1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend. This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/AtomicExpandUtils.h"
21 #include "llvm/CodeGen/RuntimeLibcalls.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "atomic-expand"
56
57 namespace {
58
59 class AtomicExpand: public FunctionPass {
60 const TargetLowering *TLI = nullptr;
61
62 public:
63 static char ID; // Pass identification, replacement for typeid
64
AtomicExpand()65 AtomicExpand() : FunctionPass(ID) {
66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67 }
68
69 bool runOnFunction(Function &F) override;
70
71 private:
72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75 bool tryExpandAtomicLoad(LoadInst *LI);
76 bool expandAtomicLoadToLL(LoadInst *LI);
77 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79 bool expandAtomicStore(StoreInst *SI);
80 bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81 Value *
82 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83 Align AddrAlign, AtomicOrdering MemOpOrder,
84 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85 void expandAtomicOpToLLSC(
86 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
87 AtomicOrdering MemOpOrder,
88 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
89 void expandPartwordAtomicRMW(
90 AtomicRMWInst *I,
91 TargetLoweringBase::AtomicExpansionKind ExpansionKind);
92 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
93 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
94 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
95 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
96
97 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
98 static Value *insertRMWCmpXchgLoop(
99 IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
100 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
101 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
102 CreateCmpXchgInstFun CreateCmpXchg);
103 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
104
105 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
106 bool isIdempotentRMW(AtomicRMWInst *RMWI);
107 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
108
109 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
110 Value *PointerOperand, Value *ValueOperand,
111 Value *CASExpected, AtomicOrdering Ordering,
112 AtomicOrdering Ordering2,
113 ArrayRef<RTLIB::Libcall> Libcalls);
114 void expandAtomicLoadToLibcall(LoadInst *LI);
115 void expandAtomicStoreToLibcall(StoreInst *LI);
116 void expandAtomicRMWToLibcall(AtomicRMWInst *I);
117 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
118
119 friend bool
120 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
121 CreateCmpXchgInstFun CreateCmpXchg);
122 };
123
124 } // end anonymous namespace
125
126 char AtomicExpand::ID = 0;
127
128 char &llvm::AtomicExpandID = AtomicExpand::ID;
129
130 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
131 false, false)
132
createAtomicExpandPass()133 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
134
135 // Helper functions to retrieve the size of atomic instructions.
getAtomicOpSize(LoadInst * LI)136 static unsigned getAtomicOpSize(LoadInst *LI) {
137 const DataLayout &DL = LI->getModule()->getDataLayout();
138 return DL.getTypeStoreSize(LI->getType());
139 }
140
getAtomicOpSize(StoreInst * SI)141 static unsigned getAtomicOpSize(StoreInst *SI) {
142 const DataLayout &DL = SI->getModule()->getDataLayout();
143 return DL.getTypeStoreSize(SI->getValueOperand()->getType());
144 }
145
getAtomicOpSize(AtomicRMWInst * RMWI)146 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
147 const DataLayout &DL = RMWI->getModule()->getDataLayout();
148 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
149 }
150
getAtomicOpSize(AtomicCmpXchgInst * CASI)151 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
152 const DataLayout &DL = CASI->getModule()->getDataLayout();
153 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
154 }
155
156 // Determine if a particular atomic operation has a supported size,
157 // and is of appropriate alignment, to be passed through for target
158 // lowering. (Versus turning into a __atomic libcall)
159 template <typename Inst>
atomicSizeSupported(const TargetLowering * TLI,Inst * I)160 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
161 unsigned Size = getAtomicOpSize(I);
162 Align Alignment = I->getAlign();
163 return Alignment >= Size &&
164 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
165 }
166
runOnFunction(Function & F)167 bool AtomicExpand::runOnFunction(Function &F) {
168 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
169 if (!TPC)
170 return false;
171
172 auto &TM = TPC->getTM<TargetMachine>();
173 if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
174 return false;
175 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
176
177 SmallVector<Instruction *, 1> AtomicInsts;
178
179 // Changing control-flow while iterating through it is a bad idea, so gather a
180 // list of all atomic instructions before we start.
181 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
182 Instruction *I = &*II;
183 if (I->isAtomic() && !isa<FenceInst>(I))
184 AtomicInsts.push_back(I);
185 }
186
187 bool MadeChange = false;
188 for (auto I : AtomicInsts) {
189 auto LI = dyn_cast<LoadInst>(I);
190 auto SI = dyn_cast<StoreInst>(I);
191 auto RMWI = dyn_cast<AtomicRMWInst>(I);
192 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
193 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
194
195 // If the Size/Alignment is not supported, replace with a libcall.
196 if (LI) {
197 if (!atomicSizeSupported(TLI, LI)) {
198 expandAtomicLoadToLibcall(LI);
199 MadeChange = true;
200 continue;
201 }
202 } else if (SI) {
203 if (!atomicSizeSupported(TLI, SI)) {
204 expandAtomicStoreToLibcall(SI);
205 MadeChange = true;
206 continue;
207 }
208 } else if (RMWI) {
209 if (!atomicSizeSupported(TLI, RMWI)) {
210 expandAtomicRMWToLibcall(RMWI);
211 MadeChange = true;
212 continue;
213 }
214 } else if (CASI) {
215 if (!atomicSizeSupported(TLI, CASI)) {
216 expandAtomicCASToLibcall(CASI);
217 MadeChange = true;
218 continue;
219 }
220 }
221
222 if (TLI->shouldInsertFencesForAtomic(I)) {
223 auto FenceOrdering = AtomicOrdering::Monotonic;
224 if (LI && isAcquireOrStronger(LI->getOrdering())) {
225 FenceOrdering = LI->getOrdering();
226 LI->setOrdering(AtomicOrdering::Monotonic);
227 } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
228 FenceOrdering = SI->getOrdering();
229 SI->setOrdering(AtomicOrdering::Monotonic);
230 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
231 isAcquireOrStronger(RMWI->getOrdering()))) {
232 FenceOrdering = RMWI->getOrdering();
233 RMWI->setOrdering(AtomicOrdering::Monotonic);
234 } else if (CASI &&
235 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
236 TargetLoweringBase::AtomicExpansionKind::None &&
237 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
238 isAcquireOrStronger(CASI->getSuccessOrdering()))) {
239 // If a compare and swap is lowered to LL/SC, we can do smarter fence
240 // insertion, with a stronger one on the success path than on the
241 // failure path. As a result, fence insertion is directly done by
242 // expandAtomicCmpXchg in that case.
243 FenceOrdering = CASI->getSuccessOrdering();
244 CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
245 CASI->setFailureOrdering(AtomicOrdering::Monotonic);
246 }
247
248 if (FenceOrdering != AtomicOrdering::Monotonic) {
249 MadeChange |= bracketInstWithFences(I, FenceOrdering);
250 }
251 }
252
253 if (LI) {
254 if (LI->getType()->isFloatingPointTy()) {
255 // TODO: add a TLI hook to control this so that each target can
256 // convert to lowering the original type one at a time.
257 LI = convertAtomicLoadToIntegerType(LI);
258 assert(LI->getType()->isIntegerTy() && "invariant broken");
259 MadeChange = true;
260 }
261
262 MadeChange |= tryExpandAtomicLoad(LI);
263 } else if (SI) {
264 if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
265 // TODO: add a TLI hook to control this so that each target can
266 // convert to lowering the original type one at a time.
267 SI = convertAtomicStoreToIntegerType(SI);
268 assert(SI->getValueOperand()->getType()->isIntegerTy() &&
269 "invariant broken");
270 MadeChange = true;
271 }
272
273 if (TLI->shouldExpandAtomicStoreInIR(SI))
274 MadeChange |= expandAtomicStore(SI);
275 } else if (RMWI) {
276 // There are two different ways of expanding RMW instructions:
277 // - into a load if it is idempotent
278 // - into a Cmpxchg/LL-SC loop otherwise
279 // we try them in that order.
280
281 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
282 MadeChange = true;
283 } else {
284 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
285 unsigned ValueSize = getAtomicOpSize(RMWI);
286 AtomicRMWInst::BinOp Op = RMWI->getOperation();
287 if (ValueSize < MinCASSize &&
288 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
289 Op == AtomicRMWInst::And)) {
290 RMWI = widenPartwordAtomicRMW(RMWI);
291 MadeChange = true;
292 }
293
294 MadeChange |= tryExpandAtomicRMW(RMWI);
295 }
296 } else if (CASI) {
297 // TODO: when we're ready to make the change at the IR level, we can
298 // extend convertCmpXchgToInteger for floating point too.
299 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
300 "unimplemented - floating point not legal at IR level");
301 if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
302 // TODO: add a TLI hook to control this so that each target can
303 // convert to lowering the original type one at a time.
304 CASI = convertCmpXchgToIntegerType(CASI);
305 assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
306 "invariant broken");
307 MadeChange = true;
308 }
309
310 MadeChange |= tryExpandAtomicCmpXchg(CASI);
311 }
312 }
313 return MadeChange;
314 }
315
bracketInstWithFences(Instruction * I,AtomicOrdering Order)316 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
317 IRBuilder<> Builder(I);
318
319 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
320
321 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
322 // We have a guard here because not every atomic operation generates a
323 // trailing fence.
324 if (TrailingFence)
325 TrailingFence->moveAfter(I);
326
327 return (LeadingFence || TrailingFence);
328 }
329
330 /// Get the iX type with the same bitwidth as T.
getCorrespondingIntegerType(Type * T,const DataLayout & DL)331 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
332 const DataLayout &DL) {
333 EVT VT = TLI->getMemValueType(DL, T);
334 unsigned BitWidth = VT.getStoreSizeInBits();
335 assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
336 return IntegerType::get(T->getContext(), BitWidth);
337 }
338
339 /// Convert an atomic load of a non-integral type to an integer load of the
340 /// equivalent bitwidth. See the function comment on
341 /// convertAtomicStoreToIntegerType for background.
convertAtomicLoadToIntegerType(LoadInst * LI)342 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
343 auto *M = LI->getModule();
344 Type *NewTy = getCorrespondingIntegerType(LI->getType(),
345 M->getDataLayout());
346
347 IRBuilder<> Builder(LI);
348
349 Value *Addr = LI->getPointerOperand();
350 Type *PT = PointerType::get(NewTy,
351 Addr->getType()->getPointerAddressSpace());
352 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
353
354 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
355 NewLI->setAlignment(LI->getAlign());
356 NewLI->setVolatile(LI->isVolatile());
357 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
358 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
359
360 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
361 LI->replaceAllUsesWith(NewVal);
362 LI->eraseFromParent();
363 return NewLI;
364 }
365
tryExpandAtomicLoad(LoadInst * LI)366 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
367 switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
368 case TargetLoweringBase::AtomicExpansionKind::None:
369 return false;
370 case TargetLoweringBase::AtomicExpansionKind::LLSC:
371 expandAtomicOpToLLSC(
372 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
373 LI->getOrdering(),
374 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
375 return true;
376 case TargetLoweringBase::AtomicExpansionKind::LLOnly:
377 return expandAtomicLoadToLL(LI);
378 case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
379 return expandAtomicLoadToCmpXchg(LI);
380 default:
381 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
382 }
383 }
384
expandAtomicLoadToLL(LoadInst * LI)385 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
386 IRBuilder<> Builder(LI);
387
388 // On some architectures, load-linked instructions are atomic for larger
389 // sizes than normal loads. For example, the only 64-bit load guaranteed
390 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
391 Value *Val =
392 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
393 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
394
395 LI->replaceAllUsesWith(Val);
396 LI->eraseFromParent();
397
398 return true;
399 }
400
expandAtomicLoadToCmpXchg(LoadInst * LI)401 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
402 IRBuilder<> Builder(LI);
403 AtomicOrdering Order = LI->getOrdering();
404 if (Order == AtomicOrdering::Unordered)
405 Order = AtomicOrdering::Monotonic;
406
407 Value *Addr = LI->getPointerOperand();
408 Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
409 Constant *DummyVal = Constant::getNullValue(Ty);
410
411 Value *Pair = Builder.CreateAtomicCmpXchg(
412 Addr, DummyVal, DummyVal, LI->getAlign(), Order,
413 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
414 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
415
416 LI->replaceAllUsesWith(Loaded);
417 LI->eraseFromParent();
418
419 return true;
420 }
421
422 /// Convert an atomic store of a non-integral type to an integer store of the
423 /// equivalent bitwidth. We used to not support floating point or vector
424 /// atomics in the IR at all. The backends learned to deal with the bitcast
425 /// idiom because that was the only way of expressing the notion of a atomic
426 /// float or vector store. The long term plan is to teach each backend to
427 /// instruction select from the original atomic store, but as a migration
428 /// mechanism, we convert back to the old format which the backends understand.
429 /// Each backend will need individual work to recognize the new format.
convertAtomicStoreToIntegerType(StoreInst * SI)430 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
431 IRBuilder<> Builder(SI);
432 auto *M = SI->getModule();
433 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
434 M->getDataLayout());
435 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
436
437 Value *Addr = SI->getPointerOperand();
438 Type *PT = PointerType::get(NewTy,
439 Addr->getType()->getPointerAddressSpace());
440 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
441
442 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
443 NewSI->setAlignment(SI->getAlign());
444 NewSI->setVolatile(SI->isVolatile());
445 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
446 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
447 SI->eraseFromParent();
448 return NewSI;
449 }
450
expandAtomicStore(StoreInst * SI)451 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
452 // This function is only called on atomic stores that are too large to be
453 // atomic if implemented as a native store. So we replace them by an
454 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
455 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
456 // It is the responsibility of the target to only signal expansion via
457 // shouldExpandAtomicRMW in cases where this is required and possible.
458 IRBuilder<> Builder(SI);
459 AtomicRMWInst *AI = Builder.CreateAtomicRMW(
460 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
461 SI->getAlign(), SI->getOrdering());
462 SI->eraseFromParent();
463
464 // Now we have an appropriate swap instruction, lower it as usual.
465 return tryExpandAtomicRMW(AI);
466 }
467
createCmpXchgInstFun(IRBuilder<> & Builder,Value * Addr,Value * Loaded,Value * NewVal,Align AddrAlign,AtomicOrdering MemOpOrder,SyncScope::ID SSID,Value * & Success,Value * & NewLoaded)468 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
469 Value *Loaded, Value *NewVal, Align AddrAlign,
470 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
471 Value *&Success, Value *&NewLoaded) {
472 Type *OrigTy = NewVal->getType();
473
474 // This code can go away when cmpxchg supports FP types.
475 bool NeedBitcast = OrigTy->isFloatingPointTy();
476 if (NeedBitcast) {
477 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
478 unsigned AS = Addr->getType()->getPointerAddressSpace();
479 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
480 NewVal = Builder.CreateBitCast(NewVal, IntTy);
481 Loaded = Builder.CreateBitCast(Loaded, IntTy);
482 }
483
484 Value *Pair = Builder.CreateAtomicCmpXchg(
485 Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
486 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
487 Success = Builder.CreateExtractValue(Pair, 1, "success");
488 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
489
490 if (NeedBitcast)
491 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
492 }
493
494 /// Emit IR to implement the given atomicrmw operation on values in registers,
495 /// returning the new value.
performAtomicOp(AtomicRMWInst::BinOp Op,IRBuilder<> & Builder,Value * Loaded,Value * Inc)496 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
497 Value *Loaded, Value *Inc) {
498 Value *NewVal;
499 switch (Op) {
500 case AtomicRMWInst::Xchg:
501 return Inc;
502 case AtomicRMWInst::Add:
503 return Builder.CreateAdd(Loaded, Inc, "new");
504 case AtomicRMWInst::Sub:
505 return Builder.CreateSub(Loaded, Inc, "new");
506 case AtomicRMWInst::And:
507 return Builder.CreateAnd(Loaded, Inc, "new");
508 case AtomicRMWInst::Nand:
509 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
510 case AtomicRMWInst::Or:
511 return Builder.CreateOr(Loaded, Inc, "new");
512 case AtomicRMWInst::Xor:
513 return Builder.CreateXor(Loaded, Inc, "new");
514 case AtomicRMWInst::Max:
515 NewVal = Builder.CreateICmpSGT(Loaded, Inc);
516 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
517 case AtomicRMWInst::Min:
518 NewVal = Builder.CreateICmpSLE(Loaded, Inc);
519 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
520 case AtomicRMWInst::UMax:
521 NewVal = Builder.CreateICmpUGT(Loaded, Inc);
522 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
523 case AtomicRMWInst::UMin:
524 NewVal = Builder.CreateICmpULE(Loaded, Inc);
525 return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
526 case AtomicRMWInst::FAdd:
527 return Builder.CreateFAdd(Loaded, Inc, "new");
528 case AtomicRMWInst::FSub:
529 return Builder.CreateFSub(Loaded, Inc, "new");
530 default:
531 llvm_unreachable("Unknown atomic op");
532 }
533 }
534
tryExpandAtomicRMW(AtomicRMWInst * AI)535 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
536 switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
537 case TargetLoweringBase::AtomicExpansionKind::None:
538 return false;
539 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
540 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
541 unsigned ValueSize = getAtomicOpSize(AI);
542 if (ValueSize < MinCASSize) {
543 expandPartwordAtomicRMW(AI,
544 TargetLoweringBase::AtomicExpansionKind::LLSC);
545 } else {
546 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
547 return performAtomicOp(AI->getOperation(), Builder, Loaded,
548 AI->getValOperand());
549 };
550 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
551 AI->getAlign(), AI->getOrdering(), PerformOp);
552 }
553 return true;
554 }
555 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
556 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
557 unsigned ValueSize = getAtomicOpSize(AI);
558 if (ValueSize < MinCASSize) {
559 // TODO: Handle atomicrmw fadd/fsub
560 if (AI->getType()->isFloatingPointTy())
561 return false;
562
563 expandPartwordAtomicRMW(AI,
564 TargetLoweringBase::AtomicExpansionKind::CmpXChg);
565 } else {
566 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
567 }
568 return true;
569 }
570 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
571 expandAtomicRMWToMaskedIntrinsic(AI);
572 return true;
573 }
574 default:
575 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
576 }
577 }
578
579 namespace {
580
581 struct PartwordMaskValues {
582 // These three fields are guaranteed to be set by createMaskInstrs.
583 Type *WordType = nullptr;
584 Type *ValueType = nullptr;
585 Value *AlignedAddr = nullptr;
586 Align AlignedAddrAlignment;
587 // The remaining fields can be null.
588 Value *ShiftAmt = nullptr;
589 Value *Mask = nullptr;
590 Value *Inv_Mask = nullptr;
591 };
592
593 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & O,const PartwordMaskValues & PMV)594 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
595 auto PrintObj = [&O](auto *V) {
596 if (V)
597 O << *V;
598 else
599 O << "nullptr";
600 O << '\n';
601 };
602 O << "PartwordMaskValues {\n";
603 O << " WordType: ";
604 PrintObj(PMV.WordType);
605 O << " ValueType: ";
606 PrintObj(PMV.ValueType);
607 O << " AlignedAddr: ";
608 PrintObj(PMV.AlignedAddr);
609 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
610 O << " ShiftAmt: ";
611 PrintObj(PMV.ShiftAmt);
612 O << " Mask: ";
613 PrintObj(PMV.Mask);
614 O << " Inv_Mask: ";
615 PrintObj(PMV.Inv_Mask);
616 O << "}\n";
617 return O;
618 }
619
620 } // end anonymous namespace
621
622 /// This is a helper function which builds instructions to provide
623 /// values necessary for partword atomic operations. It takes an
624 /// incoming address, Addr, and ValueType, and constructs the address,
625 /// shift-amounts and masks needed to work with a larger value of size
626 /// WordSize.
627 ///
628 /// AlignedAddr: Addr rounded down to a multiple of WordSize
629 ///
630 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
631 /// from AlignAddr for it to have the same value as if
632 /// ValueType was loaded from Addr.
633 ///
634 /// Mask: Value to mask with the value loaded from AlignAddr to
635 /// include only the part that would've been loaded from Addr.
636 ///
637 /// Inv_Mask: The inverse of Mask.
createMaskInstrs(IRBuilder<> & Builder,Instruction * I,Type * ValueType,Value * Addr,Align AddrAlign,unsigned MinWordSize)638 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
639 Type *ValueType, Value *Addr,
640 Align AddrAlign,
641 unsigned MinWordSize) {
642 PartwordMaskValues PMV;
643
644 Module *M = I->getModule();
645 LLVMContext &Ctx = M->getContext();
646 const DataLayout &DL = M->getDataLayout();
647 unsigned ValueSize = DL.getTypeStoreSize(ValueType);
648
649 PMV.ValueType = ValueType;
650 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
651 : ValueType;
652 if (PMV.ValueType == PMV.WordType) {
653 PMV.AlignedAddr = Addr;
654 PMV.AlignedAddrAlignment = AddrAlign;
655 return PMV;
656 }
657
658 assert(ValueSize < MinWordSize);
659
660 Type *WordPtrType =
661 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
662
663 // TODO: we could skip some of this if AddrAlign >= MinWordSize.
664 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
665 PMV.AlignedAddr = Builder.CreateIntToPtr(
666 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
667 "AlignedAddr");
668 PMV.AlignedAddrAlignment = Align(MinWordSize);
669
670 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
671 if (DL.isLittleEndian()) {
672 // turn bytes into bits
673 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
674 } else {
675 // turn bytes into bits, and count from the other side.
676 PMV.ShiftAmt = Builder.CreateShl(
677 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
678 }
679
680 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
681 PMV.Mask = Builder.CreateShl(
682 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
683 "Mask");
684 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
685 return PMV;
686 }
687
extractMaskedValue(IRBuilder<> & Builder,Value * WideWord,const PartwordMaskValues & PMV)688 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
689 const PartwordMaskValues &PMV) {
690 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
691 if (PMV.WordType == PMV.ValueType)
692 return WideWord;
693
694 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
695 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
696 return Trunc;
697 }
698
insertMaskedValue(IRBuilder<> & Builder,Value * WideWord,Value * Updated,const PartwordMaskValues & PMV)699 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
700 Value *Updated, const PartwordMaskValues &PMV) {
701 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
702 assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
703 if (PMV.WordType == PMV.ValueType)
704 return Updated;
705
706 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
707 Value *Shift =
708 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
709 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
710 Value *Or = Builder.CreateOr(And, Shift, "inserted");
711 return Or;
712 }
713
714 /// Emit IR to implement a masked version of a given atomicrmw
715 /// operation. (That is, only the bits under the Mask should be
716 /// affected by the operation)
performMaskedAtomicOp(AtomicRMWInst::BinOp Op,IRBuilder<> & Builder,Value * Loaded,Value * Shifted_Inc,Value * Inc,const PartwordMaskValues & PMV)717 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
718 IRBuilder<> &Builder, Value *Loaded,
719 Value *Shifted_Inc, Value *Inc,
720 const PartwordMaskValues &PMV) {
721 // TODO: update to use
722 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
723 // to merge bits from two values without requiring PMV.Inv_Mask.
724 switch (Op) {
725 case AtomicRMWInst::Xchg: {
726 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
727 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
728 return FinalVal;
729 }
730 case AtomicRMWInst::Or:
731 case AtomicRMWInst::Xor:
732 case AtomicRMWInst::And:
733 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
734 case AtomicRMWInst::Add:
735 case AtomicRMWInst::Sub:
736 case AtomicRMWInst::Nand: {
737 // The other arithmetic ops need to be masked into place.
738 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
739 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
740 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
741 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
742 return FinalVal;
743 }
744 case AtomicRMWInst::Max:
745 case AtomicRMWInst::Min:
746 case AtomicRMWInst::UMax:
747 case AtomicRMWInst::UMin: {
748 // Finally, comparison ops will operate on the full value, so
749 // truncate down to the original size, and expand out again after
750 // doing the operation.
751 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
752 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc);
753 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
754 return FinalVal;
755 }
756 default:
757 llvm_unreachable("Unknown atomic op");
758 }
759 }
760
761 /// Expand a sub-word atomicrmw operation into an appropriate
762 /// word-sized operation.
763 ///
764 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
765 /// way as a typical atomicrmw expansion. The only difference here is
766 /// that the operation inside of the loop may operate upon only a
767 /// part of the value.
expandPartwordAtomicRMW(AtomicRMWInst * AI,TargetLoweringBase::AtomicExpansionKind ExpansionKind)768 void AtomicExpand::expandPartwordAtomicRMW(
769 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
770 AtomicOrdering MemOpOrder = AI->getOrdering();
771 SyncScope::ID SSID = AI->getSyncScopeID();
772
773 IRBuilder<> Builder(AI);
774
775 PartwordMaskValues PMV =
776 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
777 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
778
779 Value *ValOperand_Shifted =
780 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
781 PMV.ShiftAmt, "ValOperand_Shifted");
782
783 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
784 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
785 ValOperand_Shifted, AI->getValOperand(), PMV);
786 };
787
788 Value *OldResult;
789 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
790 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
791 PMV.AlignedAddrAlignment, MemOpOrder,
792 SSID, PerformPartwordOp,
793 createCmpXchgInstFun);
794 } else {
795 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
796 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
797 PMV.AlignedAddrAlignment, MemOpOrder,
798 PerformPartwordOp);
799 }
800
801 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
802 AI->replaceAllUsesWith(FinalOldResult);
803 AI->eraseFromParent();
804 }
805
806 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
widenPartwordAtomicRMW(AtomicRMWInst * AI)807 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
808 IRBuilder<> Builder(AI);
809 AtomicRMWInst::BinOp Op = AI->getOperation();
810
811 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
812 Op == AtomicRMWInst::And) &&
813 "Unable to widen operation");
814
815 PartwordMaskValues PMV =
816 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
817 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
818
819 Value *ValOperand_Shifted =
820 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
821 PMV.ShiftAmt, "ValOperand_Shifted");
822
823 Value *NewOperand;
824
825 if (Op == AtomicRMWInst::And)
826 NewOperand =
827 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
828 else
829 NewOperand = ValOperand_Shifted;
830
831 AtomicRMWInst *NewAI =
832 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
833 PMV.AlignedAddrAlignment, AI->getOrdering());
834
835 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
836 AI->replaceAllUsesWith(FinalOldResult);
837 AI->eraseFromParent();
838 return NewAI;
839 }
840
expandPartwordCmpXchg(AtomicCmpXchgInst * CI)841 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
842 // The basic idea here is that we're expanding a cmpxchg of a
843 // smaller memory size up to a word-sized cmpxchg. To do this, we
844 // need to add a retry-loop for strong cmpxchg, so that
845 // modifications to other parts of the word don't cause a spurious
846 // failure.
847
848 // This generates code like the following:
849 // [[Setup mask values PMV.*]]
850 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
851 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
852 // %InitLoaded = load i32* %addr
853 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
854 // br partword.cmpxchg.loop
855 // partword.cmpxchg.loop:
856 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
857 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
858 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
859 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
860 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
861 // i32 %FullWord_NewVal success_ordering failure_ordering
862 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
863 // %Success = extractvalue { i32, i1 } %NewCI, 1
864 // br i1 %Success, label %partword.cmpxchg.end,
865 // label %partword.cmpxchg.failure
866 // partword.cmpxchg.failure:
867 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
868 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
869 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
870 // label %partword.cmpxchg.end
871 // partword.cmpxchg.end:
872 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
873 // %FinalOldVal = trunc i32 %tmp1 to i8
874 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
875 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
876
877 Value *Addr = CI->getPointerOperand();
878 Value *Cmp = CI->getCompareOperand();
879 Value *NewVal = CI->getNewValOperand();
880
881 BasicBlock *BB = CI->getParent();
882 Function *F = BB->getParent();
883 IRBuilder<> Builder(CI);
884 LLVMContext &Ctx = Builder.getContext();
885
886 BasicBlock *EndBB =
887 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
888 auto FailureBB =
889 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
890 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
891
892 // The split call above "helpfully" added a branch at the end of BB
893 // (to the wrong place).
894 std::prev(BB->end())->eraseFromParent();
895 Builder.SetInsertPoint(BB);
896
897 PartwordMaskValues PMV =
898 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
899 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
900
901 // Shift the incoming values over, into the right location in the word.
902 Value *NewVal_Shifted =
903 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
904 Value *Cmp_Shifted =
905 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
906
907 // Load the entire current word, and mask into place the expected and new
908 // values
909 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
910 InitLoaded->setVolatile(CI->isVolatile());
911 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
912 Builder.CreateBr(LoopBB);
913
914 // partword.cmpxchg.loop:
915 Builder.SetInsertPoint(LoopBB);
916 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
917 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
918
919 // Mask/Or the expected and new values into place in the loaded word.
920 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
921 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
922 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
923 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
924 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
925 NewCI->setVolatile(CI->isVolatile());
926 // When we're building a strong cmpxchg, we need a loop, so you
927 // might think we could use a weak cmpxchg inside. But, using strong
928 // allows the below comparison for ShouldContinue, and we're
929 // expecting the underlying cmpxchg to be a machine instruction,
930 // which is strong anyways.
931 NewCI->setWeak(CI->isWeak());
932
933 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
934 Value *Success = Builder.CreateExtractValue(NewCI, 1);
935
936 if (CI->isWeak())
937 Builder.CreateBr(EndBB);
938 else
939 Builder.CreateCondBr(Success, EndBB, FailureBB);
940
941 // partword.cmpxchg.failure:
942 Builder.SetInsertPoint(FailureBB);
943 // Upon failure, verify that the masked-out part of the loaded value
944 // has been modified. If it didn't, abort the cmpxchg, since the
945 // masked-in part must've.
946 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
947 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
948 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
949
950 // Add the second value to the phi from above
951 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
952
953 // partword.cmpxchg.end:
954 Builder.SetInsertPoint(CI);
955
956 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
957 Value *Res = UndefValue::get(CI->getType());
958 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
959 Res = Builder.CreateInsertValue(Res, Success, 1);
960
961 CI->replaceAllUsesWith(Res);
962 CI->eraseFromParent();
963 return true;
964 }
965
expandAtomicOpToLLSC(Instruction * I,Type * ResultType,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp)966 void AtomicExpand::expandAtomicOpToLLSC(
967 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
968 AtomicOrdering MemOpOrder,
969 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
970 IRBuilder<> Builder(I);
971 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
972 MemOpOrder, PerformOp);
973
974 I->replaceAllUsesWith(Loaded);
975 I->eraseFromParent();
976 }
977
expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst * AI)978 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
979 IRBuilder<> Builder(AI);
980
981 PartwordMaskValues PMV =
982 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
983 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
984
985 // The value operand must be sign-extended for signed min/max so that the
986 // target's signed comparison instructions can be used. Otherwise, just
987 // zero-ext.
988 Instruction::CastOps CastOp = Instruction::ZExt;
989 AtomicRMWInst::BinOp RMWOp = AI->getOperation();
990 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
991 CastOp = Instruction::SExt;
992
993 Value *ValOperand_Shifted = Builder.CreateShl(
994 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
995 PMV.ShiftAmt, "ValOperand_Shifted");
996 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
997 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
998 AI->getOrdering());
999 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1000 AI->replaceAllUsesWith(FinalOldResult);
1001 AI->eraseFromParent();
1002 }
1003
expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst * CI)1004 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1005 IRBuilder<> Builder(CI);
1006
1007 PartwordMaskValues PMV = createMaskInstrs(
1008 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1009 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1010
1011 Value *CmpVal_Shifted = Builder.CreateShl(
1012 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1013 "CmpVal_Shifted");
1014 Value *NewVal_Shifted = Builder.CreateShl(
1015 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1016 "NewVal_Shifted");
1017 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1018 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1019 CI->getSuccessOrdering());
1020 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1021 Value *Res = UndefValue::get(CI->getType());
1022 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1023 Value *Success = Builder.CreateICmpEQ(
1024 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1025 Res = Builder.CreateInsertValue(Res, Success, 1);
1026
1027 CI->replaceAllUsesWith(Res);
1028 CI->eraseFromParent();
1029 }
1030
insertRMWLLSCLoop(IRBuilder<> & Builder,Type * ResultTy,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp)1031 Value *AtomicExpand::insertRMWLLSCLoop(
1032 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1033 AtomicOrdering MemOpOrder,
1034 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1035 LLVMContext &Ctx = Builder.getContext();
1036 BasicBlock *BB = Builder.GetInsertBlock();
1037 Function *F = BB->getParent();
1038
1039 assert(AddrAlign >=
1040 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
1041 "Expected at least natural alignment at this point.");
1042
1043 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1044 //
1045 // The standard expansion we produce is:
1046 // [...]
1047 // atomicrmw.start:
1048 // %loaded = @load.linked(%addr)
1049 // %new = some_op iN %loaded, %incr
1050 // %stored = @store_conditional(%new, %addr)
1051 // %try_again = icmp i32 ne %stored, 0
1052 // br i1 %try_again, label %loop, label %atomicrmw.end
1053 // atomicrmw.end:
1054 // [...]
1055 BasicBlock *ExitBB =
1056 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1057 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1058
1059 // The split call above "helpfully" added a branch at the end of BB (to the
1060 // wrong place).
1061 std::prev(BB->end())->eraseFromParent();
1062 Builder.SetInsertPoint(BB);
1063 Builder.CreateBr(LoopBB);
1064
1065 // Start the main loop block now that we've taken care of the preliminaries.
1066 Builder.SetInsertPoint(LoopBB);
1067 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1068
1069 Value *NewVal = PerformOp(Builder, Loaded);
1070
1071 Value *StoreSuccess =
1072 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1073 Value *TryAgain = Builder.CreateICmpNE(
1074 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1075 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1076
1077 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1078 return Loaded;
1079 }
1080
1081 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1082 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1083 /// IR. As a migration step, we convert back to what use to be the standard
1084 /// way to represent a pointer cmpxchg so that we can update backends one by
1085 /// one.
convertCmpXchgToIntegerType(AtomicCmpXchgInst * CI)1086 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1087 auto *M = CI->getModule();
1088 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1089 M->getDataLayout());
1090
1091 IRBuilder<> Builder(CI);
1092
1093 Value *Addr = CI->getPointerOperand();
1094 Type *PT = PointerType::get(NewTy,
1095 Addr->getType()->getPointerAddressSpace());
1096 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1097
1098 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1099 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1100
1101 auto *NewCI = Builder.CreateAtomicCmpXchg(
1102 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1103 CI->getFailureOrdering(), CI->getSyncScopeID());
1104 NewCI->setVolatile(CI->isVolatile());
1105 NewCI->setWeak(CI->isWeak());
1106 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1107
1108 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1109 Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1110
1111 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1112
1113 Value *Res = UndefValue::get(CI->getType());
1114 Res = Builder.CreateInsertValue(Res, OldVal, 0);
1115 Res = Builder.CreateInsertValue(Res, Succ, 1);
1116
1117 CI->replaceAllUsesWith(Res);
1118 CI->eraseFromParent();
1119 return NewCI;
1120 }
1121
expandAtomicCmpXchg(AtomicCmpXchgInst * CI)1122 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1123 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1124 AtomicOrdering FailureOrder = CI->getFailureOrdering();
1125 Value *Addr = CI->getPointerOperand();
1126 BasicBlock *BB = CI->getParent();
1127 Function *F = BB->getParent();
1128 LLVMContext &Ctx = F->getContext();
1129 // If shouldInsertFencesForAtomic() returns true, then the target does not
1130 // want to deal with memory orders, and emitLeading/TrailingFence should take
1131 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1132 // should preserve the ordering.
1133 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1134 AtomicOrdering MemOpOrder =
1135 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1136
1137 // In implementations which use a barrier to achieve release semantics, we can
1138 // delay emitting this barrier until we know a store is actually going to be
1139 // attempted. The cost of this delay is that we need 2 copies of the block
1140 // emitting the load-linked, affecting code size.
1141 //
1142 // Ideally, this logic would be unconditional except for the minsize check
1143 // since in other cases the extra blocks naturally collapse down to the
1144 // minimal loop. Unfortunately, this puts too much stress on later
1145 // optimisations so we avoid emitting the extra logic in those cases too.
1146 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1147 SuccessOrder != AtomicOrdering::Monotonic &&
1148 SuccessOrder != AtomicOrdering::Acquire &&
1149 !F->hasMinSize();
1150
1151 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1152 // do it even on minsize.
1153 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1154
1155 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1156 //
1157 // The full expansion we produce is:
1158 // [...]
1159 // %aligned.addr = ...
1160 // cmpxchg.start:
1161 // %unreleasedload = @load.linked(%aligned.addr)
1162 // %unreleasedload.extract = extract value from %unreleasedload
1163 // %should_store = icmp eq %unreleasedload.extract, %desired
1164 // br i1 %should_store, label %cmpxchg.releasingstore,
1165 // label %cmpxchg.nostore
1166 // cmpxchg.releasingstore:
1167 // fence?
1168 // br label cmpxchg.trystore
1169 // cmpxchg.trystore:
1170 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1171 // [%releasedload, %cmpxchg.releasedload]
1172 // %updated.new = insert %new into %loaded.trystore
1173 // %stored = @store_conditional(%updated.new, %aligned.addr)
1174 // %success = icmp eq i32 %stored, 0
1175 // br i1 %success, label %cmpxchg.success,
1176 // label %cmpxchg.releasedload/%cmpxchg.failure
1177 // cmpxchg.releasedload:
1178 // %releasedload = @load.linked(%aligned.addr)
1179 // %releasedload.extract = extract value from %releasedload
1180 // %should_store = icmp eq %releasedload.extract, %desired
1181 // br i1 %should_store, label %cmpxchg.trystore,
1182 // label %cmpxchg.failure
1183 // cmpxchg.success:
1184 // fence?
1185 // br label %cmpxchg.end
1186 // cmpxchg.nostore:
1187 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1188 // [%releasedload,
1189 // %cmpxchg.releasedload/%cmpxchg.trystore]
1190 // @load_linked_fail_balance()?
1191 // br label %cmpxchg.failure
1192 // cmpxchg.failure:
1193 // fence?
1194 // br label %cmpxchg.end
1195 // cmpxchg.end:
1196 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1197 // [%loaded.trystore, %cmpxchg.trystore]
1198 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1199 // %loaded = extract value from %loaded.exit
1200 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1201 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1202 // [...]
1203 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1204 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1205 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1206 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1207 auto ReleasedLoadBB =
1208 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1209 auto TryStoreBB =
1210 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1211 auto ReleasingStoreBB =
1212 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1213 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1214
1215 // This grabs the DebugLoc from CI
1216 IRBuilder<> Builder(CI);
1217
1218 // The split call above "helpfully" added a branch at the end of BB (to the
1219 // wrong place), but we might want a fence too. It's easiest to just remove
1220 // the branch entirely.
1221 std::prev(BB->end())->eraseFromParent();
1222 Builder.SetInsertPoint(BB);
1223 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1224 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1225
1226 PartwordMaskValues PMV =
1227 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1228 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1229 Builder.CreateBr(StartBB);
1230
1231 // Start the main loop block now that we've taken care of the preliminaries.
1232 Builder.SetInsertPoint(StartBB);
1233 Value *UnreleasedLoad =
1234 TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1235 Value *UnreleasedLoadExtract =
1236 extractMaskedValue(Builder, UnreleasedLoad, PMV);
1237 Value *ShouldStore = Builder.CreateICmpEQ(
1238 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1239
1240 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1241 // jump straight past that fence instruction (if it exists).
1242 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1243
1244 Builder.SetInsertPoint(ReleasingStoreBB);
1245 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1246 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1247 Builder.CreateBr(TryStoreBB);
1248
1249 Builder.SetInsertPoint(TryStoreBB);
1250 PHINode *LoadedTryStore =
1251 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1252 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1253 Value *NewValueInsert =
1254 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1255 Value *StoreSuccess =
1256 TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr,
1257 MemOpOrder);
1258 StoreSuccess = Builder.CreateICmpEQ(
1259 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1260 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1261 Builder.CreateCondBr(StoreSuccess, SuccessBB,
1262 CI->isWeak() ? FailureBB : RetryBB);
1263
1264 Builder.SetInsertPoint(ReleasedLoadBB);
1265 Value *SecondLoad;
1266 if (HasReleasedLoadBB) {
1267 SecondLoad = TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1268 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1269 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1270 CI->getCompareOperand(), "should_store");
1271
1272 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1273 // jump straight past that fence instruction (if it exists).
1274 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1275 // Update PHI node in TryStoreBB.
1276 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1277 } else
1278 Builder.CreateUnreachable();
1279
1280 // Make sure later instructions don't get reordered with a fence if
1281 // necessary.
1282 Builder.SetInsertPoint(SuccessBB);
1283 if (ShouldInsertFencesForAtomic)
1284 TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1285 Builder.CreateBr(ExitBB);
1286
1287 Builder.SetInsertPoint(NoStoreBB);
1288 PHINode *LoadedNoStore =
1289 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1290 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1291 if (HasReleasedLoadBB)
1292 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1293
1294 // In the failing case, where we don't execute the store-conditional, the
1295 // target might want to balance out the load-linked with a dedicated
1296 // instruction (e.g., on ARM, clearing the exclusive monitor).
1297 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1298 Builder.CreateBr(FailureBB);
1299
1300 Builder.SetInsertPoint(FailureBB);
1301 PHINode *LoadedFailure =
1302 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1303 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1304 if (CI->isWeak())
1305 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1306 if (ShouldInsertFencesForAtomic)
1307 TLI->emitTrailingFence(Builder, CI, FailureOrder);
1308 Builder.CreateBr(ExitBB);
1309
1310 // Finally, we have control-flow based knowledge of whether the cmpxchg
1311 // succeeded or not. We expose this to later passes by converting any
1312 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1313 // PHI.
1314 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1315 PHINode *LoadedExit =
1316 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1317 LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1318 LoadedExit->addIncoming(LoadedFailure, FailureBB);
1319 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1320 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1321 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1322
1323 // This is the "exit value" from the cmpxchg expansion. It may be of
1324 // a type wider than the one in the cmpxchg instruction.
1325 Value *LoadedFull = LoadedExit;
1326
1327 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1328 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1329
1330 // Look for any users of the cmpxchg that are just comparing the loaded value
1331 // against the desired one, and replace them with the CFG-derived version.
1332 SmallVector<ExtractValueInst *, 2> PrunedInsts;
1333 for (auto User : CI->users()) {
1334 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1335 if (!EV)
1336 continue;
1337
1338 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1339 "weird extraction from { iN, i1 }");
1340
1341 if (EV->getIndices()[0] == 0)
1342 EV->replaceAllUsesWith(Loaded);
1343 else
1344 EV->replaceAllUsesWith(Success);
1345
1346 PrunedInsts.push_back(EV);
1347 }
1348
1349 // We can remove the instructions now we're no longer iterating through them.
1350 for (auto EV : PrunedInsts)
1351 EV->eraseFromParent();
1352
1353 if (!CI->use_empty()) {
1354 // Some use of the full struct return that we don't understand has happened,
1355 // so we've got to reconstruct it properly.
1356 Value *Res;
1357 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1358 Res = Builder.CreateInsertValue(Res, Success, 1);
1359
1360 CI->replaceAllUsesWith(Res);
1361 }
1362
1363 CI->eraseFromParent();
1364 return true;
1365 }
1366
isIdempotentRMW(AtomicRMWInst * RMWI)1367 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1368 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1369 if(!C)
1370 return false;
1371
1372 AtomicRMWInst::BinOp Op = RMWI->getOperation();
1373 switch(Op) {
1374 case AtomicRMWInst::Add:
1375 case AtomicRMWInst::Sub:
1376 case AtomicRMWInst::Or:
1377 case AtomicRMWInst::Xor:
1378 return C->isZero();
1379 case AtomicRMWInst::And:
1380 return C->isMinusOne();
1381 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1382 default:
1383 return false;
1384 }
1385 }
1386
simplifyIdempotentRMW(AtomicRMWInst * RMWI)1387 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1388 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1389 tryExpandAtomicLoad(ResultingLoad);
1390 return true;
1391 }
1392 return false;
1393 }
1394
insertRMWCmpXchgLoop(IRBuilder<> & Builder,Type * ResultTy,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,SyncScope::ID SSID,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp,CreateCmpXchgInstFun CreateCmpXchg)1395 Value *AtomicExpand::insertRMWCmpXchgLoop(
1396 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1397 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1398 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1399 CreateCmpXchgInstFun CreateCmpXchg) {
1400 LLVMContext &Ctx = Builder.getContext();
1401 BasicBlock *BB = Builder.GetInsertBlock();
1402 Function *F = BB->getParent();
1403
1404 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1405 //
1406 // The standard expansion we produce is:
1407 // [...]
1408 // %init_loaded = load atomic iN* %addr
1409 // br label %loop
1410 // loop:
1411 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1412 // %new = some_op iN %loaded, %incr
1413 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1414 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1415 // %success = extractvalue { iN, i1 } %pair, 1
1416 // br i1 %success, label %atomicrmw.end, label %loop
1417 // atomicrmw.end:
1418 // [...]
1419 BasicBlock *ExitBB =
1420 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1421 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1422
1423 // The split call above "helpfully" added a branch at the end of BB (to the
1424 // wrong place), but we want a load. It's easiest to just remove
1425 // the branch entirely.
1426 std::prev(BB->end())->eraseFromParent();
1427 Builder.SetInsertPoint(BB);
1428 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1429 Builder.CreateBr(LoopBB);
1430
1431 // Start the main loop block now that we've taken care of the preliminaries.
1432 Builder.SetInsertPoint(LoopBB);
1433 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1434 Loaded->addIncoming(InitLoaded, BB);
1435
1436 Value *NewVal = PerformOp(Builder, Loaded);
1437
1438 Value *NewLoaded = nullptr;
1439 Value *Success = nullptr;
1440
1441 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1442 MemOpOrder == AtomicOrdering::Unordered
1443 ? AtomicOrdering::Monotonic
1444 : MemOpOrder,
1445 SSID, Success, NewLoaded);
1446 assert(Success && NewLoaded);
1447
1448 Loaded->addIncoming(NewLoaded, LoopBB);
1449
1450 Builder.CreateCondBr(Success, ExitBB, LoopBB);
1451
1452 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1453 return NewLoaded;
1454 }
1455
tryExpandAtomicCmpXchg(AtomicCmpXchgInst * CI)1456 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1457 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1458 unsigned ValueSize = getAtomicOpSize(CI);
1459
1460 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1461 default:
1462 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1463 case TargetLoweringBase::AtomicExpansionKind::None:
1464 if (ValueSize < MinCASSize)
1465 return expandPartwordCmpXchg(CI);
1466 return false;
1467 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1468 return expandAtomicCmpXchg(CI);
1469 }
1470 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1471 expandAtomicCmpXchgToMaskedIntrinsic(CI);
1472 return true;
1473 }
1474 }
1475
1476 // Note: This function is exposed externally by AtomicExpandUtils.h
expandAtomicRMWToCmpXchg(AtomicRMWInst * AI,CreateCmpXchgInstFun CreateCmpXchg)1477 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1478 CreateCmpXchgInstFun CreateCmpXchg) {
1479 IRBuilder<> Builder(AI);
1480 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1481 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1482 AI->getOrdering(), AI->getSyncScopeID(),
1483 [&](IRBuilder<> &Builder, Value *Loaded) {
1484 return performAtomicOp(AI->getOperation(), Builder, Loaded,
1485 AI->getValOperand());
1486 },
1487 CreateCmpXchg);
1488
1489 AI->replaceAllUsesWith(Loaded);
1490 AI->eraseFromParent();
1491 return true;
1492 }
1493
1494 // In order to use one of the sized library calls such as
1495 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1496 // must be one of the potentially-specialized sizes, and the value
1497 // type must actually exist in C on the target (otherwise, the
1498 // function wouldn't actually be defined.)
canUseSizedAtomicCall(unsigned Size,Align Alignment,const DataLayout & DL)1499 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1500 const DataLayout &DL) {
1501 // TODO: "LargestSize" is an approximation for "largest type that
1502 // you can express in C". It seems to be the case that int128 is
1503 // supported on all 64-bit platforms, otherwise only up to 64-bit
1504 // integers are supported. If we get this wrong, then we'll try to
1505 // call a sized libcall that doesn't actually exist. There should
1506 // really be some more reliable way in LLVM of determining integer
1507 // sizes which are valid in the target's C ABI...
1508 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1509 return Alignment >= Size &&
1510 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1511 Size <= LargestSize;
1512 }
1513
expandAtomicLoadToLibcall(LoadInst * I)1514 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1515 static const RTLIB::Libcall Libcalls[6] = {
1516 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1517 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1518 unsigned Size = getAtomicOpSize(I);
1519
1520 bool expanded = expandAtomicOpToLibcall(
1521 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1522 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1523 if (!expanded)
1524 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1525 }
1526
expandAtomicStoreToLibcall(StoreInst * I)1527 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1528 static const RTLIB::Libcall Libcalls[6] = {
1529 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1530 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1531 unsigned Size = getAtomicOpSize(I);
1532
1533 bool expanded = expandAtomicOpToLibcall(
1534 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1535 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1536 if (!expanded)
1537 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1538 }
1539
expandAtomicCASToLibcall(AtomicCmpXchgInst * I)1540 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1541 static const RTLIB::Libcall Libcalls[6] = {
1542 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1543 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1544 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1545 unsigned Size = getAtomicOpSize(I);
1546
1547 bool expanded = expandAtomicOpToLibcall(
1548 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1549 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1550 Libcalls);
1551 if (!expanded)
1552 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1553 }
1554
GetRMWLibcall(AtomicRMWInst::BinOp Op)1555 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1556 static const RTLIB::Libcall LibcallsXchg[6] = {
1557 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1558 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1559 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1560 static const RTLIB::Libcall LibcallsAdd[6] = {
1561 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1562 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1563 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1564 static const RTLIB::Libcall LibcallsSub[6] = {
1565 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1566 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1567 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1568 static const RTLIB::Libcall LibcallsAnd[6] = {
1569 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1570 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1571 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1572 static const RTLIB::Libcall LibcallsOr[6] = {
1573 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1574 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1575 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1576 static const RTLIB::Libcall LibcallsXor[6] = {
1577 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1578 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1579 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1580 static const RTLIB::Libcall LibcallsNand[6] = {
1581 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1582 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1583 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1584
1585 switch (Op) {
1586 case AtomicRMWInst::BAD_BINOP:
1587 llvm_unreachable("Should not have BAD_BINOP.");
1588 case AtomicRMWInst::Xchg:
1589 return makeArrayRef(LibcallsXchg);
1590 case AtomicRMWInst::Add:
1591 return makeArrayRef(LibcallsAdd);
1592 case AtomicRMWInst::Sub:
1593 return makeArrayRef(LibcallsSub);
1594 case AtomicRMWInst::And:
1595 return makeArrayRef(LibcallsAnd);
1596 case AtomicRMWInst::Or:
1597 return makeArrayRef(LibcallsOr);
1598 case AtomicRMWInst::Xor:
1599 return makeArrayRef(LibcallsXor);
1600 case AtomicRMWInst::Nand:
1601 return makeArrayRef(LibcallsNand);
1602 case AtomicRMWInst::Max:
1603 case AtomicRMWInst::Min:
1604 case AtomicRMWInst::UMax:
1605 case AtomicRMWInst::UMin:
1606 case AtomicRMWInst::FAdd:
1607 case AtomicRMWInst::FSub:
1608 // No atomic libcalls are available for max/min/umax/umin.
1609 return {};
1610 }
1611 llvm_unreachable("Unexpected AtomicRMW operation.");
1612 }
1613
expandAtomicRMWToLibcall(AtomicRMWInst * I)1614 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1615 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1616
1617 unsigned Size = getAtomicOpSize(I);
1618
1619 bool Success = false;
1620 if (!Libcalls.empty())
1621 Success = expandAtomicOpToLibcall(
1622 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1623 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1624
1625 // The expansion failed: either there were no libcalls at all for
1626 // the operation (min/max), or there were only size-specialized
1627 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1628 // CAS libcall, via a CAS loop, instead.
1629 if (!Success) {
1630 expandAtomicRMWToCmpXchg(
1631 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded,
1632 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1633 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1634 // Create the CAS instruction normally...
1635 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1636 Addr, Loaded, NewVal, Alignment, MemOpOrder,
1637 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1638 Success = Builder.CreateExtractValue(Pair, 1, "success");
1639 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1640
1641 // ...and then expand the CAS into a libcall.
1642 expandAtomicCASToLibcall(Pair);
1643 });
1644 }
1645 }
1646
1647 // A helper routine for the above expandAtomic*ToLibcall functions.
1648 //
1649 // 'Libcalls' contains an array of enum values for the particular
1650 // ATOMIC libcalls to be emitted. All of the other arguments besides
1651 // 'I' are extracted from the Instruction subclass by the
1652 // caller. Depending on the particular call, some will be null.
expandAtomicOpToLibcall(Instruction * I,unsigned Size,Align Alignment,Value * PointerOperand,Value * ValueOperand,Value * CASExpected,AtomicOrdering Ordering,AtomicOrdering Ordering2,ArrayRef<RTLIB::Libcall> Libcalls)1653 bool AtomicExpand::expandAtomicOpToLibcall(
1654 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1655 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1656 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1657 assert(Libcalls.size() == 6);
1658
1659 LLVMContext &Ctx = I->getContext();
1660 Module *M = I->getModule();
1661 const DataLayout &DL = M->getDataLayout();
1662 IRBuilder<> Builder(I);
1663 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1664
1665 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1666 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1667
1668 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1669
1670 // TODO: the "order" argument type is "int", not int32. So
1671 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1672 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1673 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1674 Constant *OrderingVal =
1675 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1676 Constant *Ordering2Val = nullptr;
1677 if (CASExpected) {
1678 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1679 Ordering2Val =
1680 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1681 }
1682 bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1683
1684 RTLIB::Libcall RTLibType;
1685 if (UseSizedLibcall) {
1686 switch (Size) {
1687 case 1: RTLibType = Libcalls[1]; break;
1688 case 2: RTLibType = Libcalls[2]; break;
1689 case 4: RTLibType = Libcalls[3]; break;
1690 case 8: RTLibType = Libcalls[4]; break;
1691 case 16: RTLibType = Libcalls[5]; break;
1692 }
1693 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1694 RTLibType = Libcalls[0];
1695 } else {
1696 // Can't use sized function, and there's no generic for this
1697 // operation, so give up.
1698 return false;
1699 }
1700
1701 if (!TLI->getLibcallName(RTLibType)) {
1702 // This target does not implement the requested atomic libcall so give up.
1703 return false;
1704 }
1705
1706 // Build up the function call. There's two kinds. First, the sized
1707 // variants. These calls are going to be one of the following (with
1708 // N=1,2,4,8,16):
1709 // iN __atomic_load_N(iN *ptr, int ordering)
1710 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1711 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1712 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1713 // int success_order, int failure_order)
1714 //
1715 // Note that these functions can be used for non-integer atomic
1716 // operations, the values just need to be bitcast to integers on the
1717 // way in and out.
1718 //
1719 // And, then, the generic variants. They look like the following:
1720 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1721 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1722 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1723 // int ordering)
1724 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1725 // void *desired, int success_order,
1726 // int failure_order)
1727 //
1728 // The different signatures are built up depending on the
1729 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1730 // variables.
1731
1732 AllocaInst *AllocaCASExpected = nullptr;
1733 Value *AllocaCASExpected_i8 = nullptr;
1734 AllocaInst *AllocaValue = nullptr;
1735 Value *AllocaValue_i8 = nullptr;
1736 AllocaInst *AllocaResult = nullptr;
1737 Value *AllocaResult_i8 = nullptr;
1738
1739 Type *ResultTy;
1740 SmallVector<Value *, 6> Args;
1741 AttributeList Attr;
1742
1743 // 'size' argument.
1744 if (!UseSizedLibcall) {
1745 // Note, getIntPtrType is assumed equivalent to size_t.
1746 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1747 }
1748
1749 // 'ptr' argument.
1750 // note: This assumes all address spaces share a common libfunc
1751 // implementation and that addresses are convertable. For systems without
1752 // that property, we'd need to extend this mechanism to support AS-specific
1753 // families of atomic intrinsics.
1754 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1755 Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1756 Type::getInt8PtrTy(Ctx, PtrTypeAS));
1757 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1758 Args.push_back(PtrVal);
1759
1760 // 'expected' argument, if present.
1761 if (CASExpected) {
1762 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1763 AllocaCASExpected->setAlignment(AllocaAlignment);
1764 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
1765
1766 AllocaCASExpected_i8 =
1767 Builder.CreateBitCast(AllocaCASExpected,
1768 Type::getInt8PtrTy(Ctx, AllocaAS));
1769 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1770 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1771 Args.push_back(AllocaCASExpected_i8);
1772 }
1773
1774 // 'val' argument ('desired' for cas), if present.
1775 if (ValueOperand) {
1776 if (UseSizedLibcall) {
1777 Value *IntValue =
1778 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1779 Args.push_back(IntValue);
1780 } else {
1781 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1782 AllocaValue->setAlignment(AllocaAlignment);
1783 AllocaValue_i8 =
1784 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1785 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1786 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1787 Args.push_back(AllocaValue_i8);
1788 }
1789 }
1790
1791 // 'ret' argument.
1792 if (!CASExpected && HasResult && !UseSizedLibcall) {
1793 AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1794 AllocaResult->setAlignment(AllocaAlignment);
1795 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
1796 AllocaResult_i8 =
1797 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1798 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1799 Args.push_back(AllocaResult_i8);
1800 }
1801
1802 // 'ordering' ('success_order' for cas) argument.
1803 Args.push_back(OrderingVal);
1804
1805 // 'failure_order' argument, if present.
1806 if (Ordering2Val)
1807 Args.push_back(Ordering2Val);
1808
1809 // Now, the return type.
1810 if (CASExpected) {
1811 ResultTy = Type::getInt1Ty(Ctx);
1812 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1813 } else if (HasResult && UseSizedLibcall)
1814 ResultTy = SizedIntTy;
1815 else
1816 ResultTy = Type::getVoidTy(Ctx);
1817
1818 // Done with setting up arguments and return types, create the call:
1819 SmallVector<Type *, 6> ArgTys;
1820 for (Value *Arg : Args)
1821 ArgTys.push_back(Arg->getType());
1822 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1823 FunctionCallee LibcallFn =
1824 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1825 CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1826 Call->setAttributes(Attr);
1827 Value *Result = Call;
1828
1829 // And then, extract the results...
1830 if (ValueOperand && !UseSizedLibcall)
1831 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1832
1833 if (CASExpected) {
1834 // The final result from the CAS is {load of 'expected' alloca, bool result
1835 // from call}
1836 Type *FinalResultTy = I->getType();
1837 Value *V = UndefValue::get(FinalResultTy);
1838 Value *ExpectedOut = Builder.CreateAlignedLoad(
1839 CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1840 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1841 V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1842 V = Builder.CreateInsertValue(V, Result, 1);
1843 I->replaceAllUsesWith(V);
1844 } else if (HasResult) {
1845 Value *V;
1846 if (UseSizedLibcall)
1847 V = Builder.CreateBitOrPointerCast(Result, I->getType());
1848 else {
1849 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1850 AllocaAlignment);
1851 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1852 }
1853 I->replaceAllUsesWith(V);
1854 }
1855 I->eraseFromParent();
1856 return true;
1857 }
1858