xref: /llvm-project/mlir/lib/Dialect/Affine/Transforms/AffineDataCopyGeneration.cpp (revision 09dfc5713d7e2342bea4c8447d1ed76c85eb8225)
1 //===- AffineDataCopyGeneration.cpp - Explicit memref copying pass ------*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to automatically promote accessed memref regions
10 // to buffers in a faster memory space that is explicitly managed, with the
11 // necessary data movement operations performed through either regular
12 // point-wise load/store's or DMAs. Such explicit copying (also referred to as
13 // array packing/unpacking in the literature), when done on arrays that exhibit
14 // reuse, results in near elimination of conflict misses, TLB misses, reduced
15 // use of hardware prefetch streams, and reduced false sharing. It is also
16 // necessary for hardware that explicitly managed levels in the memory
17 // hierarchy, and where DMAs may have to be used. This optimization is often
18 // performed on already tiled code.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "mlir/Dialect/Affine/Passes.h"
23 
24 #include "mlir/Dialect/Affine/Analysis/Utils.h"
25 #include "mlir/Dialect/Affine/IR/AffineOps.h"
26 #include "mlir/Dialect/Affine/LoopUtils.h"
27 #include "mlir/Dialect/Arith/IR/Arith.h"
28 #include "mlir/Dialect/Func/IR/FuncOps.h"
29 #include "mlir/Dialect/MemRef/IR/MemRef.h"
30 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
31 #include "llvm/ADT/MapVector.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include <algorithm>
35 #include <optional>
36 
37 namespace mlir {
38 namespace affine {
39 #define GEN_PASS_DEF_AFFINEDATACOPYGENERATION
40 #include "mlir/Dialect/Affine/Passes.h.inc"
41 } // namespace affine
42 } // namespace mlir
43 
44 #define DEBUG_TYPE "affine-data-copy-generate"
45 
46 using namespace mlir;
47 using namespace mlir::affine;
48 
49 namespace {
50 
51 /// Replaces all loads and stores on memref's living in 'slowMemorySpace' by
52 /// introducing copy operations to transfer data into `fastMemorySpace` and
53 /// rewriting the original load's/store's to instead load/store from the
54 /// allocated fast memory buffers. Additional options specify the identifier
55 /// corresponding to the fast memory space and the amount of fast memory space
56 /// available. The pass traverses through the nesting structure, recursing to
57 /// inner levels if necessary to determine at what depth copies need to be
58 /// placed so that the allocated buffers fit within the memory capacity
59 /// provided.
60 // TODO: We currently can't generate copies correctly when stores
61 // are strided. Check for strided stores.
62 struct AffineDataCopyGeneration
63     : public affine::impl::AffineDataCopyGenerationBase<
64           AffineDataCopyGeneration> {
65   AffineDataCopyGeneration() = default;
66   explicit AffineDataCopyGeneration(unsigned slowMemorySpace,
67                                     unsigned fastMemorySpace,
68                                     unsigned tagMemorySpace,
69                                     int minDmaTransferSize,
70                                     uint64_t fastMemCapacityBytes) {
71     this->slowMemorySpace = slowMemorySpace;
72     this->fastMemorySpace = fastMemorySpace;
73     this->tagMemorySpace = tagMemorySpace;
74     this->minDmaTransferSize = minDmaTransferSize;
75     this->fastMemoryCapacity = fastMemCapacityBytes / 1024;
76   }
77 
78   void runOnOperation() override;
79   void runOnBlock(Block *block, DenseSet<Operation *> &copyNests);
80 
81   // Constant zero index to avoid too many duplicates.
82   Value zeroIndex = nullptr;
83 };
84 
85 } // namespace
86 
87 /// Generates copies for memref's living in 'slowMemorySpace' into newly created
88 /// buffers in 'fastMemorySpace', and replaces memory operations to the former
89 /// by the latter. Only load op's handled for now.
90 std::unique_ptr<OperationPass<func::FuncOp>>
91 mlir::affine::createAffineDataCopyGenerationPass(
92     unsigned slowMemorySpace, unsigned fastMemorySpace, unsigned tagMemorySpace,
93     int minDmaTransferSize, uint64_t fastMemCapacityBytes) {
94   return std::make_unique<AffineDataCopyGeneration>(
95       slowMemorySpace, fastMemorySpace, tagMemorySpace, minDmaTransferSize,
96       fastMemCapacityBytes);
97 }
98 std::unique_ptr<OperationPass<func::FuncOp>>
99 mlir::affine::createAffineDataCopyGenerationPass() {
100   return std::make_unique<AffineDataCopyGeneration>();
101 }
102 
103 /// Generate copies for this block. The block is partitioned into separate
104 /// ranges: each range is either a sequence of one or more operations starting
105 /// and ending with an affine load or store op, or just an affine.for op (which
106 /// could have other affine for op's nested within).
107 void AffineDataCopyGeneration::runOnBlock(Block *block,
108                                           DenseSet<Operation *> &copyNests) {
109   if (block->empty())
110     return;
111 
112   uint64_t fastMemCapacityBytes =
113       fastMemoryCapacity != std::numeric_limits<uint64_t>::max()
114           ? fastMemoryCapacity * 1024
115           : fastMemoryCapacity;
116   AffineCopyOptions copyOptions = {generateDma, slowMemorySpace,
117                                    fastMemorySpace, tagMemorySpace,
118                                    fastMemCapacityBytes};
119 
120   // Every affine.for op in the block starts and ends a block range for copying;
121   // in addition, a contiguous sequence of operations starting with a
122   // load/store op but not including any copy nests themselves is also
123   // identified as a copy block range. Straightline code (a contiguous chunk of
124   // operations excluding AffineForOp's) are always assumed to not exhaust
125   // memory. As a result, this approach is conservative in some cases at the
126   // moment; we do a check later and report an error with location info.
127 
128   // Get to the first load, store, or for op (that is not a copy nest itself).
129   auto curBegin =
130       std::find_if(block->begin(), block->end(), [&](Operation &op) {
131         return isa<AffineLoadOp, AffineStoreOp, AffineForOp>(op) &&
132                copyNests.count(&op) == 0;
133       });
134 
135   // Create [begin, end) ranges.
136   auto it = curBegin;
137   while (it != block->end()) {
138     AffineForOp forOp;
139     // If you hit a non-copy for loop, we will split there.
140     if ((forOp = dyn_cast<AffineForOp>(&*it)) && copyNests.count(forOp) == 0) {
141       // Perform the copying up unti this 'for' op first.
142       (void)affineDataCopyGenerate(/*begin=*/curBegin, /*end=*/it, copyOptions,
143                                    /*filterMemRef=*/std::nullopt, copyNests);
144 
145       // Returns true if the footprint is known to exceed capacity.
146       auto exceedsCapacity = [&](AffineForOp forOp) {
147         std::optional<int64_t> footprint =
148             getMemoryFootprintBytes(forOp,
149                                     /*memorySpace=*/0);
150         return (footprint.has_value() &&
151                 static_cast<uint64_t>(*footprint) > fastMemCapacityBytes);
152       };
153 
154       // If the memory footprint of the 'affine.for' loop is higher than fast
155       // memory capacity (when provided), we recurse to copy at an inner level
156       // until we find a depth at which footprint fits in fast mem capacity. If
157       // the footprint can't be calculated, we assume for now it fits. Recurse
158       // inside if footprint for 'forOp' exceeds capacity, or when
159       // skipNonUnitStrideLoops is set and the step size is not one.
160       bool recurseInner = skipNonUnitStrideLoops ? forOp.getStep() != 1
161                                                  : exceedsCapacity(forOp);
162       if (recurseInner) {
163         // We'll recurse and do the copies at an inner level for 'forInst'.
164         // Recurse onto the body of this loop.
165         runOnBlock(forOp.getBody(), copyNests);
166       } else {
167         // We have enough capacity, i.e., copies will be computed for the
168         // portion of the block until 'it', and for 'it', which is 'forOp'. Note
169         // that for the latter, the copies are placed just before this loop (for
170         // incoming copies) and right after (for outgoing ones).
171 
172         // Inner loop copies have their own scope - we don't thus update
173         // consumed capacity. The footprint check above guarantees this inner
174         // loop's footprint fits.
175         (void)affineDataCopyGenerate(/*begin=*/it, /*end=*/std::next(it),
176                                      copyOptions,
177                                      /*filterMemRef=*/std::nullopt, copyNests);
178       }
179       // Get to the next load or store op after 'forOp'.
180       curBegin = std::find_if(std::next(it), block->end(), [&](Operation &op) {
181         return isa<AffineLoadOp, AffineStoreOp, AffineForOp>(op) &&
182                copyNests.count(&op) == 0;
183       });
184       it = curBegin;
185     } else {
186       assert(copyNests.count(&*it) == 0 &&
187              "all copy nests generated should have been skipped above");
188       // We simply include this op in the current range and continue for more.
189       ++it;
190     }
191   }
192 
193   // Generate the copy for the final block range.
194   if (curBegin != block->end()) {
195     // Can't be a terminator because it would have been skipped above.
196     assert(!curBegin->hasTrait<OpTrait::IsTerminator>() &&
197            "can't be a terminator");
198     // Exclude the affine.yield - hence, the std::prev.
199     (void)affineDataCopyGenerate(/*begin=*/curBegin,
200                                  /*end=*/std::prev(block->end()), copyOptions,
201                                  /*filterMemRef=*/std::nullopt, copyNests);
202   }
203 }
204 
205 void AffineDataCopyGeneration::runOnOperation() {
206   func::FuncOp f = getOperation();
207   OpBuilder topBuilder(f.getBody());
208   zeroIndex = topBuilder.create<arith::ConstantIndexOp>(f.getLoc(), 0);
209 
210   // Nests that are copy-in's or copy-out's; the root AffineForOps of those
211   // nests are stored herein.
212   DenseSet<Operation *> copyNests;
213 
214   // Clear recorded copy nests.
215   copyNests.clear();
216 
217   for (auto &block : f)
218     runOnBlock(&block, copyNests);
219 
220   // Promote any single iteration loops in the copy nests and collect
221   // load/stores to simplify.
222   SmallVector<Operation *, 4> copyOps;
223   for (Operation *nest : copyNests)
224     // With a post order walk, the erasure of loops does not affect
225     // continuation of the walk or the collection of load/store ops.
226     nest->walk([&](Operation *op) {
227       if (auto forOp = dyn_cast<AffineForOp>(op))
228         (void)promoteIfSingleIteration(forOp);
229       else if (isa<AffineLoadOp, AffineStoreOp>(op))
230         copyOps.push_back(op);
231     });
232 
233   // Promoting single iteration loops could lead to simplification of
234   // contained load's/store's, and the latter could anyway also be
235   // canonicalized.
236   RewritePatternSet patterns(&getContext());
237   AffineLoadOp::getCanonicalizationPatterns(patterns, &getContext());
238   AffineStoreOp::getCanonicalizationPatterns(patterns, &getContext());
239   FrozenRewritePatternSet frozenPatterns(std::move(patterns));
240   GreedyRewriteConfig config;
241   config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps;
242   (void)applyOpPatternsGreedily(copyOps, frozenPatterns, config);
243 }
244