SchedModel")->isComplete()) {
2017       AliasProcIndices.push_back(
2018           getProcModel(Alias->getValueAsDef("SchedModel")).Index);
2019     } else
2020       AliasProcIndices = ProcIndices;
2021     const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
2022     assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2023 
2024     IdxVec ExpandedRWs;
2025     expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2026     for (unsigned int ExpandedRW : ExpandedRWs) {
2027       collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
2028     }
2029   }
2030 }
2031 
2032 // Collect resources for a set of read/write types and processor indices.
2033 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2034                                             ArrayRef<unsigned> Reads,
2035                                             ArrayRef<unsigned> ProcIndices) {
2036   for (unsigned Idx : Writes)
2037     collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2038 
2039   for (unsigned Idx : Reads)
2040     collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2041 }
2042 
2043 // Find the processor's resource units for this kind of resource.
2044 const Record *CodeGenSchedModels::findProcResUnits(const Record *ProcResKind,
2045                                                    const CodeGenProcModel &PM,
2046                                                    ArrayRef<SMLoc> Loc) const {
2047   if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2048     return ProcResKind;
2049 
2050   const Record *ProcUnitDef = nullptr;
2051   assert(!ProcResourceDefs.empty());
2052   assert(!ProcResGroups.empty());
2053 
2054   for (const Record *ProcResDef : ProcResourceDefs) {
2055     if (ProcResDef->getValueAsDef("Kind") == ProcResKind &&
2056         ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2057       if (ProcUnitDef) {
2058         PrintFatalError(Loc,
2059                         "Multiple ProcessorResourceUnits associated with " +
2060                             ProcResKind->getName());
2061       }
2062       ProcUnitDef = ProcResDef;
2063     }
2064   }
2065   for (const Record *ProcResGroup : ProcResGroups) {
2066     if (ProcResGroup == ProcResKind &&
2067         ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2068       if (ProcUnitDef) {
2069         PrintFatalError(Loc,
2070                         "Multiple ProcessorResourceUnits associated with " +
2071                             ProcResKind->getName());
2072       }
2073       ProcUnitDef = ProcResGroup;
2074     }
2075   }
2076   if (!ProcUnitDef) {
2077     PrintFatalError(Loc, "No ProcessorResources associated with " +
2078                              ProcResKind->getName());
2079   }
2080   return ProcUnitDef;
2081 }
2082 
2083 // Iteratively add a resource and its super resources.
2084 void CodeGenSchedModels::addProcResource(const Record *ProcResKind,
2085                                          CodeGenProcModel &PM,
2086                                          ArrayRef<SMLoc> Loc) {
2087   while (true) {
2088     const Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2089 
2090     // See if this ProcResource is already associated with this processor.
2091     if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2092       return;
2093 
2094     PM.ProcResourceDefs.push_back(ProcResUnits);
2095     if (ProcResUnits->isSubClassOf("ProcResGroup"))
2096       return;
2097 
2098     if (!ProcResUnits->getValueInit("Super")->isComplete())
2099       return;
2100 
2101     ProcResKind = ProcResUnits->getValueAsDef("Super");
2102   }
2103 }
2104 
2105 // Add resources for a SchedWrite to this processor if they don't exist.
2106 void CodeGenSchedModels::addWriteRes(const Record *ProcWriteResDef,
2107                                      CodeGenProcModel &PM) {
2108   ConstRecVec &WRDefs = PM.WriteResDefs;
2109   if (is_contained(WRDefs, ProcWriteResDef))
2110     return;
2111   WRDefs.push_back(ProcWriteResDef);
2112 
2113   if (ProcWriteResDef->isSubClassOf("WriteRes")) {
2114     auto &WRMap = PM.WriteResMap;
2115     const Record *WRDef = ProcWriteResDef->getValueAsDef("WriteType");
2116     if (!WRMap.try_emplace(WRDef, ProcWriteResDef).second)
2117       PrintFatalError(ProcWriteResDef->getLoc(),
2118                       "WriteType already used in another WriteRes");
2119   }
2120 
2121   // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2122   for (const Record *ProcResDef :
2123        ProcWriteResDef->getValueAsListOfDefs("ProcResources")) {
2124     addProcResource(ProcResDef, PM, ProcWriteResDef->getLoc());
2125   }
2126 }
2127 
2128 // Add resources for a ReadAdvance to this processor if they don't exist.
2129 void CodeGenSchedModels::addReadAdvance(const Record *ProcReadAdvanceDef,
2130                                         CodeGenProcModel &PM) {
2131   for (const Record *ValidWrite :
2132        ProcReadAdvanceDef->getValueAsListOfDefs("ValidWrites")) {
2133     if (getSchedRWIdx(ValidWrite, /*IsRead=*/false) == 0)
2134       PrintFatalError(
2135           ProcReadAdvanceDef->getLoc(),
2136           "ReadAdvance referencing a ValidWrite that is not used by "
2137           "any instruction (" +
2138               ValidWrite->getName() + ")");
2139     PM.ReadOfWriteSet.insert(ValidWrite);
2140   }
2141 
2142   ConstRecVec &RADefs = PM.ReadAdvanceDefs;
2143   if (is_contained(RADefs, ProcReadAdvanceDef))
2144     return;
2145   RADefs.push_back(ProcReadAdvanceDef);
2146 
2147   if (ProcReadAdvanceDef->isSubClassOf("ReadAdvance")) {
2148     auto &RAMap = PM.ReadAdvanceMap;
2149     const Record *RADef = ProcReadAdvanceDef->getValueAsDef("ReadType");
2150     if (!RAMap.try_emplace(RADef, ProcReadAdvanceDef).second)
2151       PrintFatalError(ProcReadAdvanceDef->getLoc(),
2152                       "ReadType already used in another ReadAdvance");
2153   }
2154 }
2155 
2156 unsigned CodeGenProcModel::getProcResourceIdx(const Record *PRDef) const {
2157   ConstRecIter PRPos = find(ProcResourceDefs, PRDef);
2158   if (PRPos == ProcResourceDefs.end())
2159     PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2160                                      "the ProcResources list for " +
2161                                          ModelName);
2162   // Idx=0 is reserved for invalid.
2163   return 1 + (PRPos - ProcResourceDefs.begin());
2164 }
2165 
2166 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2167   for (const Record *TheDef : UnsupportedFeaturesDefs) {
2168     for (const Record *PredDef :
2169          Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2170       if (TheDef->getName() == PredDef->getName())
2171         return true;
2172     }
2173   }
2174   return false;
2175 }
2176 
2177 bool CodeGenProcModel::hasReadOfWrite(const Record *WriteDef) const {
2178   return ReadOfWriteSet.count(WriteDef);
2179 }
2180 
2181 #ifndef NDEBUG
2182 void CodeGenProcModel::dump() const {
2183   dbgs() << Index << ": " << ModelName << " "
2184          << (ModelDef ? ModelDef->getName() : "inferred") << " "
2185          << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2186 }
2187 
2188 void CodeGenSchedRW::dump() const {
2189   dbgs() << Name << (IsVariadic ? " (V) " : " ");
2190   if (IsSequence) {
2191     dbgs() << "(";
2192     dumpIdxVec(Sequence);
2193     dbgs() << ")";
2194   }
2195 }
2196 
2197 void CodeGenSchedClass::dump(const CodeGenSchedModels *SchedModels) const {
2198   dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n' << "  Writes: ";
2199   for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2200     SchedModels->getSchedWrite(Writes[i]).dump();
2201     if (i < N - 1) {
2202       dbgs() << '\n';
2203       dbgs().indent(10);
2204     }
2205   }
2206   dbgs() << "\n  Reads: ";
2207   for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2208     SchedModels->getSchedRead(Reads[i]).dump();
2209     if (i < N - 1) {
2210       dbgs() << '\n';
2211       dbgs().indent(10);
2212     }
2213   }
2214   dbgs() << "\n  ProcIdx: ";
2215   dumpIdxVec(ProcIndices);
2216   if (!Transitions.empty()) {
2217     dbgs() << "\n Transitions for Proc ";
2218     for (const CodeGenSchedTransition &Transition : Transitions) {
2219       dbgs() << Transition.ProcIndex << ", ";
2220     }
2221   }
2222   dbgs() << '\n';
2223 }
2224 
2225 void PredTransitions::dump() const {
2226   dbgs() << "Expanded Variants:\n";
2227   for (const auto &TI : TransVec) {
2228     dbgs() << "{";
2229     ListSeparator LS;
2230     for (const PredCheck &PC : TI.PredTerm)
2231       dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
2232              << PC.Predicate->getName();
2233     dbgs() << "},\n  => {";
2234     for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
2235              WSI = TI.WriteSequences.begin(),
2236              WSE = TI.WriteSequences.end();
2237          WSI != WSE; ++WSI) {
2238       dbgs() << "(";
2239       ListSeparator LS;
2240       for (unsigned N : *WSI)
2241         dbgs() << LS << SchedModels.getSchedWrite(N).Name;
2242       dbgs() << "),";
2243     }
2244     dbgs() << "}\n";
2245   }
2246 }
2247 #endif // NDEBUG
2248