xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/CodeGen/AtomicExpandPass.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/AtomicExpandUtils.h"
21 #include "llvm/CodeGen/RuntimeLibcalls.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "atomic-expand"
56 
57 namespace {
58 
59   class AtomicExpand: public FunctionPass {
60     const TargetLowering *TLI = nullptr;
61 
62   public:
63     static char ID; // Pass identification, replacement for typeid
64 
AtomicExpand()65     AtomicExpand() : FunctionPass(ID) {
66       initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67     }
68 
69     bool runOnFunction(Function &F) override;
70 
71   private:
72     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73     IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74     LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75     bool tryExpandAtomicLoad(LoadInst *LI);
76     bool expandAtomicLoadToLL(LoadInst *LI);
77     bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78     StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79     bool expandAtomicStore(StoreInst *SI);
80     bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81     Value *
82     insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83                       Align AddrAlign, AtomicOrdering MemOpOrder,
84                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85     void expandAtomicOpToLLSC(
86         Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
87         AtomicOrdering MemOpOrder,
88         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
89     void expandPartwordAtomicRMW(
90         AtomicRMWInst *I,
91         TargetLoweringBase::AtomicExpansionKind ExpansionKind);
92     AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
93     bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
94     void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
95     void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
96 
97     AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
98     static Value *insertRMWCmpXchgLoop(
99         IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
100         AtomicOrdering MemOpOrder, SyncScope::ID SSID,
101         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
102         CreateCmpXchgInstFun CreateCmpXchg);
103     bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
104 
105     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
106     bool isIdempotentRMW(AtomicRMWInst *RMWI);
107     bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
108 
109     bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
110                                  Value *PointerOperand, Value *ValueOperand,
111                                  Value *CASExpected, AtomicOrdering Ordering,
112                                  AtomicOrdering Ordering2,
113                                  ArrayRef<RTLIB::Libcall> Libcalls);
114     void expandAtomicLoadToLibcall(LoadInst *LI);
115     void expandAtomicStoreToLibcall(StoreInst *LI);
116     void expandAtomicRMWToLibcall(AtomicRMWInst *I);
117     void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
118 
119     friend bool
120     llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
121                                    CreateCmpXchgInstFun CreateCmpXchg);
122   };
123 
124 } // end anonymous namespace
125 
126 char AtomicExpand::ID = 0;
127 
128 char &llvm::AtomicExpandID = AtomicExpand::ID;
129 
130 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
131                 false, false)
132 
createAtomicExpandPass()133 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
134 
135 // Helper functions to retrieve the size of atomic instructions.
getAtomicOpSize(LoadInst * LI)136 static unsigned getAtomicOpSize(LoadInst *LI) {
137   const DataLayout &DL = LI->getModule()->getDataLayout();
138   return DL.getTypeStoreSize(LI->getType());
139 }
140 
getAtomicOpSize(StoreInst * SI)141 static unsigned getAtomicOpSize(StoreInst *SI) {
142   const DataLayout &DL = SI->getModule()->getDataLayout();
143   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
144 }
145 
getAtomicOpSize(AtomicRMWInst * RMWI)146 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
147   const DataLayout &DL = RMWI->getModule()->getDataLayout();
148   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
149 }
150 
getAtomicOpSize(AtomicCmpXchgInst * CASI)151 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
152   const DataLayout &DL = CASI->getModule()->getDataLayout();
153   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
154 }
155 
156 // Determine if a particular atomic operation has a supported size,
157 // and is of appropriate alignment, to be passed through for target
158 // lowering. (Versus turning into a __atomic libcall)
159 template <typename Inst>
atomicSizeSupported(const TargetLowering * TLI,Inst * I)160 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
161   unsigned Size = getAtomicOpSize(I);
162   Align Alignment = I->getAlign();
163   return Alignment >= Size &&
164          Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
165 }
166 
runOnFunction(Function & F)167 bool AtomicExpand::runOnFunction(Function &F) {
168   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
169   if (!TPC)
170     return false;
171 
172   auto &TM = TPC->getTM<TargetMachine>();
173   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
174     return false;
175   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
176 
177   SmallVector<Instruction *, 1> AtomicInsts;
178 
179   // Changing control-flow while iterating through it is a bad idea, so gather a
180   // list of all atomic instructions before we start.
181   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
182     Instruction *I = &*II;
183     if (I->isAtomic() && !isa<FenceInst>(I))
184       AtomicInsts.push_back(I);
185   }
186 
187   bool MadeChange = false;
188   for (auto I : AtomicInsts) {
189     auto LI = dyn_cast<LoadInst>(I);
190     auto SI = dyn_cast<StoreInst>(I);
191     auto RMWI = dyn_cast<AtomicRMWInst>(I);
192     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
193     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
194 
195     // If the Size/Alignment is not supported, replace with a libcall.
196     if (LI) {
197       if (!atomicSizeSupported(TLI, LI)) {
198         expandAtomicLoadToLibcall(LI);
199         MadeChange = true;
200         continue;
201       }
202     } else if (SI) {
203       if (!atomicSizeSupported(TLI, SI)) {
204         expandAtomicStoreToLibcall(SI);
205         MadeChange = true;
206         continue;
207       }
208     } else if (RMWI) {
209       if (!atomicSizeSupported(TLI, RMWI)) {
210         expandAtomicRMWToLibcall(RMWI);
211         MadeChange = true;
212         continue;
213       }
214     } else if (CASI) {
215       if (!atomicSizeSupported(TLI, CASI)) {
216         expandAtomicCASToLibcall(CASI);
217         MadeChange = true;
218         continue;
219       }
220     }
221 
222     if (TLI->shouldInsertFencesForAtomic(I)) {
223       auto FenceOrdering = AtomicOrdering::Monotonic;
224       if (LI && isAcquireOrStronger(LI->getOrdering())) {
225         FenceOrdering = LI->getOrdering();
226         LI->setOrdering(AtomicOrdering::Monotonic);
227       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
228         FenceOrdering = SI->getOrdering();
229         SI->setOrdering(AtomicOrdering::Monotonic);
230       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
231                           isAcquireOrStronger(RMWI->getOrdering()))) {
232         FenceOrdering = RMWI->getOrdering();
233         RMWI->setOrdering(AtomicOrdering::Monotonic);
234       } else if (CASI &&
235                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
236                      TargetLoweringBase::AtomicExpansionKind::None &&
237                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
238                   isAcquireOrStronger(CASI->getSuccessOrdering()))) {
239         // If a compare and swap is lowered to LL/SC, we can do smarter fence
240         // insertion, with a stronger one on the success path than on the
241         // failure path. As a result, fence insertion is directly done by
242         // expandAtomicCmpXchg in that case.
243         FenceOrdering = CASI->getSuccessOrdering();
244         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
245         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
246       }
247 
248       if (FenceOrdering != AtomicOrdering::Monotonic) {
249         MadeChange |= bracketInstWithFences(I, FenceOrdering);
250       }
251     }
252 
253     if (LI) {
254       if (LI->getType()->isFloatingPointTy()) {
255         // TODO: add a TLI hook to control this so that each target can
256         // convert to lowering the original type one at a time.
257         LI = convertAtomicLoadToIntegerType(LI);
258         assert(LI->getType()->isIntegerTy() && "invariant broken");
259         MadeChange = true;
260       }
261 
262       MadeChange |= tryExpandAtomicLoad(LI);
263     } else if (SI) {
264       if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
265         // TODO: add a TLI hook to control this so that each target can
266         // convert to lowering the original type one at a time.
267         SI = convertAtomicStoreToIntegerType(SI);
268         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
269                "invariant broken");
270         MadeChange = true;
271       }
272 
273       if (TLI->shouldExpandAtomicStoreInIR(SI))
274         MadeChange |= expandAtomicStore(SI);
275     } else if (RMWI) {
276       // There are two different ways of expanding RMW instructions:
277       // - into a load if it is idempotent
278       // - into a Cmpxchg/LL-SC loop otherwise
279       // we try them in that order.
280 
281       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
282         MadeChange = true;
283       } else {
284         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
285         unsigned ValueSize = getAtomicOpSize(RMWI);
286         AtomicRMWInst::BinOp Op = RMWI->getOperation();
287         if (ValueSize < MinCASSize &&
288             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
289              Op == AtomicRMWInst::And)) {
290           RMWI = widenPartwordAtomicRMW(RMWI);
291           MadeChange = true;
292         }
293 
294         MadeChange |= tryExpandAtomicRMW(RMWI);
295       }
296     } else if (CASI) {
297       // TODO: when we're ready to make the change at the IR level, we can
298       // extend convertCmpXchgToInteger for floating point too.
299       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
300              "unimplemented - floating point not legal at IR level");
301       if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
302         // TODO: add a TLI hook to control this so that each target can
303         // convert to lowering the original type one at a time.
304         CASI = convertCmpXchgToIntegerType(CASI);
305         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
306                "invariant broken");
307         MadeChange = true;
308       }
309 
310       MadeChange |= tryExpandAtomicCmpXchg(CASI);
311     }
312   }
313   return MadeChange;
314 }
315 
bracketInstWithFences(Instruction * I,AtomicOrdering Order)316 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
317   IRBuilder<> Builder(I);
318 
319   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
320 
321   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
322   // We have a guard here because not every atomic operation generates a
323   // trailing fence.
324   if (TrailingFence)
325     TrailingFence->moveAfter(I);
326 
327   return (LeadingFence || TrailingFence);
328 }
329 
330 /// Get the iX type with the same bitwidth as T.
getCorrespondingIntegerType(Type * T,const DataLayout & DL)331 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
332                                                        const DataLayout &DL) {
333   EVT VT = TLI->getMemValueType(DL, T);
334   unsigned BitWidth = VT.getStoreSizeInBits();
335   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
336   return IntegerType::get(T->getContext(), BitWidth);
337 }
338 
339 /// Convert an atomic load of a non-integral type to an integer load of the
340 /// equivalent bitwidth.  See the function comment on
341 /// convertAtomicStoreToIntegerType for background.
convertAtomicLoadToIntegerType(LoadInst * LI)342 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
343   auto *M = LI->getModule();
344   Type *NewTy = getCorrespondingIntegerType(LI->getType(),
345                                             M->getDataLayout());
346 
347   IRBuilder<> Builder(LI);
348 
349   Value *Addr = LI->getPointerOperand();
350   Type *PT = PointerType::get(NewTy,
351                               Addr->getType()->getPointerAddressSpace());
352   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
353 
354   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
355   NewLI->setAlignment(LI->getAlign());
356   NewLI->setVolatile(LI->isVolatile());
357   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
358   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
359 
360   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
361   LI->replaceAllUsesWith(NewVal);
362   LI->eraseFromParent();
363   return NewLI;
364 }
365 
tryExpandAtomicLoad(LoadInst * LI)366 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
367   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
368   case TargetLoweringBase::AtomicExpansionKind::None:
369     return false;
370   case TargetLoweringBase::AtomicExpansionKind::LLSC:
371     expandAtomicOpToLLSC(
372         LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
373         LI->getOrdering(),
374         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
375     return true;
376   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
377     return expandAtomicLoadToLL(LI);
378   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
379     return expandAtomicLoadToCmpXchg(LI);
380   default:
381     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
382   }
383 }
384 
expandAtomicLoadToLL(LoadInst * LI)385 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
386   IRBuilder<> Builder(LI);
387 
388   // On some architectures, load-linked instructions are atomic for larger
389   // sizes than normal loads. For example, the only 64-bit load guaranteed
390   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
391   Value *Val =
392       TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
393   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
394 
395   LI->replaceAllUsesWith(Val);
396   LI->eraseFromParent();
397 
398   return true;
399 }
400 
expandAtomicLoadToCmpXchg(LoadInst * LI)401 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
402   IRBuilder<> Builder(LI);
403   AtomicOrdering Order = LI->getOrdering();
404   if (Order == AtomicOrdering::Unordered)
405     Order = AtomicOrdering::Monotonic;
406 
407   Value *Addr = LI->getPointerOperand();
408   Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
409   Constant *DummyVal = Constant::getNullValue(Ty);
410 
411   Value *Pair = Builder.CreateAtomicCmpXchg(
412       Addr, DummyVal, DummyVal, LI->getAlign(), Order,
413       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
414   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
415 
416   LI->replaceAllUsesWith(Loaded);
417   LI->eraseFromParent();
418 
419   return true;
420 }
421 
422 /// Convert an atomic store of a non-integral type to an integer store of the
423 /// equivalent bitwidth.  We used to not support floating point or vector
424 /// atomics in the IR at all.  The backends learned to deal with the bitcast
425 /// idiom because that was the only way of expressing the notion of a atomic
426 /// float or vector store.  The long term plan is to teach each backend to
427 /// instruction select from the original atomic store, but as a migration
428 /// mechanism, we convert back to the old format which the backends understand.
429 /// Each backend will need individual work to recognize the new format.
convertAtomicStoreToIntegerType(StoreInst * SI)430 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
431   IRBuilder<> Builder(SI);
432   auto *M = SI->getModule();
433   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
434                                             M->getDataLayout());
435   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
436 
437   Value *Addr = SI->getPointerOperand();
438   Type *PT = PointerType::get(NewTy,
439                               Addr->getType()->getPointerAddressSpace());
440   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
441 
442   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
443   NewSI->setAlignment(SI->getAlign());
444   NewSI->setVolatile(SI->isVolatile());
445   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
446   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
447   SI->eraseFromParent();
448   return NewSI;
449 }
450 
expandAtomicStore(StoreInst * SI)451 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
452   // This function is only called on atomic stores that are too large to be
453   // atomic if implemented as a native store. So we replace them by an
454   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
455   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
456   // It is the responsibility of the target to only signal expansion via
457   // shouldExpandAtomicRMW in cases where this is required and possible.
458   IRBuilder<> Builder(SI);
459   AtomicRMWInst *AI = Builder.CreateAtomicRMW(
460       AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
461       SI->getAlign(), SI->getOrdering());
462   SI->eraseFromParent();
463 
464   // Now we have an appropriate swap instruction, lower it as usual.
465   return tryExpandAtomicRMW(AI);
466 }
467 
createCmpXchgInstFun(IRBuilder<> & Builder,Value * Addr,Value * Loaded,Value * NewVal,Align AddrAlign,AtomicOrdering MemOpOrder,SyncScope::ID SSID,Value * & Success,Value * & NewLoaded)468 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
469                                  Value *Loaded, Value *NewVal, Align AddrAlign,
470                                  AtomicOrdering MemOpOrder, SyncScope::ID SSID,
471                                  Value *&Success, Value *&NewLoaded) {
472   Type *OrigTy = NewVal->getType();
473 
474   // This code can go away when cmpxchg supports FP types.
475   bool NeedBitcast = OrigTy->isFloatingPointTy();
476   if (NeedBitcast) {
477     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
478     unsigned AS = Addr->getType()->getPointerAddressSpace();
479     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
480     NewVal = Builder.CreateBitCast(NewVal, IntTy);
481     Loaded = Builder.CreateBitCast(Loaded, IntTy);
482   }
483 
484   Value *Pair = Builder.CreateAtomicCmpXchg(
485       Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
486       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
487   Success = Builder.CreateExtractValue(Pair, 1, "success");
488   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
489 
490   if (NeedBitcast)
491     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
492 }
493 
494 /// Emit IR to implement the given atomicrmw operation on values in registers,
495 /// returning the new value.
performAtomicOp(AtomicRMWInst::BinOp Op,IRBuilder<> & Builder,Value * Loaded,Value * Inc)496 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
497                               Value *Loaded, Value *Inc) {
498   Value *NewVal;
499   switch (Op) {
500   case AtomicRMWInst::Xchg:
501     return Inc;
502   case AtomicRMWInst::Add:
503     return Builder.CreateAdd(Loaded, Inc, "new");
504   case AtomicRMWInst::Sub:
505     return Builder.CreateSub(Loaded, Inc, "new");
506   case AtomicRMWInst::And:
507     return Builder.CreateAnd(Loaded, Inc, "new");
508   case AtomicRMWInst::Nand:
509     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
510   case AtomicRMWInst::Or:
511     return Builder.CreateOr(Loaded, Inc, "new");
512   case AtomicRMWInst::Xor:
513     return Builder.CreateXor(Loaded, Inc, "new");
514   case AtomicRMWInst::Max:
515     NewVal = Builder.CreateICmpSGT(Loaded, Inc);
516     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
517   case AtomicRMWInst::Min:
518     NewVal = Builder.CreateICmpSLE(Loaded, Inc);
519     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
520   case AtomicRMWInst::UMax:
521     NewVal = Builder.CreateICmpUGT(Loaded, Inc);
522     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
523   case AtomicRMWInst::UMin:
524     NewVal = Builder.CreateICmpULE(Loaded, Inc);
525     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
526   case AtomicRMWInst::FAdd:
527     return Builder.CreateFAdd(Loaded, Inc, "new");
528   case AtomicRMWInst::FSub:
529     return Builder.CreateFSub(Loaded, Inc, "new");
530   default:
531     llvm_unreachable("Unknown atomic op");
532   }
533 }
534 
tryExpandAtomicRMW(AtomicRMWInst * AI)535 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
536   switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
537   case TargetLoweringBase::AtomicExpansionKind::None:
538     return false;
539   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
540     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
541     unsigned ValueSize = getAtomicOpSize(AI);
542     if (ValueSize < MinCASSize) {
543       expandPartwordAtomicRMW(AI,
544                               TargetLoweringBase::AtomicExpansionKind::LLSC);
545     } else {
546       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
547         return performAtomicOp(AI->getOperation(), Builder, Loaded,
548                                AI->getValOperand());
549       };
550       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
551                            AI->getAlign(), AI->getOrdering(), PerformOp);
552     }
553     return true;
554   }
555   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
556     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
557     unsigned ValueSize = getAtomicOpSize(AI);
558     if (ValueSize < MinCASSize) {
559       // TODO: Handle atomicrmw fadd/fsub
560       if (AI->getType()->isFloatingPointTy())
561         return false;
562 
563       expandPartwordAtomicRMW(AI,
564                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
565     } else {
566       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
567     }
568     return true;
569   }
570   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
571     expandAtomicRMWToMaskedIntrinsic(AI);
572     return true;
573   }
574   default:
575     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
576   }
577 }
578 
579 namespace {
580 
581 struct PartwordMaskValues {
582   // These three fields are guaranteed to be set by createMaskInstrs.
583   Type *WordType = nullptr;
584   Type *ValueType = nullptr;
585   Value *AlignedAddr = nullptr;
586   Align AlignedAddrAlignment;
587   // The remaining fields can be null.
588   Value *ShiftAmt = nullptr;
589   Value *Mask = nullptr;
590   Value *Inv_Mask = nullptr;
591 };
592 
593 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & O,const PartwordMaskValues & PMV)594 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
595   auto PrintObj = [&O](auto *V) {
596     if (V)
597       O << *V;
598     else
599       O << "nullptr";
600     O << '\n';
601   };
602   O << "PartwordMaskValues {\n";
603   O << "  WordType: ";
604   PrintObj(PMV.WordType);
605   O << "  ValueType: ";
606   PrintObj(PMV.ValueType);
607   O << "  AlignedAddr: ";
608   PrintObj(PMV.AlignedAddr);
609   O << "  AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
610   O << "  ShiftAmt: ";
611   PrintObj(PMV.ShiftAmt);
612   O << "  Mask: ";
613   PrintObj(PMV.Mask);
614   O << "  Inv_Mask: ";
615   PrintObj(PMV.Inv_Mask);
616   O << "}\n";
617   return O;
618 }
619 
620 } // end anonymous namespace
621 
622 /// This is a helper function which builds instructions to provide
623 /// values necessary for partword atomic operations. It takes an
624 /// incoming address, Addr, and ValueType, and constructs the address,
625 /// shift-amounts and masks needed to work with a larger value of size
626 /// WordSize.
627 ///
628 /// AlignedAddr: Addr rounded down to a multiple of WordSize
629 ///
630 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
631 ///           from AlignAddr for it to have the same value as if
632 ///           ValueType was loaded from Addr.
633 ///
634 /// Mask: Value to mask with the value loaded from AlignAddr to
635 ///       include only the part that would've been loaded from Addr.
636 ///
637 /// Inv_Mask: The inverse of Mask.
createMaskInstrs(IRBuilder<> & Builder,Instruction * I,Type * ValueType,Value * Addr,Align AddrAlign,unsigned MinWordSize)638 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
639                                            Type *ValueType, Value *Addr,
640                                            Align AddrAlign,
641                                            unsigned MinWordSize) {
642   PartwordMaskValues PMV;
643 
644   Module *M = I->getModule();
645   LLVMContext &Ctx = M->getContext();
646   const DataLayout &DL = M->getDataLayout();
647   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
648 
649   PMV.ValueType = ValueType;
650   PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
651                                          : ValueType;
652   if (PMV.ValueType == PMV.WordType) {
653     PMV.AlignedAddr = Addr;
654     PMV.AlignedAddrAlignment = AddrAlign;
655     return PMV;
656   }
657 
658   assert(ValueSize < MinWordSize);
659 
660   Type *WordPtrType =
661       PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
662 
663   // TODO: we could skip some of this if AddrAlign >= MinWordSize.
664   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
665   PMV.AlignedAddr = Builder.CreateIntToPtr(
666       Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
667       "AlignedAddr");
668   PMV.AlignedAddrAlignment = Align(MinWordSize);
669 
670   Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
671   if (DL.isLittleEndian()) {
672     // turn bytes into bits
673     PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
674   } else {
675     // turn bytes into bits, and count from the other side.
676     PMV.ShiftAmt = Builder.CreateShl(
677         Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
678   }
679 
680   PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
681   PMV.Mask = Builder.CreateShl(
682       ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
683       "Mask");
684   PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
685   return PMV;
686 }
687 
extractMaskedValue(IRBuilder<> & Builder,Value * WideWord,const PartwordMaskValues & PMV)688 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
689                                  const PartwordMaskValues &PMV) {
690   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
691   if (PMV.WordType == PMV.ValueType)
692     return WideWord;
693 
694   Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
695   Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
696   return Trunc;
697 }
698 
insertMaskedValue(IRBuilder<> & Builder,Value * WideWord,Value * Updated,const PartwordMaskValues & PMV)699 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
700                                 Value *Updated, const PartwordMaskValues &PMV) {
701   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
702   assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
703   if (PMV.WordType == PMV.ValueType)
704     return Updated;
705 
706   Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
707   Value *Shift =
708       Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
709   Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
710   Value *Or = Builder.CreateOr(And, Shift, "inserted");
711   return Or;
712 }
713 
714 /// Emit IR to implement a masked version of a given atomicrmw
715 /// operation. (That is, only the bits under the Mask should be
716 /// affected by the operation)
performMaskedAtomicOp(AtomicRMWInst::BinOp Op,IRBuilder<> & Builder,Value * Loaded,Value * Shifted_Inc,Value * Inc,const PartwordMaskValues & PMV)717 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
718                                     IRBuilder<> &Builder, Value *Loaded,
719                                     Value *Shifted_Inc, Value *Inc,
720                                     const PartwordMaskValues &PMV) {
721   // TODO: update to use
722   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
723   // to merge bits from two values without requiring PMV.Inv_Mask.
724   switch (Op) {
725   case AtomicRMWInst::Xchg: {
726     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
727     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
728     return FinalVal;
729   }
730   case AtomicRMWInst::Or:
731   case AtomicRMWInst::Xor:
732   case AtomicRMWInst::And:
733     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
734   case AtomicRMWInst::Add:
735   case AtomicRMWInst::Sub:
736   case AtomicRMWInst::Nand: {
737     // The other arithmetic ops need to be masked into place.
738     Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
739     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
740     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
741     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
742     return FinalVal;
743   }
744   case AtomicRMWInst::Max:
745   case AtomicRMWInst::Min:
746   case AtomicRMWInst::UMax:
747   case AtomicRMWInst::UMin: {
748     // Finally, comparison ops will operate on the full value, so
749     // truncate down to the original size, and expand out again after
750     // doing the operation.
751     Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
752     Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc);
753     Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
754     return FinalVal;
755   }
756   default:
757     llvm_unreachable("Unknown atomic op");
758   }
759 }
760 
761 /// Expand a sub-word atomicrmw operation into an appropriate
762 /// word-sized operation.
763 ///
764 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
765 /// way as a typical atomicrmw expansion. The only difference here is
766 /// that the operation inside of the loop may operate upon only a
767 /// part of the value.
expandPartwordAtomicRMW(AtomicRMWInst * AI,TargetLoweringBase::AtomicExpansionKind ExpansionKind)768 void AtomicExpand::expandPartwordAtomicRMW(
769     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
770   AtomicOrdering MemOpOrder = AI->getOrdering();
771   SyncScope::ID SSID = AI->getSyncScopeID();
772 
773   IRBuilder<> Builder(AI);
774 
775   PartwordMaskValues PMV =
776       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
777                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
778 
779   Value *ValOperand_Shifted =
780       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
781                         PMV.ShiftAmt, "ValOperand_Shifted");
782 
783   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
784     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
785                                  ValOperand_Shifted, AI->getValOperand(), PMV);
786   };
787 
788   Value *OldResult;
789   if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
790     OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
791                                      PMV.AlignedAddrAlignment, MemOpOrder,
792                                      SSID, PerformPartwordOp,
793                                      createCmpXchgInstFun);
794   } else {
795     assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
796     OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
797                                   PMV.AlignedAddrAlignment, MemOpOrder,
798                                   PerformPartwordOp);
799   }
800 
801   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
802   AI->replaceAllUsesWith(FinalOldResult);
803   AI->eraseFromParent();
804 }
805 
806 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
widenPartwordAtomicRMW(AtomicRMWInst * AI)807 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
808   IRBuilder<> Builder(AI);
809   AtomicRMWInst::BinOp Op = AI->getOperation();
810 
811   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
812           Op == AtomicRMWInst::And) &&
813          "Unable to widen operation");
814 
815   PartwordMaskValues PMV =
816       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
817                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
818 
819   Value *ValOperand_Shifted =
820       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
821                         PMV.ShiftAmt, "ValOperand_Shifted");
822 
823   Value *NewOperand;
824 
825   if (Op == AtomicRMWInst::And)
826     NewOperand =
827         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
828   else
829     NewOperand = ValOperand_Shifted;
830 
831   AtomicRMWInst *NewAI =
832       Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
833                               PMV.AlignedAddrAlignment, AI->getOrdering());
834 
835   Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
836   AI->replaceAllUsesWith(FinalOldResult);
837   AI->eraseFromParent();
838   return NewAI;
839 }
840 
expandPartwordCmpXchg(AtomicCmpXchgInst * CI)841 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
842   // The basic idea here is that we're expanding a cmpxchg of a
843   // smaller memory size up to a word-sized cmpxchg. To do this, we
844   // need to add a retry-loop for strong cmpxchg, so that
845   // modifications to other parts of the word don't cause a spurious
846   // failure.
847 
848   // This generates code like the following:
849   //     [[Setup mask values PMV.*]]
850   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
851   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
852   //     %InitLoaded = load i32* %addr
853   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
854   //     br partword.cmpxchg.loop
855   // partword.cmpxchg.loop:
856   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
857   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
858   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
859   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
860   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
861   //        i32 %FullWord_NewVal success_ordering failure_ordering
862   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
863   //     %Success = extractvalue { i32, i1 } %NewCI, 1
864   //     br i1 %Success, label %partword.cmpxchg.end,
865   //        label %partword.cmpxchg.failure
866   // partword.cmpxchg.failure:
867   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
868   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
869   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
870   //         label %partword.cmpxchg.end
871   // partword.cmpxchg.end:
872   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
873   //    %FinalOldVal = trunc i32 %tmp1 to i8
874   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
875   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
876 
877   Value *Addr = CI->getPointerOperand();
878   Value *Cmp = CI->getCompareOperand();
879   Value *NewVal = CI->getNewValOperand();
880 
881   BasicBlock *BB = CI->getParent();
882   Function *F = BB->getParent();
883   IRBuilder<> Builder(CI);
884   LLVMContext &Ctx = Builder.getContext();
885 
886   BasicBlock *EndBB =
887       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
888   auto FailureBB =
889       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
890   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
891 
892   // The split call above "helpfully" added a branch at the end of BB
893   // (to the wrong place).
894   std::prev(BB->end())->eraseFromParent();
895   Builder.SetInsertPoint(BB);
896 
897   PartwordMaskValues PMV =
898       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
899                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
900 
901   // Shift the incoming values over, into the right location in the word.
902   Value *NewVal_Shifted =
903       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
904   Value *Cmp_Shifted =
905       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
906 
907   // Load the entire current word, and mask into place the expected and new
908   // values
909   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
910   InitLoaded->setVolatile(CI->isVolatile());
911   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
912   Builder.CreateBr(LoopBB);
913 
914   // partword.cmpxchg.loop:
915   Builder.SetInsertPoint(LoopBB);
916   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
917   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
918 
919   // Mask/Or the expected and new values into place in the loaded word.
920   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
921   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
922   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
923       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
924       CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
925   NewCI->setVolatile(CI->isVolatile());
926   // When we're building a strong cmpxchg, we need a loop, so you
927   // might think we could use a weak cmpxchg inside. But, using strong
928   // allows the below comparison for ShouldContinue, and we're
929   // expecting the underlying cmpxchg to be a machine instruction,
930   // which is strong anyways.
931   NewCI->setWeak(CI->isWeak());
932 
933   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
934   Value *Success = Builder.CreateExtractValue(NewCI, 1);
935 
936   if (CI->isWeak())
937     Builder.CreateBr(EndBB);
938   else
939     Builder.CreateCondBr(Success, EndBB, FailureBB);
940 
941   // partword.cmpxchg.failure:
942   Builder.SetInsertPoint(FailureBB);
943   // Upon failure, verify that the masked-out part of the loaded value
944   // has been modified.  If it didn't, abort the cmpxchg, since the
945   // masked-in part must've.
946   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
947   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
948   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
949 
950   // Add the second value to the phi from above
951   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
952 
953   // partword.cmpxchg.end:
954   Builder.SetInsertPoint(CI);
955 
956   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
957   Value *Res = UndefValue::get(CI->getType());
958   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
959   Res = Builder.CreateInsertValue(Res, Success, 1);
960 
961   CI->replaceAllUsesWith(Res);
962   CI->eraseFromParent();
963   return true;
964 }
965 
expandAtomicOpToLLSC(Instruction * I,Type * ResultType,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp)966 void AtomicExpand::expandAtomicOpToLLSC(
967     Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
968     AtomicOrdering MemOpOrder,
969     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
970   IRBuilder<> Builder(I);
971   Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
972                                     MemOpOrder, PerformOp);
973 
974   I->replaceAllUsesWith(Loaded);
975   I->eraseFromParent();
976 }
977 
expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst * AI)978 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
979   IRBuilder<> Builder(AI);
980 
981   PartwordMaskValues PMV =
982       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
983                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
984 
985   // The value operand must be sign-extended for signed min/max so that the
986   // target's signed comparison instructions can be used. Otherwise, just
987   // zero-ext.
988   Instruction::CastOps CastOp = Instruction::ZExt;
989   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
990   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
991     CastOp = Instruction::SExt;
992 
993   Value *ValOperand_Shifted = Builder.CreateShl(
994       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
995       PMV.ShiftAmt, "ValOperand_Shifted");
996   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
997       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
998       AI->getOrdering());
999   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1000   AI->replaceAllUsesWith(FinalOldResult);
1001   AI->eraseFromParent();
1002 }
1003 
expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst * CI)1004 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1005   IRBuilder<> Builder(CI);
1006 
1007   PartwordMaskValues PMV = createMaskInstrs(
1008       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1009       CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1010 
1011   Value *CmpVal_Shifted = Builder.CreateShl(
1012       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1013       "CmpVal_Shifted");
1014   Value *NewVal_Shifted = Builder.CreateShl(
1015       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1016       "NewVal_Shifted");
1017   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1018       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1019       CI->getSuccessOrdering());
1020   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1021   Value *Res = UndefValue::get(CI->getType());
1022   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1023   Value *Success = Builder.CreateICmpEQ(
1024       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1025   Res = Builder.CreateInsertValue(Res, Success, 1);
1026 
1027   CI->replaceAllUsesWith(Res);
1028   CI->eraseFromParent();
1029 }
1030 
insertRMWLLSCLoop(IRBuilder<> & Builder,Type * ResultTy,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp)1031 Value *AtomicExpand::insertRMWLLSCLoop(
1032     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1033     AtomicOrdering MemOpOrder,
1034     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1035   LLVMContext &Ctx = Builder.getContext();
1036   BasicBlock *BB = Builder.GetInsertBlock();
1037   Function *F = BB->getParent();
1038 
1039   assert(AddrAlign >=
1040              F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
1041          "Expected at least natural alignment at this point.");
1042 
1043   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1044   //
1045   // The standard expansion we produce is:
1046   //     [...]
1047   // atomicrmw.start:
1048   //     %loaded = @load.linked(%addr)
1049   //     %new = some_op iN %loaded, %incr
1050   //     %stored = @store_conditional(%new, %addr)
1051   //     %try_again = icmp i32 ne %stored, 0
1052   //     br i1 %try_again, label %loop, label %atomicrmw.end
1053   // atomicrmw.end:
1054   //     [...]
1055   BasicBlock *ExitBB =
1056       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1057   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1058 
1059   // The split call above "helpfully" added a branch at the end of BB (to the
1060   // wrong place).
1061   std::prev(BB->end())->eraseFromParent();
1062   Builder.SetInsertPoint(BB);
1063   Builder.CreateBr(LoopBB);
1064 
1065   // Start the main loop block now that we've taken care of the preliminaries.
1066   Builder.SetInsertPoint(LoopBB);
1067   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1068 
1069   Value *NewVal = PerformOp(Builder, Loaded);
1070 
1071   Value *StoreSuccess =
1072       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1073   Value *TryAgain = Builder.CreateICmpNE(
1074       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1075   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1076 
1077   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1078   return Loaded;
1079 }
1080 
1081 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1082 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1083 /// IR.  As a migration step, we convert back to what use to be the standard
1084 /// way to represent a pointer cmpxchg so that we can update backends one by
1085 /// one.
convertCmpXchgToIntegerType(AtomicCmpXchgInst * CI)1086 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1087   auto *M = CI->getModule();
1088   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1089                                             M->getDataLayout());
1090 
1091   IRBuilder<> Builder(CI);
1092 
1093   Value *Addr = CI->getPointerOperand();
1094   Type *PT = PointerType::get(NewTy,
1095                               Addr->getType()->getPointerAddressSpace());
1096   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1097 
1098   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1099   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1100 
1101   auto *NewCI = Builder.CreateAtomicCmpXchg(
1102       NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1103       CI->getFailureOrdering(), CI->getSyncScopeID());
1104   NewCI->setVolatile(CI->isVolatile());
1105   NewCI->setWeak(CI->isWeak());
1106   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1107 
1108   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1109   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1110 
1111   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1112 
1113   Value *Res = UndefValue::get(CI->getType());
1114   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1115   Res = Builder.CreateInsertValue(Res, Succ, 1);
1116 
1117   CI->replaceAllUsesWith(Res);
1118   CI->eraseFromParent();
1119   return NewCI;
1120 }
1121 
expandAtomicCmpXchg(AtomicCmpXchgInst * CI)1122 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1123   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1124   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1125   Value *Addr = CI->getPointerOperand();
1126   BasicBlock *BB = CI->getParent();
1127   Function *F = BB->getParent();
1128   LLVMContext &Ctx = F->getContext();
1129   // If shouldInsertFencesForAtomic() returns true, then the target does not
1130   // want to deal with memory orders, and emitLeading/TrailingFence should take
1131   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1132   // should preserve the ordering.
1133   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1134   AtomicOrdering MemOpOrder =
1135       ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1136 
1137   // In implementations which use a barrier to achieve release semantics, we can
1138   // delay emitting this barrier until we know a store is actually going to be
1139   // attempted. The cost of this delay is that we need 2 copies of the block
1140   // emitting the load-linked, affecting code size.
1141   //
1142   // Ideally, this logic would be unconditional except for the minsize check
1143   // since in other cases the extra blocks naturally collapse down to the
1144   // minimal loop. Unfortunately, this puts too much stress on later
1145   // optimisations so we avoid emitting the extra logic in those cases too.
1146   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1147                            SuccessOrder != AtomicOrdering::Monotonic &&
1148                            SuccessOrder != AtomicOrdering::Acquire &&
1149                            !F->hasMinSize();
1150 
1151   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1152   // do it even on minsize.
1153   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1154 
1155   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1156   //
1157   // The full expansion we produce is:
1158   //     [...]
1159   // %aligned.addr = ...
1160   // cmpxchg.start:
1161   //     %unreleasedload = @load.linked(%aligned.addr)
1162   //     %unreleasedload.extract = extract value from %unreleasedload
1163   //     %should_store = icmp eq %unreleasedload.extract, %desired
1164   //     br i1 %should_store, label %cmpxchg.releasingstore,
1165   //                          label %cmpxchg.nostore
1166   // cmpxchg.releasingstore:
1167   //     fence?
1168   //     br label cmpxchg.trystore
1169   // cmpxchg.trystore:
1170   //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1171   //                            [%releasedload, %cmpxchg.releasedload]
1172   //     %updated.new = insert %new into %loaded.trystore
1173   //     %stored = @store_conditional(%updated.new, %aligned.addr)
1174   //     %success = icmp eq i32 %stored, 0
1175   //     br i1 %success, label %cmpxchg.success,
1176   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1177   // cmpxchg.releasedload:
1178   //     %releasedload = @load.linked(%aligned.addr)
1179   //     %releasedload.extract = extract value from %releasedload
1180   //     %should_store = icmp eq %releasedload.extract, %desired
1181   //     br i1 %should_store, label %cmpxchg.trystore,
1182   //                          label %cmpxchg.failure
1183   // cmpxchg.success:
1184   //     fence?
1185   //     br label %cmpxchg.end
1186   // cmpxchg.nostore:
1187   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1188   //                           [%releasedload,
1189   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1190   //     @load_linked_fail_balance()?
1191   //     br label %cmpxchg.failure
1192   // cmpxchg.failure:
1193   //     fence?
1194   //     br label %cmpxchg.end
1195   // cmpxchg.end:
1196   //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1197   //                        [%loaded.trystore, %cmpxchg.trystore]
1198   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1199   //     %loaded = extract value from %loaded.exit
1200   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1201   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1202   //     [...]
1203   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1204   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1205   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1206   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1207   auto ReleasedLoadBB =
1208       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1209   auto TryStoreBB =
1210       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1211   auto ReleasingStoreBB =
1212       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1213   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1214 
1215   // This grabs the DebugLoc from CI
1216   IRBuilder<> Builder(CI);
1217 
1218   // The split call above "helpfully" added a branch at the end of BB (to the
1219   // wrong place), but we might want a fence too. It's easiest to just remove
1220   // the branch entirely.
1221   std::prev(BB->end())->eraseFromParent();
1222   Builder.SetInsertPoint(BB);
1223   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1224     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1225 
1226   PartwordMaskValues PMV =
1227       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1228                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1229   Builder.CreateBr(StartBB);
1230 
1231   // Start the main loop block now that we've taken care of the preliminaries.
1232   Builder.SetInsertPoint(StartBB);
1233   Value *UnreleasedLoad =
1234       TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1235   Value *UnreleasedLoadExtract =
1236       extractMaskedValue(Builder, UnreleasedLoad, PMV);
1237   Value *ShouldStore = Builder.CreateICmpEQ(
1238       UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1239 
1240   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1241   // jump straight past that fence instruction (if it exists).
1242   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1243 
1244   Builder.SetInsertPoint(ReleasingStoreBB);
1245   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1246     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1247   Builder.CreateBr(TryStoreBB);
1248 
1249   Builder.SetInsertPoint(TryStoreBB);
1250   PHINode *LoadedTryStore =
1251       Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1252   LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1253   Value *NewValueInsert =
1254       insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1255   Value *StoreSuccess =
1256       TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr,
1257                                 MemOpOrder);
1258   StoreSuccess = Builder.CreateICmpEQ(
1259       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1260   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1261   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1262                        CI->isWeak() ? FailureBB : RetryBB);
1263 
1264   Builder.SetInsertPoint(ReleasedLoadBB);
1265   Value *SecondLoad;
1266   if (HasReleasedLoadBB) {
1267     SecondLoad = TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1268     Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1269     ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1270                                        CI->getCompareOperand(), "should_store");
1271 
1272     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1273     // jump straight past that fence instruction (if it exists).
1274     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1275     // Update PHI node in TryStoreBB.
1276     LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1277   } else
1278     Builder.CreateUnreachable();
1279 
1280   // Make sure later instructions don't get reordered with a fence if
1281   // necessary.
1282   Builder.SetInsertPoint(SuccessBB);
1283   if (ShouldInsertFencesForAtomic)
1284     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1285   Builder.CreateBr(ExitBB);
1286 
1287   Builder.SetInsertPoint(NoStoreBB);
1288   PHINode *LoadedNoStore =
1289       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1290   LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1291   if (HasReleasedLoadBB)
1292     LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1293 
1294   // In the failing case, where we don't execute the store-conditional, the
1295   // target might want to balance out the load-linked with a dedicated
1296   // instruction (e.g., on ARM, clearing the exclusive monitor).
1297   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1298   Builder.CreateBr(FailureBB);
1299 
1300   Builder.SetInsertPoint(FailureBB);
1301   PHINode *LoadedFailure =
1302       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1303   LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1304   if (CI->isWeak())
1305     LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1306   if (ShouldInsertFencesForAtomic)
1307     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1308   Builder.CreateBr(ExitBB);
1309 
1310   // Finally, we have control-flow based knowledge of whether the cmpxchg
1311   // succeeded or not. We expose this to later passes by converting any
1312   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1313   // PHI.
1314   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1315   PHINode *LoadedExit =
1316       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1317   LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1318   LoadedExit->addIncoming(LoadedFailure, FailureBB);
1319   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1320   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1321   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1322 
1323   // This is the "exit value" from the cmpxchg expansion. It may be of
1324   // a type wider than the one in the cmpxchg instruction.
1325   Value *LoadedFull = LoadedExit;
1326 
1327   Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1328   Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1329 
1330   // Look for any users of the cmpxchg that are just comparing the loaded value
1331   // against the desired one, and replace them with the CFG-derived version.
1332   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1333   for (auto User : CI->users()) {
1334     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1335     if (!EV)
1336       continue;
1337 
1338     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1339            "weird extraction from { iN, i1 }");
1340 
1341     if (EV->getIndices()[0] == 0)
1342       EV->replaceAllUsesWith(Loaded);
1343     else
1344       EV->replaceAllUsesWith(Success);
1345 
1346     PrunedInsts.push_back(EV);
1347   }
1348 
1349   // We can remove the instructions now we're no longer iterating through them.
1350   for (auto EV : PrunedInsts)
1351     EV->eraseFromParent();
1352 
1353   if (!CI->use_empty()) {
1354     // Some use of the full struct return that we don't understand has happened,
1355     // so we've got to reconstruct it properly.
1356     Value *Res;
1357     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1358     Res = Builder.CreateInsertValue(Res, Success, 1);
1359 
1360     CI->replaceAllUsesWith(Res);
1361   }
1362 
1363   CI->eraseFromParent();
1364   return true;
1365 }
1366 
isIdempotentRMW(AtomicRMWInst * RMWI)1367 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1368   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1369   if(!C)
1370     return false;
1371 
1372   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1373   switch(Op) {
1374     case AtomicRMWInst::Add:
1375     case AtomicRMWInst::Sub:
1376     case AtomicRMWInst::Or:
1377     case AtomicRMWInst::Xor:
1378       return C->isZero();
1379     case AtomicRMWInst::And:
1380       return C->isMinusOne();
1381     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1382     default:
1383       return false;
1384   }
1385 }
1386 
simplifyIdempotentRMW(AtomicRMWInst * RMWI)1387 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1388   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1389     tryExpandAtomicLoad(ResultingLoad);
1390     return true;
1391   }
1392   return false;
1393 }
1394 
insertRMWCmpXchgLoop(IRBuilder<> & Builder,Type * ResultTy,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,SyncScope::ID SSID,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp,CreateCmpXchgInstFun CreateCmpXchg)1395 Value *AtomicExpand::insertRMWCmpXchgLoop(
1396     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1397     AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1398     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1399     CreateCmpXchgInstFun CreateCmpXchg) {
1400   LLVMContext &Ctx = Builder.getContext();
1401   BasicBlock *BB = Builder.GetInsertBlock();
1402   Function *F = BB->getParent();
1403 
1404   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1405   //
1406   // The standard expansion we produce is:
1407   //     [...]
1408   //     %init_loaded = load atomic iN* %addr
1409   //     br label %loop
1410   // loop:
1411   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1412   //     %new = some_op iN %loaded, %incr
1413   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1414   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1415   //     %success = extractvalue { iN, i1 } %pair, 1
1416   //     br i1 %success, label %atomicrmw.end, label %loop
1417   // atomicrmw.end:
1418   //     [...]
1419   BasicBlock *ExitBB =
1420       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1421   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1422 
1423   // The split call above "helpfully" added a branch at the end of BB (to the
1424   // wrong place), but we want a load. It's easiest to just remove
1425   // the branch entirely.
1426   std::prev(BB->end())->eraseFromParent();
1427   Builder.SetInsertPoint(BB);
1428   LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1429   Builder.CreateBr(LoopBB);
1430 
1431   // Start the main loop block now that we've taken care of the preliminaries.
1432   Builder.SetInsertPoint(LoopBB);
1433   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1434   Loaded->addIncoming(InitLoaded, BB);
1435 
1436   Value *NewVal = PerformOp(Builder, Loaded);
1437 
1438   Value *NewLoaded = nullptr;
1439   Value *Success = nullptr;
1440 
1441   CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1442                 MemOpOrder == AtomicOrdering::Unordered
1443                     ? AtomicOrdering::Monotonic
1444                     : MemOpOrder,
1445                 SSID, Success, NewLoaded);
1446   assert(Success && NewLoaded);
1447 
1448   Loaded->addIncoming(NewLoaded, LoopBB);
1449 
1450   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1451 
1452   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1453   return NewLoaded;
1454 }
1455 
tryExpandAtomicCmpXchg(AtomicCmpXchgInst * CI)1456 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1457   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1458   unsigned ValueSize = getAtomicOpSize(CI);
1459 
1460   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1461   default:
1462     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1463   case TargetLoweringBase::AtomicExpansionKind::None:
1464     if (ValueSize < MinCASSize)
1465       return expandPartwordCmpXchg(CI);
1466     return false;
1467   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1468     return expandAtomicCmpXchg(CI);
1469   }
1470   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1471     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1472     return true;
1473   }
1474 }
1475 
1476 // Note: This function is exposed externally by AtomicExpandUtils.h
expandAtomicRMWToCmpXchg(AtomicRMWInst * AI,CreateCmpXchgInstFun CreateCmpXchg)1477 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1478                                     CreateCmpXchgInstFun CreateCmpXchg) {
1479   IRBuilder<> Builder(AI);
1480   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1481       Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1482       AI->getOrdering(), AI->getSyncScopeID(),
1483       [&](IRBuilder<> &Builder, Value *Loaded) {
1484         return performAtomicOp(AI->getOperation(), Builder, Loaded,
1485                                AI->getValOperand());
1486       },
1487       CreateCmpXchg);
1488 
1489   AI->replaceAllUsesWith(Loaded);
1490   AI->eraseFromParent();
1491   return true;
1492 }
1493 
1494 // In order to use one of the sized library calls such as
1495 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1496 // must be one of the potentially-specialized sizes, and the value
1497 // type must actually exist in C on the target (otherwise, the
1498 // function wouldn't actually be defined.)
canUseSizedAtomicCall(unsigned Size,Align Alignment,const DataLayout & DL)1499 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1500                                   const DataLayout &DL) {
1501   // TODO: "LargestSize" is an approximation for "largest type that
1502   // you can express in C". It seems to be the case that int128 is
1503   // supported on all 64-bit platforms, otherwise only up to 64-bit
1504   // integers are supported. If we get this wrong, then we'll try to
1505   // call a sized libcall that doesn't actually exist. There should
1506   // really be some more reliable way in LLVM of determining integer
1507   // sizes which are valid in the target's C ABI...
1508   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1509   return Alignment >= Size &&
1510          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1511          Size <= LargestSize;
1512 }
1513 
expandAtomicLoadToLibcall(LoadInst * I)1514 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1515   static const RTLIB::Libcall Libcalls[6] = {
1516       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1517       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1518   unsigned Size = getAtomicOpSize(I);
1519 
1520   bool expanded = expandAtomicOpToLibcall(
1521       I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1522       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1523   if (!expanded)
1524     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1525 }
1526 
expandAtomicStoreToLibcall(StoreInst * I)1527 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1528   static const RTLIB::Libcall Libcalls[6] = {
1529       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1530       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1531   unsigned Size = getAtomicOpSize(I);
1532 
1533   bool expanded = expandAtomicOpToLibcall(
1534       I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1535       nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1536   if (!expanded)
1537     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1538 }
1539 
expandAtomicCASToLibcall(AtomicCmpXchgInst * I)1540 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1541   static const RTLIB::Libcall Libcalls[6] = {
1542       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1543       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1544       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1545   unsigned Size = getAtomicOpSize(I);
1546 
1547   bool expanded = expandAtomicOpToLibcall(
1548       I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1549       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1550       Libcalls);
1551   if (!expanded)
1552     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1553 }
1554 
GetRMWLibcall(AtomicRMWInst::BinOp Op)1555 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1556   static const RTLIB::Libcall LibcallsXchg[6] = {
1557       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1558       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1559       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1560   static const RTLIB::Libcall LibcallsAdd[6] = {
1561       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1562       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1563       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1564   static const RTLIB::Libcall LibcallsSub[6] = {
1565       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1566       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1567       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1568   static const RTLIB::Libcall LibcallsAnd[6] = {
1569       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1570       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1571       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1572   static const RTLIB::Libcall LibcallsOr[6] = {
1573       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1574       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1575       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1576   static const RTLIB::Libcall LibcallsXor[6] = {
1577       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1578       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1579       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1580   static const RTLIB::Libcall LibcallsNand[6] = {
1581       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1582       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1583       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1584 
1585   switch (Op) {
1586   case AtomicRMWInst::BAD_BINOP:
1587     llvm_unreachable("Should not have BAD_BINOP.");
1588   case AtomicRMWInst::Xchg:
1589     return makeArrayRef(LibcallsXchg);
1590   case AtomicRMWInst::Add:
1591     return makeArrayRef(LibcallsAdd);
1592   case AtomicRMWInst::Sub:
1593     return makeArrayRef(LibcallsSub);
1594   case AtomicRMWInst::And:
1595     return makeArrayRef(LibcallsAnd);
1596   case AtomicRMWInst::Or:
1597     return makeArrayRef(LibcallsOr);
1598   case AtomicRMWInst::Xor:
1599     return makeArrayRef(LibcallsXor);
1600   case AtomicRMWInst::Nand:
1601     return makeArrayRef(LibcallsNand);
1602   case AtomicRMWInst::Max:
1603   case AtomicRMWInst::Min:
1604   case AtomicRMWInst::UMax:
1605   case AtomicRMWInst::UMin:
1606   case AtomicRMWInst::FAdd:
1607   case AtomicRMWInst::FSub:
1608     // No atomic libcalls are available for max/min/umax/umin.
1609     return {};
1610   }
1611   llvm_unreachable("Unexpected AtomicRMW operation.");
1612 }
1613 
expandAtomicRMWToLibcall(AtomicRMWInst * I)1614 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1615   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1616 
1617   unsigned Size = getAtomicOpSize(I);
1618 
1619   bool Success = false;
1620   if (!Libcalls.empty())
1621     Success = expandAtomicOpToLibcall(
1622         I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1623         nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1624 
1625   // The expansion failed: either there were no libcalls at all for
1626   // the operation (min/max), or there were only size-specialized
1627   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1628   // CAS libcall, via a CAS loop, instead.
1629   if (!Success) {
1630     expandAtomicRMWToCmpXchg(
1631         I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded,
1632                   Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1633                   SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1634           // Create the CAS instruction normally...
1635           AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1636               Addr, Loaded, NewVal, Alignment, MemOpOrder,
1637               AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1638           Success = Builder.CreateExtractValue(Pair, 1, "success");
1639           NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1640 
1641           // ...and then expand the CAS into a libcall.
1642           expandAtomicCASToLibcall(Pair);
1643         });
1644   }
1645 }
1646 
1647 // A helper routine for the above expandAtomic*ToLibcall functions.
1648 //
1649 // 'Libcalls' contains an array of enum values for the particular
1650 // ATOMIC libcalls to be emitted. All of the other arguments besides
1651 // 'I' are extracted from the Instruction subclass by the
1652 // caller. Depending on the particular call, some will be null.
expandAtomicOpToLibcall(Instruction * I,unsigned Size,Align Alignment,Value * PointerOperand,Value * ValueOperand,Value * CASExpected,AtomicOrdering Ordering,AtomicOrdering Ordering2,ArrayRef<RTLIB::Libcall> Libcalls)1653 bool AtomicExpand::expandAtomicOpToLibcall(
1654     Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1655     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1656     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1657   assert(Libcalls.size() == 6);
1658 
1659   LLVMContext &Ctx = I->getContext();
1660   Module *M = I->getModule();
1661   const DataLayout &DL = M->getDataLayout();
1662   IRBuilder<> Builder(I);
1663   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1664 
1665   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1666   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1667 
1668   const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1669 
1670   // TODO: the "order" argument type is "int", not int32. So
1671   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1672   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1673   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1674   Constant *OrderingVal =
1675       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1676   Constant *Ordering2Val = nullptr;
1677   if (CASExpected) {
1678     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1679     Ordering2Val =
1680         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1681   }
1682   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1683 
1684   RTLIB::Libcall RTLibType;
1685   if (UseSizedLibcall) {
1686     switch (Size) {
1687     case 1: RTLibType = Libcalls[1]; break;
1688     case 2: RTLibType = Libcalls[2]; break;
1689     case 4: RTLibType = Libcalls[3]; break;
1690     case 8: RTLibType = Libcalls[4]; break;
1691     case 16: RTLibType = Libcalls[5]; break;
1692     }
1693   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1694     RTLibType = Libcalls[0];
1695   } else {
1696     // Can't use sized function, and there's no generic for this
1697     // operation, so give up.
1698     return false;
1699   }
1700 
1701   if (!TLI->getLibcallName(RTLibType)) {
1702     // This target does not implement the requested atomic libcall so give up.
1703     return false;
1704   }
1705 
1706   // Build up the function call. There's two kinds. First, the sized
1707   // variants.  These calls are going to be one of the following (with
1708   // N=1,2,4,8,16):
1709   //  iN    __atomic_load_N(iN *ptr, int ordering)
1710   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1711   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1712   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1713   //                                    int success_order, int failure_order)
1714   //
1715   // Note that these functions can be used for non-integer atomic
1716   // operations, the values just need to be bitcast to integers on the
1717   // way in and out.
1718   //
1719   // And, then, the generic variants. They look like the following:
1720   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1721   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1722   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1723   //                          int ordering)
1724   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1725   //                                  void *desired, int success_order,
1726   //                                  int failure_order)
1727   //
1728   // The different signatures are built up depending on the
1729   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1730   // variables.
1731 
1732   AllocaInst *AllocaCASExpected = nullptr;
1733   Value *AllocaCASExpected_i8 = nullptr;
1734   AllocaInst *AllocaValue = nullptr;
1735   Value *AllocaValue_i8 = nullptr;
1736   AllocaInst *AllocaResult = nullptr;
1737   Value *AllocaResult_i8 = nullptr;
1738 
1739   Type *ResultTy;
1740   SmallVector<Value *, 6> Args;
1741   AttributeList Attr;
1742 
1743   // 'size' argument.
1744   if (!UseSizedLibcall) {
1745     // Note, getIntPtrType is assumed equivalent to size_t.
1746     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1747   }
1748 
1749   // 'ptr' argument.
1750   // note: This assumes all address spaces share a common libfunc
1751   // implementation and that addresses are convertable.  For systems without
1752   // that property, we'd need to extend this mechanism to support AS-specific
1753   // families of atomic intrinsics.
1754   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1755   Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1756                                         Type::getInt8PtrTy(Ctx, PtrTypeAS));
1757   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1758   Args.push_back(PtrVal);
1759 
1760   // 'expected' argument, if present.
1761   if (CASExpected) {
1762     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1763     AllocaCASExpected->setAlignment(AllocaAlignment);
1764     unsigned AllocaAS =  AllocaCASExpected->getType()->getPointerAddressSpace();
1765 
1766     AllocaCASExpected_i8 =
1767       Builder.CreateBitCast(AllocaCASExpected,
1768                             Type::getInt8PtrTy(Ctx, AllocaAS));
1769     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1770     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1771     Args.push_back(AllocaCASExpected_i8);
1772   }
1773 
1774   // 'val' argument ('desired' for cas), if present.
1775   if (ValueOperand) {
1776     if (UseSizedLibcall) {
1777       Value *IntValue =
1778           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1779       Args.push_back(IntValue);
1780     } else {
1781       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1782       AllocaValue->setAlignment(AllocaAlignment);
1783       AllocaValue_i8 =
1784           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1785       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1786       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1787       Args.push_back(AllocaValue_i8);
1788     }
1789   }
1790 
1791   // 'ret' argument.
1792   if (!CASExpected && HasResult && !UseSizedLibcall) {
1793     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1794     AllocaResult->setAlignment(AllocaAlignment);
1795     unsigned AllocaAS =  AllocaResult->getType()->getPointerAddressSpace();
1796     AllocaResult_i8 =
1797       Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1798     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1799     Args.push_back(AllocaResult_i8);
1800   }
1801 
1802   // 'ordering' ('success_order' for cas) argument.
1803   Args.push_back(OrderingVal);
1804 
1805   // 'failure_order' argument, if present.
1806   if (Ordering2Val)
1807     Args.push_back(Ordering2Val);
1808 
1809   // Now, the return type.
1810   if (CASExpected) {
1811     ResultTy = Type::getInt1Ty(Ctx);
1812     Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1813   } else if (HasResult && UseSizedLibcall)
1814     ResultTy = SizedIntTy;
1815   else
1816     ResultTy = Type::getVoidTy(Ctx);
1817 
1818   // Done with setting up arguments and return types, create the call:
1819   SmallVector<Type *, 6> ArgTys;
1820   for (Value *Arg : Args)
1821     ArgTys.push_back(Arg->getType());
1822   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1823   FunctionCallee LibcallFn =
1824       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1825   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1826   Call->setAttributes(Attr);
1827   Value *Result = Call;
1828 
1829   // And then, extract the results...
1830   if (ValueOperand && !UseSizedLibcall)
1831     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1832 
1833   if (CASExpected) {
1834     // The final result from the CAS is {load of 'expected' alloca, bool result
1835     // from call}
1836     Type *FinalResultTy = I->getType();
1837     Value *V = UndefValue::get(FinalResultTy);
1838     Value *ExpectedOut = Builder.CreateAlignedLoad(
1839         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1840     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1841     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1842     V = Builder.CreateInsertValue(V, Result, 1);
1843     I->replaceAllUsesWith(V);
1844   } else if (HasResult) {
1845     Value *V;
1846     if (UseSizedLibcall)
1847       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1848     else {
1849       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1850                                     AllocaAlignment);
1851       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1852     }
1853     I->replaceAllUsesWith(V);
1854   }
1855   I->eraseFromParent();
1856   return true;
1857 }
1858