1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // | | Higher address
26 // |-----------------------------------|
27 // | |
28 // | arguments passed on the stack |
29 // | |
30 // |-----------------------------------| <- sp
31 // | | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // | | Higher address
40 // |-----------------------------------|
41 // | |
42 // | arguments passed on the stack |
43 // | |
44 // |-----------------------------------| <- (sp at function entry)
45 // | |
46 // | varargs from registers |
47 // | |
48 // |-----------------------------------|
49 // | |
50 // | prev_fp, prev_lr |
51 // | (a.k.a. "frame record") |
52 // | |
53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
54 // | |
55 // | callee-saved gpr registers |
56 // | |
57 // |-----------------------------------|
58 // | |
59 // | callee-saved fp/simd regs |
60 // | |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.8-byte.alignment.....| compile time; if present)
65 // |-----------------------------------|
66 // | |
67 // | local variables of fixed size |
68 // | including spill slots |
69 // |-----------------------------------| <- base pointer (not defined by ABI,
70 // |.variable-sized.local.variables....| LLVM chooses r6)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................| compile time)
73 // |-----------------------------------| <- sp
74 // | | Lower address
75 //
76 //
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
83 //
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 // variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 // more-than-default alignment requirements.
90 //
91 // In some cases when a base pointer is not strictly needed, it is generated
92 // anyway when offsets from the frame pointer to access local variables become
93 // so large that the offset can't be encoded in the immediate fields of loads
94 // or stores.
95 //
96 // The frame pointer might be chosen to be r7 or r11, depending on the target
97 // architecture and operating system. See ARMSubtarget::useR7AsFramePointer for
98 // details.
99 //
100 // Outgoing function arguments must be at the bottom of the stack frame when
101 // calling another function. If we do not have variable-sized stack objects, we
102 // can allocate a "reserved call frame" area at the bottom of the local
103 // variable area, large enough for all outgoing calls. If we do have VLAs, then
104 // the stack pointer must be decremented and incremented around each call to
105 // make space for the arguments below the VLAs.
106 //
107 //===----------------------------------------------------------------------===//
108
109 #include "ARMFrameLowering.h"
110 #include "ARMBaseInstrInfo.h"
111 #include "ARMBaseRegisterInfo.h"
112 #include "ARMConstantPoolValue.h"
113 #include "ARMMachineFunctionInfo.h"
114 #include "ARMSubtarget.h"
115 #include "MCTargetDesc/ARMAddressingModes.h"
116 #include "MCTargetDesc/ARMBaseInfo.h"
117 #include "Utils/ARMBaseInfo.h"
118 #include "llvm/ADT/BitVector.h"
119 #include "llvm/ADT/STLExtras.h"
120 #include "llvm/ADT/SmallPtrSet.h"
121 #include "llvm/ADT/SmallVector.h"
122 #include "llvm/CodeGen/MachineBasicBlock.h"
123 #include "llvm/CodeGen/MachineConstantPool.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineJumpTableInfo.h"
129 #include "llvm/CodeGen/MachineModuleInfo.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/MachineRegisterInfo.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetInstrInfo.h"
134 #include "llvm/CodeGen/TargetOpcodes.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/IR/Attributes.h"
138 #include "llvm/IR/CallingConv.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCContext.h"
142 #include "llvm/MC/MCDwarf.h"
143 #include "llvm/MC/MCInstrDesc.h"
144 #include "llvm/MC/MCRegisterInfo.h"
145 #include "llvm/Support/CodeGen.h"
146 #include "llvm/Support/CommandLine.h"
147 #include "llvm/Support/Compiler.h"
148 #include "llvm/Support/Debug.h"
149 #include "llvm/Support/ErrorHandling.h"
150 #include "llvm/Support/MathExtras.h"
151 #include "llvm/Support/raw_ostream.h"
152 #include "llvm/Target/TargetMachine.h"
153 #include "llvm/Target/TargetOptions.h"
154 #include <algorithm>
155 #include <cassert>
156 #include <cstddef>
157 #include <cstdint>
158 #include <iterator>
159 #include <utility>
160 #include <vector>
161
162 #define DEBUG_TYPE "arm-frame-lowering"
163
164 using namespace llvm;
165
166 static cl::opt<bool>
167 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
168 cl::desc("Align ARM NEON spills in prolog and epilog"));
169
170 static MachineBasicBlock::iterator
171 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
172 unsigned NumAlignedDPRCS2Regs);
173
ARMFrameLowering(const ARMSubtarget & sti)174 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
175 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
176 STI(sti) {}
177
keepFramePointer(const MachineFunction & MF) const178 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
179 // iOS always has a FP for backtracking, force other targets to keep their FP
180 // when doing FastISel. The emitted code is currently superior, and in cases
181 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
182 return MF.getSubtarget<ARMSubtarget>().useFastISel();
183 }
184
185 /// Returns true if the target can safely skip saving callee-saved registers
186 /// for noreturn nounwind functions.
enableCalleeSaveSkip(const MachineFunction & MF) const187 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
188 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
189 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
190 !MF.getFunction().hasFnAttribute(Attribute::UWTable));
191
192 // Frame pointer and link register are not treated as normal CSR, thus we
193 // can always skip CSR saves for nonreturning functions.
194 return true;
195 }
196
197 /// hasFP - Return true if the specified function should have a dedicated frame
198 /// pointer register. This is true if the function has variable sized allocas
199 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const200 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
201 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
202 const MachineFrameInfo &MFI = MF.getFrameInfo();
203
204 // ABI-required frame pointer.
205 if (MF.getTarget().Options.DisableFramePointerElim(MF))
206 return true;
207
208 // Frame pointer required for use within this function.
209 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
210 MFI.isFrameAddressTaken());
211 }
212
213 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
214 /// not required, we reserve argument space for call sites in the function
215 /// immediately on entry to the current function. This eliminates the need for
216 /// add/sub sp brackets around call sites. Returns true if the call frame is
217 /// included as part of the stack frame.
hasReservedCallFrame(const MachineFunction & MF) const218 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
219 const MachineFrameInfo &MFI = MF.getFrameInfo();
220 unsigned CFSize = MFI.getMaxCallFrameSize();
221 // It's not always a good idea to include the call frame as part of the
222 // stack frame. ARM (especially Thumb) has small immediate offset to
223 // address the stack frame. So a large call frame can cause poor codegen
224 // and may even makes it impossible to scavenge a register.
225 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
226 return false;
227
228 return !MFI.hasVarSizedObjects();
229 }
230
231 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
232 /// call frame pseudos can be simplified. Unlike most targets, having a FP
233 /// is not sufficient here since we still may reference some objects via SP
234 /// even when FP is available in Thumb2 mode.
235 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const236 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
237 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
238 }
239
emitRegPlusImmediate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,unsigned DestReg,unsigned SrcReg,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)240 static void emitRegPlusImmediate(
241 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
242 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
243 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
244 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
245 if (isARM)
246 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
247 Pred, PredReg, TII, MIFlags);
248 else
249 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
250 Pred, PredReg, TII, MIFlags);
251 }
252
emitSPUpdate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)253 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
254 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
255 const ARMBaseInstrInfo &TII, int NumBytes,
256 unsigned MIFlags = MachineInstr::NoFlags,
257 ARMCC::CondCodes Pred = ARMCC::AL,
258 unsigned PredReg = 0) {
259 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
260 MIFlags, Pred, PredReg);
261 }
262
sizeOfSPAdjustment(const MachineInstr & MI)263 static int sizeOfSPAdjustment(const MachineInstr &MI) {
264 int RegSize;
265 switch (MI.getOpcode()) {
266 case ARM::VSTMDDB_UPD:
267 RegSize = 8;
268 break;
269 case ARM::STMDB_UPD:
270 case ARM::t2STMDB_UPD:
271 RegSize = 4;
272 break;
273 case ARM::t2STR_PRE:
274 case ARM::STR_PRE_IMM:
275 return 4;
276 default:
277 llvm_unreachable("Unknown push or pop like instruction");
278 }
279
280 int count = 0;
281 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
282 // pred) so the list starts at 4.
283 for (int i = MI.getNumOperands() - 1; i >= 4; --i)
284 count += RegSize;
285 return count;
286 }
287
WindowsRequiresStackProbe(const MachineFunction & MF,size_t StackSizeInBytes)288 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
289 size_t StackSizeInBytes) {
290 const MachineFrameInfo &MFI = MF.getFrameInfo();
291 const Function &F = MF.getFunction();
292 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
293 if (F.hasFnAttribute("stack-probe-size"))
294 F.getFnAttribute("stack-probe-size")
295 .getValueAsString()
296 .getAsInteger(0, StackProbeSize);
297 return (StackSizeInBytes >= StackProbeSize) &&
298 !F.hasFnAttribute("no-stack-arg-probe");
299 }
300
301 namespace {
302
303 struct StackAdjustingInsts {
304 struct InstInfo {
305 MachineBasicBlock::iterator I;
306 unsigned SPAdjust;
307 bool BeforeFPSet;
308 };
309
310 SmallVector<InstInfo, 4> Insts;
311
addInst__anonc5e3ca320111::StackAdjustingInsts312 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
313 bool BeforeFPSet = false) {
314 InstInfo Info = {I, SPAdjust, BeforeFPSet};
315 Insts.push_back(Info);
316 }
317
addExtraBytes__anonc5e3ca320111::StackAdjustingInsts318 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
319 auto Info =
320 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
321 assert(Info != Insts.end() && "invalid sp adjusting instruction");
322 Info->SPAdjust += ExtraBytes;
323 }
324
emitDefCFAOffsets__anonc5e3ca320111::StackAdjustingInsts325 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
326 const ARMBaseInstrInfo &TII, bool HasFP) {
327 MachineFunction &MF = *MBB.getParent();
328 unsigned CFAOffset = 0;
329 for (auto &Info : Insts) {
330 if (HasFP && !Info.BeforeFPSet)
331 return;
332
333 CFAOffset += Info.SPAdjust;
334 unsigned CFIIndex = MF.addFrameInst(
335 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
336 BuildMI(MBB, std::next(Info.I), dl,
337 TII.get(TargetOpcode::CFI_INSTRUCTION))
338 .addCFIIndex(CFIIndex)
339 .setMIFlags(MachineInstr::FrameSetup);
340 }
341 }
342 };
343
344 } // end anonymous namespace
345
346 /// Emit an instruction sequence that will align the address in
347 /// register Reg by zero-ing out the lower bits. For versions of the
348 /// architecture that support Neon, this must be done in a single
349 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
350 /// single instruction. That function only gets called when optimizing
351 /// spilling of D registers on a core with the Neon instruction set
352 /// present.
emitAligningInstructions(MachineFunction & MF,ARMFunctionInfo * AFI,const TargetInstrInfo & TII,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const unsigned Reg,const Align Alignment,const bool MustBeSingleInstruction)353 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
354 const TargetInstrInfo &TII,
355 MachineBasicBlock &MBB,
356 MachineBasicBlock::iterator MBBI,
357 const DebugLoc &DL, const unsigned Reg,
358 const Align Alignment,
359 const bool MustBeSingleInstruction) {
360 const ARMSubtarget &AST =
361 static_cast<const ARMSubtarget &>(MF.getSubtarget());
362 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
363 const unsigned AlignMask = Alignment.value() - 1U;
364 const unsigned NrBitsToZero = Log2(Alignment);
365 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
366 if (!AFI->isThumbFunction()) {
367 // if the BFC instruction is available, use that to zero the lower
368 // bits:
369 // bfc Reg, #0, log2(Alignment)
370 // otherwise use BIC, if the mask to zero the required number of bits
371 // can be encoded in the bic immediate field
372 // bic Reg, Reg, Alignment-1
373 // otherwise, emit
374 // lsr Reg, Reg, log2(Alignment)
375 // lsl Reg, Reg, log2(Alignment)
376 if (CanUseBFC) {
377 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
378 .addReg(Reg, RegState::Kill)
379 .addImm(~AlignMask)
380 .add(predOps(ARMCC::AL));
381 } else if (AlignMask <= 255) {
382 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
383 .addReg(Reg, RegState::Kill)
384 .addImm(AlignMask)
385 .add(predOps(ARMCC::AL))
386 .add(condCodeOp());
387 } else {
388 assert(!MustBeSingleInstruction &&
389 "Shouldn't call emitAligningInstructions demanding a single "
390 "instruction to be emitted for large stack alignment for a target "
391 "without BFC.");
392 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
393 .addReg(Reg, RegState::Kill)
394 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
395 .add(predOps(ARMCC::AL))
396 .add(condCodeOp());
397 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
398 .addReg(Reg, RegState::Kill)
399 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
400 .add(predOps(ARMCC::AL))
401 .add(condCodeOp());
402 }
403 } else {
404 // Since this is only reached for Thumb-2 targets, the BFC instruction
405 // should always be available.
406 assert(CanUseBFC);
407 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
408 .addReg(Reg, RegState::Kill)
409 .addImm(~AlignMask)
410 .add(predOps(ARMCC::AL));
411 }
412 }
413
414 /// We need the offset of the frame pointer relative to other MachineFrameInfo
415 /// offsets which are encoded relative to SP at function begin.
416 /// See also emitPrologue() for how the FP is set up.
417 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
418 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
419 /// this to produce a conservative estimate that we check in an assert() later.
getMaxFPOffset(const ARMSubtarget & STI,const ARMFunctionInfo & AFI)420 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) {
421 // For Thumb1, push.w isn't available, so the first push will always push
422 // r7 and lr onto the stack first.
423 if (AFI.isThumb1OnlyFunction())
424 return -AFI.getArgRegsSaveSize() - (2 * 4);
425 // This is a conservative estimation: Assume the frame pointer being r7 and
426 // pc("r15") up to r8 getting spilled before (= 8 registers).
427 int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
428 return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4);
429 }
430
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const431 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
432 MachineBasicBlock &MBB) const {
433 MachineBasicBlock::iterator MBBI = MBB.begin();
434 MachineFrameInfo &MFI = MF.getFrameInfo();
435 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
436 MachineModuleInfo &MMI = MF.getMMI();
437 MCContext &Context = MMI.getContext();
438 const TargetMachine &TM = MF.getTarget();
439 const MCRegisterInfo *MRI = Context.getRegisterInfo();
440 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
441 const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
442 assert(!AFI->isThumb1OnlyFunction() &&
443 "This emitPrologue does not support Thumb1!");
444 bool isARM = !AFI->isThumbFunction();
445 Align Alignment = STI.getFrameLowering()->getStackAlign();
446 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
447 unsigned NumBytes = MFI.getStackSize();
448 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
449 int FPCXTSaveSize = 0;
450
451 // Debug location must be unknown since the first debug location is used
452 // to determine the end of the prologue.
453 DebugLoc dl;
454
455 Register FramePtr = RegInfo->getFrameRegister(MF);
456
457 // Determine the sizes of each callee-save spill areas and record which frame
458 // belongs to which callee-save spill areas.
459 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
460 int FramePtrSpillFI = 0;
461 int D8SpillFI = 0;
462
463 // All calls are tail calls in GHC calling conv, and functions have no
464 // prologue/epilogue.
465 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
466 return;
467
468 StackAdjustingInsts DefCFAOffsetCandidates;
469 bool HasFP = hasFP(MF);
470
471 // Allocate the vararg register save area.
472 if (ArgRegsSaveSize) {
473 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
474 MachineInstr::FrameSetup);
475 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
476 }
477
478 if (!AFI->hasStackFrame() &&
479 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
480 if (NumBytes - ArgRegsSaveSize != 0) {
481 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
482 MachineInstr::FrameSetup);
483 DefCFAOffsetCandidates.addInst(std::prev(MBBI),
484 NumBytes - ArgRegsSaveSize, true);
485 }
486 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
487 return;
488 }
489
490 // Determine spill area sizes.
491 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
492 unsigned Reg = CSI[i].getReg();
493 int FI = CSI[i].getFrameIdx();
494 switch (Reg) {
495 case ARM::R8:
496 case ARM::R9:
497 case ARM::R10:
498 case ARM::R11:
499 case ARM::R12:
500 if (STI.splitFramePushPop(MF)) {
501 GPRCS2Size += 4;
502 break;
503 }
504 LLVM_FALLTHROUGH;
505 case ARM::R0:
506 case ARM::R1:
507 case ARM::R2:
508 case ARM::R3:
509 case ARM::R4:
510 case ARM::R5:
511 case ARM::R6:
512 case ARM::R7:
513 case ARM::LR:
514 if (Reg == FramePtr)
515 FramePtrSpillFI = FI;
516 GPRCS1Size += 4;
517 break;
518 case ARM::FPCXTNS:
519 FPCXTSaveSize = 4;
520 break;
521 default:
522 // This is a DPR. Exclude the aligned DPRCS2 spills.
523 if (Reg == ARM::D8)
524 D8SpillFI = FI;
525 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
526 DPRCSSize += 8;
527 }
528 }
529
530 // Move past FPCXT area.
531 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
532 if (FPCXTSaveSize > 0) {
533 LastPush = MBBI++;
534 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
535 }
536
537 // Move past area 1.
538 if (GPRCS1Size > 0) {
539 GPRCS1Push = LastPush = MBBI++;
540 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
541 }
542
543 // Determine starting offsets of spill areas.
544 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
545 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
546 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
547 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
548 unsigned DPRGapSize =
549 (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) %
550 DPRAlign.value();
551
552 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
553 int FramePtrOffsetInPush = 0;
554 if (HasFP) {
555 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
556 assert(getMaxFPOffset(STI, *AFI) <= FPOffset &&
557 "Max FP estimation is wrong");
558 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
559 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
560 NumBytes);
561 }
562 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
563 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
564 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
565
566 // Move past area 2.
567 if (GPRCS2Size > 0) {
568 GPRCS2Push = LastPush = MBBI++;
569 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
570 }
571
572 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
573 // .cfi_offset operations will reflect that.
574 if (DPRGapSize) {
575 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
576 if (LastPush != MBB.end() &&
577 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
578 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
579 else {
580 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
581 MachineInstr::FrameSetup);
582 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
583 }
584 }
585
586 // Move past area 3.
587 if (DPRCSSize > 0) {
588 // Since vpush register list cannot have gaps, there may be multiple vpush
589 // instructions in the prologue.
590 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
591 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
592 LastPush = MBBI++;
593 }
594 }
595
596 // Move past the aligned DPRCS2 area.
597 if (AFI->getNumAlignedDPRCS2Regs() > 0) {
598 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
599 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
600 // leaves the stack pointer pointing to the DPRCS2 area.
601 //
602 // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
603 NumBytes += MFI.getObjectOffset(D8SpillFI);
604 } else
605 NumBytes = DPRCSOffset;
606
607 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
608 uint32_t NumWords = NumBytes >> 2;
609
610 if (NumWords < 65536)
611 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
612 .addImm(NumWords)
613 .setMIFlags(MachineInstr::FrameSetup)
614 .add(predOps(ARMCC::AL));
615 else
616 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
617 .addImm(NumWords)
618 .setMIFlags(MachineInstr::FrameSetup);
619
620 switch (TM.getCodeModel()) {
621 case CodeModel::Tiny:
622 llvm_unreachable("Tiny code model not available on ARM.");
623 case CodeModel::Small:
624 case CodeModel::Medium:
625 case CodeModel::Kernel:
626 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
627 .add(predOps(ARMCC::AL))
628 .addExternalSymbol("__chkstk")
629 .addReg(ARM::R4, RegState::Implicit)
630 .setMIFlags(MachineInstr::FrameSetup);
631 break;
632 case CodeModel::Large:
633 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
634 .addExternalSymbol("__chkstk")
635 .setMIFlags(MachineInstr::FrameSetup);
636
637 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
638 .add(predOps(ARMCC::AL))
639 .addReg(ARM::R12, RegState::Kill)
640 .addReg(ARM::R4, RegState::Implicit)
641 .setMIFlags(MachineInstr::FrameSetup);
642 break;
643 }
644
645 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
646 .addReg(ARM::SP, RegState::Kill)
647 .addReg(ARM::R4, RegState::Kill)
648 .setMIFlags(MachineInstr::FrameSetup)
649 .add(predOps(ARMCC::AL))
650 .add(condCodeOp());
651 NumBytes = 0;
652 }
653
654 if (NumBytes) {
655 // Adjust SP after all the callee-save spills.
656 if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
657 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
658 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
659 else {
660 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
661 MachineInstr::FrameSetup);
662 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
663 }
664
665 if (HasFP && isARM)
666 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
667 // Note it's not safe to do this in Thumb2 mode because it would have
668 // taken two instructions:
669 // mov sp, r7
670 // sub sp, #24
671 // If an interrupt is taken between the two instructions, then sp is in
672 // an inconsistent state (pointing to the middle of callee-saved area).
673 // The interrupt handler can end up clobbering the registers.
674 AFI->setShouldRestoreSPFromFP(true);
675 }
676
677 // Set FP to point to the stack slot that contains the previous FP.
678 // For iOS, FP is R7, which has now been stored in spill area 1.
679 // Otherwise, if this is not iOS, all the callee-saved registers go
680 // into spill area 1, including the FP in R11. In either case, it
681 // is in area one and the adjustment needs to take place just after
682 // that push.
683 if (HasFP) {
684 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
685 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
686 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
687 dl, TII, FramePtr, ARM::SP,
688 PushSize + FramePtrOffsetInPush,
689 MachineInstr::FrameSetup);
690 if (FramePtrOffsetInPush + PushSize != 0) {
691 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
692 nullptr, MRI->getDwarfRegNum(FramePtr, true),
693 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
694 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
695 .addCFIIndex(CFIIndex)
696 .setMIFlags(MachineInstr::FrameSetup);
697 } else {
698 unsigned CFIIndex =
699 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
700 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
701 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
702 .addCFIIndex(CFIIndex)
703 .setMIFlags(MachineInstr::FrameSetup);
704 }
705 }
706
707 // Now that the prologue's actual instructions are finalised, we can insert
708 // the necessary DWARF cf instructions to describe the situation. Start by
709 // recording where each register ended up:
710 if (GPRCS1Size > 0) {
711 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
712 int CFIIndex;
713 for (const auto &Entry : CSI) {
714 unsigned Reg = Entry.getReg();
715 int FI = Entry.getFrameIdx();
716 switch (Reg) {
717 case ARM::R8:
718 case ARM::R9:
719 case ARM::R10:
720 case ARM::R11:
721 case ARM::R12:
722 if (STI.splitFramePushPop(MF))
723 break;
724 LLVM_FALLTHROUGH;
725 case ARM::R0:
726 case ARM::R1:
727 case ARM::R2:
728 case ARM::R3:
729 case ARM::R4:
730 case ARM::R5:
731 case ARM::R6:
732 case ARM::R7:
733 case ARM::LR:
734 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
735 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
736 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
737 .addCFIIndex(CFIIndex)
738 .setMIFlags(MachineInstr::FrameSetup);
739 break;
740 }
741 }
742 }
743
744 if (GPRCS2Size > 0) {
745 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
746 for (const auto &Entry : CSI) {
747 unsigned Reg = Entry.getReg();
748 int FI = Entry.getFrameIdx();
749 switch (Reg) {
750 case ARM::R8:
751 case ARM::R9:
752 case ARM::R10:
753 case ARM::R11:
754 case ARM::R12:
755 if (STI.splitFramePushPop(MF)) {
756 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
757 unsigned Offset = MFI.getObjectOffset(FI);
758 unsigned CFIIndex = MF.addFrameInst(
759 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
760 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
761 .addCFIIndex(CFIIndex)
762 .setMIFlags(MachineInstr::FrameSetup);
763 }
764 break;
765 }
766 }
767 }
768
769 if (DPRCSSize > 0) {
770 // Since vpush register list cannot have gaps, there may be multiple vpush
771 // instructions in the prologue.
772 MachineBasicBlock::iterator Pos = std::next(LastPush);
773 for (const auto &Entry : CSI) {
774 unsigned Reg = Entry.getReg();
775 int FI = Entry.getFrameIdx();
776 if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
777 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
778 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
779 unsigned Offset = MFI.getObjectOffset(FI);
780 unsigned CFIIndex = MF.addFrameInst(
781 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
782 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
783 .addCFIIndex(CFIIndex)
784 .setMIFlags(MachineInstr::FrameSetup);
785 }
786 }
787 }
788
789 // Now we can emit descriptions of where the canonical frame address was
790 // throughout the process. If we have a frame pointer, it takes over the job
791 // half-way through, so only the first few .cfi_def_cfa_offset instructions
792 // actually get emitted.
793 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
794
795 if (STI.isTargetELF() && hasFP(MF))
796 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
797 AFI->getFramePtrSpillOffset());
798
799 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
800 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
801 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
802 AFI->setDPRCalleeSavedGapSize(DPRGapSize);
803 AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
804
805 // If we need dynamic stack realignment, do it here. Be paranoid and make
806 // sure if we also have VLAs, we have a base pointer for frame access.
807 // If aligned NEON registers were spilled, the stack has already been
808 // realigned.
809 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
810 Align MaxAlign = MFI.getMaxAlign();
811 assert(!AFI->isThumb1OnlyFunction());
812 if (!AFI->isThumbFunction()) {
813 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
814 false);
815 } else {
816 // We cannot use sp as source/dest register here, thus we're using r4 to
817 // perform the calculations. We're emitting the following sequence:
818 // mov r4, sp
819 // -- use emitAligningInstructions to produce best sequence to zero
820 // -- out lower bits in r4
821 // mov sp, r4
822 // FIXME: It will be better just to find spare register here.
823 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
824 .addReg(ARM::SP, RegState::Kill)
825 .add(predOps(ARMCC::AL));
826 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
827 false);
828 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
829 .addReg(ARM::R4, RegState::Kill)
830 .add(predOps(ARMCC::AL));
831 }
832
833 AFI->setShouldRestoreSPFromFP(true);
834 }
835
836 // If we need a base pointer, set it up here. It's whatever the value
837 // of the stack pointer is at this point. Any variable size objects
838 // will be allocated after this, so we can still use the base pointer
839 // to reference locals.
840 // FIXME: Clarify FrameSetup flags here.
841 if (RegInfo->hasBasePointer(MF)) {
842 if (isARM)
843 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
844 .addReg(ARM::SP)
845 .add(predOps(ARMCC::AL))
846 .add(condCodeOp());
847 else
848 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
849 .addReg(ARM::SP)
850 .add(predOps(ARMCC::AL));
851 }
852
853 // If the frame has variable sized objects then the epilogue must restore
854 // the sp from fp. We can assume there's an FP here since hasFP already
855 // checks for hasVarSizedObjects.
856 if (MFI.hasVarSizedObjects())
857 AFI->setShouldRestoreSPFromFP(true);
858 }
859
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const860 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
861 MachineBasicBlock &MBB) const {
862 MachineFrameInfo &MFI = MF.getFrameInfo();
863 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
864 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
865 const ARMBaseInstrInfo &TII =
866 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
867 assert(!AFI->isThumb1OnlyFunction() &&
868 "This emitEpilogue does not support Thumb1!");
869 bool isARM = !AFI->isThumbFunction();
870
871 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
872 int NumBytes = (int)MFI.getStackSize();
873 Register FramePtr = RegInfo->getFrameRegister(MF);
874
875 // All calls are tail calls in GHC calling conv, and functions have no
876 // prologue/epilogue.
877 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
878 return;
879
880 // First put ourselves on the first (from top) terminator instructions.
881 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
882 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
883
884 if (!AFI->hasStackFrame()) {
885 if (NumBytes - ArgRegsSaveSize != 0)
886 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize,
887 MachineInstr::FrameDestroy);
888 } else {
889 // Unwind MBBI to point to first LDR / VLDRD.
890 if (MBBI != MBB.begin()) {
891 do {
892 --MBBI;
893 } while (MBBI != MBB.begin() &&
894 MBBI->getFlag(MachineInstr::FrameDestroy));
895 if (!MBBI->getFlag(MachineInstr::FrameDestroy))
896 ++MBBI;
897 }
898
899 // Move SP to start of FP callee save spill area.
900 NumBytes -= (ArgRegsSaveSize +
901 AFI->getFPCXTSaveAreaSize() +
902 AFI->getGPRCalleeSavedArea1Size() +
903 AFI->getGPRCalleeSavedArea2Size() +
904 AFI->getDPRCalleeSavedGapSize() +
905 AFI->getDPRCalleeSavedAreaSize());
906
907 // Reset SP based on frame pointer only if the stack frame extends beyond
908 // frame pointer stack slot or target is ELF and the function has FP.
909 if (AFI->shouldRestoreSPFromFP()) {
910 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
911 if (NumBytes) {
912 if (isARM)
913 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
914 ARMCC::AL, 0, TII,
915 MachineInstr::FrameDestroy);
916 else {
917 // It's not possible to restore SP from FP in a single instruction.
918 // For iOS, this looks like:
919 // mov sp, r7
920 // sub sp, #24
921 // This is bad, if an interrupt is taken after the mov, sp is in an
922 // inconsistent state.
923 // Use the first callee-saved register as a scratch register.
924 assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
925 "No scratch register to restore SP from FP!");
926 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
927 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
928 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
929 .addReg(ARM::R4)
930 .add(predOps(ARMCC::AL))
931 .setMIFlag(MachineInstr::FrameDestroy);
932 }
933 } else {
934 // Thumb2 or ARM.
935 if (isARM)
936 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
937 .addReg(FramePtr)
938 .add(predOps(ARMCC::AL))
939 .add(condCodeOp())
940 .setMIFlag(MachineInstr::FrameDestroy);
941 else
942 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
943 .addReg(FramePtr)
944 .add(predOps(ARMCC::AL))
945 .setMIFlag(MachineInstr::FrameDestroy);
946 }
947 } else if (NumBytes &&
948 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
949 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
950 MachineInstr::FrameDestroy);
951
952 // Increment past our save areas.
953 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
954 MBBI++;
955 // Since vpop register list cannot have gaps, there may be multiple vpop
956 // instructions in the epilogue.
957 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
958 MBBI++;
959 }
960 if (AFI->getDPRCalleeSavedGapSize()) {
961 assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
962 "unexpected DPR alignment gap");
963 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
964 MachineInstr::FrameDestroy);
965 }
966
967 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
968 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
969 if (AFI->getFPCXTSaveAreaSize()) MBBI++;
970 }
971
972 if (ArgRegsSaveSize)
973 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize,
974 MachineInstr::FrameDestroy);
975 }
976
977 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
978 /// debug info. It's the same as what we use for resolving the code-gen
979 /// references for now. FIXME: This can go wrong when references are
980 /// SP-relative and simple call frames aren't used.
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const981 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
982 int FI,
983 Register &FrameReg) const {
984 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
985 }
986
ResolveFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg,int SPAdj) const987 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
988 int FI, Register &FrameReg,
989 int SPAdj) const {
990 const MachineFrameInfo &MFI = MF.getFrameInfo();
991 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
992 MF.getSubtarget().getRegisterInfo());
993 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
994 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
995 int FPOffset = Offset - AFI->getFramePtrSpillOffset();
996 bool isFixed = MFI.isFixedObjectIndex(FI);
997
998 FrameReg = ARM::SP;
999 Offset += SPAdj;
1000
1001 // SP can move around if there are allocas. We may also lose track of SP
1002 // when emergency spilling inside a non-reserved call frame setup.
1003 bool hasMovingSP = !hasReservedCallFrame(MF);
1004
1005 // When dynamically realigning the stack, use the frame pointer for
1006 // parameters, and the stack/base pointer for locals.
1007 if (RegInfo->hasStackRealignment(MF)) {
1008 assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1009 if (isFixed) {
1010 FrameReg = RegInfo->getFrameRegister(MF);
1011 Offset = FPOffset;
1012 } else if (hasMovingSP) {
1013 assert(RegInfo->hasBasePointer(MF) &&
1014 "VLAs and dynamic stack alignment, but missing base pointer!");
1015 FrameReg = RegInfo->getBaseRegister();
1016 Offset -= SPAdj;
1017 }
1018 return Offset;
1019 }
1020
1021 // If there is a frame pointer, use it when we can.
1022 if (hasFP(MF) && AFI->hasStackFrame()) {
1023 // Use frame pointer to reference fixed objects. Use it for locals if
1024 // there are VLAs (and thus the SP isn't reliable as a base).
1025 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1026 FrameReg = RegInfo->getFrameRegister(MF);
1027 return FPOffset;
1028 } else if (hasMovingSP) {
1029 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1030 if (AFI->isThumb2Function()) {
1031 // Try to use the frame pointer if we can, else use the base pointer
1032 // since it's available. This is handy for the emergency spill slot, in
1033 // particular.
1034 if (FPOffset >= -255 && FPOffset < 0) {
1035 FrameReg = RegInfo->getFrameRegister(MF);
1036 return FPOffset;
1037 }
1038 }
1039 } else if (AFI->isThumbFunction()) {
1040 // Prefer SP to base pointer, if the offset is suitably aligned and in
1041 // range as the effective range of the immediate offset is bigger when
1042 // basing off SP.
1043 // Use add <rd>, sp, #<imm8>
1044 // ldr <rd>, [sp, #<imm8>]
1045 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1046 return Offset;
1047 // In Thumb2 mode, the negative offset is very limited. Try to avoid
1048 // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1049 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1050 FrameReg = RegInfo->getFrameRegister(MF);
1051 return FPOffset;
1052 }
1053 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1054 // Otherwise, use SP or FP, whichever is closer to the stack slot.
1055 FrameReg = RegInfo->getFrameRegister(MF);
1056 return FPOffset;
1057 }
1058 }
1059 // Use the base pointer if we have one.
1060 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1061 // That can happen if we forced a base pointer for a large call frame.
1062 if (RegInfo->hasBasePointer(MF)) {
1063 FrameReg = RegInfo->getBaseRegister();
1064 Offset -= SPAdj;
1065 }
1066 return Offset;
1067 }
1068
emitPushInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,unsigned StmOpc,unsigned StrOpc,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs,unsigned MIFlags) const1069 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1070 MachineBasicBlock::iterator MI,
1071 ArrayRef<CalleeSavedInfo> CSI,
1072 unsigned StmOpc, unsigned StrOpc,
1073 bool NoGap, bool (*Func)(unsigned, bool),
1074 unsigned NumAlignedDPRCS2Regs,
1075 unsigned MIFlags) const {
1076 MachineFunction &MF = *MBB.getParent();
1077 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1078 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1079
1080 DebugLoc DL;
1081
1082 using RegAndKill = std::pair<unsigned, bool>;
1083
1084 SmallVector<RegAndKill, 4> Regs;
1085 unsigned i = CSI.size();
1086 while (i != 0) {
1087 unsigned LastReg = 0;
1088 for (; i != 0; --i) {
1089 unsigned Reg = CSI[i-1].getReg();
1090 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1091
1092 // D-registers in the aligned area DPRCS2 are NOT spilled here.
1093 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1094 continue;
1095
1096 const MachineRegisterInfo &MRI = MF.getRegInfo();
1097 bool isLiveIn = MRI.isLiveIn(Reg);
1098 if (!isLiveIn && !MRI.isReserved(Reg))
1099 MBB.addLiveIn(Reg);
1100 // If NoGap is true, push consecutive registers and then leave the rest
1101 // for other instructions. e.g.
1102 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1103 if (NoGap && LastReg && LastReg != Reg-1)
1104 break;
1105 LastReg = Reg;
1106 // Do not set a kill flag on values that are also marked as live-in. This
1107 // happens with the @llvm-returnaddress intrinsic and with arguments
1108 // passed in callee saved registers.
1109 // Omitting the kill flags is conservatively correct even if the live-in
1110 // is not used after all.
1111 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1112 }
1113
1114 if (Regs.empty())
1115 continue;
1116
1117 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1118 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1119 });
1120
1121 if (Regs.size() > 1 || StrOpc== 0) {
1122 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1123 .addReg(ARM::SP)
1124 .setMIFlags(MIFlags)
1125 .add(predOps(ARMCC::AL));
1126 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1127 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1128 } else if (Regs.size() == 1) {
1129 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1130 .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1131 .addReg(ARM::SP)
1132 .setMIFlags(MIFlags)
1133 .addImm(-4)
1134 .add(predOps(ARMCC::AL));
1135 }
1136 Regs.clear();
1137
1138 // Put any subsequent vpush instructions before this one: they will refer to
1139 // higher register numbers so need to be pushed first in order to preserve
1140 // monotonicity.
1141 if (MI != MBB.begin())
1142 --MI;
1143 }
1144 }
1145
emitPopInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,unsigned LdmOpc,unsigned LdrOpc,bool isVarArg,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs) const1146 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1147 MachineBasicBlock::iterator MI,
1148 MutableArrayRef<CalleeSavedInfo> CSI,
1149 unsigned LdmOpc, unsigned LdrOpc,
1150 bool isVarArg, bool NoGap,
1151 bool (*Func)(unsigned, bool),
1152 unsigned NumAlignedDPRCS2Regs) const {
1153 MachineFunction &MF = *MBB.getParent();
1154 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1155 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1156 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1157 DebugLoc DL;
1158 bool isTailCall = false;
1159 bool isInterrupt = false;
1160 bool isTrap = false;
1161 bool isCmseEntry = false;
1162 if (MBB.end() != MI) {
1163 DL = MI->getDebugLoc();
1164 unsigned RetOpcode = MI->getOpcode();
1165 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1166 isInterrupt =
1167 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1168 isTrap =
1169 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1170 RetOpcode == ARM::tTRAP;
1171 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1172 }
1173
1174 SmallVector<unsigned, 4> Regs;
1175 unsigned i = CSI.size();
1176 while (i != 0) {
1177 unsigned LastReg = 0;
1178 bool DeleteRet = false;
1179 for (; i != 0; --i) {
1180 CalleeSavedInfo &Info = CSI[i-1];
1181 unsigned Reg = Info.getReg();
1182 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1183
1184 // The aligned reloads from area DPRCS2 are not inserted here.
1185 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1186 continue;
1187
1188 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1189 !isCmseEntry && !isTrap && STI.hasV5TOps()) {
1190 if (MBB.succ_empty()) {
1191 Reg = ARM::PC;
1192 // Fold the return instruction into the LDM.
1193 DeleteRet = true;
1194 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1195 // We 'restore' LR into PC so it is not live out of the return block:
1196 // Clear Restored bit.
1197 Info.setRestored(false);
1198 } else
1199 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1200 }
1201
1202 // If NoGap is true, pop consecutive registers and then leave the rest
1203 // for other instructions. e.g.
1204 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1205 if (NoGap && LastReg && LastReg != Reg-1)
1206 break;
1207
1208 LastReg = Reg;
1209 Regs.push_back(Reg);
1210 }
1211
1212 if (Regs.empty())
1213 continue;
1214
1215 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1216 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1217 });
1218
1219 if (Regs.size() > 1 || LdrOpc == 0) {
1220 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1221 .addReg(ARM::SP)
1222 .add(predOps(ARMCC::AL))
1223 .setMIFlags(MachineInstr::FrameDestroy);
1224 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1225 MIB.addReg(Regs[i], getDefRegState(true));
1226 if (DeleteRet) {
1227 if (MI != MBB.end()) {
1228 MIB.copyImplicitOps(*MI);
1229 MI->eraseFromParent();
1230 }
1231 }
1232 MI = MIB;
1233 } else if (Regs.size() == 1) {
1234 // If we adjusted the reg to PC from LR above, switch it back here. We
1235 // only do that for LDM.
1236 if (Regs[0] == ARM::PC)
1237 Regs[0] = ARM::LR;
1238 MachineInstrBuilder MIB =
1239 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1240 .addReg(ARM::SP, RegState::Define)
1241 .addReg(ARM::SP)
1242 .setMIFlags(MachineInstr::FrameDestroy);
1243 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1244 // that refactoring is complete (eventually).
1245 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1246 MIB.addReg(0);
1247 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1248 } else
1249 MIB.addImm(4);
1250 MIB.add(predOps(ARMCC::AL));
1251 }
1252 Regs.clear();
1253
1254 // Put any subsequent vpop instructions after this one: they will refer to
1255 // higher register numbers so need to be popped afterwards.
1256 if (MI != MBB.end())
1257 ++MI;
1258 }
1259 }
1260
1261 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1262 /// starting from d8. Also insert stack realignment code and leave the stack
1263 /// pointer pointing to the d8 spill slot.
emitAlignedDPRCS2Spills(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)1264 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1265 MachineBasicBlock::iterator MI,
1266 unsigned NumAlignedDPRCS2Regs,
1267 ArrayRef<CalleeSavedInfo> CSI,
1268 const TargetRegisterInfo *TRI) {
1269 MachineFunction &MF = *MBB.getParent();
1270 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1271 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1272 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1273 MachineFrameInfo &MFI = MF.getFrameInfo();
1274
1275 // Mark the D-register spill slots as properly aligned. Since MFI computes
1276 // stack slot layout backwards, this can actually mean that the d-reg stack
1277 // slot offsets can be wrong. The offset for d8 will always be correct.
1278 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1279 unsigned DNum = CSI[i].getReg() - ARM::D8;
1280 if (DNum > NumAlignedDPRCS2Regs - 1)
1281 continue;
1282 int FI = CSI[i].getFrameIdx();
1283 // The even-numbered registers will be 16-byte aligned, the odd-numbered
1284 // registers will be 8-byte aligned.
1285 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1286
1287 // The stack slot for D8 needs to be maximally aligned because this is
1288 // actually the point where we align the stack pointer. MachineFrameInfo
1289 // computes all offsets relative to the incoming stack pointer which is a
1290 // bit weird when realigning the stack. Any extra padding for this
1291 // over-alignment is not realized because the code inserted below adjusts
1292 // the stack pointer by numregs * 8 before aligning the stack pointer.
1293 if (DNum == 0)
1294 MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1295 }
1296
1297 // Move the stack pointer to the d8 spill slot, and align it at the same
1298 // time. Leave the stack slot address in the scratch register r4.
1299 //
1300 // sub r4, sp, #numregs * 8
1301 // bic r4, r4, #align - 1
1302 // mov sp, r4
1303 //
1304 bool isThumb = AFI->isThumbFunction();
1305 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1306 AFI->setShouldRestoreSPFromFP(true);
1307
1308 // sub r4, sp, #numregs * 8
1309 // The immediate is <= 64, so it doesn't need any special encoding.
1310 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1311 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1312 .addReg(ARM::SP)
1313 .addImm(8 * NumAlignedDPRCS2Regs)
1314 .add(predOps(ARMCC::AL))
1315 .add(condCodeOp());
1316
1317 Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1318 // We must set parameter MustBeSingleInstruction to true, since
1319 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1320 // stack alignment. Luckily, this can always be done since all ARM
1321 // architecture versions that support Neon also support the BFC
1322 // instruction.
1323 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1324
1325 // mov sp, r4
1326 // The stack pointer must be adjusted before spilling anything, otherwise
1327 // the stack slots could be clobbered by an interrupt handler.
1328 // Leave r4 live, it is used below.
1329 Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1330 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1331 .addReg(ARM::R4)
1332 .add(predOps(ARMCC::AL));
1333 if (!isThumb)
1334 MIB.add(condCodeOp());
1335
1336 // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1337 // r4 holds the stack slot address.
1338 unsigned NextReg = ARM::D8;
1339
1340 // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1341 // The writeback is only needed when emitting two vst1.64 instructions.
1342 if (NumAlignedDPRCS2Regs >= 6) {
1343 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1344 &ARM::QQPRRegClass);
1345 MBB.addLiveIn(SupReg);
1346 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1347 .addReg(ARM::R4, RegState::Kill)
1348 .addImm(16)
1349 .addReg(NextReg)
1350 .addReg(SupReg, RegState::ImplicitKill)
1351 .add(predOps(ARMCC::AL));
1352 NextReg += 4;
1353 NumAlignedDPRCS2Regs -= 4;
1354 }
1355
1356 // We won't modify r4 beyond this point. It currently points to the next
1357 // register to be spilled.
1358 unsigned R4BaseReg = NextReg;
1359
1360 // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1361 if (NumAlignedDPRCS2Regs >= 4) {
1362 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1363 &ARM::QQPRRegClass);
1364 MBB.addLiveIn(SupReg);
1365 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1366 .addReg(ARM::R4)
1367 .addImm(16)
1368 .addReg(NextReg)
1369 .addReg(SupReg, RegState::ImplicitKill)
1370 .add(predOps(ARMCC::AL));
1371 NextReg += 4;
1372 NumAlignedDPRCS2Regs -= 4;
1373 }
1374
1375 // 16-byte aligned vst1.64 with 2 d-regs.
1376 if (NumAlignedDPRCS2Regs >= 2) {
1377 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1378 &ARM::QPRRegClass);
1379 MBB.addLiveIn(SupReg);
1380 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1381 .addReg(ARM::R4)
1382 .addImm(16)
1383 .addReg(SupReg)
1384 .add(predOps(ARMCC::AL));
1385 NextReg += 2;
1386 NumAlignedDPRCS2Regs -= 2;
1387 }
1388
1389 // Finally, use a vanilla vstr.64 for the odd last register.
1390 if (NumAlignedDPRCS2Regs) {
1391 MBB.addLiveIn(NextReg);
1392 // vstr.64 uses addrmode5 which has an offset scale of 4.
1393 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1394 .addReg(NextReg)
1395 .addReg(ARM::R4)
1396 .addImm((NextReg - R4BaseReg) * 2)
1397 .add(predOps(ARMCC::AL));
1398 }
1399
1400 // The last spill instruction inserted should kill the scratch register r4.
1401 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1402 }
1403
1404 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1405 /// iterator to the following instruction.
1406 static MachineBasicBlock::iterator
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs)1407 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1408 unsigned NumAlignedDPRCS2Regs) {
1409 // sub r4, sp, #numregs * 8
1410 // bic r4, r4, #align - 1
1411 // mov sp, r4
1412 ++MI; ++MI; ++MI;
1413 assert(MI->mayStore() && "Expecting spill instruction");
1414
1415 // These switches all fall through.
1416 switch(NumAlignedDPRCS2Regs) {
1417 case 7:
1418 ++MI;
1419 assert(MI->mayStore() && "Expecting spill instruction");
1420 LLVM_FALLTHROUGH;
1421 default:
1422 ++MI;
1423 assert(MI->mayStore() && "Expecting spill instruction");
1424 LLVM_FALLTHROUGH;
1425 case 1:
1426 case 2:
1427 case 4:
1428 assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1429 ++MI;
1430 }
1431 return MI;
1432 }
1433
1434 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1435 /// starting from d8. These instructions are assumed to execute while the
1436 /// stack is still aligned, unlike the code inserted by emitPopInst.
emitAlignedDPRCS2Restores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)1437 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1438 MachineBasicBlock::iterator MI,
1439 unsigned NumAlignedDPRCS2Regs,
1440 ArrayRef<CalleeSavedInfo> CSI,
1441 const TargetRegisterInfo *TRI) {
1442 MachineFunction &MF = *MBB.getParent();
1443 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1444 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1445 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1446
1447 // Find the frame index assigned to d8.
1448 int D8SpillFI = 0;
1449 for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1450 if (CSI[i].getReg() == ARM::D8) {
1451 D8SpillFI = CSI[i].getFrameIdx();
1452 break;
1453 }
1454
1455 // Materialize the address of the d8 spill slot into the scratch register r4.
1456 // This can be fairly complicated if the stack frame is large, so just use
1457 // the normal frame index elimination mechanism to do it. This code runs as
1458 // the initial part of the epilog where the stack and base pointers haven't
1459 // been changed yet.
1460 bool isThumb = AFI->isThumbFunction();
1461 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1462
1463 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1464 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1465 .addFrameIndex(D8SpillFI)
1466 .addImm(0)
1467 .add(predOps(ARMCC::AL))
1468 .add(condCodeOp());
1469
1470 // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1471 unsigned NextReg = ARM::D8;
1472
1473 // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1474 if (NumAlignedDPRCS2Regs >= 6) {
1475 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1476 &ARM::QQPRRegClass);
1477 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1478 .addReg(ARM::R4, RegState::Define)
1479 .addReg(ARM::R4, RegState::Kill)
1480 .addImm(16)
1481 .addReg(SupReg, RegState::ImplicitDefine)
1482 .add(predOps(ARMCC::AL));
1483 NextReg += 4;
1484 NumAlignedDPRCS2Regs -= 4;
1485 }
1486
1487 // We won't modify r4 beyond this point. It currently points to the next
1488 // register to be spilled.
1489 unsigned R4BaseReg = NextReg;
1490
1491 // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1492 if (NumAlignedDPRCS2Regs >= 4) {
1493 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1494 &ARM::QQPRRegClass);
1495 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1496 .addReg(ARM::R4)
1497 .addImm(16)
1498 .addReg(SupReg, RegState::ImplicitDefine)
1499 .add(predOps(ARMCC::AL));
1500 NextReg += 4;
1501 NumAlignedDPRCS2Regs -= 4;
1502 }
1503
1504 // 16-byte aligned vld1.64 with 2 d-regs.
1505 if (NumAlignedDPRCS2Regs >= 2) {
1506 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1507 &ARM::QPRRegClass);
1508 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1509 .addReg(ARM::R4)
1510 .addImm(16)
1511 .add(predOps(ARMCC::AL));
1512 NextReg += 2;
1513 NumAlignedDPRCS2Regs -= 2;
1514 }
1515
1516 // Finally, use a vanilla vldr.64 for the remaining odd register.
1517 if (NumAlignedDPRCS2Regs)
1518 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1519 .addReg(ARM::R4)
1520 .addImm(2 * (NextReg - R4BaseReg))
1521 .add(predOps(ARMCC::AL));
1522
1523 // Last store kills r4.
1524 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1525 }
1526
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const1527 bool ARMFrameLowering::spillCalleeSavedRegisters(
1528 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1529 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1530 if (CSI.empty())
1531 return false;
1532
1533 MachineFunction &MF = *MBB.getParent();
1534 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1535
1536 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1537 unsigned PushOneOpc = AFI->isThumbFunction() ?
1538 ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1539 unsigned FltOpc = ARM::VSTMDDB_UPD;
1540 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1541 // Save the non-secure floating point context.
1542 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1543 return C.getReg() == ARM::FPCXTNS;
1544 })) {
1545 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1546 ARM::SP)
1547 .addReg(ARM::SP)
1548 .addImm(-4)
1549 .add(predOps(ARMCC::AL));
1550 }
1551 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1552 MachineInstr::FrameSetup);
1553 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1554 MachineInstr::FrameSetup);
1555 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1556 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1557
1558 // The code above does not insert spill code for the aligned DPRCS2 registers.
1559 // The stack realignment code will be inserted between the push instructions
1560 // and these spills.
1561 if (NumAlignedDPRCS2Regs)
1562 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1563
1564 return true;
1565 }
1566
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const1567 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1568 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1569 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1570 if (CSI.empty())
1571 return false;
1572
1573 MachineFunction &MF = *MBB.getParent();
1574 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1575 bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1576 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1577
1578 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1579 // registers. Do that here instead.
1580 if (NumAlignedDPRCS2Regs)
1581 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1582
1583 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1584 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1585 unsigned FltOpc = ARM::VLDMDIA_UPD;
1586 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1587 NumAlignedDPRCS2Regs);
1588 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1589 &isARMArea2Register, 0);
1590 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1591 &isARMArea1Register, 0);
1592
1593 return true;
1594 }
1595
1596 // FIXME: Make generic?
EstimateFunctionSizeInBytes(const MachineFunction & MF,const ARMBaseInstrInfo & TII)1597 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
1598 const ARMBaseInstrInfo &TII) {
1599 unsigned FnSize = 0;
1600 for (auto &MBB : MF) {
1601 for (auto &MI : MBB)
1602 FnSize += TII.getInstSizeInBytes(MI);
1603 }
1604 if (MF.getJumpTableInfo())
1605 for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
1606 FnSize += Table.MBBs.size() * 4;
1607 FnSize += MF.getConstantPool()->getConstants().size() * 4;
1608 return FnSize;
1609 }
1610
1611 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1612 /// frames and return the stack size limit beyond which some of these
1613 /// instructions will require a scratch register during their expansion later.
1614 // FIXME: Move to TII?
estimateRSStackSizeLimit(MachineFunction & MF,const TargetFrameLowering * TFI,bool & HasNonSPFrameIndex)1615 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1616 const TargetFrameLowering *TFI,
1617 bool &HasNonSPFrameIndex) {
1618 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1619 const ARMBaseInstrInfo &TII =
1620 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1621 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1622 unsigned Limit = (1 << 12) - 1;
1623 for (auto &MBB : MF) {
1624 for (auto &MI : MBB) {
1625 if (MI.isDebugInstr())
1626 continue;
1627 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1628 if (!MI.getOperand(i).isFI())
1629 continue;
1630
1631 // When using ADDri to get the address of a stack object, 255 is the
1632 // largest offset guaranteed to fit in the immediate offset.
1633 if (MI.getOpcode() == ARM::ADDri) {
1634 Limit = std::min(Limit, (1U << 8) - 1);
1635 break;
1636 }
1637 // t2ADDri will not require an extra register, it can reuse the
1638 // destination.
1639 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
1640 break;
1641
1642 const MCInstrDesc &MCID = MI.getDesc();
1643 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
1644 if (RegClass && !RegClass->contains(ARM::SP))
1645 HasNonSPFrameIndex = true;
1646
1647 // Otherwise check the addressing mode.
1648 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1649 case ARMII::AddrMode_i12:
1650 case ARMII::AddrMode2:
1651 // Default 12 bit limit.
1652 break;
1653 case ARMII::AddrMode3:
1654 case ARMII::AddrModeT2_i8:
1655 Limit = std::min(Limit, (1U << 8) - 1);
1656 break;
1657 case ARMII::AddrMode5FP16:
1658 Limit = std::min(Limit, ((1U << 8) - 1) * 2);
1659 break;
1660 case ARMII::AddrMode5:
1661 case ARMII::AddrModeT2_i8s4:
1662 case ARMII::AddrModeT2_ldrex:
1663 Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1664 break;
1665 case ARMII::AddrModeT2_i12:
1666 // i12 supports only positive offset so these will be converted to
1667 // i8 opcodes. See llvm::rewriteT2FrameIndex.
1668 if (TFI->hasFP(MF) && AFI->hasStackFrame())
1669 Limit = std::min(Limit, (1U << 8) - 1);
1670 break;
1671 case ARMII::AddrMode4:
1672 case ARMII::AddrMode6:
1673 // Addressing modes 4 & 6 (load/store) instructions can't encode an
1674 // immediate offset for stack references.
1675 return 0;
1676 case ARMII::AddrModeT2_i7:
1677 Limit = std::min(Limit, ((1U << 7) - 1) * 1);
1678 break;
1679 case ARMII::AddrModeT2_i7s2:
1680 Limit = std::min(Limit, ((1U << 7) - 1) * 2);
1681 break;
1682 case ARMII::AddrModeT2_i7s4:
1683 Limit = std::min(Limit, ((1U << 7) - 1) * 4);
1684 break;
1685 default:
1686 llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1687 }
1688 break; // At most one FI per instruction
1689 }
1690 }
1691 }
1692
1693 return Limit;
1694 }
1695
1696 // In functions that realign the stack, it can be an advantage to spill the
1697 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1698 // instructions take alignment hints that can improve performance.
1699 static void
checkNumAlignedDPRCS2Regs(MachineFunction & MF,BitVector & SavedRegs)1700 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1701 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1702 if (!SpillAlignedNEONRegs)
1703 return;
1704
1705 // Naked functions don't spill callee-saved registers.
1706 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1707 return;
1708
1709 // We are planning to use NEON instructions vst1 / vld1.
1710 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1711 return;
1712
1713 // Don't bother if the default stack alignment is sufficiently high.
1714 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
1715 return;
1716
1717 // Aligned spills require stack realignment.
1718 if (!static_cast<const ARMBaseRegisterInfo *>(
1719 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1720 return;
1721
1722 // We always spill contiguous d-registers starting from d8. Count how many
1723 // needs spilling. The register allocator will almost always use the
1724 // callee-saved registers in order, but it can happen that there are holes in
1725 // the range. Registers above the hole will be spilled to the standard DPRCS
1726 // area.
1727 unsigned NumSpills = 0;
1728 for (; NumSpills < 8; ++NumSpills)
1729 if (!SavedRegs.test(ARM::D8 + NumSpills))
1730 break;
1731
1732 // Don't do this for just one d-register. It's not worth it.
1733 if (NumSpills < 2)
1734 return;
1735
1736 // Spill the first NumSpills D-registers after realigning the stack.
1737 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1738
1739 // A scratch register is required for the vst1 / vld1 instructions.
1740 SavedRegs.set(ARM::R4);
1741 }
1742
enableShrinkWrapping(const MachineFunction & MF) const1743 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
1744 // For CMSE entry functions, we want to save the FPCXT_NS immediately
1745 // upon function entry (resp. restore it immmediately before return)
1746 if (STI.hasV8_1MMainlineOps() &&
1747 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
1748 return false;
1749
1750 return true;
1751 }
1752
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const1753 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1754 BitVector &SavedRegs,
1755 RegScavenger *RS) const {
1756 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1757 // This tells PEI to spill the FP as if it is any other callee-save register
1758 // to take advantage the eliminateFrameIndex machinery. This also ensures it
1759 // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1760 // to combine multiple loads / stores.
1761 bool CanEliminateFrame = true;
1762 bool CS1Spilled = false;
1763 bool LRSpilled = false;
1764 unsigned NumGPRSpills = 0;
1765 unsigned NumFPRSpills = 0;
1766 SmallVector<unsigned, 4> UnspilledCS1GPRs;
1767 SmallVector<unsigned, 4> UnspilledCS2GPRs;
1768 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1769 MF.getSubtarget().getRegisterInfo());
1770 const ARMBaseInstrInfo &TII =
1771 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1772 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1773 MachineFrameInfo &MFI = MF.getFrameInfo();
1774 MachineRegisterInfo &MRI = MF.getRegInfo();
1775 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1776 (void)TRI; // Silence unused warning in non-assert builds.
1777 Register FramePtr = RegInfo->getFrameRegister(MF);
1778
1779 // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1780 // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1781 // since it's not always possible to restore sp from fp in a single
1782 // instruction.
1783 // FIXME: It will be better just to find spare register here.
1784 if (AFI->isThumb2Function() &&
1785 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
1786 SavedRegs.set(ARM::R4);
1787
1788 // If a stack probe will be emitted, spill R4 and LR, since they are
1789 // clobbered by the stack probe call.
1790 // This estimate should be a safe, conservative estimate. The actual
1791 // stack probe is enabled based on the size of the local objects;
1792 // this estimate also includes the varargs store size.
1793 if (STI.isTargetWindows() &&
1794 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1795 SavedRegs.set(ARM::R4);
1796 SavedRegs.set(ARM::LR);
1797 }
1798
1799 if (AFI->isThumb1OnlyFunction()) {
1800 // Spill LR if Thumb1 function uses variable length argument lists.
1801 if (AFI->getArgRegsSaveSize() > 0)
1802 SavedRegs.set(ARM::LR);
1803
1804 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1805 // requires stack alignment. We don't know for sure what the stack size
1806 // will be, but for this, an estimate is good enough. If there anything
1807 // changes it, it'll be a spill, which implies we've used all the registers
1808 // and so R4 is already used, so not marking it here will be OK.
1809 // FIXME: It will be better just to find spare register here.
1810 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
1811 MFI.estimateStackSize(MF) > 508)
1812 SavedRegs.set(ARM::R4);
1813 }
1814
1815 // See if we can spill vector registers to aligned stack.
1816 checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1817
1818 // Spill the BasePtr if it's used.
1819 if (RegInfo->hasBasePointer(MF))
1820 SavedRegs.set(RegInfo->getBaseRegister());
1821
1822 // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
1823 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
1824 CanEliminateFrame = false;
1825
1826 // Don't spill FP if the frame can be eliminated. This is determined
1827 // by scanning the callee-save registers to see if any is modified.
1828 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1829 for (unsigned i = 0; CSRegs[i]; ++i) {
1830 unsigned Reg = CSRegs[i];
1831 bool Spilled = false;
1832 if (SavedRegs.test(Reg)) {
1833 Spilled = true;
1834 CanEliminateFrame = false;
1835 }
1836
1837 if (!ARM::GPRRegClass.contains(Reg)) {
1838 if (Spilled) {
1839 if (ARM::SPRRegClass.contains(Reg))
1840 NumFPRSpills++;
1841 else if (ARM::DPRRegClass.contains(Reg))
1842 NumFPRSpills += 2;
1843 else if (ARM::QPRRegClass.contains(Reg))
1844 NumFPRSpills += 4;
1845 }
1846 continue;
1847 }
1848
1849 if (Spilled) {
1850 NumGPRSpills++;
1851
1852 if (!STI.splitFramePushPop(MF)) {
1853 if (Reg == ARM::LR)
1854 LRSpilled = true;
1855 CS1Spilled = true;
1856 continue;
1857 }
1858
1859 // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1860 switch (Reg) {
1861 case ARM::LR:
1862 LRSpilled = true;
1863 LLVM_FALLTHROUGH;
1864 case ARM::R0: case ARM::R1:
1865 case ARM::R2: case ARM::R3:
1866 case ARM::R4: case ARM::R5:
1867 case ARM::R6: case ARM::R7:
1868 CS1Spilled = true;
1869 break;
1870 default:
1871 break;
1872 }
1873 } else {
1874 if (!STI.splitFramePushPop(MF)) {
1875 UnspilledCS1GPRs.push_back(Reg);
1876 continue;
1877 }
1878
1879 switch (Reg) {
1880 case ARM::R0: case ARM::R1:
1881 case ARM::R2: case ARM::R3:
1882 case ARM::R4: case ARM::R5:
1883 case ARM::R6: case ARM::R7:
1884 case ARM::LR:
1885 UnspilledCS1GPRs.push_back(Reg);
1886 break;
1887 default:
1888 UnspilledCS2GPRs.push_back(Reg);
1889 break;
1890 }
1891 }
1892 }
1893
1894 bool ForceLRSpill = false;
1895 if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1896 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
1897 // Force LR to be spilled if the Thumb function size is > 2048. This enables
1898 // use of BL to implement far jump.
1899 if (FnSize >= (1 << 11)) {
1900 CanEliminateFrame = false;
1901 ForceLRSpill = true;
1902 }
1903 }
1904
1905 // If any of the stack slot references may be out of range of an immediate
1906 // offset, make sure a register (or a spill slot) is available for the
1907 // register scavenger. Note that if we're indexing off the frame pointer, the
1908 // effective stack size is 4 bytes larger since the FP points to the stack
1909 // slot of the previous FP. Also, if we have variable sized objects in the
1910 // function, stack slot references will often be negative, and some of
1911 // our instructions are positive-offset only, so conservatively consider
1912 // that case to want a spill slot (or register) as well. Similarly, if
1913 // the function adjusts the stack pointer during execution and the
1914 // adjustments aren't already part of our stack size estimate, our offset
1915 // calculations may be off, so be conservative.
1916 // FIXME: We could add logic to be more precise about negative offsets
1917 // and which instructions will need a scratch register for them. Is it
1918 // worth the effort and added fragility?
1919 unsigned EstimatedStackSize =
1920 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1921
1922 // Determine biggest (positive) SP offset in MachineFrameInfo.
1923 int MaxFixedOffset = 0;
1924 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1925 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1926 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1927 }
1928
1929 bool HasFP = hasFP(MF);
1930 if (HasFP) {
1931 if (AFI->hasStackFrame())
1932 EstimatedStackSize += 4;
1933 } else {
1934 // If FP is not used, SP will be used to access arguments, so count the
1935 // size of arguments into the estimation.
1936 EstimatedStackSize += MaxFixedOffset;
1937 }
1938 EstimatedStackSize += 16; // For possible paddings.
1939
1940 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
1941 bool HasNonSPFrameIndex = false;
1942 if (AFI->isThumb1OnlyFunction()) {
1943 // For Thumb1, don't bother to iterate over the function. The only
1944 // instruction that requires an emergency spill slot is a store to a
1945 // frame index.
1946 //
1947 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
1948 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
1949 // a 5-bit unsigned immediate.
1950 //
1951 // We could try to check if the function actually contains a tSTRspi
1952 // that might need the spill slot, but it's not really important.
1953 // Functions with VLAs or extremely large call frames are rare, and
1954 // if a function is allocating more than 1KB of stack, an extra 4-byte
1955 // slot probably isn't relevant.
1956 if (RegInfo->hasBasePointer(MF))
1957 EstimatedRSStackSizeLimit = (1U << 5) * 4;
1958 else
1959 EstimatedRSStackSizeLimit = (1U << 8) * 4;
1960 EstimatedRSFixedSizeLimit = (1U << 5) * 4;
1961 } else {
1962 EstimatedRSStackSizeLimit =
1963 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
1964 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
1965 }
1966 // Final estimate of whether sp or bp-relative accesses might require
1967 // scavenging.
1968 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
1969
1970 // If the stack pointer moves and we don't have a base pointer, the
1971 // estimate logic doesn't work. The actual offsets might be larger when
1972 // we're constructing a call frame, or we might need to use negative
1973 // offsets from fp.
1974 bool HasMovingSP = MFI.hasVarSizedObjects() ||
1975 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
1976 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
1977
1978 // If we have a frame pointer, we assume arguments will be accessed
1979 // relative to the frame pointer. Check whether fp-relative accesses to
1980 // arguments require scavenging.
1981 //
1982 // We could do slightly better on Thumb1; in some cases, an sp-relative
1983 // offset would be legal even though an fp-relative offset is not.
1984 int MaxFPOffset = getMaxFPOffset(STI, *AFI);
1985 bool HasLargeArgumentList =
1986 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
1987
1988 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
1989 HasLargeArgumentList || HasNonSPFrameIndex;
1990 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
1991 << "; EstimatedStack: " << EstimatedStackSize
1992 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
1993 << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
1994 if (BigFrameOffsets ||
1995 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1996 AFI->setHasStackFrame(true);
1997
1998 if (HasFP) {
1999 SavedRegs.set(FramePtr);
2000 // If the frame pointer is required by the ABI, also spill LR so that we
2001 // emit a complete frame record.
2002 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
2003 SavedRegs.set(ARM::LR);
2004 LRSpilled = true;
2005 NumGPRSpills++;
2006 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2007 if (LRPos != UnspilledCS1GPRs.end())
2008 UnspilledCS1GPRs.erase(LRPos);
2009 }
2010 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2011 if (FPPos != UnspilledCS1GPRs.end())
2012 UnspilledCS1GPRs.erase(FPPos);
2013 NumGPRSpills++;
2014 if (FramePtr == ARM::R7)
2015 CS1Spilled = true;
2016 }
2017
2018 // This is true when we inserted a spill for a callee-save GPR which is
2019 // not otherwise used by the function. This guaranteees it is possible
2020 // to scavenge a register to hold the address of a stack slot. On Thumb1,
2021 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2022 // subtargets, this is any GPR, i.e. r4-r11 or lr.
2023 //
2024 // If we don't insert a spill, we instead allocate an emergency spill
2025 // slot, which can be used by scavenging to spill an arbitrary register.
2026 //
2027 // We currently don't try to figure out whether any specific instruction
2028 // requires scavening an additional register.
2029 bool ExtraCSSpill = false;
2030
2031 if (AFI->isThumb1OnlyFunction()) {
2032 // For Thumb1-only targets, we need some low registers when we save and
2033 // restore the high registers (which aren't allocatable, but could be
2034 // used by inline assembly) because the push/pop instructions can not
2035 // access high registers. If necessary, we might need to push more low
2036 // registers to ensure that there is at least one free that can be used
2037 // for the saving & restoring, and preferably we should ensure that as
2038 // many as are needed are available so that fewer push/pop instructions
2039 // are required.
2040
2041 // Low registers which are not currently pushed, but could be (r4-r7).
2042 SmallVector<unsigned, 4> AvailableRegs;
2043
2044 // Unused argument registers (r0-r3) can be clobbered in the prologue for
2045 // free.
2046 int EntryRegDeficit = 0;
2047 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2048 if (!MF.getRegInfo().isLiveIn(Reg)) {
2049 --EntryRegDeficit;
2050 LLVM_DEBUG(dbgs()
2051 << printReg(Reg, TRI)
2052 << " is unused argument register, EntryRegDeficit = "
2053 << EntryRegDeficit << "\n");
2054 }
2055 }
2056
2057 // Unused return registers can be clobbered in the epilogue for free.
2058 int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2059 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2060 << " return regs used, ExitRegDeficit = "
2061 << ExitRegDeficit << "\n");
2062
2063 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2064 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2065
2066 // r4-r6 can be used in the prologue if they are pushed by the first push
2067 // instruction.
2068 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2069 if (SavedRegs.test(Reg)) {
2070 --RegDeficit;
2071 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2072 << " is saved low register, RegDeficit = "
2073 << RegDeficit << "\n");
2074 } else {
2075 AvailableRegs.push_back(Reg);
2076 LLVM_DEBUG(
2077 dbgs()
2078 << printReg(Reg, TRI)
2079 << " is non-saved low register, adding to AvailableRegs\n");
2080 }
2081 }
2082
2083 // r7 can be used if it is not being used as the frame pointer.
2084 if (!HasFP) {
2085 if (SavedRegs.test(ARM::R7)) {
2086 --RegDeficit;
2087 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2088 << RegDeficit << "\n");
2089 } else {
2090 AvailableRegs.push_back(ARM::R7);
2091 LLVM_DEBUG(
2092 dbgs()
2093 << "%r7 is non-saved low register, adding to AvailableRegs\n");
2094 }
2095 }
2096
2097 // Each of r8-r11 needs to be copied to a low register, then pushed.
2098 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2099 if (SavedRegs.test(Reg)) {
2100 ++RegDeficit;
2101 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2102 << " is saved high register, RegDeficit = "
2103 << RegDeficit << "\n");
2104 }
2105 }
2106
2107 // LR can only be used by PUSH, not POP, and can't be used at all if the
2108 // llvm.returnaddress intrinsic is used. This is only worth doing if we
2109 // are more limited at function entry than exit.
2110 if ((EntryRegDeficit > ExitRegDeficit) &&
2111 !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2112 MF.getFrameInfo().isReturnAddressTaken())) {
2113 if (SavedRegs.test(ARM::LR)) {
2114 --RegDeficit;
2115 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2116 << RegDeficit << "\n");
2117 } else {
2118 AvailableRegs.push_back(ARM::LR);
2119 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2120 }
2121 }
2122
2123 // If there are more high registers that need pushing than low registers
2124 // available, push some more low registers so that we can use fewer push
2125 // instructions. This might not reduce RegDeficit all the way to zero,
2126 // because we can only guarantee that r4-r6 are available, but r8-r11 may
2127 // need saving.
2128 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2129 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2130 unsigned Reg = AvailableRegs.pop_back_val();
2131 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2132 << " to make up reg deficit\n");
2133 SavedRegs.set(Reg);
2134 NumGPRSpills++;
2135 CS1Spilled = true;
2136 assert(!MRI.isReserved(Reg) && "Should not be reserved");
2137 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2138 ExtraCSSpill = true;
2139 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2140 if (Reg == ARM::LR)
2141 LRSpilled = true;
2142 }
2143 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2144 << "\n");
2145 }
2146
2147 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2148 // restore LR in that case.
2149 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2150
2151 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2152 // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2153 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2154 SavedRegs.set(ARM::LR);
2155 NumGPRSpills++;
2156 SmallVectorImpl<unsigned>::iterator LRPos;
2157 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2158 if (LRPos != UnspilledCS1GPRs.end())
2159 UnspilledCS1GPRs.erase(LRPos);
2160
2161 ForceLRSpill = false;
2162 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2163 !AFI->isThumb1OnlyFunction())
2164 ExtraCSSpill = true;
2165 }
2166
2167 // If stack and double are 8-byte aligned and we are spilling an odd number
2168 // of GPRs, spill one extra callee save GPR so we won't have to pad between
2169 // the integer and double callee save areas.
2170 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2171 const Align TargetAlign = getStackAlign();
2172 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2173 if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2174 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2175 unsigned Reg = UnspilledCS1GPRs[i];
2176 // Don't spill high register if the function is thumb. In the case of
2177 // Windows on ARM, accept R11 (frame pointer)
2178 if (!AFI->isThumbFunction() ||
2179 (STI.isTargetWindows() && Reg == ARM::R11) ||
2180 isARMLowRegister(Reg) ||
2181 (Reg == ARM::LR && !ExpensiveLRRestore)) {
2182 SavedRegs.set(Reg);
2183 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2184 << " to make up alignment\n");
2185 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2186 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2187 ExtraCSSpill = true;
2188 break;
2189 }
2190 }
2191 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2192 unsigned Reg = UnspilledCS2GPRs.front();
2193 SavedRegs.set(Reg);
2194 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2195 << " to make up alignment\n");
2196 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2197 ExtraCSSpill = true;
2198 }
2199 }
2200
2201 // Estimate if we might need to scavenge a register at some point in order
2202 // to materialize a stack offset. If so, either spill one additional
2203 // callee-saved register or reserve a special spill slot to facilitate
2204 // register scavenging. Thumb1 needs a spill slot for stack pointer
2205 // adjustments also, even when the frame itself is small.
2206 if (BigFrameOffsets && !ExtraCSSpill) {
2207 // If any non-reserved CS register isn't spilled, just spill one or two
2208 // extra. That should take care of it!
2209 unsigned NumExtras = TargetAlign.value() / 4;
2210 SmallVector<unsigned, 2> Extras;
2211 while (NumExtras && !UnspilledCS1GPRs.empty()) {
2212 unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2213 if (!MRI.isReserved(Reg) &&
2214 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2215 Extras.push_back(Reg);
2216 NumExtras--;
2217 }
2218 }
2219 // For non-Thumb1 functions, also check for hi-reg CS registers
2220 if (!AFI->isThumb1OnlyFunction()) {
2221 while (NumExtras && !UnspilledCS2GPRs.empty()) {
2222 unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2223 if (!MRI.isReserved(Reg)) {
2224 Extras.push_back(Reg);
2225 NumExtras--;
2226 }
2227 }
2228 }
2229 if (NumExtras == 0) {
2230 for (unsigned Reg : Extras) {
2231 SavedRegs.set(Reg);
2232 if (!MRI.isPhysRegUsed(Reg))
2233 ExtraCSSpill = true;
2234 }
2235 }
2236 if (!ExtraCSSpill && RS) {
2237 // Reserve a slot closest to SP or frame pointer.
2238 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2239 const TargetRegisterClass &RC = ARM::GPRRegClass;
2240 unsigned Size = TRI->getSpillSize(RC);
2241 Align Alignment = TRI->getSpillAlign(RC);
2242 RS->addScavengingFrameIndex(
2243 MFI.CreateStackObject(Size, Alignment, false));
2244 }
2245 }
2246 }
2247
2248 if (ForceLRSpill)
2249 SavedRegs.set(ARM::LR);
2250 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2251 }
2252
getCalleeSaves(const MachineFunction & MF,BitVector & SavedRegs) const2253 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2254 BitVector &SavedRegs) const {
2255 TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2256
2257 // If we have the "returned" parameter attribute which guarantees that we
2258 // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2259 // record that fact for IPRA.
2260 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2261 if (AFI->getPreservesR0())
2262 SavedRegs.set(ARM::R0);
2263 }
2264
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const2265 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2266 MachineFunction &MF, const TargetRegisterInfo *TRI,
2267 std::vector<CalleeSavedInfo> &CSI) const {
2268 // For CMSE entry functions, handle floating-point context as if it was a
2269 // callee-saved register.
2270 if (STI.hasV8_1MMainlineOps() &&
2271 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2272 CSI.emplace_back(ARM::FPCXTNS);
2273 CSI.back().setRestored(false);
2274 }
2275
2276 return false;
2277 }
2278
2279 const TargetFrameLowering::SpillSlot *
getCalleeSavedSpillSlots(unsigned & NumEntries) const2280 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2281 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2282 NumEntries = array_lengthof(FixedSpillOffsets);
2283 return FixedSpillOffsets;
2284 }
2285
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2286 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2287 MachineFunction &MF, MachineBasicBlock &MBB,
2288 MachineBasicBlock::iterator I) const {
2289 const ARMBaseInstrInfo &TII =
2290 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2291 if (!hasReservedCallFrame(MF)) {
2292 // If we have alloca, convert as follows:
2293 // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2294 // ADJCALLSTACKUP -> add, sp, sp, amount
2295 MachineInstr &Old = *I;
2296 DebugLoc dl = Old.getDebugLoc();
2297 unsigned Amount = TII.getFrameSize(Old);
2298 if (Amount != 0) {
2299 // We need to keep the stack aligned properly. To do this, we round the
2300 // amount of space needed for the outgoing arguments up to the next
2301 // alignment boundary.
2302 Amount = alignSPAdjust(Amount);
2303
2304 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2305 assert(!AFI->isThumb1OnlyFunction() &&
2306 "This eliminateCallFramePseudoInstr does not support Thumb1!");
2307 bool isARM = !AFI->isThumbFunction();
2308
2309 // Replace the pseudo instruction with a new instruction...
2310 unsigned Opc = Old.getOpcode();
2311 int PIdx = Old.findFirstPredOperandIdx();
2312 ARMCC::CondCodes Pred =
2313 (PIdx == -1) ? ARMCC::AL
2314 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
2315 unsigned PredReg = TII.getFramePred(Old);
2316 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2317 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2318 Pred, PredReg);
2319 } else {
2320 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2321 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2322 Pred, PredReg);
2323 }
2324 }
2325 }
2326 return MBB.erase(I);
2327 }
2328
2329 /// Get the minimum constant for ARM that is greater than or equal to the
2330 /// argument. In ARM, constants can have any value that can be produced by
2331 /// rotating an 8-bit value to the right by an even number of bits within a
2332 /// 32-bit word.
alignToARMConstant(uint32_t Value)2333 static uint32_t alignToARMConstant(uint32_t Value) {
2334 unsigned Shifted = 0;
2335
2336 if (Value == 0)
2337 return 0;
2338
2339 while (!(Value & 0xC0000000)) {
2340 Value = Value << 2;
2341 Shifted += 2;
2342 }
2343
2344 bool Carry = (Value & 0x00FFFFFF);
2345 Value = ((Value & 0xFF000000) >> 24) + Carry;
2346
2347 if (Value & 0x0000100)
2348 Value = Value & 0x000001FC;
2349
2350 if (Shifted > 24)
2351 Value = Value >> (Shifted - 24);
2352 else
2353 Value = Value << (24 - Shifted);
2354
2355 return Value;
2356 }
2357
2358 // The stack limit in the TCB is set to this many bytes above the actual
2359 // stack limit.
2360 static const uint64_t kSplitStackAvailable = 256;
2361
2362 // Adjust the function prologue to enable split stacks. This currently only
2363 // supports android and linux.
2364 //
2365 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2366 // must be well defined in order to allow for consistent implementations of the
2367 // __morestack helper function. The ABI is also not a normal ABI in that it
2368 // doesn't follow the normal calling conventions because this allows the
2369 // prologue of each function to be optimized further.
2370 //
2371 // Currently, the ABI looks like (when calling __morestack)
2372 //
2373 // * r4 holds the minimum stack size requested for this function call
2374 // * r5 holds the stack size of the arguments to the function
2375 // * the beginning of the function is 3 instructions after the call to
2376 // __morestack
2377 //
2378 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2379 // place the arguments on to the new stack, and the 3-instruction knowledge to
2380 // jump directly to the body of the function when working on the new stack.
2381 //
2382 // An old (and possibly no longer compatible) implementation of __morestack for
2383 // ARM can be found at [1].
2384 //
2385 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2386 void ARMFrameLowering::adjustForSegmentedStacks(
2387 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2388 unsigned Opcode;
2389 unsigned CFIIndex;
2390 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2391 bool Thumb = ST->isThumb();
2392
2393 // Sadly, this currently doesn't support varargs, platforms other than
2394 // android/linux. Note that thumb1/thumb2 are support for android/linux.
2395 if (MF.getFunction().isVarArg())
2396 report_fatal_error("Segmented stacks do not support vararg functions.");
2397 if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2398 report_fatal_error("Segmented stacks not supported on this platform.");
2399
2400 MachineFrameInfo &MFI = MF.getFrameInfo();
2401 MachineModuleInfo &MMI = MF.getMMI();
2402 MCContext &Context = MMI.getContext();
2403 const MCRegisterInfo *MRI = Context.getRegisterInfo();
2404 const ARMBaseInstrInfo &TII =
2405 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2406 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2407 DebugLoc DL;
2408
2409 uint64_t StackSize = MFI.getStackSize();
2410
2411 // Do not generate a prologue for leaf functions with a stack of size zero.
2412 // For non-leaf functions we have to allow for the possibility that the
2413 // callis to a non-split function, as in PR37807. This function could also
2414 // take the address of a non-split function. When the linker tries to adjust
2415 // its non-existent prologue, it would fail with an error. Mark the object
2416 // file so that such failures are not errors. See this Go language bug-report
2417 // https://go-review.googlesource.com/c/go/+/148819/
2418 if (StackSize == 0 && !MFI.hasTailCall()) {
2419 MF.getMMI().setHasNosplitStack(true);
2420 return;
2421 }
2422
2423 // Use R4 and R5 as scratch registers.
2424 // We save R4 and R5 before use and restore them before leaving the function.
2425 unsigned ScratchReg0 = ARM::R4;
2426 unsigned ScratchReg1 = ARM::R5;
2427 uint64_t AlignedStackSize;
2428
2429 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2430 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2431 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2432 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2433 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2434
2435 // Grab everything that reaches PrologueMBB to update there liveness as well.
2436 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2437 SmallVector<MachineBasicBlock *, 2> WalkList;
2438 WalkList.push_back(&PrologueMBB);
2439
2440 do {
2441 MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2442 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2443 if (BeforePrologueRegion.insert(PredBB).second)
2444 WalkList.push_back(PredBB);
2445 }
2446 } while (!WalkList.empty());
2447
2448 // The order in that list is important.
2449 // The blocks will all be inserted before PrologueMBB using that order.
2450 // Therefore the block that should appear first in the CFG should appear
2451 // first in the list.
2452 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2453 PostStackMBB};
2454
2455 for (MachineBasicBlock *B : AddedBlocks)
2456 BeforePrologueRegion.insert(B);
2457
2458 for (const auto &LI : PrologueMBB.liveins()) {
2459 for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2460 PredBB->addLiveIn(LI);
2461 }
2462
2463 // Remove the newly added blocks from the list, since we know
2464 // we do not have to do the following updates for them.
2465 for (MachineBasicBlock *B : AddedBlocks) {
2466 BeforePrologueRegion.erase(B);
2467 MF.insert(PrologueMBB.getIterator(), B);
2468 }
2469
2470 for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2471 // Make sure the LiveIns are still sorted and unique.
2472 MBB->sortUniqueLiveIns();
2473 // Replace the edges to PrologueMBB by edges to the sequences
2474 // we are about to add.
2475 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2476 }
2477
2478 // The required stack size that is aligned to ARM constant criterion.
2479 AlignedStackSize = alignToARMConstant(StackSize);
2480
2481 // When the frame size is less than 256 we just compare the stack
2482 // boundary directly to the value of the stack pointer, per gcc.
2483 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2484
2485 // We will use two of the callee save registers as scratch registers so we
2486 // need to save those registers onto the stack.
2487 // We will use SR0 to hold stack limit and SR1 to hold the stack size
2488 // requested and arguments for __morestack().
2489 // SR0: Scratch Register #0
2490 // SR1: Scratch Register #1
2491 // push {SR0, SR1}
2492 if (Thumb) {
2493 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2494 .add(predOps(ARMCC::AL))
2495 .addReg(ScratchReg0)
2496 .addReg(ScratchReg1);
2497 } else {
2498 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2499 .addReg(ARM::SP, RegState::Define)
2500 .addReg(ARM::SP)
2501 .add(predOps(ARMCC::AL))
2502 .addReg(ScratchReg0)
2503 .addReg(ScratchReg1);
2504 }
2505
2506 // Emit the relevant DWARF information about the change in stack pointer as
2507 // well as where to find both r4 and r5 (the callee-save registers)
2508 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2509 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2510 .addCFIIndex(CFIIndex);
2511 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2512 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2513 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2514 .addCFIIndex(CFIIndex);
2515 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2516 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2517 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2518 .addCFIIndex(CFIIndex);
2519
2520 // mov SR1, sp
2521 if (Thumb) {
2522 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2523 .addReg(ARM::SP)
2524 .add(predOps(ARMCC::AL));
2525 } else if (CompareStackPointer) {
2526 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2527 .addReg(ARM::SP)
2528 .add(predOps(ARMCC::AL))
2529 .add(condCodeOp());
2530 }
2531
2532 // sub SR1, sp, #StackSize
2533 if (!CompareStackPointer && Thumb) {
2534 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2535 .add(condCodeOp())
2536 .addReg(ScratchReg1)
2537 .addImm(AlignedStackSize)
2538 .add(predOps(ARMCC::AL));
2539 } else if (!CompareStackPointer) {
2540 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2541 .addReg(ARM::SP)
2542 .addImm(AlignedStackSize)
2543 .add(predOps(ARMCC::AL))
2544 .add(condCodeOp());
2545 }
2546
2547 if (Thumb && ST->isThumb1Only()) {
2548 unsigned PCLabelId = ARMFI->createPICLabelUId();
2549 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2550 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2551 MachineConstantPool *MCP = MF.getConstantPool();
2552 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
2553
2554 // ldr SR0, [pc, offset(STACK_LIMIT)]
2555 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2556 .addConstantPoolIndex(CPI)
2557 .add(predOps(ARMCC::AL));
2558
2559 // ldr SR0, [SR0]
2560 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2561 .addReg(ScratchReg0)
2562 .addImm(0)
2563 .add(predOps(ARMCC::AL));
2564 } else {
2565 // Get TLS base address from the coprocessor
2566 // mrc p15, #0, SR0, c13, c0, #3
2567 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
2568 ScratchReg0)
2569 .addImm(15)
2570 .addImm(0)
2571 .addImm(13)
2572 .addImm(0)
2573 .addImm(3)
2574 .add(predOps(ARMCC::AL));
2575
2576 // Use the last tls slot on android and a private field of the TCP on linux.
2577 assert(ST->isTargetAndroid() || ST->isTargetLinux());
2578 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2579
2580 // Get the stack limit from the right offset
2581 // ldr SR0, [sr0, #4 * TlsOffset]
2582 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
2583 ScratchReg0)
2584 .addReg(ScratchReg0)
2585 .addImm(4 * TlsOffset)
2586 .add(predOps(ARMCC::AL));
2587 }
2588
2589 // Compare stack limit with stack size requested.
2590 // cmp SR0, SR1
2591 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2592 BuildMI(GetMBB, DL, TII.get(Opcode))
2593 .addReg(ScratchReg0)
2594 .addReg(ScratchReg1)
2595 .add(predOps(ARMCC::AL));
2596
2597 // This jump is taken if StackLimit < SP - stack required.
2598 Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2599 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2600 .addImm(ARMCC::LO)
2601 .addReg(ARM::CPSR);
2602
2603
2604 // Calling __morestack(StackSize, Size of stack arguments).
2605 // __morestack knows that the stack size requested is in SR0(r4)
2606 // and amount size of stack arguments is in SR1(r5).
2607
2608 // Pass first argument for the __morestack by Scratch Register #0.
2609 // The amount size of stack required
2610 if (Thumb) {
2611 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2612 .add(condCodeOp())
2613 .addImm(AlignedStackSize)
2614 .add(predOps(ARMCC::AL));
2615 } else {
2616 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2617 .addImm(AlignedStackSize)
2618 .add(predOps(ARMCC::AL))
2619 .add(condCodeOp());
2620 }
2621 // Pass second argument for the __morestack by Scratch Register #1.
2622 // The amount size of stack consumed to save function arguments.
2623 if (Thumb) {
2624 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2625 .add(condCodeOp())
2626 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2627 .add(predOps(ARMCC::AL));
2628 } else {
2629 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2630 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2631 .add(predOps(ARMCC::AL))
2632 .add(condCodeOp());
2633 }
2634
2635 // push {lr} - Save return address of this function.
2636 if (Thumb) {
2637 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2638 .add(predOps(ARMCC::AL))
2639 .addReg(ARM::LR);
2640 } else {
2641 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2642 .addReg(ARM::SP, RegState::Define)
2643 .addReg(ARM::SP)
2644 .add(predOps(ARMCC::AL))
2645 .addReg(ARM::LR);
2646 }
2647
2648 // Emit the DWARF info about the change in stack as well as where to find the
2649 // previous link register
2650 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
2651 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2652 .addCFIIndex(CFIIndex);
2653 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2654 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2655 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2656 .addCFIIndex(CFIIndex);
2657
2658 // Call __morestack().
2659 if (Thumb) {
2660 BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2661 .add(predOps(ARMCC::AL))
2662 .addExternalSymbol("__morestack");
2663 } else {
2664 BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2665 .addExternalSymbol("__morestack");
2666 }
2667
2668 // pop {lr} - Restore return address of this original function.
2669 if (Thumb) {
2670 if (ST->isThumb1Only()) {
2671 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2672 .add(predOps(ARMCC::AL))
2673 .addReg(ScratchReg0);
2674 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2675 .addReg(ScratchReg0)
2676 .add(predOps(ARMCC::AL));
2677 } else {
2678 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2679 .addReg(ARM::LR, RegState::Define)
2680 .addReg(ARM::SP, RegState::Define)
2681 .addReg(ARM::SP)
2682 .addImm(4)
2683 .add(predOps(ARMCC::AL));
2684 }
2685 } else {
2686 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2687 .addReg(ARM::SP, RegState::Define)
2688 .addReg(ARM::SP)
2689 .add(predOps(ARMCC::AL))
2690 .addReg(ARM::LR);
2691 }
2692
2693 // Restore SR0 and SR1 in case of __morestack() was called.
2694 // __morestack() will skip PostStackMBB block so we need to restore
2695 // scratch registers from here.
2696 // pop {SR0, SR1}
2697 if (Thumb) {
2698 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2699 .add(predOps(ARMCC::AL))
2700 .addReg(ScratchReg0)
2701 .addReg(ScratchReg1);
2702 } else {
2703 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2704 .addReg(ARM::SP, RegState::Define)
2705 .addReg(ARM::SP)
2706 .add(predOps(ARMCC::AL))
2707 .addReg(ScratchReg0)
2708 .addReg(ScratchReg1);
2709 }
2710
2711 // Update the CFA offset now that we've popped
2712 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2713 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2714 .addCFIIndex(CFIIndex);
2715
2716 // Return from this function.
2717 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2718
2719 // Restore SR0 and SR1 in case of __morestack() was not called.
2720 // pop {SR0, SR1}
2721 if (Thumb) {
2722 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2723 .add(predOps(ARMCC::AL))
2724 .addReg(ScratchReg0)
2725 .addReg(ScratchReg1);
2726 } else {
2727 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2728 .addReg(ARM::SP, RegState::Define)
2729 .addReg(ARM::SP)
2730 .add(predOps(ARMCC::AL))
2731 .addReg(ScratchReg0)
2732 .addReg(ScratchReg1);
2733 }
2734
2735 // Update the CFA offset now that we've popped
2736 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2737 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2738 .addCFIIndex(CFIIndex);
2739
2740 // Tell debuggers that r4 and r5 are now the same as they were in the
2741 // previous function, that they're the "Same Value".
2742 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2743 nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2744 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2745 .addCFIIndex(CFIIndex);
2746 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2747 nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2748 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2749 .addCFIIndex(CFIIndex);
2750
2751 // Organizing MBB lists
2752 PostStackMBB->addSuccessor(&PrologueMBB);
2753
2754 AllocMBB->addSuccessor(PostStackMBB);
2755
2756 GetMBB->addSuccessor(PostStackMBB);
2757 GetMBB->addSuccessor(AllocMBB);
2758
2759 McrMBB->addSuccessor(GetMBB);
2760
2761 PrevStackMBB->addSuccessor(McrMBB);
2762
2763 #ifdef EXPENSIVE_CHECKS
2764 MF.verify();
2765 #endif
2766 }
2767