1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "clang/CodeGen/BackendUtil.h"
10 #include "clang/Basic/CodeGenOptions.h"
11 #include "clang/Basic/Diagnostic.h"
12 #include "clang/Basic/LangOptions.h"
13 #include "clang/Basic/TargetOptions.h"
14 #include "clang/Frontend/FrontendDiagnostic.h"
15 #include "clang/Frontend/Utils.h"
16 #include "clang/Lex/HeaderSearchOptions.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/StackSafetyAnalysis.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/Bitcode/BitcodeReader.h"
26 #include "llvm/Bitcode/BitcodeWriter.h"
27 #include "llvm/Bitcode/BitcodeWriterPass.h"
28 #include "llvm/CodeGen/RegAllocRegistry.h"
29 #include "llvm/CodeGen/SchedulerRegistry.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/LegacyPassManager.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/ModuleSummaryIndex.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/LTO/LTOBackend.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/SubtargetFeature.h"
41 #include "llvm/Passes/PassBuilder.h"
42 #include "llvm/Passes/PassPlugin.h"
43 #include "llvm/Passes/StandardInstrumentations.h"
44 #include "llvm/Support/BuryPointer.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/MemoryBuffer.h"
47 #include "llvm/Support/PrettyStackTrace.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Support/TimeProfiler.h"
50 #include "llvm/Support/Timer.h"
51 #include "llvm/Support/ToolOutputFile.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/Transforms/Coroutines.h"
56 #include "llvm/Transforms/Coroutines/CoroCleanup.h"
57 #include "llvm/Transforms/Coroutines/CoroEarly.h"
58 #include "llvm/Transforms/Coroutines/CoroElide.h"
59 #include "llvm/Transforms/Coroutines/CoroSplit.h"
60 #include "llvm/Transforms/IPO.h"
61 #include "llvm/Transforms/IPO/AlwaysInliner.h"
62 #include "llvm/Transforms/IPO/LowerTypeTests.h"
63 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
64 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
65 #include "llvm/Transforms/InstCombine/InstCombine.h"
66 #include "llvm/Transforms/Instrumentation.h"
67 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
68 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
69 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
70 #include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
71 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
72 #include "llvm/Transforms/Instrumentation/InstrProfiling.h"
73 #include "llvm/Transforms/Instrumentation/MemProfiler.h"
74 #include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
75 #include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
76 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
77 #include "llvm/Transforms/ObjCARC.h"
78 #include "llvm/Transforms/Scalar.h"
79 #include "llvm/Transforms/Scalar/EarlyCSE.h"
80 #include "llvm/Transforms/Scalar/GVN.h"
81 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
82 #include "llvm/Transforms/Utils.h"
83 #include "llvm/Transforms/Utils/CanonicalizeAliases.h"
84 #include "llvm/Transforms/Utils/Debugify.h"
85 #include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
86 #include "llvm/Transforms/Utils/NameAnonGlobals.h"
87 #include "llvm/Transforms/Utils/SymbolRewriter.h"
88 #include <memory>
89 using namespace clang;
90 using namespace llvm;
91
92 #define HANDLE_EXTENSION(Ext) \
93 llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
94 #include "llvm/Support/Extension.def"
95
96 namespace {
97
98 // Default filename used for profile generation.
99 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
100
101 class EmitAssemblyHelper {
102 DiagnosticsEngine &Diags;
103 const HeaderSearchOptions &HSOpts;
104 const CodeGenOptions &CodeGenOpts;
105 const clang::TargetOptions &TargetOpts;
106 const LangOptions &LangOpts;
107 Module *TheModule;
108
109 Timer CodeGenerationTime;
110
111 std::unique_ptr<raw_pwrite_stream> OS;
112
getTargetIRAnalysis() const113 TargetIRAnalysis getTargetIRAnalysis() const {
114 if (TM)
115 return TM->getTargetIRAnalysis();
116
117 return TargetIRAnalysis();
118 }
119
120 void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
121
122 /// Generates the TargetMachine.
123 /// Leaves TM unchanged if it is unable to create the target machine.
124 /// Some of our clang tests specify triples which are not built
125 /// into clang. This is okay because these tests check the generated
126 /// IR, and they require DataLayout which depends on the triple.
127 /// In this case, we allow this method to fail and not report an error.
128 /// When MustCreateTM is used, we print an error if we are unable to load
129 /// the requested target.
130 void CreateTargetMachine(bool MustCreateTM);
131
132 /// Add passes necessary to emit assembly or LLVM IR.
133 ///
134 /// \return True on success.
135 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
136 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
137
openOutputFile(StringRef Path)138 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
139 std::error_code EC;
140 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
141 llvm::sys::fs::OF_None);
142 if (EC) {
143 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
144 F.reset();
145 }
146 return F;
147 }
148
149 public:
EmitAssemblyHelper(DiagnosticsEngine & _Diags,const HeaderSearchOptions & HeaderSearchOpts,const CodeGenOptions & CGOpts,const clang::TargetOptions & TOpts,const LangOptions & LOpts,Module * M)150 EmitAssemblyHelper(DiagnosticsEngine &_Diags,
151 const HeaderSearchOptions &HeaderSearchOpts,
152 const CodeGenOptions &CGOpts,
153 const clang::TargetOptions &TOpts,
154 const LangOptions &LOpts, Module *M)
155 : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
156 TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
157 CodeGenerationTime("codegen", "Code Generation Time") {}
158
~EmitAssemblyHelper()159 ~EmitAssemblyHelper() {
160 if (CodeGenOpts.DisableFree)
161 BuryPointer(std::move(TM));
162 }
163
164 std::unique_ptr<TargetMachine> TM;
165
166 void EmitAssembly(BackendAction Action,
167 std::unique_ptr<raw_pwrite_stream> OS);
168
169 void EmitAssemblyWithNewPassManager(BackendAction Action,
170 std::unique_ptr<raw_pwrite_stream> OS);
171 };
172
173 // We need this wrapper to access LangOpts and CGOpts from extension functions
174 // that we add to the PassManagerBuilder.
175 class PassManagerBuilderWrapper : public PassManagerBuilder {
176 public:
PassManagerBuilderWrapper(const Triple & TargetTriple,const CodeGenOptions & CGOpts,const LangOptions & LangOpts)177 PassManagerBuilderWrapper(const Triple &TargetTriple,
178 const CodeGenOptions &CGOpts,
179 const LangOptions &LangOpts)
180 : PassManagerBuilder(), TargetTriple(TargetTriple), CGOpts(CGOpts),
181 LangOpts(LangOpts) {}
getTargetTriple() const182 const Triple &getTargetTriple() const { return TargetTriple; }
getCGOpts() const183 const CodeGenOptions &getCGOpts() const { return CGOpts; }
getLangOpts() const184 const LangOptions &getLangOpts() const { return LangOpts; }
185
186 private:
187 const Triple &TargetTriple;
188 const CodeGenOptions &CGOpts;
189 const LangOptions &LangOpts;
190 };
191 }
192
addObjCARCAPElimPass(const PassManagerBuilder & Builder,PassManagerBase & PM)193 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
194 if (Builder.OptLevel > 0)
195 PM.add(createObjCARCAPElimPass());
196 }
197
addObjCARCExpandPass(const PassManagerBuilder & Builder,PassManagerBase & PM)198 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
199 if (Builder.OptLevel > 0)
200 PM.add(createObjCARCExpandPass());
201 }
202
addObjCARCOptPass(const PassManagerBuilder & Builder,PassManagerBase & PM)203 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
204 if (Builder.OptLevel > 0)
205 PM.add(createObjCARCOptPass());
206 }
207
addAddDiscriminatorsPass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)208 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
209 legacy::PassManagerBase &PM) {
210 PM.add(createAddDiscriminatorsPass());
211 }
212
addBoundsCheckingPass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)213 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
214 legacy::PassManagerBase &PM) {
215 PM.add(createBoundsCheckingLegacyPass());
216 }
217
218 static SanitizerCoverageOptions
getSancovOptsFromCGOpts(const CodeGenOptions & CGOpts)219 getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
220 SanitizerCoverageOptions Opts;
221 Opts.CoverageType =
222 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
223 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
224 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
225 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
226 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
227 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
228 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
229 Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
230 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
231 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
232 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
233 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
234 Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
235 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
236 return Opts;
237 }
238
addSanitizerCoveragePass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)239 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
240 legacy::PassManagerBase &PM) {
241 const PassManagerBuilderWrapper &BuilderWrapper =
242 static_cast<const PassManagerBuilderWrapper &>(Builder);
243 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
244 auto Opts = getSancovOptsFromCGOpts(CGOpts);
245 PM.add(createModuleSanitizerCoverageLegacyPassPass(
246 Opts, CGOpts.SanitizeCoverageAllowlistFiles,
247 CGOpts.SanitizeCoverageIgnorelistFiles));
248 }
249
250 // Check if ASan should use GC-friendly instrumentation for globals.
251 // First of all, there is no point if -fdata-sections is off (expect for MachO,
252 // where this is not a factor). Also, on ELF this feature requires an assembler
253 // extension that only works with -integrated-as at the moment.
asanUseGlobalsGC(const Triple & T,const CodeGenOptions & CGOpts)254 static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
255 if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
256 return false;
257 switch (T.getObjectFormat()) {
258 case Triple::MachO:
259 case Triple::COFF:
260 return true;
261 case Triple::ELF:
262 return CGOpts.DataSections && !CGOpts.DisableIntegratedAS;
263 case Triple::GOFF:
264 llvm::report_fatal_error("ASan not implemented for GOFF");
265 case Triple::XCOFF:
266 llvm::report_fatal_error("ASan not implemented for XCOFF.");
267 case Triple::Wasm:
268 case Triple::UnknownObjectFormat:
269 break;
270 }
271 return false;
272 }
273
addMemProfilerPasses(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)274 static void addMemProfilerPasses(const PassManagerBuilder &Builder,
275 legacy::PassManagerBase &PM) {
276 PM.add(createMemProfilerFunctionPass());
277 PM.add(createModuleMemProfilerLegacyPassPass());
278 }
279
addAddressSanitizerPasses(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)280 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
281 legacy::PassManagerBase &PM) {
282 const PassManagerBuilderWrapper &BuilderWrapper =
283 static_cast<const PassManagerBuilderWrapper&>(Builder);
284 const Triple &T = BuilderWrapper.getTargetTriple();
285 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
286 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
287 bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
288 bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
289 bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
290 llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor();
291 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
292 UseAfterScope));
293 PM.add(createModuleAddressSanitizerLegacyPassPass(
294 /*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator,
295 DestructorKind));
296 }
297
addKernelAddressSanitizerPasses(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)298 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
299 legacy::PassManagerBase &PM) {
300 PM.add(createAddressSanitizerFunctionPass(
301 /*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false));
302 PM.add(createModuleAddressSanitizerLegacyPassPass(
303 /*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
304 /*UseOdrIndicator*/ false));
305 }
306
addHWAddressSanitizerPasses(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)307 static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
308 legacy::PassManagerBase &PM) {
309 const PassManagerBuilderWrapper &BuilderWrapper =
310 static_cast<const PassManagerBuilderWrapper &>(Builder);
311 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
312 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
313 PM.add(
314 createHWAddressSanitizerLegacyPassPass(/*CompileKernel*/ false, Recover));
315 }
316
addKernelHWAddressSanitizerPasses(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)317 static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
318 legacy::PassManagerBase &PM) {
319 PM.add(createHWAddressSanitizerLegacyPassPass(
320 /*CompileKernel*/ true, /*Recover*/ true));
321 }
322
addGeneralOptsForMemorySanitizer(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM,bool CompileKernel)323 static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
324 legacy::PassManagerBase &PM,
325 bool CompileKernel) {
326 const PassManagerBuilderWrapper &BuilderWrapper =
327 static_cast<const PassManagerBuilderWrapper&>(Builder);
328 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
329 int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
330 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
331 PM.add(createMemorySanitizerLegacyPassPass(
332 MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel}));
333
334 // MemorySanitizer inserts complex instrumentation that mostly follows
335 // the logic of the original code, but operates on "shadow" values.
336 // It can benefit from re-running some general purpose optimization passes.
337 if (Builder.OptLevel > 0) {
338 PM.add(createEarlyCSEPass());
339 PM.add(createReassociatePass());
340 PM.add(createLICMPass());
341 PM.add(createGVNPass());
342 PM.add(createInstructionCombiningPass());
343 PM.add(createDeadStoreEliminationPass());
344 }
345 }
346
addMemorySanitizerPass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)347 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
348 legacy::PassManagerBase &PM) {
349 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
350 }
351
addKernelMemorySanitizerPass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)352 static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
353 legacy::PassManagerBase &PM) {
354 addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
355 }
356
addThreadSanitizerPass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)357 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
358 legacy::PassManagerBase &PM) {
359 PM.add(createThreadSanitizerLegacyPassPass());
360 }
361
addDataFlowSanitizerPass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)362 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
363 legacy::PassManagerBase &PM) {
364 const PassManagerBuilderWrapper &BuilderWrapper =
365 static_cast<const PassManagerBuilderWrapper&>(Builder);
366 const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
367 PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles));
368 }
369
addEntryExitInstrumentationPass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)370 static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder,
371 legacy::PassManagerBase &PM) {
372 PM.add(createEntryExitInstrumenterPass());
373 }
374
375 static void
addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder & Builder,legacy::PassManagerBase & PM)376 addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder,
377 legacy::PassManagerBase &PM) {
378 PM.add(createPostInlineEntryExitInstrumenterPass());
379 }
380
createTLII(llvm::Triple & TargetTriple,const CodeGenOptions & CodeGenOpts)381 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
382 const CodeGenOptions &CodeGenOpts) {
383 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
384
385 switch (CodeGenOpts.getVecLib()) {
386 case CodeGenOptions::Accelerate:
387 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
388 break;
389 case CodeGenOptions::LIBMVEC:
390 switch(TargetTriple.getArch()) {
391 default:
392 break;
393 case llvm::Triple::x86_64:
394 TLII->addVectorizableFunctionsFromVecLib
395 (TargetLibraryInfoImpl::LIBMVEC_X86);
396 break;
397 }
398 break;
399 case CodeGenOptions::MASSV:
400 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV);
401 break;
402 case CodeGenOptions::SVML:
403 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
404 break;
405 case CodeGenOptions::Darwin_libsystem_m:
406 TLII->addVectorizableFunctionsFromVecLib(
407 TargetLibraryInfoImpl::DarwinLibSystemM);
408 break;
409 default:
410 break;
411 }
412 return TLII;
413 }
414
addSymbolRewriterPass(const CodeGenOptions & Opts,legacy::PassManager * MPM)415 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
416 legacy::PassManager *MPM) {
417 llvm::SymbolRewriter::RewriteDescriptorList DL;
418
419 llvm::SymbolRewriter::RewriteMapParser MapParser;
420 for (const auto &MapFile : Opts.RewriteMapFiles)
421 MapParser.parse(MapFile, &DL);
422
423 MPM->add(createRewriteSymbolsPass(DL));
424 }
425
getCGOptLevel(const CodeGenOptions & CodeGenOpts)426 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
427 switch (CodeGenOpts.OptimizationLevel) {
428 default:
429 llvm_unreachable("Invalid optimization level!");
430 case 0:
431 return CodeGenOpt::None;
432 case 1:
433 return CodeGenOpt::Less;
434 case 2:
435 return CodeGenOpt::Default; // O2/Os/Oz
436 case 3:
437 return CodeGenOpt::Aggressive;
438 }
439 }
440
441 static Optional<llvm::CodeModel::Model>
getCodeModel(const CodeGenOptions & CodeGenOpts)442 getCodeModel(const CodeGenOptions &CodeGenOpts) {
443 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
444 .Case("tiny", llvm::CodeModel::Tiny)
445 .Case("small", llvm::CodeModel::Small)
446 .Case("kernel", llvm::CodeModel::Kernel)
447 .Case("medium", llvm::CodeModel::Medium)
448 .Case("large", llvm::CodeModel::Large)
449 .Case("default", ~1u)
450 .Default(~0u);
451 assert(CodeModel != ~0u && "invalid code model!");
452 if (CodeModel == ~1u)
453 return None;
454 return static_cast<llvm::CodeModel::Model>(CodeModel);
455 }
456
getCodeGenFileType(BackendAction Action)457 static CodeGenFileType getCodeGenFileType(BackendAction Action) {
458 if (Action == Backend_EmitObj)
459 return CGFT_ObjectFile;
460 else if (Action == Backend_EmitMCNull)
461 return CGFT_Null;
462 else {
463 assert(Action == Backend_EmitAssembly && "Invalid action!");
464 return CGFT_AssemblyFile;
465 }
466 }
467
initTargetOptions(DiagnosticsEngine & Diags,llvm::TargetOptions & Options,const CodeGenOptions & CodeGenOpts,const clang::TargetOptions & TargetOpts,const LangOptions & LangOpts,const HeaderSearchOptions & HSOpts)468 static bool initTargetOptions(DiagnosticsEngine &Diags,
469 llvm::TargetOptions &Options,
470 const CodeGenOptions &CodeGenOpts,
471 const clang::TargetOptions &TargetOpts,
472 const LangOptions &LangOpts,
473 const HeaderSearchOptions &HSOpts) {
474 switch (LangOpts.getThreadModel()) {
475 case LangOptions::ThreadModelKind::POSIX:
476 Options.ThreadModel = llvm::ThreadModel::POSIX;
477 break;
478 case LangOptions::ThreadModelKind::Single:
479 Options.ThreadModel = llvm::ThreadModel::Single;
480 break;
481 }
482
483 // Set float ABI type.
484 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
485 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
486 "Invalid Floating Point ABI!");
487 Options.FloatABIType =
488 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
489 .Case("soft", llvm::FloatABI::Soft)
490 .Case("softfp", llvm::FloatABI::Soft)
491 .Case("hard", llvm::FloatABI::Hard)
492 .Default(llvm::FloatABI::Default);
493
494 // Set FP fusion mode.
495 switch (LangOpts.getDefaultFPContractMode()) {
496 case LangOptions::FPM_Off:
497 // Preserve any contraction performed by the front-end. (Strict performs
498 // splitting of the muladd intrinsic in the backend.)
499 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
500 break;
501 case LangOptions::FPM_On:
502 case LangOptions::FPM_FastHonorPragmas:
503 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
504 break;
505 case LangOptions::FPM_Fast:
506 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
507 break;
508 }
509
510 Options.BinutilsVersion =
511 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion);
512 Options.UseInitArray = CodeGenOpts.UseInitArray;
513 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
514 Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
515 Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
516
517 // Set EABI version.
518 Options.EABIVersion = TargetOpts.EABIVersion;
519
520 if (LangOpts.hasSjLjExceptions())
521 Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
522 if (LangOpts.hasSEHExceptions())
523 Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
524 if (LangOpts.hasDWARFExceptions())
525 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
526 if (LangOpts.hasWasmExceptions())
527 Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
528
529 Options.NoInfsFPMath = LangOpts.NoHonorInfs;
530 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
531 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
532 Options.UnsafeFPMath = LangOpts.UnsafeFPMath;
533 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
534
535 Options.BBSections =
536 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
537 .Case("all", llvm::BasicBlockSection::All)
538 .Case("labels", llvm::BasicBlockSection::Labels)
539 .StartsWith("list=", llvm::BasicBlockSection::List)
540 .Case("none", llvm::BasicBlockSection::None)
541 .Default(llvm::BasicBlockSection::None);
542
543 if (Options.BBSections == llvm::BasicBlockSection::List) {
544 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
545 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
546 if (!MBOrErr) {
547 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
548 << MBOrErr.getError().message();
549 return false;
550 }
551 Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
552 }
553
554 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
555 Options.FunctionSections = CodeGenOpts.FunctionSections;
556 Options.DataSections = CodeGenOpts.DataSections;
557 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
558 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
559 Options.UniqueBasicBlockSectionNames =
560 CodeGenOpts.UniqueBasicBlockSectionNames;
561 Options.TLSSize = CodeGenOpts.TLSSize;
562 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
563 Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
564 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
565 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
566 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
567 Options.EmitAddrsig = CodeGenOpts.Addrsig;
568 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
569 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
570 Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI;
571 Options.PseudoProbeForProfiling = CodeGenOpts.PseudoProbeForProfiling;
572 Options.ValueTrackingVariableLocations =
573 CodeGenOpts.ValueTrackingVariableLocations;
574 Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex;
575
576 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
577 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
578 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
579 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
580 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
581 Options.MCOptions.MCIncrementalLinkerCompatible =
582 CodeGenOpts.IncrementalLinkerCompatible;
583 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
584 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
585 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
586 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
587 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
588 Options.MCOptions.ABIName = TargetOpts.ABI;
589 for (const auto &Entry : HSOpts.UserEntries)
590 if (!Entry.IsFramework &&
591 (Entry.Group == frontend::IncludeDirGroup::Quoted ||
592 Entry.Group == frontend::IncludeDirGroup::Angled ||
593 Entry.Group == frontend::IncludeDirGroup::System))
594 Options.MCOptions.IASSearchPaths.push_back(
595 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
596 Options.MCOptions.Argv0 = CodeGenOpts.Argv0;
597 Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs;
598 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
599
600 return true;
601 }
602
getGCOVOptions(const CodeGenOptions & CodeGenOpts,const LangOptions & LangOpts)603 static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts,
604 const LangOptions &LangOpts) {
605 if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
606 return None;
607 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
608 // LLVM's -default-gcov-version flag is set to something invalid.
609 GCOVOptions Options;
610 Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
611 Options.EmitData = CodeGenOpts.EmitGcovArcs;
612 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
613 Options.NoRedZone = CodeGenOpts.DisableRedZone;
614 Options.Filter = CodeGenOpts.ProfileFilterFiles;
615 Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
616 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
617 return Options;
618 }
619
620 static Optional<InstrProfOptions>
getInstrProfOptions(const CodeGenOptions & CodeGenOpts,const LangOptions & LangOpts)621 getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
622 const LangOptions &LangOpts) {
623 if (!CodeGenOpts.hasProfileClangInstr())
624 return None;
625 InstrProfOptions Options;
626 Options.NoRedZone = CodeGenOpts.DisableRedZone;
627 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
628 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
629 return Options;
630 }
631
CreatePasses(legacy::PassManager & MPM,legacy::FunctionPassManager & FPM)632 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
633 legacy::FunctionPassManager &FPM) {
634 // Handle disabling of all LLVM passes, where we want to preserve the
635 // internal module before any optimization.
636 if (CodeGenOpts.DisableLLVMPasses)
637 return;
638
639 // Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
640 // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
641 // are inserted before PMBuilder ones - they'd get the default-constructed
642 // TLI with an unknown target otherwise.
643 Triple TargetTriple(TheModule->getTargetTriple());
644 std::unique_ptr<TargetLibraryInfoImpl> TLII(
645 createTLII(TargetTriple, CodeGenOpts));
646
647 // If we reached here with a non-empty index file name, then the index file
648 // was empty and we are not performing ThinLTO backend compilation (used in
649 // testing in a distributed build environment). Drop any the type test
650 // assume sequences inserted for whole program vtables so that codegen doesn't
651 // complain.
652 if (!CodeGenOpts.ThinLTOIndexFile.empty())
653 MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr,
654 /*ImportSummary=*/nullptr,
655 /*DropTypeTests=*/true));
656
657 PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
658
659 // At O0 and O1 we only run the always inliner which is more efficient. At
660 // higher optimization levels we run the normal inliner.
661 if (CodeGenOpts.OptimizationLevel <= 1) {
662 bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 &&
663 !CodeGenOpts.DisableLifetimeMarkers) ||
664 LangOpts.Coroutines);
665 PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
666 } else {
667 // We do not want to inline hot callsites for SamplePGO module-summary build
668 // because profile annotation will happen again in ThinLTO backend, and we
669 // want the IR of the hot path to match the profile.
670 PMBuilder.Inliner = createFunctionInliningPass(
671 CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
672 (!CodeGenOpts.SampleProfileFile.empty() &&
673 CodeGenOpts.PrepareForThinLTO));
674 }
675
676 PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
677 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
678 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
679 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
680 // Only enable CGProfilePass when using integrated assembler, since
681 // non-integrated assemblers don't recognize .cgprofile section.
682 PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
683
684 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
685 // Loop interleaving in the loop vectorizer has historically been set to be
686 // enabled when loop unrolling is enabled.
687 PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops;
688 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
689 PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
690 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
691 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
692
693 MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
694
695 if (TM)
696 TM->adjustPassManager(PMBuilder);
697
698 if (CodeGenOpts.DebugInfoForProfiling ||
699 !CodeGenOpts.SampleProfileFile.empty())
700 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
701 addAddDiscriminatorsPass);
702
703 // In ObjC ARC mode, add the main ARC optimization passes.
704 if (LangOpts.ObjCAutoRefCount) {
705 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
706 addObjCARCExpandPass);
707 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
708 addObjCARCAPElimPass);
709 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
710 addObjCARCOptPass);
711 }
712
713 if (LangOpts.Coroutines)
714 addCoroutinePassesToExtensionPoints(PMBuilder);
715
716 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
717 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
718 addMemProfilerPasses);
719 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
720 addMemProfilerPasses);
721 }
722
723 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
724 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
725 addBoundsCheckingPass);
726 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
727 addBoundsCheckingPass);
728 }
729
730 if (CodeGenOpts.SanitizeCoverageType ||
731 CodeGenOpts.SanitizeCoverageIndirectCalls ||
732 CodeGenOpts.SanitizeCoverageTraceCmp) {
733 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
734 addSanitizerCoveragePass);
735 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
736 addSanitizerCoveragePass);
737 }
738
739 if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
740 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
741 addAddressSanitizerPasses);
742 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
743 addAddressSanitizerPasses);
744 }
745
746 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
747 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
748 addKernelAddressSanitizerPasses);
749 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
750 addKernelAddressSanitizerPasses);
751 }
752
753 if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
754 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
755 addHWAddressSanitizerPasses);
756 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
757 addHWAddressSanitizerPasses);
758 }
759
760 if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
761 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
762 addKernelHWAddressSanitizerPasses);
763 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
764 addKernelHWAddressSanitizerPasses);
765 }
766
767 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
768 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
769 addMemorySanitizerPass);
770 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
771 addMemorySanitizerPass);
772 }
773
774 if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
775 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
776 addKernelMemorySanitizerPass);
777 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
778 addKernelMemorySanitizerPass);
779 }
780
781 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
782 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
783 addThreadSanitizerPass);
784 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
785 addThreadSanitizerPass);
786 }
787
788 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
789 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
790 addDataFlowSanitizerPass);
791 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
792 addDataFlowSanitizerPass);
793 }
794
795 if (CodeGenOpts.InstrumentFunctions ||
796 CodeGenOpts.InstrumentFunctionEntryBare ||
797 CodeGenOpts.InstrumentFunctionsAfterInlining ||
798 CodeGenOpts.InstrumentForProfiling) {
799 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
800 addEntryExitInstrumentationPass);
801 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
802 addEntryExitInstrumentationPass);
803 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
804 addPostInlineEntryExitInstrumentationPass);
805 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
806 addPostInlineEntryExitInstrumentationPass);
807 }
808
809 // Set up the per-function pass manager.
810 FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
811 if (CodeGenOpts.VerifyModule)
812 FPM.add(createVerifierPass());
813
814 // Set up the per-module pass manager.
815 if (!CodeGenOpts.RewriteMapFiles.empty())
816 addSymbolRewriterPass(CodeGenOpts, &MPM);
817
818 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) {
819 MPM.add(createGCOVProfilerPass(*Options));
820 if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
821 MPM.add(createStripSymbolsPass(true));
822 }
823
824 if (Optional<InstrProfOptions> Options =
825 getInstrProfOptions(CodeGenOpts, LangOpts))
826 MPM.add(createInstrProfilingLegacyPass(*Options, false));
827
828 bool hasIRInstr = false;
829 if (CodeGenOpts.hasProfileIRInstr()) {
830 PMBuilder.EnablePGOInstrGen = true;
831 hasIRInstr = true;
832 }
833 if (CodeGenOpts.hasProfileCSIRInstr()) {
834 assert(!CodeGenOpts.hasProfileCSIRUse() &&
835 "Cannot have both CSProfileUse pass and CSProfileGen pass at the "
836 "same time");
837 assert(!hasIRInstr &&
838 "Cannot have both ProfileGen pass and CSProfileGen pass at the "
839 "same time");
840 PMBuilder.EnablePGOCSInstrGen = true;
841 hasIRInstr = true;
842 }
843 if (hasIRInstr) {
844 if (!CodeGenOpts.InstrProfileOutput.empty())
845 PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
846 else
847 PMBuilder.PGOInstrGen = std::string(DefaultProfileGenName);
848 }
849 if (CodeGenOpts.hasProfileIRUse()) {
850 PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
851 PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse();
852 }
853
854 if (!CodeGenOpts.SampleProfileFile.empty())
855 PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
856
857 PMBuilder.populateFunctionPassManager(FPM);
858 PMBuilder.populateModulePassManager(MPM);
859 }
860
setCommandLineOpts(const CodeGenOptions & CodeGenOpts)861 static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
862 SmallVector<const char *, 16> BackendArgs;
863 BackendArgs.push_back("clang"); // Fake program name.
864 if (!CodeGenOpts.DebugPass.empty()) {
865 BackendArgs.push_back("-debug-pass");
866 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
867 }
868 if (!CodeGenOpts.LimitFloatPrecision.empty()) {
869 BackendArgs.push_back("-limit-float-precision");
870 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
871 }
872 // Check for the default "clang" invocation that won't set any cl::opt values.
873 // Skip trying to parse the command line invocation to avoid the issues
874 // described below.
875 if (BackendArgs.size() == 1)
876 return;
877 BackendArgs.push_back(nullptr);
878 // FIXME: The command line parser below is not thread-safe and shares a global
879 // state, so this call might crash or overwrite the options of another Clang
880 // instance in the same process.
881 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
882 BackendArgs.data());
883 }
884
CreateTargetMachine(bool MustCreateTM)885 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
886 // Create the TargetMachine for generating code.
887 std::string Error;
888 std::string Triple = TheModule->getTargetTriple();
889 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
890 if (!TheTarget) {
891 if (MustCreateTM)
892 Diags.Report(diag::err_fe_unable_to_create_target) << Error;
893 return;
894 }
895
896 Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
897 std::string FeaturesStr =
898 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
899 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
900 CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
901
902 llvm::TargetOptions Options;
903 if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts,
904 HSOpts))
905 return;
906 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
907 Options, RM, CM, OptLevel));
908 }
909
AddEmitPasses(legacy::PassManager & CodeGenPasses,BackendAction Action,raw_pwrite_stream & OS,raw_pwrite_stream * DwoOS)910 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
911 BackendAction Action,
912 raw_pwrite_stream &OS,
913 raw_pwrite_stream *DwoOS) {
914 // Add LibraryInfo.
915 llvm::Triple TargetTriple(TheModule->getTargetTriple());
916 std::unique_ptr<TargetLibraryInfoImpl> TLII(
917 createTLII(TargetTriple, CodeGenOpts));
918 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
919
920 // Normal mode, emit a .s or .o file by running the code generator. Note,
921 // this also adds codegenerator level optimization passes.
922 CodeGenFileType CGFT = getCodeGenFileType(Action);
923
924 // Add ObjC ARC final-cleanup optimizations. This is done as part of the
925 // "codegen" passes so that it isn't run multiple times when there is
926 // inlining happening.
927 if (CodeGenOpts.OptimizationLevel > 0)
928 CodeGenPasses.add(createObjCARCContractPass());
929
930 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
931 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
932 Diags.Report(diag::err_fe_unable_to_interface_with_target);
933 return false;
934 }
935
936 return true;
937 }
938
EmitAssembly(BackendAction Action,std::unique_ptr<raw_pwrite_stream> OS)939 void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
940 std::unique_ptr<raw_pwrite_stream> OS) {
941 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
942
943 setCommandLineOpts(CodeGenOpts);
944
945 bool UsesCodeGen = (Action != Backend_EmitNothing &&
946 Action != Backend_EmitBC &&
947 Action != Backend_EmitLL);
948 CreateTargetMachine(UsesCodeGen);
949
950 if (UsesCodeGen && !TM)
951 return;
952 if (TM)
953 TheModule->setDataLayout(TM->createDataLayout());
954
955 DebugifyCustomPassManager PerModulePasses;
956 DebugInfoPerPassMap DIPreservationMap;
957 if (CodeGenOpts.EnableDIPreservationVerify) {
958 PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
959 PerModulePasses.setDIPreservationMap(DIPreservationMap);
960
961 if (!CodeGenOpts.DIBugsReportFilePath.empty())
962 PerModulePasses.setOrigDIVerifyBugsReportFilePath(
963 CodeGenOpts.DIBugsReportFilePath);
964 }
965 PerModulePasses.add(
966 createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
967
968 legacy::FunctionPassManager PerFunctionPasses(TheModule);
969 PerFunctionPasses.add(
970 createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
971
972 CreatePasses(PerModulePasses, PerFunctionPasses);
973
974 legacy::PassManager CodeGenPasses;
975 CodeGenPasses.add(
976 createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
977
978 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
979
980 switch (Action) {
981 case Backend_EmitNothing:
982 break;
983
984 case Backend_EmitBC:
985 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
986 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
987 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
988 if (!ThinLinkOS)
989 return;
990 }
991 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
992 CodeGenOpts.EnableSplitLTOUnit);
993 PerModulePasses.add(createWriteThinLTOBitcodePass(
994 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
995 } else {
996 // Emit a module summary by default for Regular LTO except for ld64
997 // targets
998 bool EmitLTOSummary =
999 (CodeGenOpts.PrepareForLTO &&
1000 !CodeGenOpts.DisableLLVMPasses &&
1001 llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
1002 llvm::Triple::Apple);
1003 if (EmitLTOSummary) {
1004 if (!TheModule->getModuleFlag("ThinLTO"))
1005 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1006 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1007 uint32_t(1));
1008 }
1009
1010 PerModulePasses.add(createBitcodeWriterPass(
1011 *OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
1012 }
1013 break;
1014
1015 case Backend_EmitLL:
1016 PerModulePasses.add(
1017 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1018 break;
1019
1020 default:
1021 if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1022 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1023 if (!DwoOS)
1024 return;
1025 }
1026 if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1027 DwoOS ? &DwoOS->os() : nullptr))
1028 return;
1029 }
1030
1031 // Before executing passes, print the final values of the LLVM options.
1032 cl::PrintOptionValues();
1033
1034 // Run passes. For now we do all passes at once, but eventually we
1035 // would like to have the option of streaming code generation.
1036
1037 {
1038 PrettyStackTraceString CrashInfo("Per-function optimization");
1039 llvm::TimeTraceScope TimeScope("PerFunctionPasses");
1040
1041 PerFunctionPasses.doInitialization();
1042 for (Function &F : *TheModule)
1043 if (!F.isDeclaration())
1044 PerFunctionPasses.run(F);
1045 PerFunctionPasses.doFinalization();
1046 }
1047
1048 {
1049 PrettyStackTraceString CrashInfo("Per-module optimization passes");
1050 llvm::TimeTraceScope TimeScope("PerModulePasses");
1051 PerModulePasses.run(*TheModule);
1052 }
1053
1054 {
1055 PrettyStackTraceString CrashInfo("Code generation");
1056 llvm::TimeTraceScope TimeScope("CodeGenPasses");
1057 CodeGenPasses.run(*TheModule);
1058 }
1059
1060 if (ThinLinkOS)
1061 ThinLinkOS->keep();
1062 if (DwoOS)
1063 DwoOS->keep();
1064 }
1065
mapToLevel(const CodeGenOptions & Opts)1066 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
1067 switch (Opts.OptimizationLevel) {
1068 default:
1069 llvm_unreachable("Invalid optimization level!");
1070
1071 case 0:
1072 return PassBuilder::OptimizationLevel::O0;
1073
1074 case 1:
1075 return PassBuilder::OptimizationLevel::O1;
1076
1077 case 2:
1078 switch (Opts.OptimizeSize) {
1079 default:
1080 llvm_unreachable("Invalid optimization level for size!");
1081
1082 case 0:
1083 return PassBuilder::OptimizationLevel::O2;
1084
1085 case 1:
1086 return PassBuilder::OptimizationLevel::Os;
1087
1088 case 2:
1089 return PassBuilder::OptimizationLevel::Oz;
1090 }
1091
1092 case 3:
1093 return PassBuilder::OptimizationLevel::O3;
1094 }
1095 }
1096
addSanitizers(const Triple & TargetTriple,const CodeGenOptions & CodeGenOpts,const LangOptions & LangOpts,PassBuilder & PB)1097 static void addSanitizers(const Triple &TargetTriple,
1098 const CodeGenOptions &CodeGenOpts,
1099 const LangOptions &LangOpts, PassBuilder &PB) {
1100 PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM,
1101 PassBuilder::OptimizationLevel Level) {
1102 if (CodeGenOpts.SanitizeCoverageType ||
1103 CodeGenOpts.SanitizeCoverageIndirectCalls ||
1104 CodeGenOpts.SanitizeCoverageTraceCmp) {
1105 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
1106 MPM.addPass(ModuleSanitizerCoveragePass(
1107 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
1108 CodeGenOpts.SanitizeCoverageIgnorelistFiles));
1109 }
1110
1111 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
1112 if (LangOpts.Sanitize.has(Mask)) {
1113 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
1114 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
1115
1116 MPM.addPass(
1117 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel}));
1118 FunctionPassManager FPM;
1119 FPM.addPass(
1120 MemorySanitizerPass({TrackOrigins, Recover, CompileKernel}));
1121 if (Level != PassBuilder::OptimizationLevel::O0) {
1122 // MemorySanitizer inserts complex instrumentation that mostly
1123 // follows the logic of the original code, but operates on
1124 // "shadow" values. It can benefit from re-running some
1125 // general purpose optimization passes.
1126 FPM.addPass(EarlyCSEPass());
1127 // TODO: Consider add more passes like in
1128 // addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible
1129 // difference on size. It's not clear if the rest is still
1130 // usefull. InstCombinePass breakes
1131 // compiler-rt/test/msan/select_origin.cpp.
1132 }
1133 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1134 }
1135 };
1136 MSanPass(SanitizerKind::Memory, false);
1137 MSanPass(SanitizerKind::KernelMemory, true);
1138
1139 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
1140 MPM.addPass(ThreadSanitizerPass());
1141 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
1142 }
1143
1144 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
1145 if (LangOpts.Sanitize.has(Mask)) {
1146 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
1147 bool UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
1148 bool ModuleUseAfterScope = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
1149 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
1150 llvm::AsanDtorKind DestructorKind =
1151 CodeGenOpts.getSanitizeAddressDtor();
1152 MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
1153 MPM.addPass(ModuleAddressSanitizerPass(
1154 CompileKernel, Recover, ModuleUseAfterScope, UseOdrIndicator,
1155 DestructorKind));
1156 MPM.addPass(createModuleToFunctionPassAdaptor(
1157 AddressSanitizerPass(CompileKernel, Recover, UseAfterScope)));
1158 }
1159 };
1160 ASanPass(SanitizerKind::Address, false);
1161 ASanPass(SanitizerKind::KernelAddress, true);
1162
1163 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
1164 if (LangOpts.Sanitize.has(Mask)) {
1165 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
1166 MPM.addPass(HWAddressSanitizerPass(CompileKernel, Recover));
1167 }
1168 };
1169 HWASanPass(SanitizerKind::HWAddress, false);
1170 HWASanPass(SanitizerKind::KernelHWAddress, true);
1171
1172 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
1173 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
1174 }
1175 });
1176 }
1177
1178 /// A clean version of `EmitAssembly` that uses the new pass manager.
1179 ///
1180 /// Not all features are currently supported in this system, but where
1181 /// necessary it falls back to the legacy pass manager to at least provide
1182 /// basic functionality.
1183 ///
1184 /// This API is planned to have its functionality finished and then to replace
1185 /// `EmitAssembly` at some point in the future when the default switches.
EmitAssemblyWithNewPassManager(BackendAction Action,std::unique_ptr<raw_pwrite_stream> OS)1186 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
1187 BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
1188 TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
1189 setCommandLineOpts(CodeGenOpts);
1190
1191 bool RequiresCodeGen = (Action != Backend_EmitNothing &&
1192 Action != Backend_EmitBC &&
1193 Action != Backend_EmitLL);
1194 CreateTargetMachine(RequiresCodeGen);
1195
1196 if (RequiresCodeGen && !TM)
1197 return;
1198 if (TM)
1199 TheModule->setDataLayout(TM->createDataLayout());
1200
1201 Optional<PGOOptions> PGOOpt;
1202
1203 if (CodeGenOpts.hasProfileIRInstr())
1204 // -fprofile-generate.
1205 PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
1206 ? std::string(DefaultProfileGenName)
1207 : CodeGenOpts.InstrProfileOutput,
1208 "", "", PGOOptions::IRInstr, PGOOptions::NoCSAction,
1209 CodeGenOpts.DebugInfoForProfiling);
1210 else if (CodeGenOpts.hasProfileIRUse()) {
1211 // -fprofile-use.
1212 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
1213 : PGOOptions::NoCSAction;
1214 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
1215 CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse,
1216 CSAction, CodeGenOpts.DebugInfoForProfiling);
1217 } else if (!CodeGenOpts.SampleProfileFile.empty())
1218 // -fprofile-sample-use
1219 PGOOpt = PGOOptions(
1220 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
1221 PGOOptions::SampleUse, PGOOptions::NoCSAction,
1222 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
1223 else if (CodeGenOpts.PseudoProbeForProfiling)
1224 // -fpseudo-probe-for-profiling
1225 PGOOpt =
1226 PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction,
1227 CodeGenOpts.DebugInfoForProfiling, true);
1228 else if (CodeGenOpts.DebugInfoForProfiling)
1229 // -fdebug-info-for-profiling
1230 PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction,
1231 PGOOptions::NoCSAction, true);
1232
1233 // Check to see if we want to generate a CS profile.
1234 if (CodeGenOpts.hasProfileCSIRInstr()) {
1235 assert(!CodeGenOpts.hasProfileCSIRUse() &&
1236 "Cannot have both CSProfileUse pass and CSProfileGen pass at "
1237 "the same time");
1238 if (PGOOpt.hasValue()) {
1239 assert(PGOOpt->Action != PGOOptions::IRInstr &&
1240 PGOOpt->Action != PGOOptions::SampleUse &&
1241 "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
1242 " pass");
1243 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
1244 ? std::string(DefaultProfileGenName)
1245 : CodeGenOpts.InstrProfileOutput;
1246 PGOOpt->CSAction = PGOOptions::CSIRInstr;
1247 } else
1248 PGOOpt = PGOOptions("",
1249 CodeGenOpts.InstrProfileOutput.empty()
1250 ? std::string(DefaultProfileGenName)
1251 : CodeGenOpts.InstrProfileOutput,
1252 "", PGOOptions::NoAction, PGOOptions::CSIRInstr,
1253 CodeGenOpts.DebugInfoForProfiling);
1254 }
1255
1256 PipelineTuningOptions PTO;
1257 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
1258 // For historical reasons, loop interleaving is set to mirror setting for loop
1259 // unrolling.
1260 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
1261 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
1262 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
1263 PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
1264 // Only enable CGProfilePass when using integrated assembler, since
1265 // non-integrated assemblers don't recognize .cgprofile section.
1266 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
1267 PTO.Coroutines = LangOpts.Coroutines;
1268
1269 LoopAnalysisManager LAM;
1270 FunctionAnalysisManager FAM;
1271 CGSCCAnalysisManager CGAM;
1272 ModuleAnalysisManager MAM;
1273
1274 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
1275 PassInstrumentationCallbacks PIC;
1276 PrintPassOptions PrintPassOpts;
1277 PrintPassOpts.Indent = DebugPassStructure;
1278 PrintPassOpts.SkipAnalyses = DebugPassStructure;
1279 StandardInstrumentations SI(CodeGenOpts.DebugPassManager ||
1280 DebugPassStructure,
1281 /*VerifyEach*/ false, PrintPassOpts);
1282 SI.registerCallbacks(PIC, &FAM);
1283 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
1284
1285 // Attempt to load pass plugins and register their callbacks with PB.
1286 for (auto &PluginFN : CodeGenOpts.PassPlugins) {
1287 auto PassPlugin = PassPlugin::Load(PluginFN);
1288 if (PassPlugin) {
1289 PassPlugin->registerPassBuilderCallbacks(PB);
1290 } else {
1291 Diags.Report(diag::err_fe_unable_to_load_plugin)
1292 << PluginFN << toString(PassPlugin.takeError());
1293 }
1294 }
1295 #define HANDLE_EXTENSION(Ext) \
1296 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
1297 #include "llvm/Support/Extension.def"
1298
1299 // Register the AA manager first so that our version is the one used.
1300 FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
1301
1302 // Register the target library analysis directly and give it a customized
1303 // preset TLI.
1304 Triple TargetTriple(TheModule->getTargetTriple());
1305 std::unique_ptr<TargetLibraryInfoImpl> TLII(
1306 createTLII(TargetTriple, CodeGenOpts));
1307 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
1308
1309 // Register all the basic analyses with the managers.
1310 PB.registerModuleAnalyses(MAM);
1311 PB.registerCGSCCAnalyses(CGAM);
1312 PB.registerFunctionAnalyses(FAM);
1313 PB.registerLoopAnalyses(LAM);
1314 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
1315
1316 ModulePassManager MPM;
1317
1318 if (!CodeGenOpts.DisableLLVMPasses) {
1319 // Map our optimization levels into one of the distinct levels used to
1320 // configure the pipeline.
1321 PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
1322
1323 bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
1324 bool IsLTO = CodeGenOpts.PrepareForLTO;
1325
1326 if (LangOpts.ObjCAutoRefCount) {
1327 PB.registerPipelineStartEPCallback(
1328 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1329 if (Level != PassBuilder::OptimizationLevel::O0)
1330 MPM.addPass(
1331 createModuleToFunctionPassAdaptor(ObjCARCExpandPass()));
1332 });
1333 PB.registerPipelineEarlySimplificationEPCallback(
1334 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1335 if (Level != PassBuilder::OptimizationLevel::O0)
1336 MPM.addPass(ObjCARCAPElimPass());
1337 });
1338 PB.registerScalarOptimizerLateEPCallback(
1339 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1340 if (Level != PassBuilder::OptimizationLevel::O0)
1341 FPM.addPass(ObjCARCOptPass());
1342 });
1343 }
1344
1345 // If we reached here with a non-empty index file name, then the index
1346 // file was empty and we are not performing ThinLTO backend compilation
1347 // (used in testing in a distributed build environment).
1348 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
1349 // If so drop any the type test assume sequences inserted for whole program
1350 // vtables so that codegen doesn't complain.
1351 if (IsThinLTOPostLink)
1352 PB.registerPipelineStartEPCallback(
1353 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1354 MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
1355 /*ImportSummary=*/nullptr,
1356 /*DropTypeTests=*/true));
1357 });
1358
1359 if (CodeGenOpts.InstrumentFunctions ||
1360 CodeGenOpts.InstrumentFunctionEntryBare ||
1361 CodeGenOpts.InstrumentFunctionsAfterInlining ||
1362 CodeGenOpts.InstrumentForProfiling) {
1363 PB.registerPipelineStartEPCallback(
1364 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1365 MPM.addPass(createModuleToFunctionPassAdaptor(
1366 EntryExitInstrumenterPass(/*PostInlining=*/false)));
1367 });
1368 PB.registerOptimizerLastEPCallback(
1369 [](ModulePassManager &MPM, PassBuilder::OptimizationLevel Level) {
1370 MPM.addPass(createModuleToFunctionPassAdaptor(
1371 EntryExitInstrumenterPass(/*PostInlining=*/true)));
1372 });
1373 }
1374
1375 // Register callbacks to schedule sanitizer passes at the appropriate part
1376 // of the pipeline.
1377 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
1378 PB.registerScalarOptimizerLateEPCallback(
1379 [](FunctionPassManager &FPM, PassBuilder::OptimizationLevel Level) {
1380 FPM.addPass(BoundsCheckingPass());
1381 });
1382
1383 // Don't add sanitizers if we are here from ThinLTO PostLink. That already
1384 // done on PreLink stage.
1385 if (!IsThinLTOPostLink)
1386 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
1387
1388 if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts))
1389 PB.registerPipelineStartEPCallback(
1390 [Options](ModulePassManager &MPM,
1391 PassBuilder::OptimizationLevel Level) {
1392 MPM.addPass(GCOVProfilerPass(*Options));
1393 });
1394 if (Optional<InstrProfOptions> Options =
1395 getInstrProfOptions(CodeGenOpts, LangOpts))
1396 PB.registerPipelineStartEPCallback(
1397 [Options](ModulePassManager &MPM,
1398 PassBuilder::OptimizationLevel Level) {
1399 MPM.addPass(InstrProfiling(*Options, false));
1400 });
1401
1402 if (CodeGenOpts.OptimizationLevel == 0) {
1403 MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO);
1404 } else if (IsThinLTO) {
1405 MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level);
1406 } else if (IsLTO) {
1407 MPM = PB.buildLTOPreLinkDefaultPipeline(Level);
1408 } else {
1409 MPM = PB.buildPerModuleDefaultPipeline(Level);
1410 }
1411
1412 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1413 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
1414 MPM.addPass(ModuleMemProfilerPass());
1415 }
1416 }
1417
1418 // FIXME: We still use the legacy pass manager to do code generation. We
1419 // create that pass manager here and use it as needed below.
1420 legacy::PassManager CodeGenPasses;
1421 bool NeedCodeGen = false;
1422 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1423
1424 // Append any output we need to the pass manager.
1425 switch (Action) {
1426 case Backend_EmitNothing:
1427 break;
1428
1429 case Backend_EmitBC:
1430 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1431 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1432 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1433 if (!ThinLinkOS)
1434 return;
1435 }
1436 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1437 CodeGenOpts.EnableSplitLTOUnit);
1438 MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
1439 : nullptr));
1440 } else {
1441 // Emit a module summary by default for Regular LTO except for ld64
1442 // targets
1443 bool EmitLTOSummary =
1444 (CodeGenOpts.PrepareForLTO &&
1445 !CodeGenOpts.DisableLLVMPasses &&
1446 llvm::Triple(TheModule->getTargetTriple()).getVendor() !=
1447 llvm::Triple::Apple);
1448 if (EmitLTOSummary) {
1449 if (!TheModule->getModuleFlag("ThinLTO"))
1450 TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
1451 TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
1452 uint32_t(1));
1453 }
1454 MPM.addPass(
1455 BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
1456 }
1457 break;
1458
1459 case Backend_EmitLL:
1460 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
1461 break;
1462
1463 case Backend_EmitAssembly:
1464 case Backend_EmitMCNull:
1465 case Backend_EmitObj:
1466 NeedCodeGen = true;
1467 CodeGenPasses.add(
1468 createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1469 if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1470 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1471 if (!DwoOS)
1472 return;
1473 }
1474 if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1475 DwoOS ? &DwoOS->os() : nullptr))
1476 // FIXME: Should we handle this error differently?
1477 return;
1478 break;
1479 }
1480
1481 // Before executing passes, print the final values of the LLVM options.
1482 cl::PrintOptionValues();
1483
1484 // Now that we have all of the passes ready, run them.
1485 {
1486 PrettyStackTraceString CrashInfo("Optimizer");
1487 MPM.run(*TheModule, MAM);
1488 }
1489
1490 // Now if needed, run the legacy PM for codegen.
1491 if (NeedCodeGen) {
1492 PrettyStackTraceString CrashInfo("Code generation");
1493 CodeGenPasses.run(*TheModule);
1494 }
1495
1496 if (ThinLinkOS)
1497 ThinLinkOS->keep();
1498 if (DwoOS)
1499 DwoOS->keep();
1500 }
1501
runThinLTOBackend(DiagnosticsEngine & Diags,ModuleSummaryIndex * CombinedIndex,Module * M,const HeaderSearchOptions & HeaderOpts,const CodeGenOptions & CGOpts,const clang::TargetOptions & TOpts,const LangOptions & LOpts,std::unique_ptr<raw_pwrite_stream> OS,std::string SampleProfile,std::string ProfileRemapping,BackendAction Action)1502 static void runThinLTOBackend(
1503 DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M,
1504 const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts,
1505 const clang::TargetOptions &TOpts, const LangOptions &LOpts,
1506 std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile,
1507 std::string ProfileRemapping, BackendAction Action) {
1508 StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1509 ModuleToDefinedGVSummaries;
1510 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1511
1512 setCommandLineOpts(CGOpts);
1513
1514 // We can simply import the values mentioned in the combined index, since
1515 // we should only invoke this using the individual indexes written out
1516 // via a WriteIndexesThinBackend.
1517 FunctionImporter::ImportMapTy ImportList;
1518 if (!lto::initImportList(*M, *CombinedIndex, ImportList))
1519 return;
1520
1521 auto AddStream = [&](size_t Task) {
1522 return std::make_unique<lto::NativeObjectStream>(std::move(OS));
1523 };
1524 lto::Config Conf;
1525 if (CGOpts.SaveTempsFilePrefix != "") {
1526 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1527 /* UseInputModulePath */ false)) {
1528 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1529 errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1530 << '\n';
1531 });
1532 }
1533 }
1534 Conf.CPU = TOpts.CPU;
1535 Conf.CodeModel = getCodeModel(CGOpts);
1536 Conf.MAttrs = TOpts.Features;
1537 Conf.RelocModel = CGOpts.RelocationModel;
1538 Conf.CGOptLevel = getCGOptLevel(CGOpts);
1539 Conf.OptLevel = CGOpts.OptimizationLevel;
1540 initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
1541 Conf.SampleProfile = std::move(SampleProfile);
1542 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
1543 // For historical reasons, loop interleaving is set to mirror setting for loop
1544 // unrolling.
1545 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
1546 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
1547 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
1548 // Only enable CGProfilePass when using integrated assembler, since
1549 // non-integrated assemblers don't recognize .cgprofile section.
1550 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
1551
1552 // Context sensitive profile.
1553 if (CGOpts.hasProfileCSIRInstr()) {
1554 Conf.RunCSIRInstr = true;
1555 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
1556 } else if (CGOpts.hasProfileCSIRUse()) {
1557 Conf.RunCSIRInstr = false;
1558 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1559 }
1560
1561 Conf.ProfileRemapping = std::move(ProfileRemapping);
1562 Conf.UseNewPM = !CGOpts.LegacyPassManager;
1563 Conf.DebugPassManager = CGOpts.DebugPassManager;
1564 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1565 Conf.RemarksFilename = CGOpts.OptRecordFile;
1566 Conf.RemarksPasses = CGOpts.OptRecordPasses;
1567 Conf.RemarksFormat = CGOpts.OptRecordFormat;
1568 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
1569 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
1570 switch (Action) {
1571 case Backend_EmitNothing:
1572 Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1573 return false;
1574 };
1575 break;
1576 case Backend_EmitLL:
1577 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1578 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1579 return false;
1580 };
1581 break;
1582 case Backend_EmitBC:
1583 Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1584 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1585 return false;
1586 };
1587 break;
1588 default:
1589 Conf.CGFileType = getCodeGenFileType(Action);
1590 break;
1591 }
1592 if (Error E =
1593 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1594 ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
1595 /* ModuleMap */ nullptr, CGOpts.CmdArgs)) {
1596 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1597 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1598 });
1599 }
1600 }
1601
EmitBackendOutput(DiagnosticsEngine & Diags,const HeaderSearchOptions & HeaderOpts,const CodeGenOptions & CGOpts,const clang::TargetOptions & TOpts,const LangOptions & LOpts,StringRef TDesc,Module * M,BackendAction Action,std::unique_ptr<raw_pwrite_stream> OS)1602 void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
1603 const HeaderSearchOptions &HeaderOpts,
1604 const CodeGenOptions &CGOpts,
1605 const clang::TargetOptions &TOpts,
1606 const LangOptions &LOpts,
1607 StringRef TDesc, Module *M,
1608 BackendAction Action,
1609 std::unique_ptr<raw_pwrite_stream> OS) {
1610
1611 llvm::TimeTraceScope TimeScope("Backend");
1612
1613 std::unique_ptr<llvm::Module> EmptyModule;
1614 if (!CGOpts.ThinLTOIndexFile.empty()) {
1615 // If we are performing a ThinLTO importing compile, load the function index
1616 // into memory and pass it into runThinLTOBackend, which will run the
1617 // function importer and invoke LTO passes.
1618 Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr =
1619 llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile,
1620 /*IgnoreEmptyThinLTOIndexFile*/true);
1621 if (!IndexOrErr) {
1622 logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1623 "Error loading index file '" +
1624 CGOpts.ThinLTOIndexFile + "': ");
1625 return;
1626 }
1627 std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1628 // A null CombinedIndex means we should skip ThinLTO compilation
1629 // (LLVM will optionally ignore empty index files, returning null instead
1630 // of an error).
1631 if (CombinedIndex) {
1632 if (!CombinedIndex->skipModuleByDistributedBackend()) {
1633 runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts,
1634 TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile,
1635 CGOpts.ProfileRemappingFile, Action);
1636 return;
1637 }
1638 // Distributed indexing detected that nothing from the module is needed
1639 // for the final linking. So we can skip the compilation. We sill need to
1640 // output an empty object file to make sure that a linker does not fail
1641 // trying to read it. Also for some features, like CFI, we must skip
1642 // the compilation as CombinedIndex does not contain all required
1643 // information.
1644 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
1645 EmptyModule->setTargetTriple(M->getTargetTriple());
1646 M = EmptyModule.get();
1647 }
1648 }
1649
1650 EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1651
1652 if (!CGOpts.LegacyPassManager)
1653 AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1654 else
1655 AsmHelper.EmitAssembly(Action, std::move(OS));
1656
1657 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1658 // DataLayout.
1659 if (AsmHelper.TM) {
1660 std::string DLDesc = M->getDataLayout().getStringRepresentation();
1661 if (DLDesc != TDesc) {
1662 unsigned DiagID = Diags.getCustomDiagID(
1663 DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1664 "expected target description '%1'");
1665 Diags.Report(DiagID) << DLDesc << TDesc;
1666 }
1667 }
1668 }
1669
1670 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1671 // __LLVM,__bitcode section.
EmbedBitcode(llvm::Module * M,const CodeGenOptions & CGOpts,llvm::MemoryBufferRef Buf)1672 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1673 llvm::MemoryBufferRef Buf) {
1674 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1675 return;
1676 llvm::EmbedBitcodeInModule(
1677 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
1678 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
1679 CGOpts.CmdArgs);
1680 }
1681