1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "ARMFeatures.h"
10 #include "ARMBaseInstrInfo.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMInstPrinter.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "TargetInfo/ARMTargetInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/ARMEHABI.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/SMLoc.h"
55 #include "llvm/Support/TargetParser.h"
56 #include "llvm/Support/TargetRegistry.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <utility>
67 #include <vector>
68
69 #define DEBUG_TYPE "asm-parser"
70
71 using namespace llvm;
72
73 namespace llvm {
74 extern const MCInstrDesc ARMInsts[];
75 } // end namespace llvm
76
77 namespace {
78
79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
80
81 static cl::opt<ImplicitItModeTy> ImplicitItMode(
82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
83 cl::desc("Allow conditional instructions outdside of an IT block"),
84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
85 "Accept in both ISAs, emit implicit ITs in Thumb"),
86 clEnumValN(ImplicitItModeTy::Never, "never",
87 "Warn in ARM, reject in Thumb"),
88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
89 "Accept in ARM, reject in Thumb"),
90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
91 "Warn in ARM, emit implicit ITs in Thumb")));
92
93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
94 cl::init(false));
95
96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
97
extractITMaskBit(unsigned Mask,unsigned Position)98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
99 // Position==0 means we're not in an IT block at all. Position==1
100 // means we want the first state bit, which is always 0 (Then).
101 // Position==2 means we want the second state bit, stored at bit 3
102 // of Mask, and so on downwards. So (5 - Position) will shift the
103 // right bit down to bit 0, including the always-0 bit at bit 4 for
104 // the mandatory initial Then.
105 return (Mask >> (5 - Position) & 1);
106 }
107
108 class UnwindContext {
109 using Locs = SmallVector<SMLoc, 4>;
110
111 MCAsmParser &Parser;
112 Locs FnStartLocs;
113 Locs CantUnwindLocs;
114 Locs PersonalityLocs;
115 Locs PersonalityIndexLocs;
116 Locs HandlerDataLocs;
117 int FPReg;
118
119 public:
UnwindContext(MCAsmParser & P)120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
121
hasFnStart() const122 bool hasFnStart() const { return !FnStartLocs.empty(); }
cantUnwind() const123 bool cantUnwind() const { return !CantUnwindLocs.empty(); }
hasHandlerData() const124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
125
hasPersonality() const126 bool hasPersonality() const {
127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
128 }
129
recordFnStart(SMLoc L)130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
recordCantUnwind(SMLoc L)131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
recordPersonality(SMLoc L)132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
recordHandlerData(SMLoc L)133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
recordPersonalityIndex(SMLoc L)134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
135
saveFPReg(int Reg)136 void saveFPReg(int Reg) { FPReg = Reg; }
getFPReg() const137 int getFPReg() const { return FPReg; }
138
emitFnStartLocNotes() const139 void emitFnStartLocNotes() const {
140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
141 FI != FE; ++FI)
142 Parser.Note(*FI, ".fnstart was specified here");
143 }
144
emitCantUnwindLocNotes() const145 void emitCantUnwindLocNotes() const {
146 for (Locs::const_iterator UI = CantUnwindLocs.begin(),
147 UE = CantUnwindLocs.end(); UI != UE; ++UI)
148 Parser.Note(*UI, ".cantunwind was specified here");
149 }
150
emitHandlerDataLocNotes() const151 void emitHandlerDataLocNotes() const {
152 for (Locs::const_iterator HI = HandlerDataLocs.begin(),
153 HE = HandlerDataLocs.end(); HI != HE; ++HI)
154 Parser.Note(*HI, ".handlerdata was specified here");
155 }
156
emitPersonalityLocNotes() const157 void emitPersonalityLocNotes() const {
158 for (Locs::const_iterator PI = PersonalityLocs.begin(),
159 PE = PersonalityLocs.end(),
160 PII = PersonalityIndexLocs.begin(),
161 PIE = PersonalityIndexLocs.end();
162 PI != PE || PII != PIE;) {
163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
164 Parser.Note(*PI++, ".personality was specified here");
165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
166 Parser.Note(*PII++, ".personalityindex was specified here");
167 else
168 llvm_unreachable(".personality and .personalityindex cannot be "
169 "at the same location");
170 }
171 }
172
reset()173 void reset() {
174 FnStartLocs = Locs();
175 CantUnwindLocs = Locs();
176 PersonalityLocs = Locs();
177 HandlerDataLocs = Locs();
178 PersonalityIndexLocs = Locs();
179 FPReg = ARM::SP;
180 }
181 };
182
183 // Various sets of ARM instruction mnemonics which are used by the asm parser
184 class ARMMnemonicSets {
185 StringSet<> CDE;
186 StringSet<> CDEWithVPTSuffix;
187 public:
188 ARMMnemonicSets(const MCSubtargetInfo &STI);
189
190 /// Returns true iff a given mnemonic is a CDE instruction
isCDEInstr(StringRef Mnemonic)191 bool isCDEInstr(StringRef Mnemonic) {
192 // Quick check before searching the set
193 if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx"))
194 return false;
195 return CDE.count(Mnemonic);
196 }
197
198 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction
199 /// (possibly with a predication suffix "e" or "t")
isVPTPredicableCDEInstr(StringRef Mnemonic)200 bool isVPTPredicableCDEInstr(StringRef Mnemonic) {
201 if (!Mnemonic.startswith("vcx"))
202 return false;
203 return CDEWithVPTSuffix.count(Mnemonic);
204 }
205
206 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction
207 /// (possibly with a condition suffix)
isITPredicableCDEInstr(StringRef Mnemonic)208 bool isITPredicableCDEInstr(StringRef Mnemonic) {
209 if (!Mnemonic.startswith("cx"))
210 return false;
211 return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") ||
212 Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") ||
213 Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da");
214 }
215
216 /// Return true iff a given mnemonic is an integer CDE instruction with
217 /// dual-register destination
isCDEDualRegInstr(StringRef Mnemonic)218 bool isCDEDualRegInstr(StringRef Mnemonic) {
219 if (!Mnemonic.startswith("cx"))
220 return false;
221 return Mnemonic == "cx1d" || Mnemonic == "cx1da" ||
222 Mnemonic == "cx2d" || Mnemonic == "cx2da" ||
223 Mnemonic == "cx3d" || Mnemonic == "cx3da";
224 }
225 };
226
ARMMnemonicSets(const MCSubtargetInfo & STI)227 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) {
228 for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da",
229 "cx2", "cx2a", "cx2d", "cx2da",
230 "cx3", "cx3a", "cx3d", "cx3da", })
231 CDE.insert(Mnemonic);
232 for (StringRef Mnemonic :
233 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) {
234 CDE.insert(Mnemonic);
235 CDEWithVPTSuffix.insert(Mnemonic);
236 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t");
237 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e");
238 }
239 }
240
241 class ARMAsmParser : public MCTargetAsmParser {
242 const MCRegisterInfo *MRI;
243 UnwindContext UC;
244 ARMMnemonicSets MS;
245
getTargetStreamer()246 ARMTargetStreamer &getTargetStreamer() {
247 assert(getParser().getStreamer().getTargetStreamer() &&
248 "do not have a target streamer");
249 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
250 return static_cast<ARMTargetStreamer &>(TS);
251 }
252
253 // Map of register aliases registers via the .req directive.
254 StringMap<unsigned> RegisterReqs;
255
256 bool NextSymbolIsThumb;
257
useImplicitITThumb() const258 bool useImplicitITThumb() const {
259 return ImplicitItMode == ImplicitItModeTy::Always ||
260 ImplicitItMode == ImplicitItModeTy::ThumbOnly;
261 }
262
useImplicitITARM() const263 bool useImplicitITARM() const {
264 return ImplicitItMode == ImplicitItModeTy::Always ||
265 ImplicitItMode == ImplicitItModeTy::ARMOnly;
266 }
267
268 struct {
269 ARMCC::CondCodes Cond; // Condition for IT block.
270 unsigned Mask:4; // Condition mask for instructions.
271 // Starting at first 1 (from lsb).
272 // '1' condition as indicated in IT.
273 // '0' inverse of condition (else).
274 // Count of instructions in IT block is
275 // 4 - trailingzeroes(mask)
276 // Note that this does not have the same encoding
277 // as in the IT instruction, which also depends
278 // on the low bit of the condition code.
279
280 unsigned CurPosition; // Current position in parsing of IT
281 // block. In range [0,4], with 0 being the IT
282 // instruction itself. Initialized according to
283 // count of instructions in block. ~0U if no
284 // active IT block.
285
286 bool IsExplicit; // true - The IT instruction was present in the
287 // input, we should not modify it.
288 // false - The IT instruction was added
289 // implicitly, we can extend it if that
290 // would be legal.
291 } ITState;
292
293 SmallVector<MCInst, 4> PendingConditionalInsts;
294
flushPendingInstructions(MCStreamer & Out)295 void flushPendingInstructions(MCStreamer &Out) override {
296 if (!inImplicitITBlock()) {
297 assert(PendingConditionalInsts.size() == 0);
298 return;
299 }
300
301 // Emit the IT instruction
302 MCInst ITInst;
303 ITInst.setOpcode(ARM::t2IT);
304 ITInst.addOperand(MCOperand::createImm(ITState.Cond));
305 ITInst.addOperand(MCOperand::createImm(ITState.Mask));
306 Out.emitInstruction(ITInst, getSTI());
307
308 // Emit the conditonal instructions
309 assert(PendingConditionalInsts.size() <= 4);
310 for (const MCInst &Inst : PendingConditionalInsts) {
311 Out.emitInstruction(Inst, getSTI());
312 }
313 PendingConditionalInsts.clear();
314
315 // Clear the IT state
316 ITState.Mask = 0;
317 ITState.CurPosition = ~0U;
318 }
319
inITBlock()320 bool inITBlock() { return ITState.CurPosition != ~0U; }
inExplicitITBlock()321 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
inImplicitITBlock()322 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
323
lastInITBlock()324 bool lastInITBlock() {
325 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
326 }
327
forwardITPosition()328 void forwardITPosition() {
329 if (!inITBlock()) return;
330 // Move to the next instruction in the IT block, if there is one. If not,
331 // mark the block as done, except for implicit IT blocks, which we leave
332 // open until we find an instruction that can't be added to it.
333 unsigned TZ = countTrailingZeros(ITState.Mask);
334 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
335 ITState.CurPosition = ~0U; // Done with the IT block after this.
336 }
337
338 // Rewind the state of the current IT block, removing the last slot from it.
rewindImplicitITPosition()339 void rewindImplicitITPosition() {
340 assert(inImplicitITBlock());
341 assert(ITState.CurPosition > 1);
342 ITState.CurPosition--;
343 unsigned TZ = countTrailingZeros(ITState.Mask);
344 unsigned NewMask = 0;
345 NewMask |= ITState.Mask & (0xC << TZ);
346 NewMask |= 0x2 << TZ;
347 ITState.Mask = NewMask;
348 }
349
350 // Rewind the state of the current IT block, removing the last slot from it.
351 // If we were at the first slot, this closes the IT block.
discardImplicitITBlock()352 void discardImplicitITBlock() {
353 assert(inImplicitITBlock());
354 assert(ITState.CurPosition == 1);
355 ITState.CurPosition = ~0U;
356 }
357
358 // Return the low-subreg of a given Q register.
getDRegFromQReg(unsigned QReg) const359 unsigned getDRegFromQReg(unsigned QReg) const {
360 return MRI->getSubReg(QReg, ARM::dsub_0);
361 }
362
363 // Get the condition code corresponding to the current IT block slot.
currentITCond()364 ARMCC::CondCodes currentITCond() {
365 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
366 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
367 }
368
369 // Invert the condition of the current IT block slot without changing any
370 // other slots in the same block.
invertCurrentITCondition()371 void invertCurrentITCondition() {
372 if (ITState.CurPosition == 1) {
373 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
374 } else {
375 ITState.Mask ^= 1 << (5 - ITState.CurPosition);
376 }
377 }
378
379 // Returns true if the current IT block is full (all 4 slots used).
isITBlockFull()380 bool isITBlockFull() {
381 return inITBlock() && (ITState.Mask & 1);
382 }
383
384 // Extend the current implicit IT block to have one more slot with the given
385 // condition code.
extendImplicitITBlock(ARMCC::CondCodes Cond)386 void extendImplicitITBlock(ARMCC::CondCodes Cond) {
387 assert(inImplicitITBlock());
388 assert(!isITBlockFull());
389 assert(Cond == ITState.Cond ||
390 Cond == ARMCC::getOppositeCondition(ITState.Cond));
391 unsigned TZ = countTrailingZeros(ITState.Mask);
392 unsigned NewMask = 0;
393 // Keep any existing condition bits.
394 NewMask |= ITState.Mask & (0xE << TZ);
395 // Insert the new condition bit.
396 NewMask |= (Cond != ITState.Cond) << TZ;
397 // Move the trailing 1 down one bit.
398 NewMask |= 1 << (TZ - 1);
399 ITState.Mask = NewMask;
400 }
401
402 // Create a new implicit IT block with a dummy condition code.
startImplicitITBlock()403 void startImplicitITBlock() {
404 assert(!inITBlock());
405 ITState.Cond = ARMCC::AL;
406 ITState.Mask = 8;
407 ITState.CurPosition = 1;
408 ITState.IsExplicit = false;
409 }
410
411 // Create a new explicit IT block with the given condition and mask.
412 // The mask should be in the format used in ARMOperand and
413 // MCOperand, with a 1 implying 'e', regardless of the low bit of
414 // the condition.
startExplicitITBlock(ARMCC::CondCodes Cond,unsigned Mask)415 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
416 assert(!inITBlock());
417 ITState.Cond = Cond;
418 ITState.Mask = Mask;
419 ITState.CurPosition = 0;
420 ITState.IsExplicit = true;
421 }
422
423 struct {
424 unsigned Mask : 4;
425 unsigned CurPosition;
426 } VPTState;
inVPTBlock()427 bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
forwardVPTPosition()428 void forwardVPTPosition() {
429 if (!inVPTBlock()) return;
430 unsigned TZ = countTrailingZeros(VPTState.Mask);
431 if (++VPTState.CurPosition == 5 - TZ)
432 VPTState.CurPosition = ~0U;
433 }
434
Note(SMLoc L,const Twine & Msg,SMRange Range=None)435 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
436 return getParser().Note(L, Msg, Range);
437 }
438
Warning(SMLoc L,const Twine & Msg,SMRange Range=None)439 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
440 return getParser().Warning(L, Msg, Range);
441 }
442
Error(SMLoc L,const Twine & Msg,SMRange Range=None)443 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
444 return getParser().Error(L, Msg, Range);
445 }
446
447 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
448 unsigned ListNo, bool IsARPop = false);
449 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
450 unsigned ListNo);
451
452 int tryParseRegister();
453 bool tryParseRegisterWithWriteBack(OperandVector &);
454 int tryParseShiftRegister(OperandVector &);
455 bool parseRegisterList(OperandVector &, bool EnforceOrder = true);
456 bool parseMemory(OperandVector &);
457 bool parseOperand(OperandVector &, StringRef Mnemonic);
458 bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
459 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
460 unsigned &ShiftAmount);
461 bool parseLiteralValues(unsigned Size, SMLoc L);
462 bool parseDirectiveThumb(SMLoc L);
463 bool parseDirectiveARM(SMLoc L);
464 bool parseDirectiveThumbFunc(SMLoc L);
465 bool parseDirectiveCode(SMLoc L);
466 bool parseDirectiveSyntax(SMLoc L);
467 bool parseDirectiveReq(StringRef Name, SMLoc L);
468 bool parseDirectiveUnreq(SMLoc L);
469 bool parseDirectiveArch(SMLoc L);
470 bool parseDirectiveEabiAttr(SMLoc L);
471 bool parseDirectiveCPU(SMLoc L);
472 bool parseDirectiveFPU(SMLoc L);
473 bool parseDirectiveFnStart(SMLoc L);
474 bool parseDirectiveFnEnd(SMLoc L);
475 bool parseDirectiveCantUnwind(SMLoc L);
476 bool parseDirectivePersonality(SMLoc L);
477 bool parseDirectiveHandlerData(SMLoc L);
478 bool parseDirectiveSetFP(SMLoc L);
479 bool parseDirectivePad(SMLoc L);
480 bool parseDirectiveRegSave(SMLoc L, bool IsVector);
481 bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
482 bool parseDirectiveLtorg(SMLoc L);
483 bool parseDirectiveEven(SMLoc L);
484 bool parseDirectivePersonalityIndex(SMLoc L);
485 bool parseDirectiveUnwindRaw(SMLoc L);
486 bool parseDirectiveTLSDescSeq(SMLoc L);
487 bool parseDirectiveMovSP(SMLoc L);
488 bool parseDirectiveObjectArch(SMLoc L);
489 bool parseDirectiveArchExtension(SMLoc L);
490 bool parseDirectiveAlign(SMLoc L);
491 bool parseDirectiveThumbSet(SMLoc L);
492
493 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
494 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
495 unsigned &PredicationCode,
496 unsigned &VPTPredicationCode, bool &CarrySetting,
497 unsigned &ProcessorIMod, StringRef &ITMask);
498 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
499 StringRef FullInst, bool &CanAcceptCarrySet,
500 bool &CanAcceptPredicationCode,
501 bool &CanAcceptVPTPredicationCode);
502 bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc);
503
504 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
505 OperandVector &Operands);
506 bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands);
507
isThumb() const508 bool isThumb() const {
509 // FIXME: Can tablegen auto-generate this?
510 return getSTI().getFeatureBits()[ARM::ModeThumb];
511 }
512
isThumbOne() const513 bool isThumbOne() const {
514 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
515 }
516
isThumbTwo() const517 bool isThumbTwo() const {
518 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
519 }
520
hasThumb() const521 bool hasThumb() const {
522 return getSTI().getFeatureBits()[ARM::HasV4TOps];
523 }
524
hasThumb2() const525 bool hasThumb2() const {
526 return getSTI().getFeatureBits()[ARM::FeatureThumb2];
527 }
528
hasV6Ops() const529 bool hasV6Ops() const {
530 return getSTI().getFeatureBits()[ARM::HasV6Ops];
531 }
532
hasV6T2Ops() const533 bool hasV6T2Ops() const {
534 return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
535 }
536
hasV6MOps() const537 bool hasV6MOps() const {
538 return getSTI().getFeatureBits()[ARM::HasV6MOps];
539 }
540
hasV7Ops() const541 bool hasV7Ops() const {
542 return getSTI().getFeatureBits()[ARM::HasV7Ops];
543 }
544
hasV8Ops() const545 bool hasV8Ops() const {
546 return getSTI().getFeatureBits()[ARM::HasV8Ops];
547 }
548
hasV8MBaseline() const549 bool hasV8MBaseline() const {
550 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
551 }
552
hasV8MMainline() const553 bool hasV8MMainline() const {
554 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
555 }
hasV8_1MMainline() const556 bool hasV8_1MMainline() const {
557 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
558 }
hasMVE() const559 bool hasMVE() const {
560 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
561 }
hasMVEFloat() const562 bool hasMVEFloat() const {
563 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
564 }
hasCDE() const565 bool hasCDE() const {
566 return getSTI().getFeatureBits()[ARM::HasCDEOps];
567 }
has8MSecExt() const568 bool has8MSecExt() const {
569 return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
570 }
571
hasARM() const572 bool hasARM() const {
573 return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
574 }
575
hasDSP() const576 bool hasDSP() const {
577 return getSTI().getFeatureBits()[ARM::FeatureDSP];
578 }
579
hasD32() const580 bool hasD32() const {
581 return getSTI().getFeatureBits()[ARM::FeatureD32];
582 }
583
hasV8_1aOps() const584 bool hasV8_1aOps() const {
585 return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
586 }
587
hasRAS() const588 bool hasRAS() const {
589 return getSTI().getFeatureBits()[ARM::FeatureRAS];
590 }
591
SwitchMode()592 void SwitchMode() {
593 MCSubtargetInfo &STI = copySTI();
594 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
595 setAvailableFeatures(FB);
596 }
597
598 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
599
isMClass() const600 bool isMClass() const {
601 return getSTI().getFeatureBits()[ARM::FeatureMClass];
602 }
603
604 /// @name Auto-generated Match Functions
605 /// {
606
607 #define GET_ASSEMBLER_HEADER
608 #include "ARMGenAsmMatcher.inc"
609
610 /// }
611
612 OperandMatchResultTy parseITCondCode(OperandVector &);
613 OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
614 OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
615 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
616 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
617 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
618 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
619 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
620 OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
621 OperandMatchResultTy parseBankedRegOperand(OperandVector &);
622 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
623 int High);
parsePKHLSLImm(OperandVector & O)624 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
625 return parsePKHImm(O, "lsl", 0, 31);
626 }
parsePKHASRImm(OperandVector & O)627 OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
628 return parsePKHImm(O, "asr", 1, 32);
629 }
630 OperandMatchResultTy parseSetEndImm(OperandVector &);
631 OperandMatchResultTy parseShifterImm(OperandVector &);
632 OperandMatchResultTy parseRotImm(OperandVector &);
633 OperandMatchResultTy parseModImm(OperandVector &);
634 OperandMatchResultTy parseBitfield(OperandVector &);
635 OperandMatchResultTy parsePostIdxReg(OperandVector &);
636 OperandMatchResultTy parseAM3Offset(OperandVector &);
637 OperandMatchResultTy parseFPImm(OperandVector &);
638 OperandMatchResultTy parseVectorList(OperandVector &);
639 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
640 SMLoc &EndLoc);
641
642 // Asm Match Converter Methods
643 void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
644 void cvtThumbBranches(MCInst &Inst, const OperandVector &);
645 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
646
647 bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
648 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
649 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
650 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
651 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
652 bool isITBlockTerminator(MCInst &Inst) const;
653 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
654 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
655 bool Load, bool ARMMode, bool Writeback);
656
657 public:
658 enum ARMMatchResultTy {
659 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
660 Match_RequiresNotITBlock,
661 Match_RequiresV6,
662 Match_RequiresThumb2,
663 Match_RequiresV8,
664 Match_RequiresFlagSetting,
665 #define GET_OPERAND_DIAGNOSTIC_TYPES
666 #include "ARMGenAsmMatcher.inc"
667
668 };
669
ARMAsmParser(const MCSubtargetInfo & STI,MCAsmParser & Parser,const MCInstrInfo & MII,const MCTargetOptions & Options)670 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
671 const MCInstrInfo &MII, const MCTargetOptions &Options)
672 : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) {
673 MCAsmParserExtension::Initialize(Parser);
674
675 // Cache the MCRegisterInfo.
676 MRI = getContext().getRegisterInfo();
677
678 // Initialize the set of available features.
679 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
680
681 // Add build attributes based on the selected target.
682 if (AddBuildAttributes)
683 getTargetStreamer().emitTargetAttributes(STI);
684
685 // Not in an ITBlock to start with.
686 ITState.CurPosition = ~0U;
687
688 VPTState.CurPosition = ~0U;
689
690 NextSymbolIsThumb = false;
691 }
692
693 // Implementation of the MCTargetAsmParser interface:
694 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
695 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
696 SMLoc &EndLoc) override;
697 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
698 SMLoc NameLoc, OperandVector &Operands) override;
699 bool ParseDirective(AsmToken DirectiveID) override;
700
701 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
702 unsigned Kind) override;
703 unsigned checkTargetMatchPredicate(MCInst &Inst) override;
704
705 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
706 OperandVector &Operands, MCStreamer &Out,
707 uint64_t &ErrorInfo,
708 bool MatchingInlineAsm) override;
709 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
710 SmallVectorImpl<NearMissInfo> &NearMisses,
711 bool MatchingInlineAsm, bool &EmitInITBlock,
712 MCStreamer &Out);
713
714 struct NearMissMessage {
715 SMLoc Loc;
716 SmallString<128> Message;
717 };
718
719 const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
720
721 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
722 SmallVectorImpl<NearMissMessage> &NearMissesOut,
723 SMLoc IDLoc, OperandVector &Operands);
724 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
725 OperandVector &Operands);
726
727 void doBeforeLabelEmit(MCSymbol *Symbol) override;
728
729 void onLabelParsed(MCSymbol *Symbol) override;
730 };
731
732 /// ARMOperand - Instances of this class represent a parsed ARM machine
733 /// operand.
734 class ARMOperand : public MCParsedAsmOperand {
735 enum KindTy {
736 k_CondCode,
737 k_VPTPred,
738 k_CCOut,
739 k_ITCondMask,
740 k_CoprocNum,
741 k_CoprocReg,
742 k_CoprocOption,
743 k_Immediate,
744 k_MemBarrierOpt,
745 k_InstSyncBarrierOpt,
746 k_TraceSyncBarrierOpt,
747 k_Memory,
748 k_PostIndexRegister,
749 k_MSRMask,
750 k_BankedReg,
751 k_ProcIFlags,
752 k_VectorIndex,
753 k_Register,
754 k_RegisterList,
755 k_RegisterListWithAPSR,
756 k_DPRRegisterList,
757 k_SPRRegisterList,
758 k_FPSRegisterListWithVPR,
759 k_FPDRegisterListWithVPR,
760 k_VectorList,
761 k_VectorListAllLanes,
762 k_VectorListIndexed,
763 k_ShiftedRegister,
764 k_ShiftedImmediate,
765 k_ShifterImmediate,
766 k_RotateImmediate,
767 k_ModifiedImmediate,
768 k_ConstantPoolImmediate,
769 k_BitfieldDescriptor,
770 k_Token,
771 } Kind;
772
773 SMLoc StartLoc, EndLoc, AlignmentLoc;
774 SmallVector<unsigned, 8> Registers;
775
776 struct CCOp {
777 ARMCC::CondCodes Val;
778 };
779
780 struct VCCOp {
781 ARMVCC::VPTCodes Val;
782 };
783
784 struct CopOp {
785 unsigned Val;
786 };
787
788 struct CoprocOptionOp {
789 unsigned Val;
790 };
791
792 struct ITMaskOp {
793 unsigned Mask:4;
794 };
795
796 struct MBOptOp {
797 ARM_MB::MemBOpt Val;
798 };
799
800 struct ISBOptOp {
801 ARM_ISB::InstSyncBOpt Val;
802 };
803
804 struct TSBOptOp {
805 ARM_TSB::TraceSyncBOpt Val;
806 };
807
808 struct IFlagsOp {
809 ARM_PROC::IFlags Val;
810 };
811
812 struct MMaskOp {
813 unsigned Val;
814 };
815
816 struct BankedRegOp {
817 unsigned Val;
818 };
819
820 struct TokOp {
821 const char *Data;
822 unsigned Length;
823 };
824
825 struct RegOp {
826 unsigned RegNum;
827 };
828
829 // A vector register list is a sequential list of 1 to 4 registers.
830 struct VectorListOp {
831 unsigned RegNum;
832 unsigned Count;
833 unsigned LaneIndex;
834 bool isDoubleSpaced;
835 };
836
837 struct VectorIndexOp {
838 unsigned Val;
839 };
840
841 struct ImmOp {
842 const MCExpr *Val;
843 };
844
845 /// Combined record for all forms of ARM address expressions.
846 struct MemoryOp {
847 unsigned BaseRegNum;
848 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
849 // was specified.
850 const MCExpr *OffsetImm; // Offset immediate value
851 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
852 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
853 unsigned ShiftImm; // shift for OffsetReg.
854 unsigned Alignment; // 0 = no alignment specified
855 // n = alignment in bytes (2, 4, 8, 16, or 32)
856 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
857 };
858
859 struct PostIdxRegOp {
860 unsigned RegNum;
861 bool isAdd;
862 ARM_AM::ShiftOpc ShiftTy;
863 unsigned ShiftImm;
864 };
865
866 struct ShifterImmOp {
867 bool isASR;
868 unsigned Imm;
869 };
870
871 struct RegShiftedRegOp {
872 ARM_AM::ShiftOpc ShiftTy;
873 unsigned SrcReg;
874 unsigned ShiftReg;
875 unsigned ShiftImm;
876 };
877
878 struct RegShiftedImmOp {
879 ARM_AM::ShiftOpc ShiftTy;
880 unsigned SrcReg;
881 unsigned ShiftImm;
882 };
883
884 struct RotImmOp {
885 unsigned Imm;
886 };
887
888 struct ModImmOp {
889 unsigned Bits;
890 unsigned Rot;
891 };
892
893 struct BitfieldOp {
894 unsigned LSB;
895 unsigned Width;
896 };
897
898 union {
899 struct CCOp CC;
900 struct VCCOp VCC;
901 struct CopOp Cop;
902 struct CoprocOptionOp CoprocOption;
903 struct MBOptOp MBOpt;
904 struct ISBOptOp ISBOpt;
905 struct TSBOptOp TSBOpt;
906 struct ITMaskOp ITMask;
907 struct IFlagsOp IFlags;
908 struct MMaskOp MMask;
909 struct BankedRegOp BankedReg;
910 struct TokOp Tok;
911 struct RegOp Reg;
912 struct VectorListOp VectorList;
913 struct VectorIndexOp VectorIndex;
914 struct ImmOp Imm;
915 struct MemoryOp Memory;
916 struct PostIdxRegOp PostIdxReg;
917 struct ShifterImmOp ShifterImm;
918 struct RegShiftedRegOp RegShiftedReg;
919 struct RegShiftedImmOp RegShiftedImm;
920 struct RotImmOp RotImm;
921 struct ModImmOp ModImm;
922 struct BitfieldOp Bitfield;
923 };
924
925 public:
ARMOperand(KindTy K)926 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
927
928 /// getStartLoc - Get the location of the first token of this operand.
getStartLoc() const929 SMLoc getStartLoc() const override { return StartLoc; }
930
931 /// getEndLoc - Get the location of the last token of this operand.
getEndLoc() const932 SMLoc getEndLoc() const override { return EndLoc; }
933
934 /// getLocRange - Get the range between the first and last token of this
935 /// operand.
getLocRange() const936 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
937
938 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
getAlignmentLoc() const939 SMLoc getAlignmentLoc() const {
940 assert(Kind == k_Memory && "Invalid access!");
941 return AlignmentLoc;
942 }
943
getCondCode() const944 ARMCC::CondCodes getCondCode() const {
945 assert(Kind == k_CondCode && "Invalid access!");
946 return CC.Val;
947 }
948
getVPTPred() const949 ARMVCC::VPTCodes getVPTPred() const {
950 assert(isVPTPred() && "Invalid access!");
951 return VCC.Val;
952 }
953
getCoproc() const954 unsigned getCoproc() const {
955 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
956 return Cop.Val;
957 }
958
getToken() const959 StringRef getToken() const {
960 assert(Kind == k_Token && "Invalid access!");
961 return StringRef(Tok.Data, Tok.Length);
962 }
963
getReg() const964 unsigned getReg() const override {
965 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
966 return Reg.RegNum;
967 }
968
getRegList() const969 const SmallVectorImpl<unsigned> &getRegList() const {
970 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
971 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
972 Kind == k_FPSRegisterListWithVPR ||
973 Kind == k_FPDRegisterListWithVPR) &&
974 "Invalid access!");
975 return Registers;
976 }
977
getImm() const978 const MCExpr *getImm() const {
979 assert(isImm() && "Invalid access!");
980 return Imm.Val;
981 }
982
getConstantPoolImm() const983 const MCExpr *getConstantPoolImm() const {
984 assert(isConstantPoolImm() && "Invalid access!");
985 return Imm.Val;
986 }
987
getVectorIndex() const988 unsigned getVectorIndex() const {
989 assert(Kind == k_VectorIndex && "Invalid access!");
990 return VectorIndex.Val;
991 }
992
getMemBarrierOpt() const993 ARM_MB::MemBOpt getMemBarrierOpt() const {
994 assert(Kind == k_MemBarrierOpt && "Invalid access!");
995 return MBOpt.Val;
996 }
997
getInstSyncBarrierOpt() const998 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
999 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
1000 return ISBOpt.Val;
1001 }
1002
getTraceSyncBarrierOpt() const1003 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
1004 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
1005 return TSBOpt.Val;
1006 }
1007
getProcIFlags() const1008 ARM_PROC::IFlags getProcIFlags() const {
1009 assert(Kind == k_ProcIFlags && "Invalid access!");
1010 return IFlags.Val;
1011 }
1012
getMSRMask() const1013 unsigned getMSRMask() const {
1014 assert(Kind == k_MSRMask && "Invalid access!");
1015 return MMask.Val;
1016 }
1017
getBankedReg() const1018 unsigned getBankedReg() const {
1019 assert(Kind == k_BankedReg && "Invalid access!");
1020 return BankedReg.Val;
1021 }
1022
isCoprocNum() const1023 bool isCoprocNum() const { return Kind == k_CoprocNum; }
isCoprocReg() const1024 bool isCoprocReg() const { return Kind == k_CoprocReg; }
isCoprocOption() const1025 bool isCoprocOption() const { return Kind == k_CoprocOption; }
isCondCode() const1026 bool isCondCode() const { return Kind == k_CondCode; }
isVPTPred() const1027 bool isVPTPred() const { return Kind == k_VPTPred; }
isCCOut() const1028 bool isCCOut() const { return Kind == k_CCOut; }
isITMask() const1029 bool isITMask() const { return Kind == k_ITCondMask; }
isITCondCode() const1030 bool isITCondCode() const { return Kind == k_CondCode; }
isImm() const1031 bool isImm() const override {
1032 return Kind == k_Immediate;
1033 }
1034
isARMBranchTarget() const1035 bool isARMBranchTarget() const {
1036 if (!isImm()) return false;
1037
1038 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1039 return CE->getValue() % 4 == 0;
1040 return true;
1041 }
1042
1043
isThumbBranchTarget() const1044 bool isThumbBranchTarget() const {
1045 if (!isImm()) return false;
1046
1047 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1048 return CE->getValue() % 2 == 0;
1049 return true;
1050 }
1051
1052 // checks whether this operand is an unsigned offset which fits is a field
1053 // of specified width and scaled by a specific number of bits
1054 template<unsigned width, unsigned scale>
isUnsignedOffset() const1055 bool isUnsignedOffset() const {
1056 if (!isImm()) return false;
1057 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1058 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1059 int64_t Val = CE->getValue();
1060 int64_t Align = 1LL << scale;
1061 int64_t Max = Align * ((1LL << width) - 1);
1062 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
1063 }
1064 return false;
1065 }
1066
1067 // checks whether this operand is an signed offset which fits is a field
1068 // of specified width and scaled by a specific number of bits
1069 template<unsigned width, unsigned scale>
isSignedOffset() const1070 bool isSignedOffset() const {
1071 if (!isImm()) return false;
1072 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1073 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1074 int64_t Val = CE->getValue();
1075 int64_t Align = 1LL << scale;
1076 int64_t Max = Align * ((1LL << (width-1)) - 1);
1077 int64_t Min = -Align * (1LL << (width-1));
1078 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1079 }
1080 return false;
1081 }
1082
1083 // checks whether this operand is an offset suitable for the LE /
1084 // LETP instructions in Arm v8.1M
isLEOffset() const1085 bool isLEOffset() const {
1086 if (!isImm()) return false;
1087 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1088 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1089 int64_t Val = CE->getValue();
1090 return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1091 }
1092 return false;
1093 }
1094
1095 // checks whether this operand is a memory operand computed as an offset
1096 // applied to PC. the offset may have 8 bits of magnitude and is represented
1097 // with two bits of shift. textually it may be either [pc, #imm], #imm or
1098 // relocable expression...
isThumbMemPC() const1099 bool isThumbMemPC() const {
1100 int64_t Val = 0;
1101 if (isImm()) {
1102 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1104 if (!CE) return false;
1105 Val = CE->getValue();
1106 }
1107 else if (isGPRMem()) {
1108 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1109 if(Memory.BaseRegNum != ARM::PC) return false;
1110 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
1111 Val = CE->getValue();
1112 else
1113 return false;
1114 }
1115 else return false;
1116 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1117 }
1118
isFPImm() const1119 bool isFPImm() const {
1120 if (!isImm()) return false;
1121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1122 if (!CE) return false;
1123 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1124 return Val != -1;
1125 }
1126
1127 template<int64_t N, int64_t M>
isImmediate() const1128 bool isImmediate() const {
1129 if (!isImm()) return false;
1130 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1131 if (!CE) return false;
1132 int64_t Value = CE->getValue();
1133 return Value >= N && Value <= M;
1134 }
1135
1136 template<int64_t N, int64_t M>
isImmediateS4() const1137 bool isImmediateS4() const {
1138 if (!isImm()) return false;
1139 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1140 if (!CE) return false;
1141 int64_t Value = CE->getValue();
1142 return ((Value & 3) == 0) && Value >= N && Value <= M;
1143 }
1144 template<int64_t N, int64_t M>
isImmediateS2() const1145 bool isImmediateS2() const {
1146 if (!isImm()) return false;
1147 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1148 if (!CE) return false;
1149 int64_t Value = CE->getValue();
1150 return ((Value & 1) == 0) && Value >= N && Value <= M;
1151 }
isFBits16() const1152 bool isFBits16() const {
1153 return isImmediate<0, 17>();
1154 }
isFBits32() const1155 bool isFBits32() const {
1156 return isImmediate<1, 33>();
1157 }
isImm8s4() const1158 bool isImm8s4() const {
1159 return isImmediateS4<-1020, 1020>();
1160 }
isImm7s4() const1161 bool isImm7s4() const {
1162 return isImmediateS4<-508, 508>();
1163 }
isImm7Shift0() const1164 bool isImm7Shift0() const {
1165 return isImmediate<-127, 127>();
1166 }
isImm7Shift1() const1167 bool isImm7Shift1() const {
1168 return isImmediateS2<-255, 255>();
1169 }
isImm7Shift2() const1170 bool isImm7Shift2() const {
1171 return isImmediateS4<-511, 511>();
1172 }
isImm7() const1173 bool isImm7() const {
1174 return isImmediate<-127, 127>();
1175 }
isImm0_1020s4() const1176 bool isImm0_1020s4() const {
1177 return isImmediateS4<0, 1020>();
1178 }
isImm0_508s4() const1179 bool isImm0_508s4() const {
1180 return isImmediateS4<0, 508>();
1181 }
isImm0_508s4Neg() const1182 bool isImm0_508s4Neg() const {
1183 if (!isImm()) return false;
1184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1185 if (!CE) return false;
1186 int64_t Value = -CE->getValue();
1187 // explicitly exclude zero. we want that to use the normal 0_508 version.
1188 return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1189 }
1190
isImm0_4095Neg() const1191 bool isImm0_4095Neg() const {
1192 if (!isImm()) return false;
1193 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1194 if (!CE) return false;
1195 // isImm0_4095Neg is used with 32-bit immediates only.
1196 // 32-bit immediates are zero extended to 64-bit when parsed,
1197 // thus simple -CE->getValue() results in a big negative number,
1198 // not a small positive number as intended
1199 if ((CE->getValue() >> 32) > 0) return false;
1200 uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1201 return Value > 0 && Value < 4096;
1202 }
1203
isImm0_7() const1204 bool isImm0_7() const {
1205 return isImmediate<0, 7>();
1206 }
1207
isImm1_16() const1208 bool isImm1_16() const {
1209 return isImmediate<1, 16>();
1210 }
1211
isImm1_32() const1212 bool isImm1_32() const {
1213 return isImmediate<1, 32>();
1214 }
1215
isImm8_255() const1216 bool isImm8_255() const {
1217 return isImmediate<8, 255>();
1218 }
1219
isImm256_65535Expr() const1220 bool isImm256_65535Expr() const {
1221 if (!isImm()) return false;
1222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1223 // If it's not a constant expression, it'll generate a fixup and be
1224 // handled later.
1225 if (!CE) return true;
1226 int64_t Value = CE->getValue();
1227 return Value >= 256 && Value < 65536;
1228 }
1229
isImm0_65535Expr() const1230 bool isImm0_65535Expr() const {
1231 if (!isImm()) return false;
1232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1233 // If it's not a constant expression, it'll generate a fixup and be
1234 // handled later.
1235 if (!CE) return true;
1236 int64_t Value = CE->getValue();
1237 return Value >= 0 && Value < 65536;
1238 }
1239
isImm24bit() const1240 bool isImm24bit() const {
1241 return isImmediate<0, 0xffffff + 1>();
1242 }
1243
isImmThumbSR() const1244 bool isImmThumbSR() const {
1245 return isImmediate<1, 33>();
1246 }
1247
1248 template<int shift>
isExpImmValue(uint64_t Value) const1249 bool isExpImmValue(uint64_t Value) const {
1250 uint64_t mask = (1 << shift) - 1;
1251 if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1252 return false;
1253 return true;
1254 }
1255
1256 template<int shift>
isExpImm() const1257 bool isExpImm() const {
1258 if (!isImm()) return false;
1259 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1260 if (!CE) return false;
1261
1262 return isExpImmValue<shift>(CE->getValue());
1263 }
1264
1265 template<int shift, int size>
isInvertedExpImm() const1266 bool isInvertedExpImm() const {
1267 if (!isImm()) return false;
1268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1269 if (!CE) return false;
1270
1271 uint64_t OriginalValue = CE->getValue();
1272 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1273 return isExpImmValue<shift>(InvertedValue);
1274 }
1275
isPKHLSLImm() const1276 bool isPKHLSLImm() const {
1277 return isImmediate<0, 32>();
1278 }
1279
isPKHASRImm() const1280 bool isPKHASRImm() const {
1281 return isImmediate<0, 33>();
1282 }
1283
isAdrLabel() const1284 bool isAdrLabel() const {
1285 // If we have an immediate that's not a constant, treat it as a label
1286 // reference needing a fixup.
1287 if (isImm() && !isa<MCConstantExpr>(getImm()))
1288 return true;
1289
1290 // If it is a constant, it must fit into a modified immediate encoding.
1291 if (!isImm()) return false;
1292 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1293 if (!CE) return false;
1294 int64_t Value = CE->getValue();
1295 return (ARM_AM::getSOImmVal(Value) != -1 ||
1296 ARM_AM::getSOImmVal(-Value) != -1);
1297 }
1298
isT2SOImm() const1299 bool isT2SOImm() const {
1300 // If we have an immediate that's not a constant, treat it as an expression
1301 // needing a fixup.
1302 if (isImm() && !isa<MCConstantExpr>(getImm())) {
1303 // We want to avoid matching :upper16: and :lower16: as we want these
1304 // expressions to match in isImm0_65535Expr()
1305 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1306 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1307 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1308 }
1309 if (!isImm()) return false;
1310 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1311 if (!CE) return false;
1312 int64_t Value = CE->getValue();
1313 return ARM_AM::getT2SOImmVal(Value) != -1;
1314 }
1315
isT2SOImmNot() const1316 bool isT2SOImmNot() const {
1317 if (!isImm()) return false;
1318 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1319 if (!CE) return false;
1320 int64_t Value = CE->getValue();
1321 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1322 ARM_AM::getT2SOImmVal(~Value) != -1;
1323 }
1324
isT2SOImmNeg() const1325 bool isT2SOImmNeg() const {
1326 if (!isImm()) return false;
1327 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1328 if (!CE) return false;
1329 int64_t Value = CE->getValue();
1330 // Only use this when not representable as a plain so_imm.
1331 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1332 ARM_AM::getT2SOImmVal(-Value) != -1;
1333 }
1334
isSetEndImm() const1335 bool isSetEndImm() const {
1336 if (!isImm()) return false;
1337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1338 if (!CE) return false;
1339 int64_t Value = CE->getValue();
1340 return Value == 1 || Value == 0;
1341 }
1342
isReg() const1343 bool isReg() const override { return Kind == k_Register; }
isRegList() const1344 bool isRegList() const { return Kind == k_RegisterList; }
isRegListWithAPSR() const1345 bool isRegListWithAPSR() const {
1346 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1347 }
isDPRRegList() const1348 bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
isSPRRegList() const1349 bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
isFPSRegListWithVPR() const1350 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
isFPDRegListWithVPR() const1351 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
isToken() const1352 bool isToken() const override { return Kind == k_Token; }
isMemBarrierOpt() const1353 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
isInstSyncBarrierOpt() const1354 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
isTraceSyncBarrierOpt() const1355 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
isMem() const1356 bool isMem() const override {
1357 return isGPRMem() || isMVEMem();
1358 }
isMVEMem() const1359 bool isMVEMem() const {
1360 if (Kind != k_Memory)
1361 return false;
1362 if (Memory.BaseRegNum &&
1363 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1364 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1365 return false;
1366 if (Memory.OffsetRegNum &&
1367 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1368 Memory.OffsetRegNum))
1369 return false;
1370 return true;
1371 }
isGPRMem() const1372 bool isGPRMem() const {
1373 if (Kind != k_Memory)
1374 return false;
1375 if (Memory.BaseRegNum &&
1376 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1377 return false;
1378 if (Memory.OffsetRegNum &&
1379 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1380 return false;
1381 return true;
1382 }
isShifterImm() const1383 bool isShifterImm() const { return Kind == k_ShifterImmediate; }
isRegShiftedReg() const1384 bool isRegShiftedReg() const {
1385 return Kind == k_ShiftedRegister &&
1386 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1387 RegShiftedReg.SrcReg) &&
1388 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1389 RegShiftedReg.ShiftReg);
1390 }
isRegShiftedImm() const1391 bool isRegShiftedImm() const {
1392 return Kind == k_ShiftedImmediate &&
1393 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1394 RegShiftedImm.SrcReg);
1395 }
isRotImm() const1396 bool isRotImm() const { return Kind == k_RotateImmediate; }
1397
1398 template<unsigned Min, unsigned Max>
isPowerTwoInRange() const1399 bool isPowerTwoInRange() const {
1400 if (!isImm()) return false;
1401 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1402 if (!CE) return false;
1403 int64_t Value = CE->getValue();
1404 return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
1405 Value >= Min && Value <= Max;
1406 }
isModImm() const1407 bool isModImm() const { return Kind == k_ModifiedImmediate; }
1408
isModImmNot() const1409 bool isModImmNot() const {
1410 if (!isImm()) return false;
1411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1412 if (!CE) return false;
1413 int64_t Value = CE->getValue();
1414 return ARM_AM::getSOImmVal(~Value) != -1;
1415 }
1416
isModImmNeg() const1417 bool isModImmNeg() const {
1418 if (!isImm()) return false;
1419 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1420 if (!CE) return false;
1421 int64_t Value = CE->getValue();
1422 return ARM_AM::getSOImmVal(Value) == -1 &&
1423 ARM_AM::getSOImmVal(-Value) != -1;
1424 }
1425
isThumbModImmNeg1_7() const1426 bool isThumbModImmNeg1_7() const {
1427 if (!isImm()) return false;
1428 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1429 if (!CE) return false;
1430 int32_t Value = -(int32_t)CE->getValue();
1431 return 0 < Value && Value < 8;
1432 }
1433
isThumbModImmNeg8_255() const1434 bool isThumbModImmNeg8_255() const {
1435 if (!isImm()) return false;
1436 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1437 if (!CE) return false;
1438 int32_t Value = -(int32_t)CE->getValue();
1439 return 7 < Value && Value < 256;
1440 }
1441
isConstantPoolImm() const1442 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
isBitfield() const1443 bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
isPostIdxRegShifted() const1444 bool isPostIdxRegShifted() const {
1445 return Kind == k_PostIndexRegister &&
1446 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1447 }
isPostIdxReg() const1448 bool isPostIdxReg() const {
1449 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1450 }
isMemNoOffset(bool alignOK=false,unsigned Alignment=0) const1451 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1452 if (!isGPRMem())
1453 return false;
1454 // No offset of any kind.
1455 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1456 (alignOK || Memory.Alignment == Alignment);
1457 }
isMemNoOffsetT2(bool alignOK=false,unsigned Alignment=0) const1458 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1459 if (!isGPRMem())
1460 return false;
1461
1462 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1463 Memory.BaseRegNum))
1464 return false;
1465
1466 // No offset of any kind.
1467 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1468 (alignOK || Memory.Alignment == Alignment);
1469 }
isMemNoOffsetT2NoSp(bool alignOK=false,unsigned Alignment=0) const1470 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1471 if (!isGPRMem())
1472 return false;
1473
1474 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1475 Memory.BaseRegNum))
1476 return false;
1477
1478 // No offset of any kind.
1479 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1480 (alignOK || Memory.Alignment == Alignment);
1481 }
isMemNoOffsetT(bool alignOK=false,unsigned Alignment=0) const1482 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1483 if (!isGPRMem())
1484 return false;
1485
1486 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1487 Memory.BaseRegNum))
1488 return false;
1489
1490 // No offset of any kind.
1491 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1492 (alignOK || Memory.Alignment == Alignment);
1493 }
isMemPCRelImm12() const1494 bool isMemPCRelImm12() const {
1495 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1496 return false;
1497 // Base register must be PC.
1498 if (Memory.BaseRegNum != ARM::PC)
1499 return false;
1500 // Immediate offset in range [-4095, 4095].
1501 if (!Memory.OffsetImm) return true;
1502 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1503 int64_t Val = CE->getValue();
1504 return (Val > -4096 && Val < 4096) ||
1505 (Val == std::numeric_limits<int32_t>::min());
1506 }
1507 return false;
1508 }
1509
isAlignedMemory() const1510 bool isAlignedMemory() const {
1511 return isMemNoOffset(true);
1512 }
1513
isAlignedMemoryNone() const1514 bool isAlignedMemoryNone() const {
1515 return isMemNoOffset(false, 0);
1516 }
1517
isDupAlignedMemoryNone() const1518 bool isDupAlignedMemoryNone() const {
1519 return isMemNoOffset(false, 0);
1520 }
1521
isAlignedMemory16() const1522 bool isAlignedMemory16() const {
1523 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1524 return true;
1525 return isMemNoOffset(false, 0);
1526 }
1527
isDupAlignedMemory16() const1528 bool isDupAlignedMemory16() const {
1529 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1530 return true;
1531 return isMemNoOffset(false, 0);
1532 }
1533
isAlignedMemory32() const1534 bool isAlignedMemory32() const {
1535 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1536 return true;
1537 return isMemNoOffset(false, 0);
1538 }
1539
isDupAlignedMemory32() const1540 bool isDupAlignedMemory32() const {
1541 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1542 return true;
1543 return isMemNoOffset(false, 0);
1544 }
1545
isAlignedMemory64() const1546 bool isAlignedMemory64() const {
1547 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1548 return true;
1549 return isMemNoOffset(false, 0);
1550 }
1551
isDupAlignedMemory64() const1552 bool isDupAlignedMemory64() const {
1553 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1554 return true;
1555 return isMemNoOffset(false, 0);
1556 }
1557
isAlignedMemory64or128() const1558 bool isAlignedMemory64or128() const {
1559 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1560 return true;
1561 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1562 return true;
1563 return isMemNoOffset(false, 0);
1564 }
1565
isDupAlignedMemory64or128() const1566 bool isDupAlignedMemory64or128() const {
1567 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1568 return true;
1569 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1570 return true;
1571 return isMemNoOffset(false, 0);
1572 }
1573
isAlignedMemory64or128or256() const1574 bool isAlignedMemory64or128or256() const {
1575 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1576 return true;
1577 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1578 return true;
1579 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1580 return true;
1581 return isMemNoOffset(false, 0);
1582 }
1583
isAddrMode2() const1584 bool isAddrMode2() const {
1585 if (!isGPRMem() || Memory.Alignment != 0) return false;
1586 // Check for register offset.
1587 if (Memory.OffsetRegNum) return true;
1588 // Immediate offset in range [-4095, 4095].
1589 if (!Memory.OffsetImm) return true;
1590 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1591 int64_t Val = CE->getValue();
1592 return Val > -4096 && Val < 4096;
1593 }
1594 return false;
1595 }
1596
isAM2OffsetImm() const1597 bool isAM2OffsetImm() const {
1598 if (!isImm()) return false;
1599 // Immediate offset in range [-4095, 4095].
1600 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1601 if (!CE) return false;
1602 int64_t Val = CE->getValue();
1603 return (Val == std::numeric_limits<int32_t>::min()) ||
1604 (Val > -4096 && Val < 4096);
1605 }
1606
isAddrMode3() const1607 bool isAddrMode3() const {
1608 // If we have an immediate that's not a constant, treat it as a label
1609 // reference needing a fixup. If it is a constant, it's something else
1610 // and we reject it.
1611 if (isImm() && !isa<MCConstantExpr>(getImm()))
1612 return true;
1613 if (!isGPRMem() || Memory.Alignment != 0) return false;
1614 // No shifts are legal for AM3.
1615 if (Memory.ShiftType != ARM_AM::no_shift) return false;
1616 // Check for register offset.
1617 if (Memory.OffsetRegNum) return true;
1618 // Immediate offset in range [-255, 255].
1619 if (!Memory.OffsetImm) return true;
1620 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1621 int64_t Val = CE->getValue();
1622 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and
1623 // we have to check for this too.
1624 return (Val > -256 && Val < 256) ||
1625 Val == std::numeric_limits<int32_t>::min();
1626 }
1627 return false;
1628 }
1629
isAM3Offset() const1630 bool isAM3Offset() const {
1631 if (isPostIdxReg())
1632 return true;
1633 if (!isImm())
1634 return false;
1635 // Immediate offset in range [-255, 255].
1636 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1637 if (!CE) return false;
1638 int64_t Val = CE->getValue();
1639 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1640 return (Val > -256 && Val < 256) ||
1641 Val == std::numeric_limits<int32_t>::min();
1642 }
1643
isAddrMode5() const1644 bool isAddrMode5() const {
1645 // If we have an immediate that's not a constant, treat it as a label
1646 // reference needing a fixup. If it is a constant, it's something else
1647 // and we reject it.
1648 if (isImm() && !isa<MCConstantExpr>(getImm()))
1649 return true;
1650 if (!isGPRMem() || Memory.Alignment != 0) return false;
1651 // Check for register offset.
1652 if (Memory.OffsetRegNum) return false;
1653 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1654 if (!Memory.OffsetImm) return true;
1655 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1656 int64_t Val = CE->getValue();
1657 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1658 Val == std::numeric_limits<int32_t>::min();
1659 }
1660 return false;
1661 }
1662
isAddrMode5FP16() const1663 bool isAddrMode5FP16() const {
1664 // If we have an immediate that's not a constant, treat it as a label
1665 // reference needing a fixup. If it is a constant, it's something else
1666 // and we reject it.
1667 if (isImm() && !isa<MCConstantExpr>(getImm()))
1668 return true;
1669 if (!isGPRMem() || Memory.Alignment != 0) return false;
1670 // Check for register offset.
1671 if (Memory.OffsetRegNum) return false;
1672 // Immediate offset in range [-510, 510] and a multiple of 2.
1673 if (!Memory.OffsetImm) return true;
1674 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1675 int64_t Val = CE->getValue();
1676 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1677 Val == std::numeric_limits<int32_t>::min();
1678 }
1679 return false;
1680 }
1681
isMemTBB() const1682 bool isMemTBB() const {
1683 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1684 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1685 return false;
1686 return true;
1687 }
1688
isMemTBH() const1689 bool isMemTBH() const {
1690 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1691 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1692 Memory.Alignment != 0 )
1693 return false;
1694 return true;
1695 }
1696
isMemRegOffset() const1697 bool isMemRegOffset() const {
1698 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1699 return false;
1700 return true;
1701 }
1702
isT2MemRegOffset() const1703 bool isT2MemRegOffset() const {
1704 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1705 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1706 return false;
1707 // Only lsl #{0, 1, 2, 3} allowed.
1708 if (Memory.ShiftType == ARM_AM::no_shift)
1709 return true;
1710 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1711 return false;
1712 return true;
1713 }
1714
isMemThumbRR() const1715 bool isMemThumbRR() const {
1716 // Thumb reg+reg addressing is simple. Just two registers, a base and
1717 // an offset. No shifts, negations or any other complicating factors.
1718 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1719 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1720 return false;
1721 return isARMLowRegister(Memory.BaseRegNum) &&
1722 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1723 }
1724
isMemThumbRIs4() const1725 bool isMemThumbRIs4() const {
1726 if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1727 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1728 return false;
1729 // Immediate offset, multiple of 4 in range [0, 124].
1730 if (!Memory.OffsetImm) return true;
1731 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1732 int64_t Val = CE->getValue();
1733 return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1734 }
1735 return false;
1736 }
1737
isMemThumbRIs2() const1738 bool isMemThumbRIs2() const {
1739 if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1740 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1741 return false;
1742 // Immediate offset, multiple of 4 in range [0, 62].
1743 if (!Memory.OffsetImm) return true;
1744 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1745 int64_t Val = CE->getValue();
1746 return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1747 }
1748 return false;
1749 }
1750
isMemThumbRIs1() const1751 bool isMemThumbRIs1() const {
1752 if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1753 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1754 return false;
1755 // Immediate offset in range [0, 31].
1756 if (!Memory.OffsetImm) return true;
1757 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1758 int64_t Val = CE->getValue();
1759 return Val >= 0 && Val <= 31;
1760 }
1761 return false;
1762 }
1763
isMemThumbSPI() const1764 bool isMemThumbSPI() const {
1765 if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1766 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1767 return false;
1768 // Immediate offset, multiple of 4 in range [0, 1020].
1769 if (!Memory.OffsetImm) return true;
1770 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1771 int64_t Val = CE->getValue();
1772 return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1773 }
1774 return false;
1775 }
1776
isMemImm8s4Offset() const1777 bool isMemImm8s4Offset() const {
1778 // If we have an immediate that's not a constant, treat it as a label
1779 // reference needing a fixup. If it is a constant, it's something else
1780 // and we reject it.
1781 if (isImm() && !isa<MCConstantExpr>(getImm()))
1782 return true;
1783 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1784 return false;
1785 // Immediate offset a multiple of 4 in range [-1020, 1020].
1786 if (!Memory.OffsetImm) return true;
1787 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1788 int64_t Val = CE->getValue();
1789 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1790 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1791 Val == std::numeric_limits<int32_t>::min();
1792 }
1793 return false;
1794 }
1795
isMemImm7s4Offset() const1796 bool isMemImm7s4Offset() const {
1797 // If we have an immediate that's not a constant, treat it as a label
1798 // reference needing a fixup. If it is a constant, it's something else
1799 // and we reject it.
1800 if (isImm() && !isa<MCConstantExpr>(getImm()))
1801 return true;
1802 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1803 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1804 Memory.BaseRegNum))
1805 return false;
1806 // Immediate offset a multiple of 4 in range [-508, 508].
1807 if (!Memory.OffsetImm) return true;
1808 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1809 int64_t Val = CE->getValue();
1810 // Special case, #-0 is INT32_MIN.
1811 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1812 }
1813 return false;
1814 }
1815
isMemImm0_1020s4Offset() const1816 bool isMemImm0_1020s4Offset() const {
1817 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1818 return false;
1819 // Immediate offset a multiple of 4 in range [0, 1020].
1820 if (!Memory.OffsetImm) return true;
1821 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1822 int64_t Val = CE->getValue();
1823 return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1824 }
1825 return false;
1826 }
1827
isMemImm8Offset() const1828 bool isMemImm8Offset() const {
1829 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1830 return false;
1831 // Base reg of PC isn't allowed for these encodings.
1832 if (Memory.BaseRegNum == ARM::PC) return false;
1833 // Immediate offset in range [-255, 255].
1834 if (!Memory.OffsetImm) return true;
1835 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1836 int64_t Val = CE->getValue();
1837 return (Val == std::numeric_limits<int32_t>::min()) ||
1838 (Val > -256 && Val < 256);
1839 }
1840 return false;
1841 }
1842
1843 template<unsigned Bits, unsigned RegClassID>
isMemImm7ShiftedOffset() const1844 bool isMemImm7ShiftedOffset() const {
1845 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1846 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1847 return false;
1848
1849 // Expect an immediate offset equal to an element of the range
1850 // [-127, 127], shifted left by Bits.
1851
1852 if (!Memory.OffsetImm) return true;
1853 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1854 int64_t Val = CE->getValue();
1855
1856 // INT32_MIN is a special-case value (indicating the encoding with
1857 // zero offset and the subtract bit set)
1858 if (Val == INT32_MIN)
1859 return true;
1860
1861 unsigned Divisor = 1U << Bits;
1862
1863 // Check that the low bits are zero
1864 if (Val % Divisor != 0)
1865 return false;
1866
1867 // Check that the remaining offset is within range.
1868 Val /= Divisor;
1869 return (Val >= -127 && Val <= 127);
1870 }
1871 return false;
1872 }
1873
isMemRegRQOffset() const1874 template <int shift> bool isMemRegRQOffset() const {
1875 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0)
1876 return false;
1877
1878 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1879 Memory.BaseRegNum))
1880 return false;
1881 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1882 Memory.OffsetRegNum))
1883 return false;
1884
1885 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1886 return false;
1887
1888 if (shift > 0 &&
1889 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1890 return false;
1891
1892 return true;
1893 }
1894
isMemRegQOffset() const1895 template <int shift> bool isMemRegQOffset() const {
1896 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1897 return false;
1898
1899 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1900 Memory.BaseRegNum))
1901 return false;
1902
1903 if (!Memory.OffsetImm)
1904 return true;
1905 static_assert(shift < 56,
1906 "Such that we dont shift by a value higher than 62");
1907 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1908 int64_t Val = CE->getValue();
1909
1910 // The value must be a multiple of (1 << shift)
1911 if ((Val & ((1U << shift) - 1)) != 0)
1912 return false;
1913
1914 // And be in the right range, depending on the amount that it is shifted
1915 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set
1916 // separately.
1917 int64_t Range = (1U << (7 + shift)) - 1;
1918 return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1919 }
1920 return false;
1921 }
1922
isMemPosImm8Offset() const1923 bool isMemPosImm8Offset() const {
1924 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1925 return false;
1926 // Immediate offset in range [0, 255].
1927 if (!Memory.OffsetImm) return true;
1928 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1929 int64_t Val = CE->getValue();
1930 return Val >= 0 && Val < 256;
1931 }
1932 return false;
1933 }
1934
isMemNegImm8Offset() const1935 bool isMemNegImm8Offset() const {
1936 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1937 return false;
1938 // Base reg of PC isn't allowed for these encodings.
1939 if (Memory.BaseRegNum == ARM::PC) return false;
1940 // Immediate offset in range [-255, -1].
1941 if (!Memory.OffsetImm) return false;
1942 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1943 int64_t Val = CE->getValue();
1944 return (Val == std::numeric_limits<int32_t>::min()) ||
1945 (Val > -256 && Val < 0);
1946 }
1947 return false;
1948 }
1949
isMemUImm12Offset() const1950 bool isMemUImm12Offset() const {
1951 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1952 return false;
1953 // Immediate offset in range [0, 4095].
1954 if (!Memory.OffsetImm) return true;
1955 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1956 int64_t Val = CE->getValue();
1957 return (Val >= 0 && Val < 4096);
1958 }
1959 return false;
1960 }
1961
isMemImm12Offset() const1962 bool isMemImm12Offset() const {
1963 // If we have an immediate that's not a constant, treat it as a label
1964 // reference needing a fixup. If it is a constant, it's something else
1965 // and we reject it.
1966
1967 if (isImm() && !isa<MCConstantExpr>(getImm()))
1968 return true;
1969
1970 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1971 return false;
1972 // Immediate offset in range [-4095, 4095].
1973 if (!Memory.OffsetImm) return true;
1974 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1975 int64_t Val = CE->getValue();
1976 return (Val > -4096 && Val < 4096) ||
1977 (Val == std::numeric_limits<int32_t>::min());
1978 }
1979 // If we have an immediate that's not a constant, treat it as a
1980 // symbolic expression needing a fixup.
1981 return true;
1982 }
1983
isConstPoolAsmImm() const1984 bool isConstPoolAsmImm() const {
1985 // Delay processing of Constant Pool Immediate, this will turn into
1986 // a constant. Match no other operand
1987 return (isConstantPoolImm());
1988 }
1989
isPostIdxImm8() const1990 bool isPostIdxImm8() const {
1991 if (!isImm()) return false;
1992 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1993 if (!CE) return false;
1994 int64_t Val = CE->getValue();
1995 return (Val > -256 && Val < 256) ||
1996 (Val == std::numeric_limits<int32_t>::min());
1997 }
1998
isPostIdxImm8s4() const1999 bool isPostIdxImm8s4() const {
2000 if (!isImm()) return false;
2001 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2002 if (!CE) return false;
2003 int64_t Val = CE->getValue();
2004 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
2005 (Val == std::numeric_limits<int32_t>::min());
2006 }
2007
isMSRMask() const2008 bool isMSRMask() const { return Kind == k_MSRMask; }
isBankedReg() const2009 bool isBankedReg() const { return Kind == k_BankedReg; }
isProcIFlags() const2010 bool isProcIFlags() const { return Kind == k_ProcIFlags; }
2011
2012 // NEON operands.
isSingleSpacedVectorList() const2013 bool isSingleSpacedVectorList() const {
2014 return Kind == k_VectorList && !VectorList.isDoubleSpaced;
2015 }
2016
isDoubleSpacedVectorList() const2017 bool isDoubleSpacedVectorList() const {
2018 return Kind == k_VectorList && VectorList.isDoubleSpaced;
2019 }
2020
isVecListOneD() const2021 bool isVecListOneD() const {
2022 if (!isSingleSpacedVectorList()) return false;
2023 return VectorList.Count == 1;
2024 }
2025
isVecListTwoMQ() const2026 bool isVecListTwoMQ() const {
2027 return isSingleSpacedVectorList() && VectorList.Count == 2 &&
2028 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2029 VectorList.RegNum);
2030 }
2031
isVecListDPair() const2032 bool isVecListDPair() const {
2033 if (!isSingleSpacedVectorList()) return false;
2034 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2035 .contains(VectorList.RegNum));
2036 }
2037
isVecListThreeD() const2038 bool isVecListThreeD() const {
2039 if (!isSingleSpacedVectorList()) return false;
2040 return VectorList.Count == 3;
2041 }
2042
isVecListFourD() const2043 bool isVecListFourD() const {
2044 if (!isSingleSpacedVectorList()) return false;
2045 return VectorList.Count == 4;
2046 }
2047
isVecListDPairSpaced() const2048 bool isVecListDPairSpaced() const {
2049 if (Kind != k_VectorList) return false;
2050 if (isSingleSpacedVectorList()) return false;
2051 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
2052 .contains(VectorList.RegNum));
2053 }
2054
isVecListThreeQ() const2055 bool isVecListThreeQ() const {
2056 if (!isDoubleSpacedVectorList()) return false;
2057 return VectorList.Count == 3;
2058 }
2059
isVecListFourQ() const2060 bool isVecListFourQ() const {
2061 if (!isDoubleSpacedVectorList()) return false;
2062 return VectorList.Count == 4;
2063 }
2064
isVecListFourMQ() const2065 bool isVecListFourMQ() const {
2066 return isSingleSpacedVectorList() && VectorList.Count == 4 &&
2067 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2068 VectorList.RegNum);
2069 }
2070
isSingleSpacedVectorAllLanes() const2071 bool isSingleSpacedVectorAllLanes() const {
2072 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
2073 }
2074
isDoubleSpacedVectorAllLanes() const2075 bool isDoubleSpacedVectorAllLanes() const {
2076 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
2077 }
2078
isVecListOneDAllLanes() const2079 bool isVecListOneDAllLanes() const {
2080 if (!isSingleSpacedVectorAllLanes()) return false;
2081 return VectorList.Count == 1;
2082 }
2083
isVecListDPairAllLanes() const2084 bool isVecListDPairAllLanes() const {
2085 if (!isSingleSpacedVectorAllLanes()) return false;
2086 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2087 .contains(VectorList.RegNum));
2088 }
2089
isVecListDPairSpacedAllLanes() const2090 bool isVecListDPairSpacedAllLanes() const {
2091 if (!isDoubleSpacedVectorAllLanes()) return false;
2092 return VectorList.Count == 2;
2093 }
2094
isVecListThreeDAllLanes() const2095 bool isVecListThreeDAllLanes() const {
2096 if (!isSingleSpacedVectorAllLanes()) return false;
2097 return VectorList.Count == 3;
2098 }
2099
isVecListThreeQAllLanes() const2100 bool isVecListThreeQAllLanes() const {
2101 if (!isDoubleSpacedVectorAllLanes()) return false;
2102 return VectorList.Count == 3;
2103 }
2104
isVecListFourDAllLanes() const2105 bool isVecListFourDAllLanes() const {
2106 if (!isSingleSpacedVectorAllLanes()) return false;
2107 return VectorList.Count == 4;
2108 }
2109
isVecListFourQAllLanes() const2110 bool isVecListFourQAllLanes() const {
2111 if (!isDoubleSpacedVectorAllLanes()) return false;
2112 return VectorList.Count == 4;
2113 }
2114
isSingleSpacedVectorIndexed() const2115 bool isSingleSpacedVectorIndexed() const {
2116 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
2117 }
2118
isDoubleSpacedVectorIndexed() const2119 bool isDoubleSpacedVectorIndexed() const {
2120 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
2121 }
2122
isVecListOneDByteIndexed() const2123 bool isVecListOneDByteIndexed() const {
2124 if (!isSingleSpacedVectorIndexed()) return false;
2125 return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
2126 }
2127
isVecListOneDHWordIndexed() const2128 bool isVecListOneDHWordIndexed() const {
2129 if (!isSingleSpacedVectorIndexed()) return false;
2130 return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2131 }
2132
isVecListOneDWordIndexed() const2133 bool isVecListOneDWordIndexed() const {
2134 if (!isSingleSpacedVectorIndexed()) return false;
2135 return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2136 }
2137
isVecListTwoDByteIndexed() const2138 bool isVecListTwoDByteIndexed() const {
2139 if (!isSingleSpacedVectorIndexed()) return false;
2140 return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2141 }
2142
isVecListTwoDHWordIndexed() const2143 bool isVecListTwoDHWordIndexed() const {
2144 if (!isSingleSpacedVectorIndexed()) return false;
2145 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2146 }
2147
isVecListTwoQWordIndexed() const2148 bool isVecListTwoQWordIndexed() const {
2149 if (!isDoubleSpacedVectorIndexed()) return false;
2150 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2151 }
2152
isVecListTwoQHWordIndexed() const2153 bool isVecListTwoQHWordIndexed() const {
2154 if (!isDoubleSpacedVectorIndexed()) return false;
2155 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2156 }
2157
isVecListTwoDWordIndexed() const2158 bool isVecListTwoDWordIndexed() const {
2159 if (!isSingleSpacedVectorIndexed()) return false;
2160 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2161 }
2162
isVecListThreeDByteIndexed() const2163 bool isVecListThreeDByteIndexed() const {
2164 if (!isSingleSpacedVectorIndexed()) return false;
2165 return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2166 }
2167
isVecListThreeDHWordIndexed() const2168 bool isVecListThreeDHWordIndexed() const {
2169 if (!isSingleSpacedVectorIndexed()) return false;
2170 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2171 }
2172
isVecListThreeQWordIndexed() const2173 bool isVecListThreeQWordIndexed() const {
2174 if (!isDoubleSpacedVectorIndexed()) return false;
2175 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2176 }
2177
isVecListThreeQHWordIndexed() const2178 bool isVecListThreeQHWordIndexed() const {
2179 if (!isDoubleSpacedVectorIndexed()) return false;
2180 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2181 }
2182
isVecListThreeDWordIndexed() const2183 bool isVecListThreeDWordIndexed() const {
2184 if (!isSingleSpacedVectorIndexed()) return false;
2185 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2186 }
2187
isVecListFourDByteIndexed() const2188 bool isVecListFourDByteIndexed() const {
2189 if (!isSingleSpacedVectorIndexed()) return false;
2190 return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2191 }
2192
isVecListFourDHWordIndexed() const2193 bool isVecListFourDHWordIndexed() const {
2194 if (!isSingleSpacedVectorIndexed()) return false;
2195 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2196 }
2197
isVecListFourQWordIndexed() const2198 bool isVecListFourQWordIndexed() const {
2199 if (!isDoubleSpacedVectorIndexed()) return false;
2200 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2201 }
2202
isVecListFourQHWordIndexed() const2203 bool isVecListFourQHWordIndexed() const {
2204 if (!isDoubleSpacedVectorIndexed()) return false;
2205 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2206 }
2207
isVecListFourDWordIndexed() const2208 bool isVecListFourDWordIndexed() const {
2209 if (!isSingleSpacedVectorIndexed()) return false;
2210 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2211 }
2212
isVectorIndex() const2213 bool isVectorIndex() const { return Kind == k_VectorIndex; }
2214
2215 template <unsigned NumLanes>
isVectorIndexInRange() const2216 bool isVectorIndexInRange() const {
2217 if (Kind != k_VectorIndex) return false;
2218 return VectorIndex.Val < NumLanes;
2219 }
2220
isVectorIndex8() const2221 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); }
isVectorIndex16() const2222 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
isVectorIndex32() const2223 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
isVectorIndex64() const2224 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2225
2226 template<int PermittedValue, int OtherPermittedValue>
isMVEPairVectorIndex() const2227 bool isMVEPairVectorIndex() const {
2228 if (Kind != k_VectorIndex) return false;
2229 return VectorIndex.Val == PermittedValue ||
2230 VectorIndex.Val == OtherPermittedValue;
2231 }
2232
isNEONi8splat() const2233 bool isNEONi8splat() const {
2234 if (!isImm()) return false;
2235 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2236 // Must be a constant.
2237 if (!CE) return false;
2238 int64_t Value = CE->getValue();
2239 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2240 // value.
2241 return Value >= 0 && Value < 256;
2242 }
2243
isNEONi16splat() const2244 bool isNEONi16splat() const {
2245 if (isNEONByteReplicate(2))
2246 return false; // Leave that for bytes replication and forbid by default.
2247 if (!isImm())
2248 return false;
2249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2250 // Must be a constant.
2251 if (!CE) return false;
2252 unsigned Value = CE->getValue();
2253 return ARM_AM::isNEONi16splat(Value);
2254 }
2255
isNEONi16splatNot() const2256 bool isNEONi16splatNot() const {
2257 if (!isImm())
2258 return false;
2259 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2260 // Must be a constant.
2261 if (!CE) return false;
2262 unsigned Value = CE->getValue();
2263 return ARM_AM::isNEONi16splat(~Value & 0xffff);
2264 }
2265
isNEONi32splat() const2266 bool isNEONi32splat() const {
2267 if (isNEONByteReplicate(4))
2268 return false; // Leave that for bytes replication and forbid by default.
2269 if (!isImm())
2270 return false;
2271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2272 // Must be a constant.
2273 if (!CE) return false;
2274 unsigned Value = CE->getValue();
2275 return ARM_AM::isNEONi32splat(Value);
2276 }
2277
isNEONi32splatNot() const2278 bool isNEONi32splatNot() const {
2279 if (!isImm())
2280 return false;
2281 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2282 // Must be a constant.
2283 if (!CE) return false;
2284 unsigned Value = CE->getValue();
2285 return ARM_AM::isNEONi32splat(~Value);
2286 }
2287
isValidNEONi32vmovImm(int64_t Value)2288 static bool isValidNEONi32vmovImm(int64_t Value) {
2289 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2290 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2291 return ((Value & 0xffffffffffffff00) == 0) ||
2292 ((Value & 0xffffffffffff00ff) == 0) ||
2293 ((Value & 0xffffffffff00ffff) == 0) ||
2294 ((Value & 0xffffffff00ffffff) == 0) ||
2295 ((Value & 0xffffffffffff00ff) == 0xff) ||
2296 ((Value & 0xffffffffff00ffff) == 0xffff);
2297 }
2298
isNEONReplicate(unsigned Width,unsigned NumElems,bool Inv) const2299 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2300 assert((Width == 8 || Width == 16 || Width == 32) &&
2301 "Invalid element width");
2302 assert(NumElems * Width <= 64 && "Invalid result width");
2303
2304 if (!isImm())
2305 return false;
2306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2307 // Must be a constant.
2308 if (!CE)
2309 return false;
2310 int64_t Value = CE->getValue();
2311 if (!Value)
2312 return false; // Don't bother with zero.
2313 if (Inv)
2314 Value = ~Value;
2315
2316 uint64_t Mask = (1ull << Width) - 1;
2317 uint64_t Elem = Value & Mask;
2318 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2319 return false;
2320 if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2321 return false;
2322
2323 for (unsigned i = 1; i < NumElems; ++i) {
2324 Value >>= Width;
2325 if ((Value & Mask) != Elem)
2326 return false;
2327 }
2328 return true;
2329 }
2330
isNEONByteReplicate(unsigned NumBytes) const2331 bool isNEONByteReplicate(unsigned NumBytes) const {
2332 return isNEONReplicate(8, NumBytes, false);
2333 }
2334
checkNeonReplicateArgs(unsigned FromW,unsigned ToW)2335 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2336 assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2337 "Invalid source width");
2338 assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2339 "Invalid destination width");
2340 assert(FromW < ToW && "ToW is not less than FromW");
2341 }
2342
2343 template<unsigned FromW, unsigned ToW>
isNEONmovReplicate() const2344 bool isNEONmovReplicate() const {
2345 checkNeonReplicateArgs(FromW, ToW);
2346 if (ToW == 64 && isNEONi64splat())
2347 return false;
2348 return isNEONReplicate(FromW, ToW / FromW, false);
2349 }
2350
2351 template<unsigned FromW, unsigned ToW>
isNEONinvReplicate() const2352 bool isNEONinvReplicate() const {
2353 checkNeonReplicateArgs(FromW, ToW);
2354 return isNEONReplicate(FromW, ToW / FromW, true);
2355 }
2356
isNEONi32vmov() const2357 bool isNEONi32vmov() const {
2358 if (isNEONByteReplicate(4))
2359 return false; // Let it to be classified as byte-replicate case.
2360 if (!isImm())
2361 return false;
2362 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2363 // Must be a constant.
2364 if (!CE)
2365 return false;
2366 return isValidNEONi32vmovImm(CE->getValue());
2367 }
2368
isNEONi32vmovNeg() const2369 bool isNEONi32vmovNeg() const {
2370 if (!isImm()) return false;
2371 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2372 // Must be a constant.
2373 if (!CE) return false;
2374 return isValidNEONi32vmovImm(~CE->getValue());
2375 }
2376
isNEONi64splat() const2377 bool isNEONi64splat() const {
2378 if (!isImm()) return false;
2379 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2380 // Must be a constant.
2381 if (!CE) return false;
2382 uint64_t Value = CE->getValue();
2383 // i64 value with each byte being either 0 or 0xff.
2384 for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2385 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2386 return true;
2387 }
2388
2389 template<int64_t Angle, int64_t Remainder>
isComplexRotation() const2390 bool isComplexRotation() const {
2391 if (!isImm()) return false;
2392
2393 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2394 if (!CE) return false;
2395 uint64_t Value = CE->getValue();
2396
2397 return (Value % Angle == Remainder && Value <= 270);
2398 }
2399
isMVELongShift() const2400 bool isMVELongShift() const {
2401 if (!isImm()) return false;
2402 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2403 // Must be a constant.
2404 if (!CE) return false;
2405 uint64_t Value = CE->getValue();
2406 return Value >= 1 && Value <= 32;
2407 }
2408
isMveSaturateOp() const2409 bool isMveSaturateOp() const {
2410 if (!isImm()) return false;
2411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2412 if (!CE) return false;
2413 uint64_t Value = CE->getValue();
2414 return Value == 48 || Value == 64;
2415 }
2416
isITCondCodeNoAL() const2417 bool isITCondCodeNoAL() const {
2418 if (!isITCondCode()) return false;
2419 ARMCC::CondCodes CC = getCondCode();
2420 return CC != ARMCC::AL;
2421 }
2422
isITCondCodeRestrictedI() const2423 bool isITCondCodeRestrictedI() const {
2424 if (!isITCondCode())
2425 return false;
2426 ARMCC::CondCodes CC = getCondCode();
2427 return CC == ARMCC::EQ || CC == ARMCC::NE;
2428 }
2429
isITCondCodeRestrictedS() const2430 bool isITCondCodeRestrictedS() const {
2431 if (!isITCondCode())
2432 return false;
2433 ARMCC::CondCodes CC = getCondCode();
2434 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2435 CC == ARMCC::GE;
2436 }
2437
isITCondCodeRestrictedU() const2438 bool isITCondCodeRestrictedU() const {
2439 if (!isITCondCode())
2440 return false;
2441 ARMCC::CondCodes CC = getCondCode();
2442 return CC == ARMCC::HS || CC == ARMCC::HI;
2443 }
2444
isITCondCodeRestrictedFP() const2445 bool isITCondCodeRestrictedFP() const {
2446 if (!isITCondCode())
2447 return false;
2448 ARMCC::CondCodes CC = getCondCode();
2449 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2450 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2451 }
2452
addExpr(MCInst & Inst,const MCExpr * Expr) const2453 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2454 // Add as immediates when possible. Null MCExpr = 0.
2455 if (!Expr)
2456 Inst.addOperand(MCOperand::createImm(0));
2457 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2458 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2459 else
2460 Inst.addOperand(MCOperand::createExpr(Expr));
2461 }
2462
addARMBranchTargetOperands(MCInst & Inst,unsigned N) const2463 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2464 assert(N == 1 && "Invalid number of operands!");
2465 addExpr(Inst, getImm());
2466 }
2467
addThumbBranchTargetOperands(MCInst & Inst,unsigned N) const2468 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2469 assert(N == 1 && "Invalid number of operands!");
2470 addExpr(Inst, getImm());
2471 }
2472
addCondCodeOperands(MCInst & Inst,unsigned N) const2473 void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2474 assert(N == 2 && "Invalid number of operands!");
2475 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2476 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2477 Inst.addOperand(MCOperand::createReg(RegNum));
2478 }
2479
addVPTPredNOperands(MCInst & Inst,unsigned N) const2480 void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2481 assert(N == 2 && "Invalid number of operands!");
2482 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2483 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2484 Inst.addOperand(MCOperand::createReg(RegNum));
2485 }
2486
addVPTPredROperands(MCInst & Inst,unsigned N) const2487 void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2488 assert(N == 3 && "Invalid number of operands!");
2489 addVPTPredNOperands(Inst, N-1);
2490 unsigned RegNum;
2491 if (getVPTPred() == ARMVCC::None) {
2492 RegNum = 0;
2493 } else {
2494 unsigned NextOpIndex = Inst.getNumOperands();
2495 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
2496 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2497 assert(TiedOp >= 0 &&
2498 "Inactive register in vpred_r is not tied to an output!");
2499 RegNum = Inst.getOperand(TiedOp).getReg();
2500 }
2501 Inst.addOperand(MCOperand::createReg(RegNum));
2502 }
2503
addCoprocNumOperands(MCInst & Inst,unsigned N) const2504 void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2505 assert(N == 1 && "Invalid number of operands!");
2506 Inst.addOperand(MCOperand::createImm(getCoproc()));
2507 }
2508
addCoprocRegOperands(MCInst & Inst,unsigned N) const2509 void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2510 assert(N == 1 && "Invalid number of operands!");
2511 Inst.addOperand(MCOperand::createImm(getCoproc()));
2512 }
2513
addCoprocOptionOperands(MCInst & Inst,unsigned N) const2514 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2515 assert(N == 1 && "Invalid number of operands!");
2516 Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2517 }
2518
addITMaskOperands(MCInst & Inst,unsigned N) const2519 void addITMaskOperands(MCInst &Inst, unsigned N) const {
2520 assert(N == 1 && "Invalid number of operands!");
2521 Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2522 }
2523
addITCondCodeOperands(MCInst & Inst,unsigned N) const2524 void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2525 assert(N == 1 && "Invalid number of operands!");
2526 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2527 }
2528
addITCondCodeInvOperands(MCInst & Inst,unsigned N) const2529 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2530 assert(N == 1 && "Invalid number of operands!");
2531 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2532 }
2533
addCCOutOperands(MCInst & Inst,unsigned N) const2534 void addCCOutOperands(MCInst &Inst, unsigned N) const {
2535 assert(N == 1 && "Invalid number of operands!");
2536 Inst.addOperand(MCOperand::createReg(getReg()));
2537 }
2538
addRegOperands(MCInst & Inst,unsigned N) const2539 void addRegOperands(MCInst &Inst, unsigned N) const {
2540 assert(N == 1 && "Invalid number of operands!");
2541 Inst.addOperand(MCOperand::createReg(getReg()));
2542 }
2543
addRegShiftedRegOperands(MCInst & Inst,unsigned N) const2544 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2545 assert(N == 3 && "Invalid number of operands!");
2546 assert(isRegShiftedReg() &&
2547 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2548 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2549 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2550 Inst.addOperand(MCOperand::createImm(
2551 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2552 }
2553
addRegShiftedImmOperands(MCInst & Inst,unsigned N) const2554 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2555 assert(N == 2 && "Invalid number of operands!");
2556 assert(isRegShiftedImm() &&
2557 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2558 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2559 // Shift of #32 is encoded as 0 where permitted
2560 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2561 Inst.addOperand(MCOperand::createImm(
2562 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2563 }
2564
addShifterImmOperands(MCInst & Inst,unsigned N) const2565 void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2566 assert(N == 1 && "Invalid number of operands!");
2567 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2568 ShifterImm.Imm));
2569 }
2570
addRegListOperands(MCInst & Inst,unsigned N) const2571 void addRegListOperands(MCInst &Inst, unsigned N) const {
2572 assert(N == 1 && "Invalid number of operands!");
2573 const SmallVectorImpl<unsigned> &RegList = getRegList();
2574 for (SmallVectorImpl<unsigned>::const_iterator
2575 I = RegList.begin(), E = RegList.end(); I != E; ++I)
2576 Inst.addOperand(MCOperand::createReg(*I));
2577 }
2578
addRegListWithAPSROperands(MCInst & Inst,unsigned N) const2579 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2580 assert(N == 1 && "Invalid number of operands!");
2581 const SmallVectorImpl<unsigned> &RegList = getRegList();
2582 for (SmallVectorImpl<unsigned>::const_iterator
2583 I = RegList.begin(), E = RegList.end(); I != E; ++I)
2584 Inst.addOperand(MCOperand::createReg(*I));
2585 }
2586
addDPRRegListOperands(MCInst & Inst,unsigned N) const2587 void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2588 addRegListOperands(Inst, N);
2589 }
2590
addSPRRegListOperands(MCInst & Inst,unsigned N) const2591 void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2592 addRegListOperands(Inst, N);
2593 }
2594
addFPSRegListWithVPROperands(MCInst & Inst,unsigned N) const2595 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2596 addRegListOperands(Inst, N);
2597 }
2598
addFPDRegListWithVPROperands(MCInst & Inst,unsigned N) const2599 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2600 addRegListOperands(Inst, N);
2601 }
2602
addRotImmOperands(MCInst & Inst,unsigned N) const2603 void addRotImmOperands(MCInst &Inst, unsigned N) const {
2604 assert(N == 1 && "Invalid number of operands!");
2605 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2606 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2607 }
2608
addModImmOperands(MCInst & Inst,unsigned N) const2609 void addModImmOperands(MCInst &Inst, unsigned N) const {
2610 assert(N == 1 && "Invalid number of operands!");
2611
2612 // Support for fixups (MCFixup)
2613 if (isImm())
2614 return addImmOperands(Inst, N);
2615
2616 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2617 }
2618
addModImmNotOperands(MCInst & Inst,unsigned N) const2619 void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2620 assert(N == 1 && "Invalid number of operands!");
2621 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2622 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2623 Inst.addOperand(MCOperand::createImm(Enc));
2624 }
2625
addModImmNegOperands(MCInst & Inst,unsigned N) const2626 void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2627 assert(N == 1 && "Invalid number of operands!");
2628 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2629 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2630 Inst.addOperand(MCOperand::createImm(Enc));
2631 }
2632
addThumbModImmNeg8_255Operands(MCInst & Inst,unsigned N) const2633 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2634 assert(N == 1 && "Invalid number of operands!");
2635 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2636 uint32_t Val = -CE->getValue();
2637 Inst.addOperand(MCOperand::createImm(Val));
2638 }
2639
addThumbModImmNeg1_7Operands(MCInst & Inst,unsigned N) const2640 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2641 assert(N == 1 && "Invalid number of operands!");
2642 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2643 uint32_t Val = -CE->getValue();
2644 Inst.addOperand(MCOperand::createImm(Val));
2645 }
2646
addBitfieldOperands(MCInst & Inst,unsigned N) const2647 void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2648 assert(N == 1 && "Invalid number of operands!");
2649 // Munge the lsb/width into a bitfield mask.
2650 unsigned lsb = Bitfield.LSB;
2651 unsigned width = Bitfield.Width;
2652 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2653 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2654 (32 - (lsb + width)));
2655 Inst.addOperand(MCOperand::createImm(Mask));
2656 }
2657
addImmOperands(MCInst & Inst,unsigned N) const2658 void addImmOperands(MCInst &Inst, unsigned N) const {
2659 assert(N == 1 && "Invalid number of operands!");
2660 addExpr(Inst, getImm());
2661 }
2662
addFBits16Operands(MCInst & Inst,unsigned N) const2663 void addFBits16Operands(MCInst &Inst, unsigned N) const {
2664 assert(N == 1 && "Invalid number of operands!");
2665 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2666 Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2667 }
2668
addFBits32Operands(MCInst & Inst,unsigned N) const2669 void addFBits32Operands(MCInst &Inst, unsigned N) const {
2670 assert(N == 1 && "Invalid number of operands!");
2671 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2672 Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2673 }
2674
addFPImmOperands(MCInst & Inst,unsigned N) const2675 void addFPImmOperands(MCInst &Inst, unsigned N) const {
2676 assert(N == 1 && "Invalid number of operands!");
2677 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2678 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2679 Inst.addOperand(MCOperand::createImm(Val));
2680 }
2681
addImm8s4Operands(MCInst & Inst,unsigned N) const2682 void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2683 assert(N == 1 && "Invalid number of operands!");
2684 // FIXME: We really want to scale the value here, but the LDRD/STRD
2685 // instruction don't encode operands that way yet.
2686 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2687 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2688 }
2689
addImm7s4Operands(MCInst & Inst,unsigned N) const2690 void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2691 assert(N == 1 && "Invalid number of operands!");
2692 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2693 // instruction don't encode operands that way yet.
2694 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2695 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2696 }
2697
addImm7Shift0Operands(MCInst & Inst,unsigned N) const2698 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2699 assert(N == 1 && "Invalid number of operands!");
2700 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2701 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2702 }
2703
addImm7Shift1Operands(MCInst & Inst,unsigned N) const2704 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2705 assert(N == 1 && "Invalid number of operands!");
2706 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2707 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2708 }
2709
addImm7Shift2Operands(MCInst & Inst,unsigned N) const2710 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2711 assert(N == 1 && "Invalid number of operands!");
2712 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2713 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2714 }
2715
addImm7Operands(MCInst & Inst,unsigned N) const2716 void addImm7Operands(MCInst &Inst, unsigned N) const {
2717 assert(N == 1 && "Invalid number of operands!");
2718 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2719 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2720 }
2721
addImm0_1020s4Operands(MCInst & Inst,unsigned N) const2722 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2723 assert(N == 1 && "Invalid number of operands!");
2724 // The immediate is scaled by four in the encoding and is stored
2725 // in the MCInst as such. Lop off the low two bits here.
2726 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2727 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2728 }
2729
addImm0_508s4NegOperands(MCInst & Inst,unsigned N) const2730 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2731 assert(N == 1 && "Invalid number of operands!");
2732 // The immediate is scaled by four in the encoding and is stored
2733 // in the MCInst as such. Lop off the low two bits here.
2734 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2735 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2736 }
2737
addImm0_508s4Operands(MCInst & Inst,unsigned N) const2738 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2739 assert(N == 1 && "Invalid number of operands!");
2740 // The immediate is scaled by four in the encoding and is stored
2741 // in the MCInst as such. Lop off the low two bits here.
2742 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2743 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2744 }
2745
addImm1_16Operands(MCInst & Inst,unsigned N) const2746 void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2747 assert(N == 1 && "Invalid number of operands!");
2748 // The constant encodes as the immediate-1, and we store in the instruction
2749 // the bits as encoded, so subtract off one here.
2750 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2751 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2752 }
2753
addImm1_32Operands(MCInst & Inst,unsigned N) const2754 void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2755 assert(N == 1 && "Invalid number of operands!");
2756 // The constant encodes as the immediate-1, and we store in the instruction
2757 // the bits as encoded, so subtract off one here.
2758 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2759 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2760 }
2761
addImmThumbSROperands(MCInst & Inst,unsigned N) const2762 void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2763 assert(N == 1 && "Invalid number of operands!");
2764 // The constant encodes as the immediate, except for 32, which encodes as
2765 // zero.
2766 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2767 unsigned Imm = CE->getValue();
2768 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2769 }
2770
addPKHASRImmOperands(MCInst & Inst,unsigned N) const2771 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2772 assert(N == 1 && "Invalid number of operands!");
2773 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2774 // the instruction as well.
2775 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2776 int Val = CE->getValue();
2777 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2778 }
2779
addT2SOImmNotOperands(MCInst & Inst,unsigned N) const2780 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2781 assert(N == 1 && "Invalid number of operands!");
2782 // The operand is actually a t2_so_imm, but we have its bitwise
2783 // negation in the assembly source, so twiddle it here.
2784 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2785 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2786 }
2787
addT2SOImmNegOperands(MCInst & Inst,unsigned N) const2788 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2789 assert(N == 1 && "Invalid number of operands!");
2790 // The operand is actually a t2_so_imm, but we have its
2791 // negation in the assembly source, so twiddle it here.
2792 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2793 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2794 }
2795
addImm0_4095NegOperands(MCInst & Inst,unsigned N) const2796 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2797 assert(N == 1 && "Invalid number of operands!");
2798 // The operand is actually an imm0_4095, but we have its
2799 // negation in the assembly source, so twiddle it here.
2800 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2801 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2802 }
2803
addUnsignedOffset_b8s2Operands(MCInst & Inst,unsigned N) const2804 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2805 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2806 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2807 return;
2808 }
2809 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2810 Inst.addOperand(MCOperand::createExpr(SR));
2811 }
2812
addThumbMemPCOperands(MCInst & Inst,unsigned N) const2813 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2814 assert(N == 1 && "Invalid number of operands!");
2815 if (isImm()) {
2816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2817 if (CE) {
2818 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2819 return;
2820 }
2821 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2822 Inst.addOperand(MCOperand::createExpr(SR));
2823 return;
2824 }
2825
2826 assert(isGPRMem() && "Unknown value type!");
2827 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2828 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2829 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2830 else
2831 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2832 }
2833
addMemBarrierOptOperands(MCInst & Inst,unsigned N) const2834 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2835 assert(N == 1 && "Invalid number of operands!");
2836 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2837 }
2838
addInstSyncBarrierOptOperands(MCInst & Inst,unsigned N) const2839 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2840 assert(N == 1 && "Invalid number of operands!");
2841 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2842 }
2843
addTraceSyncBarrierOptOperands(MCInst & Inst,unsigned N) const2844 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2845 assert(N == 1 && "Invalid number of operands!");
2846 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2847 }
2848
addMemNoOffsetOperands(MCInst & Inst,unsigned N) const2849 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2850 assert(N == 1 && "Invalid number of operands!");
2851 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2852 }
2853
addMemNoOffsetT2Operands(MCInst & Inst,unsigned N) const2854 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2855 assert(N == 1 && "Invalid number of operands!");
2856 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2857 }
2858
addMemNoOffsetT2NoSpOperands(MCInst & Inst,unsigned N) const2859 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2860 assert(N == 1 && "Invalid number of operands!");
2861 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2862 }
2863
addMemNoOffsetTOperands(MCInst & Inst,unsigned N) const2864 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2865 assert(N == 1 && "Invalid number of operands!");
2866 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2867 }
2868
addMemPCRelImm12Operands(MCInst & Inst,unsigned N) const2869 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2870 assert(N == 1 && "Invalid number of operands!");
2871 if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2872 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2873 else
2874 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2875 }
2876
addAdrLabelOperands(MCInst & Inst,unsigned N) const2877 void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2878 assert(N == 1 && "Invalid number of operands!");
2879 assert(isImm() && "Not an immediate!");
2880
2881 // If we have an immediate that's not a constant, treat it as a label
2882 // reference needing a fixup.
2883 if (!isa<MCConstantExpr>(getImm())) {
2884 Inst.addOperand(MCOperand::createExpr(getImm()));
2885 return;
2886 }
2887
2888 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2889 int Val = CE->getValue();
2890 Inst.addOperand(MCOperand::createImm(Val));
2891 }
2892
addAlignedMemoryOperands(MCInst & Inst,unsigned N) const2893 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2894 assert(N == 2 && "Invalid number of operands!");
2895 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2896 Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2897 }
2898
addDupAlignedMemoryNoneOperands(MCInst & Inst,unsigned N) const2899 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2900 addAlignedMemoryOperands(Inst, N);
2901 }
2902
addAlignedMemoryNoneOperands(MCInst & Inst,unsigned N) const2903 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2904 addAlignedMemoryOperands(Inst, N);
2905 }
2906
addAlignedMemory16Operands(MCInst & Inst,unsigned N) const2907 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2908 addAlignedMemoryOperands(Inst, N);
2909 }
2910
addDupAlignedMemory16Operands(MCInst & Inst,unsigned N) const2911 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2912 addAlignedMemoryOperands(Inst, N);
2913 }
2914
addAlignedMemory32Operands(MCInst & Inst,unsigned N) const2915 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2916 addAlignedMemoryOperands(Inst, N);
2917 }
2918
addDupAlignedMemory32Operands(MCInst & Inst,unsigned N) const2919 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2920 addAlignedMemoryOperands(Inst, N);
2921 }
2922
addAlignedMemory64Operands(MCInst & Inst,unsigned N) const2923 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2924 addAlignedMemoryOperands(Inst, N);
2925 }
2926
addDupAlignedMemory64Operands(MCInst & Inst,unsigned N) const2927 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2928 addAlignedMemoryOperands(Inst, N);
2929 }
2930
addAlignedMemory64or128Operands(MCInst & Inst,unsigned N) const2931 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2932 addAlignedMemoryOperands(Inst, N);
2933 }
2934
addDupAlignedMemory64or128Operands(MCInst & Inst,unsigned N) const2935 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2936 addAlignedMemoryOperands(Inst, N);
2937 }
2938
addAlignedMemory64or128or256Operands(MCInst & Inst,unsigned N) const2939 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2940 addAlignedMemoryOperands(Inst, N);
2941 }
2942
addAddrMode2Operands(MCInst & Inst,unsigned N) const2943 void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2944 assert(N == 3 && "Invalid number of operands!");
2945 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2946 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2947 if (!Memory.OffsetRegNum) {
2948 if (!Memory.OffsetImm)
2949 Inst.addOperand(MCOperand::createImm(0));
2950 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
2951 int32_t Val = CE->getValue();
2952 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2953 // Special case for #-0
2954 if (Val == std::numeric_limits<int32_t>::min())
2955 Val = 0;
2956 if (Val < 0)
2957 Val = -Val;
2958 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2959 Inst.addOperand(MCOperand::createImm(Val));
2960 } else
2961 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2962 } else {
2963 // For register offset, we encode the shift type and negation flag
2964 // here.
2965 int32_t Val =
2966 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2967 Memory.ShiftImm, Memory.ShiftType);
2968 Inst.addOperand(MCOperand::createImm(Val));
2969 }
2970 }
2971
addAM2OffsetImmOperands(MCInst & Inst,unsigned N) const2972 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2973 assert(N == 2 && "Invalid number of operands!");
2974 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2975 assert(CE && "non-constant AM2OffsetImm operand!");
2976 int32_t Val = CE->getValue();
2977 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2978 // Special case for #-0
2979 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2980 if (Val < 0) Val = -Val;
2981 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2982 Inst.addOperand(MCOperand::createReg(0));
2983 Inst.addOperand(MCOperand::createImm(Val));
2984 }
2985
addAddrMode3Operands(MCInst & Inst,unsigned N) const2986 void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2987 assert(N == 3 && "Invalid number of operands!");
2988 // If we have an immediate that's not a constant, treat it as a label
2989 // reference needing a fixup. If it is a constant, it's something else
2990 // and we reject it.
2991 if (isImm()) {
2992 Inst.addOperand(MCOperand::createExpr(getImm()));
2993 Inst.addOperand(MCOperand::createReg(0));
2994 Inst.addOperand(MCOperand::createImm(0));
2995 return;
2996 }
2997
2998 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2999 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3000 if (!Memory.OffsetRegNum) {
3001 if (!Memory.OffsetImm)
3002 Inst.addOperand(MCOperand::createImm(0));
3003 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3004 int32_t Val = CE->getValue();
3005 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3006 // Special case for #-0
3007 if (Val == std::numeric_limits<int32_t>::min())
3008 Val = 0;
3009 if (Val < 0)
3010 Val = -Val;
3011 Val = ARM_AM::getAM3Opc(AddSub, Val);
3012 Inst.addOperand(MCOperand::createImm(Val));
3013 } else
3014 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3015 } else {
3016 // For register offset, we encode the shift type and negation flag
3017 // here.
3018 int32_t Val =
3019 ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
3020 Inst.addOperand(MCOperand::createImm(Val));
3021 }
3022 }
3023
addAM3OffsetOperands(MCInst & Inst,unsigned N) const3024 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
3025 assert(N == 2 && "Invalid number of operands!");
3026 if (Kind == k_PostIndexRegister) {
3027 int32_t Val =
3028 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
3029 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3030 Inst.addOperand(MCOperand::createImm(Val));
3031 return;
3032 }
3033
3034 // Constant offset.
3035 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
3036 int32_t Val = CE->getValue();
3037 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3038 // Special case for #-0
3039 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
3040 if (Val < 0) Val = -Val;
3041 Val = ARM_AM::getAM3Opc(AddSub, Val);
3042 Inst.addOperand(MCOperand::createReg(0));
3043 Inst.addOperand(MCOperand::createImm(Val));
3044 }
3045
addAddrMode5Operands(MCInst & Inst,unsigned N) const3046 void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
3047 assert(N == 2 && "Invalid number of operands!");
3048 // If we have an immediate that's not a constant, treat it as a label
3049 // reference needing a fixup. If it is a constant, it's something else
3050 // and we reject it.
3051 if (isImm()) {
3052 Inst.addOperand(MCOperand::createExpr(getImm()));
3053 Inst.addOperand(MCOperand::createImm(0));
3054 return;
3055 }
3056
3057 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3058 if (!Memory.OffsetImm)
3059 Inst.addOperand(MCOperand::createImm(0));
3060 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3061 // The lower two bits are always zero and as such are not encoded.
3062 int32_t Val = CE->getValue() / 4;
3063 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3064 // Special case for #-0
3065 if (Val == std::numeric_limits<int32_t>::min())
3066 Val = 0;
3067 if (Val < 0)
3068 Val = -Val;
3069 Val = ARM_AM::getAM5Opc(AddSub, Val);
3070 Inst.addOperand(MCOperand::createImm(Val));
3071 } else
3072 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3073 }
3074
addAddrMode5FP16Operands(MCInst & Inst,unsigned N) const3075 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
3076 assert(N == 2 && "Invalid number of operands!");
3077 // If we have an immediate that's not a constant, treat it as a label
3078 // reference needing a fixup. If it is a constant, it's something else
3079 // and we reject it.
3080 if (isImm()) {
3081 Inst.addOperand(MCOperand::createExpr(getImm()));
3082 Inst.addOperand(MCOperand::createImm(0));
3083 return;
3084 }
3085
3086 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3087 // The lower bit is always zero and as such is not encoded.
3088 if (!Memory.OffsetImm)
3089 Inst.addOperand(MCOperand::createImm(0));
3090 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3091 int32_t Val = CE->getValue() / 2;
3092 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3093 // Special case for #-0
3094 if (Val == std::numeric_limits<int32_t>::min())
3095 Val = 0;
3096 if (Val < 0)
3097 Val = -Val;
3098 Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
3099 Inst.addOperand(MCOperand::createImm(Val));
3100 } else
3101 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3102 }
3103
addMemImm8s4OffsetOperands(MCInst & Inst,unsigned N) const3104 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
3105 assert(N == 2 && "Invalid number of operands!");
3106 // If we have an immediate that's not a constant, treat it as a label
3107 // reference needing a fixup. If it is a constant, it's something else
3108 // and we reject it.
3109 if (isImm()) {
3110 Inst.addOperand(MCOperand::createExpr(getImm()));
3111 Inst.addOperand(MCOperand::createImm(0));
3112 return;
3113 }
3114
3115 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3116 addExpr(Inst, Memory.OffsetImm);
3117 }
3118
addMemImm7s4OffsetOperands(MCInst & Inst,unsigned N) const3119 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
3120 assert(N == 2 && "Invalid number of operands!");
3121 // If we have an immediate that's not a constant, treat it as a label
3122 // reference needing a fixup. If it is a constant, it's something else
3123 // and we reject it.
3124 if (isImm()) {
3125 Inst.addOperand(MCOperand::createExpr(getImm()));
3126 Inst.addOperand(MCOperand::createImm(0));
3127 return;
3128 }
3129
3130 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3131 addExpr(Inst, Memory.OffsetImm);
3132 }
3133
addMemImm0_1020s4OffsetOperands(MCInst & Inst,unsigned N) const3134 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
3135 assert(N == 2 && "Invalid number of operands!");
3136 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3137 if (!Memory.OffsetImm)
3138 Inst.addOperand(MCOperand::createImm(0));
3139 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3140 // The lower two bits are always zero and as such are not encoded.
3141 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3142 else
3143 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3144 }
3145
addMemImmOffsetOperands(MCInst & Inst,unsigned N) const3146 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
3147 assert(N == 2 && "Invalid number of operands!");
3148 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3149 addExpr(Inst, Memory.OffsetImm);
3150 }
3151
addMemRegRQOffsetOperands(MCInst & Inst,unsigned N) const3152 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
3153 assert(N == 2 && "Invalid number of operands!");
3154 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3155 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3156 }
3157
addMemUImm12OffsetOperands(MCInst & Inst,unsigned N) const3158 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3159 assert(N == 2 && "Invalid number of operands!");
3160 // If this is an immediate, it's a label reference.
3161 if (isImm()) {
3162 addExpr(Inst, getImm());
3163 Inst.addOperand(MCOperand::createImm(0));
3164 return;
3165 }
3166
3167 // Otherwise, it's a normal memory reg+offset.
3168 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3169 addExpr(Inst, Memory.OffsetImm);
3170 }
3171
addMemImm12OffsetOperands(MCInst & Inst,unsigned N) const3172 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3173 assert(N == 2 && "Invalid number of operands!");
3174 // If this is an immediate, it's a label reference.
3175 if (isImm()) {
3176 addExpr(Inst, getImm());
3177 Inst.addOperand(MCOperand::createImm(0));
3178 return;
3179 }
3180
3181 // Otherwise, it's a normal memory reg+offset.
3182 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3183 addExpr(Inst, Memory.OffsetImm);
3184 }
3185
addConstPoolAsmImmOperands(MCInst & Inst,unsigned N) const3186 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3187 assert(N == 1 && "Invalid number of operands!");
3188 // This is container for the immediate that we will create the constant
3189 // pool from
3190 addExpr(Inst, getConstantPoolImm());
3191 }
3192
addMemTBBOperands(MCInst & Inst,unsigned N) const3193 void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3194 assert(N == 2 && "Invalid number of operands!");
3195 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3196 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3197 }
3198
addMemTBHOperands(MCInst & Inst,unsigned N) const3199 void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3200 assert(N == 2 && "Invalid number of operands!");
3201 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3202 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3203 }
3204
addMemRegOffsetOperands(MCInst & Inst,unsigned N) const3205 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3206 assert(N == 3 && "Invalid number of operands!");
3207 unsigned Val =
3208 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3209 Memory.ShiftImm, Memory.ShiftType);
3210 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3211 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3212 Inst.addOperand(MCOperand::createImm(Val));
3213 }
3214
addT2MemRegOffsetOperands(MCInst & Inst,unsigned N) const3215 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3216 assert(N == 3 && "Invalid number of operands!");
3217 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3218 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3219 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3220 }
3221
addMemThumbRROperands(MCInst & Inst,unsigned N) const3222 void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3223 assert(N == 2 && "Invalid number of operands!");
3224 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3225 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3226 }
3227
addMemThumbRIs4Operands(MCInst & Inst,unsigned N) const3228 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3229 assert(N == 2 && "Invalid number of operands!");
3230 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3231 if (!Memory.OffsetImm)
3232 Inst.addOperand(MCOperand::createImm(0));
3233 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3234 // The lower two bits are always zero and as such are not encoded.
3235 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3236 else
3237 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3238 }
3239
addMemThumbRIs2Operands(MCInst & Inst,unsigned N) const3240 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3241 assert(N == 2 && "Invalid number of operands!");
3242 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3243 if (!Memory.OffsetImm)
3244 Inst.addOperand(MCOperand::createImm(0));
3245 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3246 Inst.addOperand(MCOperand::createImm(CE->getValue() / 2));
3247 else
3248 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3249 }
3250
addMemThumbRIs1Operands(MCInst & Inst,unsigned N) const3251 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3252 assert(N == 2 && "Invalid number of operands!");
3253 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3254 addExpr(Inst, Memory.OffsetImm);
3255 }
3256
addMemThumbSPIOperands(MCInst & Inst,unsigned N) const3257 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3258 assert(N == 2 && "Invalid number of operands!");
3259 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3260 if (!Memory.OffsetImm)
3261 Inst.addOperand(MCOperand::createImm(0));
3262 else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3263 // The lower two bits are always zero and as such are not encoded.
3264 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3265 else
3266 Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3267 }
3268
addPostIdxImm8Operands(MCInst & Inst,unsigned N) const3269 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3270 assert(N == 1 && "Invalid number of operands!");
3271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3272 assert(CE && "non-constant post-idx-imm8 operand!");
3273 int Imm = CE->getValue();
3274 bool isAdd = Imm >= 0;
3275 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3276 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3277 Inst.addOperand(MCOperand::createImm(Imm));
3278 }
3279
addPostIdxImm8s4Operands(MCInst & Inst,unsigned N) const3280 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3281 assert(N == 1 && "Invalid number of operands!");
3282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3283 assert(CE && "non-constant post-idx-imm8s4 operand!");
3284 int Imm = CE->getValue();
3285 bool isAdd = Imm >= 0;
3286 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3287 // Immediate is scaled by 4.
3288 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3289 Inst.addOperand(MCOperand::createImm(Imm));
3290 }
3291
addPostIdxRegOperands(MCInst & Inst,unsigned N) const3292 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3293 assert(N == 2 && "Invalid number of operands!");
3294 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3295 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3296 }
3297
addPostIdxRegShiftedOperands(MCInst & Inst,unsigned N) const3298 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3299 assert(N == 2 && "Invalid number of operands!");
3300 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3301 // The sign, shift type, and shift amount are encoded in a single operand
3302 // using the AM2 encoding helpers.
3303 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3304 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3305 PostIdxReg.ShiftTy);
3306 Inst.addOperand(MCOperand::createImm(Imm));
3307 }
3308
addPowerTwoOperands(MCInst & Inst,unsigned N) const3309 void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3310 assert(N == 1 && "Invalid number of operands!");
3311 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3312 Inst.addOperand(MCOperand::createImm(CE->getValue()));
3313 }
3314
addMSRMaskOperands(MCInst & Inst,unsigned N) const3315 void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3316 assert(N == 1 && "Invalid number of operands!");
3317 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3318 }
3319
addBankedRegOperands(MCInst & Inst,unsigned N) const3320 void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3321 assert(N == 1 && "Invalid number of operands!");
3322 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3323 }
3324
addProcIFlagsOperands(MCInst & Inst,unsigned N) const3325 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3326 assert(N == 1 && "Invalid number of operands!");
3327 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3328 }
3329
addVecListOperands(MCInst & Inst,unsigned N) const3330 void addVecListOperands(MCInst &Inst, unsigned N) const {
3331 assert(N == 1 && "Invalid number of operands!");
3332 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3333 }
3334
addMVEVecListOperands(MCInst & Inst,unsigned N) const3335 void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3336 assert(N == 1 && "Invalid number of operands!");
3337
3338 // When we come here, the VectorList field will identify a range
3339 // of q-registers by its base register and length, and it will
3340 // have already been error-checked to be the expected length of
3341 // range and contain only q-regs in the range q0-q7. So we can
3342 // count on the base register being in the range q0-q6 (for 2
3343 // regs) or q0-q4 (for 4)
3344 //
3345 // The MVE instructions taking a register range of this kind will
3346 // need an operand in the QQPR or QQQQPR class, representing the
3347 // entire range as a unit. So we must translate into that class,
3348 // by finding the index of the base register in the MQPR reg
3349 // class, and returning the super-register at the corresponding
3350 // index in the target class.
3351
3352 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3353 const MCRegisterClass *RC_out = (VectorList.Count == 2) ?
3354 &ARMMCRegisterClasses[ARM::QQPRRegClassID] :
3355 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID];
3356
3357 unsigned I, E = RC_out->getNumRegs();
3358 for (I = 0; I < E; I++)
3359 if (RC_in->getRegister(I) == VectorList.RegNum)
3360 break;
3361 assert(I < E && "Invalid vector list start register!");
3362
3363 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3364 }
3365
addVecListIndexedOperands(MCInst & Inst,unsigned N) const3366 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3367 assert(N == 2 && "Invalid number of operands!");
3368 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3369 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3370 }
3371
addVectorIndex8Operands(MCInst & Inst,unsigned N) const3372 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3373 assert(N == 1 && "Invalid number of operands!");
3374 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3375 }
3376
addVectorIndex16Operands(MCInst & Inst,unsigned N) const3377 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3378 assert(N == 1 && "Invalid number of operands!");
3379 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3380 }
3381
addVectorIndex32Operands(MCInst & Inst,unsigned N) const3382 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3383 assert(N == 1 && "Invalid number of operands!");
3384 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3385 }
3386
addVectorIndex64Operands(MCInst & Inst,unsigned N) const3387 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3388 assert(N == 1 && "Invalid number of operands!");
3389 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3390 }
3391
addMVEVectorIndexOperands(MCInst & Inst,unsigned N) const3392 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3393 assert(N == 1 && "Invalid number of operands!");
3394 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3395 }
3396
addMVEPairVectorIndexOperands(MCInst & Inst,unsigned N) const3397 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3398 assert(N == 1 && "Invalid number of operands!");
3399 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3400 }
3401
addNEONi8splatOperands(MCInst & Inst,unsigned N) const3402 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3403 assert(N == 1 && "Invalid number of operands!");
3404 // The immediate encodes the type of constant as well as the value.
3405 // Mask in that this is an i8 splat.
3406 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3407 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3408 }
3409
addNEONi16splatOperands(MCInst & Inst,unsigned N) const3410 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3411 assert(N == 1 && "Invalid number of operands!");
3412 // The immediate encodes the type of constant as well as the value.
3413 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3414 unsigned Value = CE->getValue();
3415 Value = ARM_AM::encodeNEONi16splat(Value);
3416 Inst.addOperand(MCOperand::createImm(Value));
3417 }
3418
addNEONi16splatNotOperands(MCInst & Inst,unsigned N) const3419 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3420 assert(N == 1 && "Invalid number of operands!");
3421 // The immediate encodes the type of constant as well as the value.
3422 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3423 unsigned Value = CE->getValue();
3424 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3425 Inst.addOperand(MCOperand::createImm(Value));
3426 }
3427
addNEONi32splatOperands(MCInst & Inst,unsigned N) const3428 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3429 assert(N == 1 && "Invalid number of operands!");
3430 // The immediate encodes the type of constant as well as the value.
3431 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3432 unsigned Value = CE->getValue();
3433 Value = ARM_AM::encodeNEONi32splat(Value);
3434 Inst.addOperand(MCOperand::createImm(Value));
3435 }
3436
addNEONi32splatNotOperands(MCInst & Inst,unsigned N) const3437 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3438 assert(N == 1 && "Invalid number of operands!");
3439 // The immediate encodes the type of constant as well as the value.
3440 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3441 unsigned Value = CE->getValue();
3442 Value = ARM_AM::encodeNEONi32splat(~Value);
3443 Inst.addOperand(MCOperand::createImm(Value));
3444 }
3445
addNEONi8ReplicateOperands(MCInst & Inst,bool Inv) const3446 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3447 // The immediate encodes the type of constant as well as the value.
3448 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3449 assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3450 Inst.getOpcode() == ARM::VMOVv16i8) &&
3451 "All instructions that wants to replicate non-zero byte "
3452 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3453 unsigned Value = CE->getValue();
3454 if (Inv)
3455 Value = ~Value;
3456 unsigned B = Value & 0xff;
3457 B |= 0xe00; // cmode = 0b1110
3458 Inst.addOperand(MCOperand::createImm(B));
3459 }
3460
addNEONinvi8ReplicateOperands(MCInst & Inst,unsigned N) const3461 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3462 assert(N == 1 && "Invalid number of operands!");
3463 addNEONi8ReplicateOperands(Inst, true);
3464 }
3465
encodeNeonVMOVImmediate(unsigned Value)3466 static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3467 if (Value >= 256 && Value <= 0xffff)
3468 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3469 else if (Value > 0xffff && Value <= 0xffffff)
3470 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3471 else if (Value > 0xffffff)
3472 Value = (Value >> 24) | 0x600;
3473 return Value;
3474 }
3475
addNEONi32vmovOperands(MCInst & Inst,unsigned N) const3476 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3477 assert(N == 1 && "Invalid number of operands!");
3478 // The immediate encodes the type of constant as well as the value.
3479 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3480 unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3481 Inst.addOperand(MCOperand::createImm(Value));
3482 }
3483
addNEONvmovi8ReplicateOperands(MCInst & Inst,unsigned N) const3484 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3485 assert(N == 1 && "Invalid number of operands!");
3486 addNEONi8ReplicateOperands(Inst, false);
3487 }
3488
addNEONvmovi16ReplicateOperands(MCInst & Inst,unsigned N) const3489 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3490 assert(N == 1 && "Invalid number of operands!");
3491 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3492 assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3493 Inst.getOpcode() == ARM::VMOVv8i16 ||
3494 Inst.getOpcode() == ARM::VMVNv4i16 ||
3495 Inst.getOpcode() == ARM::VMVNv8i16) &&
3496 "All instructions that want to replicate non-zero half-word "
3497 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3498 uint64_t Value = CE->getValue();
3499 unsigned Elem = Value & 0xffff;
3500 if (Elem >= 256)
3501 Elem = (Elem >> 8) | 0x200;
3502 Inst.addOperand(MCOperand::createImm(Elem));
3503 }
3504
addNEONi32vmovNegOperands(MCInst & Inst,unsigned N) const3505 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3506 assert(N == 1 && "Invalid number of operands!");
3507 // The immediate encodes the type of constant as well as the value.
3508 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3509 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3510 Inst.addOperand(MCOperand::createImm(Value));
3511 }
3512
addNEONvmovi32ReplicateOperands(MCInst & Inst,unsigned N) const3513 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3514 assert(N == 1 && "Invalid number of operands!");
3515 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3516 assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3517 Inst.getOpcode() == ARM::VMOVv4i32 ||
3518 Inst.getOpcode() == ARM::VMVNv2i32 ||
3519 Inst.getOpcode() == ARM::VMVNv4i32) &&
3520 "All instructions that want to replicate non-zero word "
3521 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3522 uint64_t Value = CE->getValue();
3523 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3524 Inst.addOperand(MCOperand::createImm(Elem));
3525 }
3526
addNEONi64splatOperands(MCInst & Inst,unsigned N) const3527 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3528 assert(N == 1 && "Invalid number of operands!");
3529 // The immediate encodes the type of constant as well as the value.
3530 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3531 uint64_t Value = CE->getValue();
3532 unsigned Imm = 0;
3533 for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3534 Imm |= (Value & 1) << i;
3535 }
3536 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3537 }
3538
addComplexRotationEvenOperands(MCInst & Inst,unsigned N) const3539 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3540 assert(N == 1 && "Invalid number of operands!");
3541 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3542 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3543 }
3544
addComplexRotationOddOperands(MCInst & Inst,unsigned N) const3545 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3546 assert(N == 1 && "Invalid number of operands!");
3547 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3548 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3549 }
3550
addMveSaturateOperands(MCInst & Inst,unsigned N) const3551 void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3552 assert(N == 1 && "Invalid number of operands!");
3553 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3554 unsigned Imm = CE->getValue();
3555 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3556 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3557 }
3558
3559 void print(raw_ostream &OS) const override;
3560
CreateITMask(unsigned Mask,SMLoc S)3561 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3562 auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
3563 Op->ITMask.Mask = Mask;
3564 Op->StartLoc = S;
3565 Op->EndLoc = S;
3566 return Op;
3567 }
3568
CreateCondCode(ARMCC::CondCodes CC,SMLoc S)3569 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3570 SMLoc S) {
3571 auto Op = std::make_unique<ARMOperand>(k_CondCode);
3572 Op->CC.Val = CC;
3573 Op->StartLoc = S;
3574 Op->EndLoc = S;
3575 return Op;
3576 }
3577
CreateVPTPred(ARMVCC::VPTCodes CC,SMLoc S)3578 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3579 SMLoc S) {
3580 auto Op = std::make_unique<ARMOperand>(k_VPTPred);
3581 Op->VCC.Val = CC;
3582 Op->StartLoc = S;
3583 Op->EndLoc = S;
3584 return Op;
3585 }
3586
CreateCoprocNum(unsigned CopVal,SMLoc S)3587 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3588 auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
3589 Op->Cop.Val = CopVal;
3590 Op->StartLoc = S;
3591 Op->EndLoc = S;
3592 return Op;
3593 }
3594
CreateCoprocReg(unsigned CopVal,SMLoc S)3595 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3596 auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
3597 Op->Cop.Val = CopVal;
3598 Op->StartLoc = S;
3599 Op->EndLoc = S;
3600 return Op;
3601 }
3602
CreateCoprocOption(unsigned Val,SMLoc S,SMLoc E)3603 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3604 SMLoc E) {
3605 auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
3606 Op->Cop.Val = Val;
3607 Op->StartLoc = S;
3608 Op->EndLoc = E;
3609 return Op;
3610 }
3611
CreateCCOut(unsigned RegNum,SMLoc S)3612 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3613 auto Op = std::make_unique<ARMOperand>(k_CCOut);
3614 Op->Reg.RegNum = RegNum;
3615 Op->StartLoc = S;
3616 Op->EndLoc = S;
3617 return Op;
3618 }
3619
CreateToken(StringRef Str,SMLoc S)3620 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3621 auto Op = std::make_unique<ARMOperand>(k_Token);
3622 Op->Tok.Data = Str.data();
3623 Op->Tok.Length = Str.size();
3624 Op->StartLoc = S;
3625 Op->EndLoc = S;
3626 return Op;
3627 }
3628
CreateReg(unsigned RegNum,SMLoc S,SMLoc E)3629 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3630 SMLoc E) {
3631 auto Op = std::make_unique<ARMOperand>(k_Register);
3632 Op->Reg.RegNum = RegNum;
3633 Op->StartLoc = S;
3634 Op->EndLoc = E;
3635 return Op;
3636 }
3637
3638 static std::unique_ptr<ARMOperand>
CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,unsigned SrcReg,unsigned ShiftReg,unsigned ShiftImm,SMLoc S,SMLoc E)3639 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3640 unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3641 SMLoc E) {
3642 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
3643 Op->RegShiftedReg.ShiftTy = ShTy;
3644 Op->RegShiftedReg.SrcReg = SrcReg;
3645 Op->RegShiftedReg.ShiftReg = ShiftReg;
3646 Op->RegShiftedReg.ShiftImm = ShiftImm;
3647 Op->StartLoc = S;
3648 Op->EndLoc = E;
3649 return Op;
3650 }
3651
3652 static std::unique_ptr<ARMOperand>
CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,unsigned SrcReg,unsigned ShiftImm,SMLoc S,SMLoc E)3653 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3654 unsigned ShiftImm, SMLoc S, SMLoc E) {
3655 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
3656 Op->RegShiftedImm.ShiftTy = ShTy;
3657 Op->RegShiftedImm.SrcReg = SrcReg;
3658 Op->RegShiftedImm.ShiftImm = ShiftImm;
3659 Op->StartLoc = S;
3660 Op->EndLoc = E;
3661 return Op;
3662 }
3663
CreateShifterImm(bool isASR,unsigned Imm,SMLoc S,SMLoc E)3664 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3665 SMLoc S, SMLoc E) {
3666 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
3667 Op->ShifterImm.isASR = isASR;
3668 Op->ShifterImm.Imm = Imm;
3669 Op->StartLoc = S;
3670 Op->EndLoc = E;
3671 return Op;
3672 }
3673
CreateRotImm(unsigned Imm,SMLoc S,SMLoc E)3674 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3675 SMLoc E) {
3676 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
3677 Op->RotImm.Imm = Imm;
3678 Op->StartLoc = S;
3679 Op->EndLoc = E;
3680 return Op;
3681 }
3682
CreateModImm(unsigned Bits,unsigned Rot,SMLoc S,SMLoc E)3683 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3684 SMLoc S, SMLoc E) {
3685 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
3686 Op->ModImm.Bits = Bits;
3687 Op->ModImm.Rot = Rot;
3688 Op->StartLoc = S;
3689 Op->EndLoc = E;
3690 return Op;
3691 }
3692
3693 static std::unique_ptr<ARMOperand>
CreateConstantPoolImm(const MCExpr * Val,SMLoc S,SMLoc E)3694 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3695 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
3696 Op->Imm.Val = Val;
3697 Op->StartLoc = S;
3698 Op->EndLoc = E;
3699 return Op;
3700 }
3701
3702 static std::unique_ptr<ARMOperand>
CreateBitfield(unsigned LSB,unsigned Width,SMLoc S,SMLoc E)3703 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3704 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
3705 Op->Bitfield.LSB = LSB;
3706 Op->Bitfield.Width = Width;
3707 Op->StartLoc = S;
3708 Op->EndLoc = E;
3709 return Op;
3710 }
3711
3712 static std::unique_ptr<ARMOperand>
CreateRegList(SmallVectorImpl<std::pair<unsigned,unsigned>> & Regs,SMLoc StartLoc,SMLoc EndLoc)3713 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3714 SMLoc StartLoc, SMLoc EndLoc) {
3715 assert(Regs.size() > 0 && "RegList contains no registers?");
3716 KindTy Kind = k_RegisterList;
3717
3718 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3719 Regs.front().second)) {
3720 if (Regs.back().second == ARM::VPR)
3721 Kind = k_FPDRegisterListWithVPR;
3722 else
3723 Kind = k_DPRRegisterList;
3724 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3725 Regs.front().second)) {
3726 if (Regs.back().second == ARM::VPR)
3727 Kind = k_FPSRegisterListWithVPR;
3728 else
3729 Kind = k_SPRRegisterList;
3730 }
3731
3732 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3733 Kind = k_RegisterListWithAPSR;
3734
3735 assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding");
3736
3737 auto Op = std::make_unique<ARMOperand>(Kind);
3738 for (const auto &P : Regs)
3739 Op->Registers.push_back(P.second);
3740
3741 Op->StartLoc = StartLoc;
3742 Op->EndLoc = EndLoc;
3743 return Op;
3744 }
3745
CreateVectorList(unsigned RegNum,unsigned Count,bool isDoubleSpaced,SMLoc S,SMLoc E)3746 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3747 unsigned Count,
3748 bool isDoubleSpaced,
3749 SMLoc S, SMLoc E) {
3750 auto Op = std::make_unique<ARMOperand>(k_VectorList);
3751 Op->VectorList.RegNum = RegNum;
3752 Op->VectorList.Count = Count;
3753 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3754 Op->StartLoc = S;
3755 Op->EndLoc = E;
3756 return Op;
3757 }
3758
3759 static std::unique_ptr<ARMOperand>
CreateVectorListAllLanes(unsigned RegNum,unsigned Count,bool isDoubleSpaced,SMLoc S,SMLoc E)3760 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3761 SMLoc S, SMLoc E) {
3762 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
3763 Op->VectorList.RegNum = RegNum;
3764 Op->VectorList.Count = Count;
3765 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3766 Op->StartLoc = S;
3767 Op->EndLoc = E;
3768 return Op;
3769 }
3770
3771 static std::unique_ptr<ARMOperand>
CreateVectorListIndexed(unsigned RegNum,unsigned Count,unsigned Index,bool isDoubleSpaced,SMLoc S,SMLoc E)3772 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3773 bool isDoubleSpaced, SMLoc S, SMLoc E) {
3774 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
3775 Op->VectorList.RegNum = RegNum;
3776 Op->VectorList.Count = Count;
3777 Op->VectorList.LaneIndex = Index;
3778 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3779 Op->StartLoc = S;
3780 Op->EndLoc = E;
3781 return Op;
3782 }
3783
3784 static std::unique_ptr<ARMOperand>
CreateVectorIndex(unsigned Idx,SMLoc S,SMLoc E,MCContext & Ctx)3785 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3786 auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
3787 Op->VectorIndex.Val = Idx;
3788 Op->StartLoc = S;
3789 Op->EndLoc = E;
3790 return Op;
3791 }
3792
CreateImm(const MCExpr * Val,SMLoc S,SMLoc E)3793 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3794 SMLoc E) {
3795 auto Op = std::make_unique<ARMOperand>(k_Immediate);
3796 Op->Imm.Val = Val;
3797 Op->StartLoc = S;
3798 Op->EndLoc = E;
3799 return Op;
3800 }
3801
3802 static std::unique_ptr<ARMOperand>
CreateMem(unsigned BaseRegNum,const MCExpr * OffsetImm,unsigned OffsetRegNum,ARM_AM::ShiftOpc ShiftType,unsigned ShiftImm,unsigned Alignment,bool isNegative,SMLoc S,SMLoc E,SMLoc AlignmentLoc=SMLoc ())3803 CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum,
3804 ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment,
3805 bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3806 auto Op = std::make_unique<ARMOperand>(k_Memory);
3807 Op->Memory.BaseRegNum = BaseRegNum;
3808 Op->Memory.OffsetImm = OffsetImm;
3809 Op->Memory.OffsetRegNum = OffsetRegNum;
3810 Op->Memory.ShiftType = ShiftType;
3811 Op->Memory.ShiftImm = ShiftImm;
3812 Op->Memory.Alignment = Alignment;
3813 Op->Memory.isNegative = isNegative;
3814 Op->StartLoc = S;
3815 Op->EndLoc = E;
3816 Op->AlignmentLoc = AlignmentLoc;
3817 return Op;
3818 }
3819
3820 static std::unique_ptr<ARMOperand>
CreatePostIdxReg(unsigned RegNum,bool isAdd,ARM_AM::ShiftOpc ShiftTy,unsigned ShiftImm,SMLoc S,SMLoc E)3821 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3822 unsigned ShiftImm, SMLoc S, SMLoc E) {
3823 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
3824 Op->PostIdxReg.RegNum = RegNum;
3825 Op->PostIdxReg.isAdd = isAdd;
3826 Op->PostIdxReg.ShiftTy = ShiftTy;
3827 Op->PostIdxReg.ShiftImm = ShiftImm;
3828 Op->StartLoc = S;
3829 Op->EndLoc = E;
3830 return Op;
3831 }
3832
CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,SMLoc S)3833 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3834 SMLoc S) {
3835 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
3836 Op->MBOpt.Val = Opt;
3837 Op->StartLoc = S;
3838 Op->EndLoc = S;
3839 return Op;
3840 }
3841
3842 static std::unique_ptr<ARMOperand>
CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,SMLoc S)3843 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3844 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3845 Op->ISBOpt.Val = Opt;
3846 Op->StartLoc = S;
3847 Op->EndLoc = S;
3848 return Op;
3849 }
3850
3851 static std::unique_ptr<ARMOperand>
CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt,SMLoc S)3852 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3853 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3854 Op->TSBOpt.Val = Opt;
3855 Op->StartLoc = S;
3856 Op->EndLoc = S;
3857 return Op;
3858 }
3859
CreateProcIFlags(ARM_PROC::IFlags IFlags,SMLoc S)3860 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3861 SMLoc S) {
3862 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
3863 Op->IFlags.Val = IFlags;
3864 Op->StartLoc = S;
3865 Op->EndLoc = S;
3866 return Op;
3867 }
3868
CreateMSRMask(unsigned MMask,SMLoc S)3869 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3870 auto Op = std::make_unique<ARMOperand>(k_MSRMask);
3871 Op->MMask.Val = MMask;
3872 Op->StartLoc = S;
3873 Op->EndLoc = S;
3874 return Op;
3875 }
3876
CreateBankedReg(unsigned Reg,SMLoc S)3877 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3878 auto Op = std::make_unique<ARMOperand>(k_BankedReg);
3879 Op->BankedReg.Val = Reg;
3880 Op->StartLoc = S;
3881 Op->EndLoc = S;
3882 return Op;
3883 }
3884 };
3885
3886 } // end anonymous namespace.
3887
print(raw_ostream & OS) const3888 void ARMOperand::print(raw_ostream &OS) const {
3889 auto RegName = [](unsigned Reg) {
3890 if (Reg)
3891 return ARMInstPrinter::getRegisterName(Reg);
3892 else
3893 return "noreg";
3894 };
3895
3896 switch (Kind) {
3897 case k_CondCode:
3898 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3899 break;
3900 case k_VPTPred:
3901 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3902 break;
3903 case k_CCOut:
3904 OS << "<ccout " << RegName(getReg()) << ">";
3905 break;
3906 case k_ITCondMask: {
3907 static const char *const MaskStr[] = {
3908 "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3909 "(tt)", "(ttet)", "(tte)", "(ttee)",
3910 "(t)", "(tett)", "(tet)", "(tete)",
3911 "(te)", "(teet)", "(tee)", "(teee)",
3912 };
3913 assert((ITMask.Mask & 0xf) == ITMask.Mask);
3914 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3915 break;
3916 }
3917 case k_CoprocNum:
3918 OS << "<coprocessor number: " << getCoproc() << ">";
3919 break;
3920 case k_CoprocReg:
3921 OS << "<coprocessor register: " << getCoproc() << ">";
3922 break;
3923 case k_CoprocOption:
3924 OS << "<coprocessor option: " << CoprocOption.Val << ">";
3925 break;
3926 case k_MSRMask:
3927 OS << "<mask: " << getMSRMask() << ">";
3928 break;
3929 case k_BankedReg:
3930 OS << "<banked reg: " << getBankedReg() << ">";
3931 break;
3932 case k_Immediate:
3933 OS << *getImm();
3934 break;
3935 case k_MemBarrierOpt:
3936 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3937 break;
3938 case k_InstSyncBarrierOpt:
3939 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3940 break;
3941 case k_TraceSyncBarrierOpt:
3942 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3943 break;
3944 case k_Memory:
3945 OS << "<memory";
3946 if (Memory.BaseRegNum)
3947 OS << " base:" << RegName(Memory.BaseRegNum);
3948 if (Memory.OffsetImm)
3949 OS << " offset-imm:" << *Memory.OffsetImm;
3950 if (Memory.OffsetRegNum)
3951 OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3952 << RegName(Memory.OffsetRegNum);
3953 if (Memory.ShiftType != ARM_AM::no_shift) {
3954 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3955 OS << " shift-imm:" << Memory.ShiftImm;
3956 }
3957 if (Memory.Alignment)
3958 OS << " alignment:" << Memory.Alignment;
3959 OS << ">";
3960 break;
3961 case k_PostIndexRegister:
3962 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3963 << RegName(PostIdxReg.RegNum);
3964 if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3965 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3966 << PostIdxReg.ShiftImm;
3967 OS << ">";
3968 break;
3969 case k_ProcIFlags: {
3970 OS << "<ARM_PROC::";
3971 unsigned IFlags = getProcIFlags();
3972 for (int i=2; i >= 0; --i)
3973 if (IFlags & (1 << i))
3974 OS << ARM_PROC::IFlagsToString(1 << i);
3975 OS << ">";
3976 break;
3977 }
3978 case k_Register:
3979 OS << "<register " << RegName(getReg()) << ">";
3980 break;
3981 case k_ShifterImmediate:
3982 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3983 << " #" << ShifterImm.Imm << ">";
3984 break;
3985 case k_ShiftedRegister:
3986 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3987 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3988 << RegName(RegShiftedReg.ShiftReg) << ">";
3989 break;
3990 case k_ShiftedImmediate:
3991 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3992 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3993 << RegShiftedImm.ShiftImm << ">";
3994 break;
3995 case k_RotateImmediate:
3996 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3997 break;
3998 case k_ModifiedImmediate:
3999 OS << "<mod_imm #" << ModImm.Bits << ", #"
4000 << ModImm.Rot << ")>";
4001 break;
4002 case k_ConstantPoolImmediate:
4003 OS << "<constant_pool_imm #" << *getConstantPoolImm();
4004 break;
4005 case k_BitfieldDescriptor:
4006 OS << "<bitfield " << "lsb: " << Bitfield.LSB
4007 << ", width: " << Bitfield.Width << ">";
4008 break;
4009 case k_RegisterList:
4010 case k_RegisterListWithAPSR:
4011 case k_DPRRegisterList:
4012 case k_SPRRegisterList:
4013 case k_FPSRegisterListWithVPR:
4014 case k_FPDRegisterListWithVPR: {
4015 OS << "<register_list ";
4016
4017 const SmallVectorImpl<unsigned> &RegList = getRegList();
4018 for (SmallVectorImpl<unsigned>::const_iterator
4019 I = RegList.begin(), E = RegList.end(); I != E; ) {
4020 OS << RegName(*I);
4021 if (++I < E) OS << ", ";
4022 }
4023
4024 OS << ">";
4025 break;
4026 }
4027 case k_VectorList:
4028 OS << "<vector_list " << VectorList.Count << " * "
4029 << RegName(VectorList.RegNum) << ">";
4030 break;
4031 case k_VectorListAllLanes:
4032 OS << "<vector_list(all lanes) " << VectorList.Count << " * "
4033 << RegName(VectorList.RegNum) << ">";
4034 break;
4035 case k_VectorListIndexed:
4036 OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
4037 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
4038 break;
4039 case k_Token:
4040 OS << "'" << getToken() << "'";
4041 break;
4042 case k_VectorIndex:
4043 OS << "<vectorindex " << getVectorIndex() << ">";
4044 break;
4045 }
4046 }
4047
4048 /// @name Auto-generated Match Functions
4049 /// {
4050
4051 static unsigned MatchRegisterName(StringRef Name);
4052
4053 /// }
4054
ParseRegister(unsigned & RegNo,SMLoc & StartLoc,SMLoc & EndLoc)4055 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
4056 SMLoc &StartLoc, SMLoc &EndLoc) {
4057 const AsmToken &Tok = getParser().getTok();
4058 StartLoc = Tok.getLoc();
4059 EndLoc = Tok.getEndLoc();
4060 RegNo = tryParseRegister();
4061
4062 return (RegNo == (unsigned)-1);
4063 }
4064
tryParseRegister(unsigned & RegNo,SMLoc & StartLoc,SMLoc & EndLoc)4065 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo,
4066 SMLoc &StartLoc,
4067 SMLoc &EndLoc) {
4068 if (ParseRegister(RegNo, StartLoc, EndLoc))
4069 return MatchOperand_NoMatch;
4070 return MatchOperand_Success;
4071 }
4072
4073 /// Try to parse a register name. The token must be an Identifier when called,
4074 /// and if it is a register name the token is eaten and the register number is
4075 /// returned. Otherwise return -1.
tryParseRegister()4076 int ARMAsmParser::tryParseRegister() {
4077 MCAsmParser &Parser = getParser();
4078 const AsmToken &Tok = Parser.getTok();
4079 if (Tok.isNot(AsmToken::Identifier)) return -1;
4080
4081 std::string lowerCase = Tok.getString().lower();
4082 unsigned RegNum = MatchRegisterName(lowerCase);
4083 if (!RegNum) {
4084 RegNum = StringSwitch<unsigned>(lowerCase)
4085 .Case("r13", ARM::SP)
4086 .Case("r14", ARM::LR)
4087 .Case("r15", ARM::PC)
4088 .Case("ip", ARM::R12)
4089 // Additional register name aliases for 'gas' compatibility.
4090 .Case("a1", ARM::R0)
4091 .Case("a2", ARM::R1)
4092 .Case("a3", ARM::R2)
4093 .Case("a4", ARM::R3)
4094 .Case("v1", ARM::R4)
4095 .Case("v2", ARM::R5)
4096 .Case("v3", ARM::R6)
4097 .Case("v4", ARM::R7)
4098 .Case("v5", ARM::R8)
4099 .Case("v6", ARM::R9)
4100 .Case("v7", ARM::R10)
4101 .Case("v8", ARM::R11)
4102 .Case("sb", ARM::R9)
4103 .Case("sl", ARM::R10)
4104 .Case("fp", ARM::R11)
4105 .Default(0);
4106 }
4107 if (!RegNum) {
4108 // Check for aliases registered via .req. Canonicalize to lower case.
4109 // That's more consistent since register names are case insensitive, and
4110 // it's how the original entry was passed in from MC/MCParser/AsmParser.
4111 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
4112 // If no match, return failure.
4113 if (Entry == RegisterReqs.end())
4114 return -1;
4115 Parser.Lex(); // Eat identifier token.
4116 return Entry->getValue();
4117 }
4118
4119 // Some FPUs only have 16 D registers, so D16-D31 are invalid
4120 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
4121 return -1;
4122
4123 Parser.Lex(); // Eat identifier token.
4124
4125 return RegNum;
4126 }
4127
4128 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
4129 // If a recoverable error occurs, return 1. If an irrecoverable error
4130 // occurs, return -1. An irrecoverable error is one where tokens have been
4131 // consumed in the process of trying to parse the shifter (i.e., when it is
4132 // indeed a shifter operand, but malformed).
tryParseShiftRegister(OperandVector & Operands)4133 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
4134 MCAsmParser &Parser = getParser();
4135 SMLoc S = Parser.getTok().getLoc();
4136 const AsmToken &Tok = Parser.getTok();
4137 if (Tok.isNot(AsmToken::Identifier))
4138 return -1;
4139
4140 std::string lowerCase = Tok.getString().lower();
4141 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
4142 .Case("asl", ARM_AM::lsl)
4143 .Case("lsl", ARM_AM::lsl)
4144 .Case("lsr", ARM_AM::lsr)
4145 .Case("asr", ARM_AM::asr)
4146 .Case("ror", ARM_AM::ror)
4147 .Case("rrx", ARM_AM::rrx)
4148 .Default(ARM_AM::no_shift);
4149
4150 if (ShiftTy == ARM_AM::no_shift)
4151 return 1;
4152
4153 Parser.Lex(); // Eat the operator.
4154
4155 // The source register for the shift has already been added to the
4156 // operand list, so we need to pop it off and combine it into the shifted
4157 // register operand instead.
4158 std::unique_ptr<ARMOperand> PrevOp(
4159 (ARMOperand *)Operands.pop_back_val().release());
4160 if (!PrevOp->isReg())
4161 return Error(PrevOp->getStartLoc(), "shift must be of a register");
4162 int SrcReg = PrevOp->getReg();
4163
4164 SMLoc EndLoc;
4165 int64_t Imm = 0;
4166 int ShiftReg = 0;
4167 if (ShiftTy == ARM_AM::rrx) {
4168 // RRX Doesn't have an explicit shift amount. The encoder expects
4169 // the shift register to be the same as the source register. Seems odd,
4170 // but OK.
4171 ShiftReg = SrcReg;
4172 } else {
4173 // Figure out if this is shifted by a constant or a register (for non-RRX).
4174 if (Parser.getTok().is(AsmToken::Hash) ||
4175 Parser.getTok().is(AsmToken::Dollar)) {
4176 Parser.Lex(); // Eat hash.
4177 SMLoc ImmLoc = Parser.getTok().getLoc();
4178 const MCExpr *ShiftExpr = nullptr;
4179 if (getParser().parseExpression(ShiftExpr, EndLoc)) {
4180 Error(ImmLoc, "invalid immediate shift value");
4181 return -1;
4182 }
4183 // The expression must be evaluatable as an immediate.
4184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4185 if (!CE) {
4186 Error(ImmLoc, "invalid immediate shift value");
4187 return -1;
4188 }
4189 // Range check the immediate.
4190 // lsl, ror: 0 <= imm <= 31
4191 // lsr, asr: 0 <= imm <= 32
4192 Imm = CE->getValue();
4193 if (Imm < 0 ||
4194 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4195 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4196 Error(ImmLoc, "immediate shift value out of range");
4197 return -1;
4198 }
4199 // shift by zero is a nop. Always send it through as lsl.
4200 // ('as' compatibility)
4201 if (Imm == 0)
4202 ShiftTy = ARM_AM::lsl;
4203 } else if (Parser.getTok().is(AsmToken::Identifier)) {
4204 SMLoc L = Parser.getTok().getLoc();
4205 EndLoc = Parser.getTok().getEndLoc();
4206 ShiftReg = tryParseRegister();
4207 if (ShiftReg == -1) {
4208 Error(L, "expected immediate or register in shift operand");
4209 return -1;
4210 }
4211 } else {
4212 Error(Parser.getTok().getLoc(),
4213 "expected immediate or register in shift operand");
4214 return -1;
4215 }
4216 }
4217
4218 if (ShiftReg && ShiftTy != ARM_AM::rrx)
4219 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4220 ShiftReg, Imm,
4221 S, EndLoc));
4222 else
4223 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4224 S, EndLoc));
4225
4226 return 0;
4227 }
4228
4229 /// Try to parse a register name. The token must be an Identifier when called.
4230 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4231 /// if there is a "writeback". 'true' if it's not a register.
4232 ///
4233 /// TODO this is likely to change to allow different register types and or to
4234 /// parse for a specific register type.
tryParseRegisterWithWriteBack(OperandVector & Operands)4235 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4236 MCAsmParser &Parser = getParser();
4237 SMLoc RegStartLoc = Parser.getTok().getLoc();
4238 SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4239 int RegNo = tryParseRegister();
4240 if (RegNo == -1)
4241 return true;
4242
4243 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4244
4245 const AsmToken &ExclaimTok = Parser.getTok();
4246 if (ExclaimTok.is(AsmToken::Exclaim)) {
4247 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4248 ExclaimTok.getLoc()));
4249 Parser.Lex(); // Eat exclaim token
4250 return false;
4251 }
4252
4253 // Also check for an index operand. This is only legal for vector registers,
4254 // but that'll get caught OK in operand matching, so we don't need to
4255 // explicitly filter everything else out here.
4256 if (Parser.getTok().is(AsmToken::LBrac)) {
4257 SMLoc SIdx = Parser.getTok().getLoc();
4258 Parser.Lex(); // Eat left bracket token.
4259
4260 const MCExpr *ImmVal;
4261 if (getParser().parseExpression(ImmVal))
4262 return true;
4263 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4264 if (!MCE)
4265 return TokError("immediate value expected for vector index");
4266
4267 if (Parser.getTok().isNot(AsmToken::RBrac))
4268 return Error(Parser.getTok().getLoc(), "']' expected");
4269
4270 SMLoc E = Parser.getTok().getEndLoc();
4271 Parser.Lex(); // Eat right bracket token.
4272
4273 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4274 SIdx, E,
4275 getContext()));
4276 }
4277
4278 return false;
4279 }
4280
4281 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4282 /// instruction with a symbolic operand name.
4283 /// We accept "crN" syntax for GAS compatibility.
4284 /// <operand-name> ::= <prefix><number>
4285 /// If CoprocOp is 'c', then:
4286 /// <prefix> ::= c | cr
4287 /// If CoprocOp is 'p', then :
4288 /// <prefix> ::= p
4289 /// <number> ::= integer in range [0, 15]
MatchCoprocessorOperandName(StringRef Name,char CoprocOp)4290 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4291 // Use the same layout as the tablegen'erated register name matcher. Ugly,
4292 // but efficient.
4293 if (Name.size() < 2 || Name[0] != CoprocOp)
4294 return -1;
4295 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4296
4297 switch (Name.size()) {
4298 default: return -1;
4299 case 1:
4300 switch (Name[0]) {
4301 default: return -1;
4302 case '0': return 0;
4303 case '1': return 1;
4304 case '2': return 2;
4305 case '3': return 3;
4306 case '4': return 4;
4307 case '5': return 5;
4308 case '6': return 6;
4309 case '7': return 7;
4310 case '8': return 8;
4311 case '9': return 9;
4312 }
4313 case 2:
4314 if (Name[0] != '1')
4315 return -1;
4316 switch (Name[1]) {
4317 default: return -1;
4318 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4319 // However, old cores (v5/v6) did use them in that way.
4320 case '0': return 10;
4321 case '1': return 11;
4322 case '2': return 12;
4323 case '3': return 13;
4324 case '4': return 14;
4325 case '5': return 15;
4326 }
4327 }
4328 }
4329
4330 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4331 OperandMatchResultTy
parseITCondCode(OperandVector & Operands)4332 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4333 MCAsmParser &Parser = getParser();
4334 SMLoc S = Parser.getTok().getLoc();
4335 const AsmToken &Tok = Parser.getTok();
4336 if (!Tok.is(AsmToken::Identifier))
4337 return MatchOperand_NoMatch;
4338 unsigned CC = ARMCondCodeFromString(Tok.getString());
4339 if (CC == ~0U)
4340 return MatchOperand_NoMatch;
4341 Parser.Lex(); // Eat the token.
4342
4343 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4344
4345 return MatchOperand_Success;
4346 }
4347
4348 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4349 /// token must be an Identifier when called, and if it is a coprocessor
4350 /// number, the token is eaten and the operand is added to the operand list.
4351 OperandMatchResultTy
parseCoprocNumOperand(OperandVector & Operands)4352 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4353 MCAsmParser &Parser = getParser();
4354 SMLoc S = Parser.getTok().getLoc();
4355 const AsmToken &Tok = Parser.getTok();
4356 if (Tok.isNot(AsmToken::Identifier))
4357 return MatchOperand_NoMatch;
4358
4359 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4360 if (Num == -1)
4361 return MatchOperand_NoMatch;
4362 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4363 return MatchOperand_NoMatch;
4364
4365 Parser.Lex(); // Eat identifier token.
4366 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4367 return MatchOperand_Success;
4368 }
4369
4370 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4371 /// token must be an Identifier when called, and if it is a coprocessor
4372 /// number, the token is eaten and the operand is added to the operand list.
4373 OperandMatchResultTy
parseCoprocRegOperand(OperandVector & Operands)4374 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4375 MCAsmParser &Parser = getParser();
4376 SMLoc S = Parser.getTok().getLoc();
4377 const AsmToken &Tok = Parser.getTok();
4378 if (Tok.isNot(AsmToken::Identifier))
4379 return MatchOperand_NoMatch;
4380
4381 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4382 if (Reg == -1)
4383 return MatchOperand_NoMatch;
4384
4385 Parser.Lex(); // Eat identifier token.
4386 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4387 return MatchOperand_Success;
4388 }
4389
4390 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4391 /// coproc_option : '{' imm0_255 '}'
4392 OperandMatchResultTy
parseCoprocOptionOperand(OperandVector & Operands)4393 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4394 MCAsmParser &Parser = getParser();
4395 SMLoc S = Parser.getTok().getLoc();
4396
4397 // If this isn't a '{', this isn't a coprocessor immediate operand.
4398 if (Parser.getTok().isNot(AsmToken::LCurly))
4399 return MatchOperand_NoMatch;
4400 Parser.Lex(); // Eat the '{'
4401
4402 const MCExpr *Expr;
4403 SMLoc Loc = Parser.getTok().getLoc();
4404 if (getParser().parseExpression(Expr)) {
4405 Error(Loc, "illegal expression");
4406 return MatchOperand_ParseFail;
4407 }
4408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4409 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4410 Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4411 return MatchOperand_ParseFail;
4412 }
4413 int Val = CE->getValue();
4414
4415 // Check for and consume the closing '}'
4416 if (Parser.getTok().isNot(AsmToken::RCurly))
4417 return MatchOperand_ParseFail;
4418 SMLoc E = Parser.getTok().getEndLoc();
4419 Parser.Lex(); // Eat the '}'
4420
4421 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4422 return MatchOperand_Success;
4423 }
4424
4425 // For register list parsing, we need to map from raw GPR register numbering
4426 // to the enumeration values. The enumeration values aren't sorted by
4427 // register number due to our using "sp", "lr" and "pc" as canonical names.
getNextRegister(unsigned Reg)4428 static unsigned getNextRegister(unsigned Reg) {
4429 // If this is a GPR, we need to do it manually, otherwise we can rely
4430 // on the sort ordering of the enumeration since the other reg-classes
4431 // are sane.
4432 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4433 return Reg + 1;
4434 switch(Reg) {
4435 default: llvm_unreachable("Invalid GPR number!");
4436 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
4437 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
4438 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
4439 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
4440 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
4441 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4442 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
4443 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
4444 }
4445 }
4446
4447 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4448 // success, or false, if duplicate encoding found.
4449 static bool
insertNoDuplicates(SmallVectorImpl<std::pair<unsigned,unsigned>> & Regs,unsigned Enc,unsigned Reg)4450 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4451 unsigned Enc, unsigned Reg) {
4452 Regs.emplace_back(Enc, Reg);
4453 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4454 if (J->first == Enc) {
4455 Regs.erase(J.base());
4456 return false;
4457 }
4458 if (J->first < Enc)
4459 break;
4460 std::swap(*I, *J);
4461 }
4462 return true;
4463 }
4464
4465 /// Parse a register list.
parseRegisterList(OperandVector & Operands,bool EnforceOrder)4466 bool ARMAsmParser::parseRegisterList(OperandVector &Operands,
4467 bool EnforceOrder) {
4468 MCAsmParser &Parser = getParser();
4469 if (Parser.getTok().isNot(AsmToken::LCurly))
4470 return TokError("Token is not a Left Curly Brace");
4471 SMLoc S = Parser.getTok().getLoc();
4472 Parser.Lex(); // Eat '{' token.
4473 SMLoc RegLoc = Parser.getTok().getLoc();
4474
4475 // Check the first register in the list to see what register class
4476 // this is a list of.
4477 int Reg = tryParseRegister();
4478 if (Reg == -1)
4479 return Error(RegLoc, "register expected");
4480
4481 // The reglist instructions have at most 16 registers, so reserve
4482 // space for that many.
4483 int EReg = 0;
4484 SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4485
4486 // Allow Q regs and just interpret them as the two D sub-registers.
4487 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4488 Reg = getDRegFromQReg(Reg);
4489 EReg = MRI->getEncodingValue(Reg);
4490 Registers.emplace_back(EReg, Reg);
4491 ++Reg;
4492 }
4493 const MCRegisterClass *RC;
4494 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4495 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4496 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4497 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4498 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4499 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4500 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4501 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4502 else
4503 return Error(RegLoc, "invalid register in register list");
4504
4505 // Store the register.
4506 EReg = MRI->getEncodingValue(Reg);
4507 Registers.emplace_back(EReg, Reg);
4508
4509 // This starts immediately after the first register token in the list,
4510 // so we can see either a comma or a minus (range separator) as a legal
4511 // next token.
4512 while (Parser.getTok().is(AsmToken::Comma) ||
4513 Parser.getTok().is(AsmToken::Minus)) {
4514 if (Parser.getTok().is(AsmToken::Minus)) {
4515 Parser.Lex(); // Eat the minus.
4516 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4517 int EndReg = tryParseRegister();
4518 if (EndReg == -1)
4519 return Error(AfterMinusLoc, "register expected");
4520 // Allow Q regs and just interpret them as the two D sub-registers.
4521 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4522 EndReg = getDRegFromQReg(EndReg) + 1;
4523 // If the register is the same as the start reg, there's nothing
4524 // more to do.
4525 if (Reg == EndReg)
4526 continue;
4527 // The register must be in the same register class as the first.
4528 if (!RC->contains(EndReg))
4529 return Error(AfterMinusLoc, "invalid register in register list");
4530 // Ranges must go from low to high.
4531 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4532 return Error(AfterMinusLoc, "bad range in register list");
4533
4534 // Add all the registers in the range to the register list.
4535 while (Reg != EndReg) {
4536 Reg = getNextRegister(Reg);
4537 EReg = MRI->getEncodingValue(Reg);
4538 if (!insertNoDuplicates(Registers, EReg, Reg)) {
4539 Warning(AfterMinusLoc, StringRef("duplicated register (") +
4540 ARMInstPrinter::getRegisterName(Reg) +
4541 ") in register list");
4542 }
4543 }
4544 continue;
4545 }
4546 Parser.Lex(); // Eat the comma.
4547 RegLoc = Parser.getTok().getLoc();
4548 int OldReg = Reg;
4549 const AsmToken RegTok = Parser.getTok();
4550 Reg = tryParseRegister();
4551 if (Reg == -1)
4552 return Error(RegLoc, "register expected");
4553 // Allow Q regs and just interpret them as the two D sub-registers.
4554 bool isQReg = false;
4555 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4556 Reg = getDRegFromQReg(Reg);
4557 isQReg = true;
4558 }
4559 if (!RC->contains(Reg) &&
4560 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4561 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4562 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4563 // subset of GPRRegClassId except it contains APSR as well.
4564 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4565 }
4566 if (Reg == ARM::VPR &&
4567 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4568 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4569 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4570 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4571 EReg = MRI->getEncodingValue(Reg);
4572 if (!insertNoDuplicates(Registers, EReg, Reg)) {
4573 Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4574 ") in register list");
4575 }
4576 continue;
4577 }
4578 // The register must be in the same register class as the first.
4579 if (!RC->contains(Reg))
4580 return Error(RegLoc, "invalid register in register list");
4581 // In most cases, the list must be monotonically increasing. An
4582 // exception is CLRM, which is order-independent anyway, so
4583 // there's no potential for confusion if you write clrm {r2,r1}
4584 // instead of clrm {r1,r2}.
4585 if (EnforceOrder &&
4586 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4587 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4588 Warning(RegLoc, "register list not in ascending order");
4589 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4590 return Error(RegLoc, "register list not in ascending order");
4591 }
4592 // VFP register lists must also be contiguous.
4593 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4594 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4595 Reg != OldReg + 1)
4596 return Error(RegLoc, "non-contiguous register range");
4597 EReg = MRI->getEncodingValue(Reg);
4598 if (!insertNoDuplicates(Registers, EReg, Reg)) {
4599 Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4600 ") in register list");
4601 }
4602 if (isQReg) {
4603 EReg = MRI->getEncodingValue(++Reg);
4604 Registers.emplace_back(EReg, Reg);
4605 }
4606 }
4607
4608 if (Parser.getTok().isNot(AsmToken::RCurly))
4609 return Error(Parser.getTok().getLoc(), "'}' expected");
4610 SMLoc E = Parser.getTok().getEndLoc();
4611 Parser.Lex(); // Eat '}' token.
4612
4613 // Push the register list operand.
4614 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4615
4616 // The ARM system instruction variants for LDM/STM have a '^' token here.
4617 if (Parser.getTok().is(AsmToken::Caret)) {
4618 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4619 Parser.Lex(); // Eat '^' token.
4620 }
4621
4622 return false;
4623 }
4624
4625 // Helper function to parse the lane index for vector lists.
4626 OperandMatchResultTy ARMAsmParser::
parseVectorLane(VectorLaneTy & LaneKind,unsigned & Index,SMLoc & EndLoc)4627 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4628 MCAsmParser &Parser = getParser();
4629 Index = 0; // Always return a defined index value.
4630 if (Parser.getTok().is(AsmToken::LBrac)) {
4631 Parser.Lex(); // Eat the '['.
4632 if (Parser.getTok().is(AsmToken::RBrac)) {
4633 // "Dn[]" is the 'all lanes' syntax.
4634 LaneKind = AllLanes;
4635 EndLoc = Parser.getTok().getEndLoc();
4636 Parser.Lex(); // Eat the ']'.
4637 return MatchOperand_Success;
4638 }
4639
4640 // There's an optional '#' token here. Normally there wouldn't be, but
4641 // inline assemble puts one in, and it's friendly to accept that.
4642 if (Parser.getTok().is(AsmToken::Hash))
4643 Parser.Lex(); // Eat '#' or '$'.
4644
4645 const MCExpr *LaneIndex;
4646 SMLoc Loc = Parser.getTok().getLoc();
4647 if (getParser().parseExpression(LaneIndex)) {
4648 Error(Loc, "illegal expression");
4649 return MatchOperand_ParseFail;
4650 }
4651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4652 if (!CE) {
4653 Error(Loc, "lane index must be empty or an integer");
4654 return MatchOperand_ParseFail;
4655 }
4656 if (Parser.getTok().isNot(AsmToken::RBrac)) {
4657 Error(Parser.getTok().getLoc(), "']' expected");
4658 return MatchOperand_ParseFail;
4659 }
4660 EndLoc = Parser.getTok().getEndLoc();
4661 Parser.Lex(); // Eat the ']'.
4662 int64_t Val = CE->getValue();
4663
4664 // FIXME: Make this range check context sensitive for .8, .16, .32.
4665 if (Val < 0 || Val > 7) {
4666 Error(Parser.getTok().getLoc(), "lane index out of range");
4667 return MatchOperand_ParseFail;
4668 }
4669 Index = Val;
4670 LaneKind = IndexedLane;
4671 return MatchOperand_Success;
4672 }
4673 LaneKind = NoLanes;
4674 return MatchOperand_Success;
4675 }
4676
4677 // parse a vector register list
4678 OperandMatchResultTy
parseVectorList(OperandVector & Operands)4679 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4680 MCAsmParser &Parser = getParser();
4681 VectorLaneTy LaneKind;
4682 unsigned LaneIndex;
4683 SMLoc S = Parser.getTok().getLoc();
4684 // As an extension (to match gas), support a plain D register or Q register
4685 // (without encosing curly braces) as a single or double entry list,
4686 // respectively.
4687 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4688 SMLoc E = Parser.getTok().getEndLoc();
4689 int Reg = tryParseRegister();
4690 if (Reg == -1)
4691 return MatchOperand_NoMatch;
4692 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4693 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4694 if (Res != MatchOperand_Success)
4695 return Res;
4696 switch (LaneKind) {
4697 case NoLanes:
4698 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4699 break;
4700 case AllLanes:
4701 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4702 S, E));
4703 break;
4704 case IndexedLane:
4705 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4706 LaneIndex,
4707 false, S, E));
4708 break;
4709 }
4710 return MatchOperand_Success;
4711 }
4712 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4713 Reg = getDRegFromQReg(Reg);
4714 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4715 if (Res != MatchOperand_Success)
4716 return Res;
4717 switch (LaneKind) {
4718 case NoLanes:
4719 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4720 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4721 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4722 break;
4723 case AllLanes:
4724 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4725 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4726 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4727 S, E));
4728 break;
4729 case IndexedLane:
4730 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4731 LaneIndex,
4732 false, S, E));
4733 break;
4734 }
4735 return MatchOperand_Success;
4736 }
4737 Error(S, "vector register expected");
4738 return MatchOperand_ParseFail;
4739 }
4740
4741 if (Parser.getTok().isNot(AsmToken::LCurly))
4742 return MatchOperand_NoMatch;
4743
4744 Parser.Lex(); // Eat '{' token.
4745 SMLoc RegLoc = Parser.getTok().getLoc();
4746
4747 int Reg = tryParseRegister();
4748 if (Reg == -1) {
4749 Error(RegLoc, "register expected");
4750 return MatchOperand_ParseFail;
4751 }
4752 unsigned Count = 1;
4753 int Spacing = 0;
4754 unsigned FirstReg = Reg;
4755
4756 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4757 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4758 return MatchOperand_ParseFail;
4759 }
4760 // The list is of D registers, but we also allow Q regs and just interpret
4761 // them as the two D sub-registers.
4762 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4763 FirstReg = Reg = getDRegFromQReg(Reg);
4764 Spacing = 1; // double-spacing requires explicit D registers, otherwise
4765 // it's ambiguous with four-register single spaced.
4766 ++Reg;
4767 ++Count;
4768 }
4769
4770 SMLoc E;
4771 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4772 return MatchOperand_ParseFail;
4773
4774 while (Parser.getTok().is(AsmToken::Comma) ||
4775 Parser.getTok().is(AsmToken::Minus)) {
4776 if (Parser.getTok().is(AsmToken::Minus)) {
4777 if (!Spacing)
4778 Spacing = 1; // Register range implies a single spaced list.
4779 else if (Spacing == 2) {
4780 Error(Parser.getTok().getLoc(),
4781 "sequential registers in double spaced list");
4782 return MatchOperand_ParseFail;
4783 }
4784 Parser.Lex(); // Eat the minus.
4785 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4786 int EndReg = tryParseRegister();
4787 if (EndReg == -1) {
4788 Error(AfterMinusLoc, "register expected");
4789 return MatchOperand_ParseFail;
4790 }
4791 // Allow Q regs and just interpret them as the two D sub-registers.
4792 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4793 EndReg = getDRegFromQReg(EndReg) + 1;
4794 // If the register is the same as the start reg, there's nothing
4795 // more to do.
4796 if (Reg == EndReg)
4797 continue;
4798 // The register must be in the same register class as the first.
4799 if ((hasMVE() &&
4800 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4801 (!hasMVE() &&
4802 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4803 Error(AfterMinusLoc, "invalid register in register list");
4804 return MatchOperand_ParseFail;
4805 }
4806 // Ranges must go from low to high.
4807 if (Reg > EndReg) {
4808 Error(AfterMinusLoc, "bad range in register list");
4809 return MatchOperand_ParseFail;
4810 }
4811 // Parse the lane specifier if present.
4812 VectorLaneTy NextLaneKind;
4813 unsigned NextLaneIndex;
4814 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4815 MatchOperand_Success)
4816 return MatchOperand_ParseFail;
4817 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4818 Error(AfterMinusLoc, "mismatched lane index in register list");
4819 return MatchOperand_ParseFail;
4820 }
4821
4822 // Add all the registers in the range to the register list.
4823 Count += EndReg - Reg;
4824 Reg = EndReg;
4825 continue;
4826 }
4827 Parser.Lex(); // Eat the comma.
4828 RegLoc = Parser.getTok().getLoc();
4829 int OldReg = Reg;
4830 Reg = tryParseRegister();
4831 if (Reg == -1) {
4832 Error(RegLoc, "register expected");
4833 return MatchOperand_ParseFail;
4834 }
4835
4836 if (hasMVE()) {
4837 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4838 Error(RegLoc, "vector register in range Q0-Q7 expected");
4839 return MatchOperand_ParseFail;
4840 }
4841 Spacing = 1;
4842 }
4843 // vector register lists must be contiguous.
4844 // It's OK to use the enumeration values directly here rather, as the
4845 // VFP register classes have the enum sorted properly.
4846 //
4847 // The list is of D registers, but we also allow Q regs and just interpret
4848 // them as the two D sub-registers.
4849 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4850 if (!Spacing)
4851 Spacing = 1; // Register range implies a single spaced list.
4852 else if (Spacing == 2) {
4853 Error(RegLoc,
4854 "invalid register in double-spaced list (must be 'D' register')");
4855 return MatchOperand_ParseFail;
4856 }
4857 Reg = getDRegFromQReg(Reg);
4858 if (Reg != OldReg + 1) {
4859 Error(RegLoc, "non-contiguous register range");
4860 return MatchOperand_ParseFail;
4861 }
4862 ++Reg;
4863 Count += 2;
4864 // Parse the lane specifier if present.
4865 VectorLaneTy NextLaneKind;
4866 unsigned NextLaneIndex;
4867 SMLoc LaneLoc = Parser.getTok().getLoc();
4868 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4869 MatchOperand_Success)
4870 return MatchOperand_ParseFail;
4871 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4872 Error(LaneLoc, "mismatched lane index in register list");
4873 return MatchOperand_ParseFail;
4874 }
4875 continue;
4876 }
4877 // Normal D register.
4878 // Figure out the register spacing (single or double) of the list if
4879 // we don't know it already.
4880 if (!Spacing)
4881 Spacing = 1 + (Reg == OldReg + 2);
4882
4883 // Just check that it's contiguous and keep going.
4884 if (Reg != OldReg + Spacing) {
4885 Error(RegLoc, "non-contiguous register range");
4886 return MatchOperand_ParseFail;
4887 }
4888 ++Count;
4889 // Parse the lane specifier if present.
4890 VectorLaneTy NextLaneKind;
4891 unsigned NextLaneIndex;
4892 SMLoc EndLoc = Parser.getTok().getLoc();
4893 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4894 return MatchOperand_ParseFail;
4895 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4896 Error(EndLoc, "mismatched lane index in register list");
4897 return MatchOperand_ParseFail;
4898 }
4899 }
4900
4901 if (Parser.getTok().isNot(AsmToken::RCurly)) {
4902 Error(Parser.getTok().getLoc(), "'}' expected");
4903 return MatchOperand_ParseFail;
4904 }
4905 E = Parser.getTok().getEndLoc();
4906 Parser.Lex(); // Eat '}' token.
4907
4908 switch (LaneKind) {
4909 case NoLanes:
4910 case AllLanes: {
4911 // Two-register operands have been converted to the
4912 // composite register classes.
4913 if (Count == 2 && !hasMVE()) {
4914 const MCRegisterClass *RC = (Spacing == 1) ?
4915 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4916 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4917 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4918 }
4919 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4920 ARMOperand::CreateVectorListAllLanes);
4921 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4922 break;
4923 }
4924 case IndexedLane:
4925 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4926 LaneIndex,
4927 (Spacing == 2),
4928 S, E));
4929 break;
4930 }
4931 return MatchOperand_Success;
4932 }
4933
4934 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4935 OperandMatchResultTy
parseMemBarrierOptOperand(OperandVector & Operands)4936 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4937 MCAsmParser &Parser = getParser();
4938 SMLoc S = Parser.getTok().getLoc();
4939 const AsmToken &Tok = Parser.getTok();
4940 unsigned Opt;
4941
4942 if (Tok.is(AsmToken::Identifier)) {
4943 StringRef OptStr = Tok.getString();
4944
4945 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4946 .Case("sy", ARM_MB::SY)
4947 .Case("st", ARM_MB::ST)
4948 .Case("ld", ARM_MB::LD)
4949 .Case("sh", ARM_MB::ISH)
4950 .Case("ish", ARM_MB::ISH)
4951 .Case("shst", ARM_MB::ISHST)
4952 .Case("ishst", ARM_MB::ISHST)
4953 .Case("ishld", ARM_MB::ISHLD)
4954 .Case("nsh", ARM_MB::NSH)
4955 .Case("un", ARM_MB::NSH)
4956 .Case("nshst", ARM_MB::NSHST)
4957 .Case("nshld", ARM_MB::NSHLD)
4958 .Case("unst", ARM_MB::NSHST)
4959 .Case("osh", ARM_MB::OSH)
4960 .Case("oshst", ARM_MB::OSHST)
4961 .Case("oshld", ARM_MB::OSHLD)
4962 .Default(~0U);
4963
4964 // ishld, oshld, nshld and ld are only available from ARMv8.
4965 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4966 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4967 Opt = ~0U;
4968
4969 if (Opt == ~0U)
4970 return MatchOperand_NoMatch;
4971
4972 Parser.Lex(); // Eat identifier token.
4973 } else if (Tok.is(AsmToken::Hash) ||
4974 Tok.is(AsmToken::Dollar) ||
4975 Tok.is(AsmToken::Integer)) {
4976 if (Parser.getTok().isNot(AsmToken::Integer))
4977 Parser.Lex(); // Eat '#' or '$'.
4978 SMLoc Loc = Parser.getTok().getLoc();
4979
4980 const MCExpr *MemBarrierID;
4981 if (getParser().parseExpression(MemBarrierID)) {
4982 Error(Loc, "illegal expression");
4983 return MatchOperand_ParseFail;
4984 }
4985
4986 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4987 if (!CE) {
4988 Error(Loc, "constant expression expected");
4989 return MatchOperand_ParseFail;
4990 }
4991
4992 int Val = CE->getValue();
4993 if (Val & ~0xf) {
4994 Error(Loc, "immediate value out of range");
4995 return MatchOperand_ParseFail;
4996 }
4997
4998 Opt = ARM_MB::RESERVED_0 + Val;
4999 } else
5000 return MatchOperand_ParseFail;
5001
5002 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
5003 return MatchOperand_Success;
5004 }
5005
5006 OperandMatchResultTy
parseTraceSyncBarrierOptOperand(OperandVector & Operands)5007 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
5008 MCAsmParser &Parser = getParser();
5009 SMLoc S = Parser.getTok().getLoc();
5010 const AsmToken &Tok = Parser.getTok();
5011
5012 if (Tok.isNot(AsmToken::Identifier))
5013 return MatchOperand_NoMatch;
5014
5015 if (!Tok.getString().equals_lower("csync"))
5016 return MatchOperand_NoMatch;
5017
5018 Parser.Lex(); // Eat identifier token.
5019
5020 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
5021 return MatchOperand_Success;
5022 }
5023
5024 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
5025 OperandMatchResultTy
parseInstSyncBarrierOptOperand(OperandVector & Operands)5026 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
5027 MCAsmParser &Parser = getParser();
5028 SMLoc S = Parser.getTok().getLoc();
5029 const AsmToken &Tok = Parser.getTok();
5030 unsigned Opt;
5031
5032 if (Tok.is(AsmToken::Identifier)) {
5033 StringRef OptStr = Tok.getString();
5034
5035 if (OptStr.equals_lower("sy"))
5036 Opt = ARM_ISB::SY;
5037 else
5038 return MatchOperand_NoMatch;
5039
5040 Parser.Lex(); // Eat identifier token.
5041 } else if (Tok.is(AsmToken::Hash) ||
5042 Tok.is(AsmToken::Dollar) ||
5043 Tok.is(AsmToken::Integer)) {
5044 if (Parser.getTok().isNot(AsmToken::Integer))
5045 Parser.Lex(); // Eat '#' or '$'.
5046 SMLoc Loc = Parser.getTok().getLoc();
5047
5048 const MCExpr *ISBarrierID;
5049 if (getParser().parseExpression(ISBarrierID)) {
5050 Error(Loc, "illegal expression");
5051 return MatchOperand_ParseFail;
5052 }
5053
5054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
5055 if (!CE) {
5056 Error(Loc, "constant expression expected");
5057 return MatchOperand_ParseFail;
5058 }
5059
5060 int Val = CE->getValue();
5061 if (Val & ~0xf) {
5062 Error(Loc, "immediate value out of range");
5063 return MatchOperand_ParseFail;
5064 }
5065
5066 Opt = ARM_ISB::RESERVED_0 + Val;
5067 } else
5068 return MatchOperand_ParseFail;
5069
5070 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
5071 (ARM_ISB::InstSyncBOpt)Opt, S));
5072 return MatchOperand_Success;
5073 }
5074
5075
5076 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
5077 OperandMatchResultTy
parseProcIFlagsOperand(OperandVector & Operands)5078 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
5079 MCAsmParser &Parser = getParser();
5080 SMLoc S = Parser.getTok().getLoc();
5081 const AsmToken &Tok = Parser.getTok();
5082 if (!Tok.is(AsmToken::Identifier))
5083 return MatchOperand_NoMatch;
5084 StringRef IFlagsStr = Tok.getString();
5085
5086 // An iflags string of "none" is interpreted to mean that none of the AIF
5087 // bits are set. Not a terribly useful instruction, but a valid encoding.
5088 unsigned IFlags = 0;
5089 if (IFlagsStr != "none") {
5090 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
5091 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
5092 .Case("a", ARM_PROC::A)
5093 .Case("i", ARM_PROC::I)
5094 .Case("f", ARM_PROC::F)
5095 .Default(~0U);
5096
5097 // If some specific iflag is already set, it means that some letter is
5098 // present more than once, this is not acceptable.
5099 if (Flag == ~0U || (IFlags & Flag))
5100 return MatchOperand_NoMatch;
5101
5102 IFlags |= Flag;
5103 }
5104 }
5105
5106 Parser.Lex(); // Eat identifier token.
5107 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
5108 return MatchOperand_Success;
5109 }
5110
5111 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
5112 OperandMatchResultTy
parseMSRMaskOperand(OperandVector & Operands)5113 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
5114 MCAsmParser &Parser = getParser();
5115 SMLoc S = Parser.getTok().getLoc();
5116 const AsmToken &Tok = Parser.getTok();
5117
5118 if (Tok.is(AsmToken::Integer)) {
5119 int64_t Val = Tok.getIntVal();
5120 if (Val > 255 || Val < 0) {
5121 return MatchOperand_NoMatch;
5122 }
5123 unsigned SYSmvalue = Val & 0xFF;
5124 Parser.Lex();
5125 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5126 return MatchOperand_Success;
5127 }
5128
5129 if (!Tok.is(AsmToken::Identifier))
5130 return MatchOperand_NoMatch;
5131 StringRef Mask = Tok.getString();
5132
5133 if (isMClass()) {
5134 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
5135 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
5136 return MatchOperand_NoMatch;
5137
5138 unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
5139
5140 Parser.Lex(); // Eat identifier token.
5141 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5142 return MatchOperand_Success;
5143 }
5144
5145 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
5146 size_t Start = 0, Next = Mask.find('_');
5147 StringRef Flags = "";
5148 std::string SpecReg = Mask.slice(Start, Next).lower();
5149 if (Next != StringRef::npos)
5150 Flags = Mask.slice(Next+1, Mask.size());
5151
5152 // FlagsVal contains the complete mask:
5153 // 3-0: Mask
5154 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5155 unsigned FlagsVal = 0;
5156
5157 if (SpecReg == "apsr") {
5158 FlagsVal = StringSwitch<unsigned>(Flags)
5159 .Case("nzcvq", 0x8) // same as CPSR_f
5160 .Case("g", 0x4) // same as CPSR_s
5161 .Case("nzcvqg", 0xc) // same as CPSR_fs
5162 .Default(~0U);
5163
5164 if (FlagsVal == ~0U) {
5165 if (!Flags.empty())
5166 return MatchOperand_NoMatch;
5167 else
5168 FlagsVal = 8; // No flag
5169 }
5170 } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
5171 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
5172 if (Flags == "all" || Flags == "")
5173 Flags = "fc";
5174 for (int i = 0, e = Flags.size(); i != e; ++i) {
5175 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
5176 .Case("c", 1)
5177 .Case("x", 2)
5178 .Case("s", 4)
5179 .Case("f", 8)
5180 .Default(~0U);
5181
5182 // If some specific flag is already set, it means that some letter is
5183 // present more than once, this is not acceptable.
5184 if (Flag == ~0U || (FlagsVal & Flag))
5185 return MatchOperand_NoMatch;
5186 FlagsVal |= Flag;
5187 }
5188 } else // No match for special register.
5189 return MatchOperand_NoMatch;
5190
5191 // Special register without flags is NOT equivalent to "fc" flags.
5192 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
5193 // two lines would enable gas compatibility at the expense of breaking
5194 // round-tripping.
5195 //
5196 // if (!FlagsVal)
5197 // FlagsVal = 0x9;
5198
5199 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5200 if (SpecReg == "spsr")
5201 FlagsVal |= 16;
5202
5203 Parser.Lex(); // Eat identifier token.
5204 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5205 return MatchOperand_Success;
5206 }
5207
5208 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5209 /// use in the MRS/MSR instructions added to support virtualization.
5210 OperandMatchResultTy
parseBankedRegOperand(OperandVector & Operands)5211 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5212 MCAsmParser &Parser = getParser();
5213 SMLoc S = Parser.getTok().getLoc();
5214 const AsmToken &Tok = Parser.getTok();
5215 if (!Tok.is(AsmToken::Identifier))
5216 return MatchOperand_NoMatch;
5217 StringRef RegName = Tok.getString();
5218
5219 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5220 if (!TheReg)
5221 return MatchOperand_NoMatch;
5222 unsigned Encoding = TheReg->Encoding;
5223
5224 Parser.Lex(); // Eat identifier token.
5225 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5226 return MatchOperand_Success;
5227 }
5228
5229 OperandMatchResultTy
parsePKHImm(OperandVector & Operands,StringRef Op,int Low,int High)5230 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5231 int High) {
5232 MCAsmParser &Parser = getParser();
5233 const AsmToken &Tok = Parser.getTok();
5234 if (Tok.isNot(AsmToken::Identifier)) {
5235 Error(Parser.getTok().getLoc(), Op + " operand expected.");
5236 return MatchOperand_ParseFail;
5237 }
5238 StringRef ShiftName = Tok.getString();
5239 std::string LowerOp = Op.lower();
5240 std::string UpperOp = Op.upper();
5241 if (ShiftName != LowerOp && ShiftName != UpperOp) {
5242 Error(Parser.getTok().getLoc(), Op + " operand expected.");
5243 return MatchOperand_ParseFail;
5244 }
5245 Parser.Lex(); // Eat shift type token.
5246
5247 // There must be a '#' and a shift amount.
5248 if (Parser.getTok().isNot(AsmToken::Hash) &&
5249 Parser.getTok().isNot(AsmToken::Dollar)) {
5250 Error(Parser.getTok().getLoc(), "'#' expected");
5251 return MatchOperand_ParseFail;
5252 }
5253 Parser.Lex(); // Eat hash token.
5254
5255 const MCExpr *ShiftAmount;
5256 SMLoc Loc = Parser.getTok().getLoc();
5257 SMLoc EndLoc;
5258 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5259 Error(Loc, "illegal expression");
5260 return MatchOperand_ParseFail;
5261 }
5262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5263 if (!CE) {
5264 Error(Loc, "constant expression expected");
5265 return MatchOperand_ParseFail;
5266 }
5267 int Val = CE->getValue();
5268 if (Val < Low || Val > High) {
5269 Error(Loc, "immediate value out of range");
5270 return MatchOperand_ParseFail;
5271 }
5272
5273 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5274
5275 return MatchOperand_Success;
5276 }
5277
5278 OperandMatchResultTy
parseSetEndImm(OperandVector & Operands)5279 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5280 MCAsmParser &Parser = getParser();
5281 const AsmToken &Tok = Parser.getTok();
5282 SMLoc S = Tok.getLoc();
5283 if (Tok.isNot(AsmToken::Identifier)) {
5284 Error(S, "'be' or 'le' operand expected");
5285 return MatchOperand_ParseFail;
5286 }
5287 int Val = StringSwitch<int>(Tok.getString().lower())
5288 .Case("be", 1)
5289 .Case("le", 0)
5290 .Default(-1);
5291 Parser.Lex(); // Eat the token.
5292
5293 if (Val == -1) {
5294 Error(S, "'be' or 'le' operand expected");
5295 return MatchOperand_ParseFail;
5296 }
5297 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5298 getContext()),
5299 S, Tok.getEndLoc()));
5300 return MatchOperand_Success;
5301 }
5302
5303 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5304 /// instructions. Legal values are:
5305 /// lsl #n 'n' in [0,31]
5306 /// asr #n 'n' in [1,32]
5307 /// n == 32 encoded as n == 0.
5308 OperandMatchResultTy
parseShifterImm(OperandVector & Operands)5309 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5310 MCAsmParser &Parser = getParser();
5311 const AsmToken &Tok = Parser.getTok();
5312 SMLoc S = Tok.getLoc();
5313 if (Tok.isNot(AsmToken::Identifier)) {
5314 Error(S, "shift operator 'asr' or 'lsl' expected");
5315 return MatchOperand_ParseFail;
5316 }
5317 StringRef ShiftName = Tok.getString();
5318 bool isASR;
5319 if (ShiftName == "lsl" || ShiftName == "LSL")
5320 isASR = false;
5321 else if (ShiftName == "asr" || ShiftName == "ASR")
5322 isASR = true;
5323 else {
5324 Error(S, "shift operator 'asr' or 'lsl' expected");
5325 return MatchOperand_ParseFail;
5326 }
5327 Parser.Lex(); // Eat the operator.
5328
5329 // A '#' and a shift amount.
5330 if (Parser.getTok().isNot(AsmToken::Hash) &&
5331 Parser.getTok().isNot(AsmToken::Dollar)) {
5332 Error(Parser.getTok().getLoc(), "'#' expected");
5333 return MatchOperand_ParseFail;
5334 }
5335 Parser.Lex(); // Eat hash token.
5336 SMLoc ExLoc = Parser.getTok().getLoc();
5337
5338 const MCExpr *ShiftAmount;
5339 SMLoc EndLoc;
5340 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5341 Error(ExLoc, "malformed shift expression");
5342 return MatchOperand_ParseFail;
5343 }
5344 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5345 if (!CE) {
5346 Error(ExLoc, "shift amount must be an immediate");
5347 return MatchOperand_ParseFail;
5348 }
5349
5350 int64_t Val = CE->getValue();
5351 if (isASR) {
5352 // Shift amount must be in [1,32]
5353 if (Val < 1 || Val > 32) {
5354 Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5355 return MatchOperand_ParseFail;
5356 }
5357 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5358 if (isThumb() && Val == 32) {
5359 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5360 return MatchOperand_ParseFail;
5361 }
5362 if (Val == 32) Val = 0;
5363 } else {
5364 // Shift amount must be in [1,32]
5365 if (Val < 0 || Val > 31) {
5366 Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5367 return MatchOperand_ParseFail;
5368 }
5369 }
5370
5371 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5372
5373 return MatchOperand_Success;
5374 }
5375
5376 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5377 /// of instructions. Legal values are:
5378 /// ror #n 'n' in {0, 8, 16, 24}
5379 OperandMatchResultTy
parseRotImm(OperandVector & Operands)5380 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5381 MCAsmParser &Parser = getParser();
5382 const AsmToken &Tok = Parser.getTok();
5383 SMLoc S = Tok.getLoc();
5384 if (Tok.isNot(AsmToken::Identifier))
5385 return MatchOperand_NoMatch;
5386 StringRef ShiftName = Tok.getString();
5387 if (ShiftName != "ror" && ShiftName != "ROR")
5388 return MatchOperand_NoMatch;
5389 Parser.Lex(); // Eat the operator.
5390
5391 // A '#' and a rotate amount.
5392 if (Parser.getTok().isNot(AsmToken::Hash) &&
5393 Parser.getTok().isNot(AsmToken::Dollar)) {
5394 Error(Parser.getTok().getLoc(), "'#' expected");
5395 return MatchOperand_ParseFail;
5396 }
5397 Parser.Lex(); // Eat hash token.
5398 SMLoc ExLoc = Parser.getTok().getLoc();
5399
5400 const MCExpr *ShiftAmount;
5401 SMLoc EndLoc;
5402 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5403 Error(ExLoc, "malformed rotate expression");
5404 return MatchOperand_ParseFail;
5405 }
5406 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5407 if (!CE) {
5408 Error(ExLoc, "rotate amount must be an immediate");
5409 return MatchOperand_ParseFail;
5410 }
5411
5412 int64_t Val = CE->getValue();
5413 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5414 // normally, zero is represented in asm by omitting the rotate operand
5415 // entirely.
5416 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5417 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5418 return MatchOperand_ParseFail;
5419 }
5420
5421 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5422
5423 return MatchOperand_Success;
5424 }
5425
5426 OperandMatchResultTy
parseModImm(OperandVector & Operands)5427 ARMAsmParser::parseModImm(OperandVector &Operands) {
5428 MCAsmParser &Parser = getParser();
5429 MCAsmLexer &Lexer = getLexer();
5430 int64_t Imm1, Imm2;
5431
5432 SMLoc S = Parser.getTok().getLoc();
5433
5434 // 1) A mod_imm operand can appear in the place of a register name:
5435 // add r0, #mod_imm
5436 // add r0, r0, #mod_imm
5437 // to correctly handle the latter, we bail out as soon as we see an
5438 // identifier.
5439 //
5440 // 2) Similarly, we do not want to parse into complex operands:
5441 // mov r0, #mod_imm
5442 // mov r0, :lower16:(_foo)
5443 if (Parser.getTok().is(AsmToken::Identifier) ||
5444 Parser.getTok().is(AsmToken::Colon))
5445 return MatchOperand_NoMatch;
5446
5447 // Hash (dollar) is optional as per the ARMARM
5448 if (Parser.getTok().is(AsmToken::Hash) ||
5449 Parser.getTok().is(AsmToken::Dollar)) {
5450 // Avoid parsing into complex operands (#:)
5451 if (Lexer.peekTok().is(AsmToken::Colon))
5452 return MatchOperand_NoMatch;
5453
5454 // Eat the hash (dollar)
5455 Parser.Lex();
5456 }
5457
5458 SMLoc Sx1, Ex1;
5459 Sx1 = Parser.getTok().getLoc();
5460 const MCExpr *Imm1Exp;
5461 if (getParser().parseExpression(Imm1Exp, Ex1)) {
5462 Error(Sx1, "malformed expression");
5463 return MatchOperand_ParseFail;
5464 }
5465
5466 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5467
5468 if (CE) {
5469 // Immediate must fit within 32-bits
5470 Imm1 = CE->getValue();
5471 int Enc = ARM_AM::getSOImmVal(Imm1);
5472 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5473 // We have a match!
5474 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5475 (Enc & 0xF00) >> 7,
5476 Sx1, Ex1));
5477 return MatchOperand_Success;
5478 }
5479
5480 // We have parsed an immediate which is not for us, fallback to a plain
5481 // immediate. This can happen for instruction aliases. For an example,
5482 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5483 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5484 // instruction with a mod_imm operand. The alias is defined such that the
5485 // parser method is shared, that's why we have to do this here.
5486 if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5487 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5488 return MatchOperand_Success;
5489 }
5490 } else {
5491 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5492 // MCFixup). Fallback to a plain immediate.
5493 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5494 return MatchOperand_Success;
5495 }
5496
5497 // From this point onward, we expect the input to be a (#bits, #rot) pair
5498 if (Parser.getTok().isNot(AsmToken::Comma)) {
5499 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5500 return MatchOperand_ParseFail;
5501 }
5502
5503 if (Imm1 & ~0xFF) {
5504 Error(Sx1, "immediate operand must a number in the range [0, 255]");
5505 return MatchOperand_ParseFail;
5506 }
5507
5508 // Eat the comma
5509 Parser.Lex();
5510
5511 // Repeat for #rot
5512 SMLoc Sx2, Ex2;
5513 Sx2 = Parser.getTok().getLoc();
5514
5515 // Eat the optional hash (dollar)
5516 if (Parser.getTok().is(AsmToken::Hash) ||
5517 Parser.getTok().is(AsmToken::Dollar))
5518 Parser.Lex();
5519
5520 const MCExpr *Imm2Exp;
5521 if (getParser().parseExpression(Imm2Exp, Ex2)) {
5522 Error(Sx2, "malformed expression");
5523 return MatchOperand_ParseFail;
5524 }
5525
5526 CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5527
5528 if (CE) {
5529 Imm2 = CE->getValue();
5530 if (!(Imm2 & ~0x1E)) {
5531 // We have a match!
5532 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5533 return MatchOperand_Success;
5534 }
5535 Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5536 return MatchOperand_ParseFail;
5537 } else {
5538 Error(Sx2, "constant expression expected");
5539 return MatchOperand_ParseFail;
5540 }
5541 }
5542
5543 OperandMatchResultTy
parseBitfield(OperandVector & Operands)5544 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5545 MCAsmParser &Parser = getParser();
5546 SMLoc S = Parser.getTok().getLoc();
5547 // The bitfield descriptor is really two operands, the LSB and the width.
5548 if (Parser.getTok().isNot(AsmToken::Hash) &&
5549 Parser.getTok().isNot(AsmToken::Dollar)) {
5550 Error(Parser.getTok().getLoc(), "'#' expected");
5551 return MatchOperand_ParseFail;
5552 }
5553 Parser.Lex(); // Eat hash token.
5554
5555 const MCExpr *LSBExpr;
5556 SMLoc E = Parser.getTok().getLoc();
5557 if (getParser().parseExpression(LSBExpr)) {
5558 Error(E, "malformed immediate expression");
5559 return MatchOperand_ParseFail;
5560 }
5561 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5562 if (!CE) {
5563 Error(E, "'lsb' operand must be an immediate");
5564 return MatchOperand_ParseFail;
5565 }
5566
5567 int64_t LSB = CE->getValue();
5568 // The LSB must be in the range [0,31]
5569 if (LSB < 0 || LSB > 31) {
5570 Error(E, "'lsb' operand must be in the range [0,31]");
5571 return MatchOperand_ParseFail;
5572 }
5573 E = Parser.getTok().getLoc();
5574
5575 // Expect another immediate operand.
5576 if (Parser.getTok().isNot(AsmToken::Comma)) {
5577 Error(Parser.getTok().getLoc(), "too few operands");
5578 return MatchOperand_ParseFail;
5579 }
5580 Parser.Lex(); // Eat hash token.
5581 if (Parser.getTok().isNot(AsmToken::Hash) &&
5582 Parser.getTok().isNot(AsmToken::Dollar)) {
5583 Error(Parser.getTok().getLoc(), "'#' expected");
5584 return MatchOperand_ParseFail;
5585 }
5586 Parser.Lex(); // Eat hash token.
5587
5588 const MCExpr *WidthExpr;
5589 SMLoc EndLoc;
5590 if (getParser().parseExpression(WidthExpr, EndLoc)) {
5591 Error(E, "malformed immediate expression");
5592 return MatchOperand_ParseFail;
5593 }
5594 CE = dyn_cast<MCConstantExpr>(WidthExpr);
5595 if (!CE) {
5596 Error(E, "'width' operand must be an immediate");
5597 return MatchOperand_ParseFail;
5598 }
5599
5600 int64_t Width = CE->getValue();
5601 // The LSB must be in the range [1,32-lsb]
5602 if (Width < 1 || Width > 32 - LSB) {
5603 Error(E, "'width' operand must be in the range [1,32-lsb]");
5604 return MatchOperand_ParseFail;
5605 }
5606
5607 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5608
5609 return MatchOperand_Success;
5610 }
5611
5612 OperandMatchResultTy
parsePostIdxReg(OperandVector & Operands)5613 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5614 // Check for a post-index addressing register operand. Specifically:
5615 // postidx_reg := '+' register {, shift}
5616 // | '-' register {, shift}
5617 // | register {, shift}
5618
5619 // This method must return MatchOperand_NoMatch without consuming any tokens
5620 // in the case where there is no match, as other alternatives take other
5621 // parse methods.
5622 MCAsmParser &Parser = getParser();
5623 AsmToken Tok = Parser.getTok();
5624 SMLoc S = Tok.getLoc();
5625 bool haveEaten = false;
5626 bool isAdd = true;
5627 if (Tok.is(AsmToken::Plus)) {
5628 Parser.Lex(); // Eat the '+' token.
5629 haveEaten = true;
5630 } else if (Tok.is(AsmToken::Minus)) {
5631 Parser.Lex(); // Eat the '-' token.
5632 isAdd = false;
5633 haveEaten = true;
5634 }
5635
5636 SMLoc E = Parser.getTok().getEndLoc();
5637 int Reg = tryParseRegister();
5638 if (Reg == -1) {
5639 if (!haveEaten)
5640 return MatchOperand_NoMatch;
5641 Error(Parser.getTok().getLoc(), "register expected");
5642 return MatchOperand_ParseFail;
5643 }
5644
5645 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5646 unsigned ShiftImm = 0;
5647 if (Parser.getTok().is(AsmToken::Comma)) {
5648 Parser.Lex(); // Eat the ','.
5649 if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5650 return MatchOperand_ParseFail;
5651
5652 // FIXME: Only approximates end...may include intervening whitespace.
5653 E = Parser.getTok().getLoc();
5654 }
5655
5656 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5657 ShiftImm, S, E));
5658
5659 return MatchOperand_Success;
5660 }
5661
5662 OperandMatchResultTy
parseAM3Offset(OperandVector & Operands)5663 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5664 // Check for a post-index addressing register operand. Specifically:
5665 // am3offset := '+' register
5666 // | '-' register
5667 // | register
5668 // | # imm
5669 // | # + imm
5670 // | # - imm
5671
5672 // This method must return MatchOperand_NoMatch without consuming any tokens
5673 // in the case where there is no match, as other alternatives take other
5674 // parse methods.
5675 MCAsmParser &Parser = getParser();
5676 AsmToken Tok = Parser.getTok();
5677 SMLoc S = Tok.getLoc();
5678
5679 // Do immediates first, as we always parse those if we have a '#'.
5680 if (Parser.getTok().is(AsmToken::Hash) ||
5681 Parser.getTok().is(AsmToken::Dollar)) {
5682 Parser.Lex(); // Eat '#' or '$'.
5683 // Explicitly look for a '-', as we need to encode negative zero
5684 // differently.
5685 bool isNegative = Parser.getTok().is(AsmToken::Minus);
5686 const MCExpr *Offset;
5687 SMLoc E;
5688 if (getParser().parseExpression(Offset, E))
5689 return MatchOperand_ParseFail;
5690 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5691 if (!CE) {
5692 Error(S, "constant expression expected");
5693 return MatchOperand_ParseFail;
5694 }
5695 // Negative zero is encoded as the flag value
5696 // std::numeric_limits<int32_t>::min().
5697 int32_t Val = CE->getValue();
5698 if (isNegative && Val == 0)
5699 Val = std::numeric_limits<int32_t>::min();
5700
5701 Operands.push_back(
5702 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5703
5704 return MatchOperand_Success;
5705 }
5706
5707 bool haveEaten = false;
5708 bool isAdd = true;
5709 if (Tok.is(AsmToken::Plus)) {
5710 Parser.Lex(); // Eat the '+' token.
5711 haveEaten = true;
5712 } else if (Tok.is(AsmToken::Minus)) {
5713 Parser.Lex(); // Eat the '-' token.
5714 isAdd = false;
5715 haveEaten = true;
5716 }
5717
5718 Tok = Parser.getTok();
5719 int Reg = tryParseRegister();
5720 if (Reg == -1) {
5721 if (!haveEaten)
5722 return MatchOperand_NoMatch;
5723 Error(Tok.getLoc(), "register expected");
5724 return MatchOperand_ParseFail;
5725 }
5726
5727 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5728 0, S, Tok.getEndLoc()));
5729
5730 return MatchOperand_Success;
5731 }
5732
5733 /// Convert parsed operands to MCInst. Needed here because this instruction
5734 /// only has two register operands, but multiplication is commutative so
5735 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
cvtThumbMultiply(MCInst & Inst,const OperandVector & Operands)5736 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5737 const OperandVector &Operands) {
5738 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5739 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5740 // If we have a three-operand form, make sure to set Rn to be the operand
5741 // that isn't the same as Rd.
5742 unsigned RegOp = 4;
5743 if (Operands.size() == 6 &&
5744 ((ARMOperand &)*Operands[4]).getReg() ==
5745 ((ARMOperand &)*Operands[3]).getReg())
5746 RegOp = 5;
5747 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5748 Inst.addOperand(Inst.getOperand(0));
5749 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5750 }
5751
cvtThumbBranches(MCInst & Inst,const OperandVector & Operands)5752 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5753 const OperandVector &Operands) {
5754 int CondOp = -1, ImmOp = -1;
5755 switch(Inst.getOpcode()) {
5756 case ARM::tB:
5757 case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
5758
5759 case ARM::t2B:
5760 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5761
5762 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5763 }
5764 // first decide whether or not the branch should be conditional
5765 // by looking at it's location relative to an IT block
5766 if(inITBlock()) {
5767 // inside an IT block we cannot have any conditional branches. any
5768 // such instructions needs to be converted to unconditional form
5769 switch(Inst.getOpcode()) {
5770 case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5771 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5772 }
5773 } else {
5774 // outside IT blocks we can only have unconditional branches with AL
5775 // condition code or conditional branches with non-AL condition code
5776 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5777 switch(Inst.getOpcode()) {
5778 case ARM::tB:
5779 case ARM::tBcc:
5780 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5781 break;
5782 case ARM::t2B:
5783 case ARM::t2Bcc:
5784 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5785 break;
5786 }
5787 }
5788
5789 // now decide on encoding size based on branch target range
5790 switch(Inst.getOpcode()) {
5791 // classify tB as either t2B or t1B based on range of immediate operand
5792 case ARM::tB: {
5793 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5794 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5795 Inst.setOpcode(ARM::t2B);
5796 break;
5797 }
5798 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5799 case ARM::tBcc: {
5800 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5801 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5802 Inst.setOpcode(ARM::t2Bcc);
5803 break;
5804 }
5805 }
5806 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5807 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5808 }
5809
cvtMVEVMOVQtoDReg(MCInst & Inst,const OperandVector & Operands)5810 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5811 MCInst &Inst, const OperandVector &Operands) {
5812
5813 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5814 assert(Operands.size() == 8);
5815
5816 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5817 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5818 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5819 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5820 // skip second copy of Qd in Operands[6]
5821 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5822 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5823 }
5824
5825 /// Parse an ARM memory expression, return false if successful else return true
5826 /// or an error. The first token must be a '[' when called.
parseMemory(OperandVector & Operands)5827 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5828 MCAsmParser &Parser = getParser();
5829 SMLoc S, E;
5830 if (Parser.getTok().isNot(AsmToken::LBrac))
5831 return TokError("Token is not a Left Bracket");
5832 S = Parser.getTok().getLoc();
5833 Parser.Lex(); // Eat left bracket token.
5834
5835 const AsmToken &BaseRegTok = Parser.getTok();
5836 int BaseRegNum = tryParseRegister();
5837 if (BaseRegNum == -1)
5838 return Error(BaseRegTok.getLoc(), "register expected");
5839
5840 // The next token must either be a comma, a colon or a closing bracket.
5841 const AsmToken &Tok = Parser.getTok();
5842 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5843 !Tok.is(AsmToken::RBrac))
5844 return Error(Tok.getLoc(), "malformed memory operand");
5845
5846 if (Tok.is(AsmToken::RBrac)) {
5847 E = Tok.getEndLoc();
5848 Parser.Lex(); // Eat right bracket token.
5849
5850 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5851 ARM_AM::no_shift, 0, 0, false,
5852 S, E));
5853
5854 // If there's a pre-indexing writeback marker, '!', just add it as a token
5855 // operand. It's rather odd, but syntactically valid.
5856 if (Parser.getTok().is(AsmToken::Exclaim)) {
5857 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5858 Parser.Lex(); // Eat the '!'.
5859 }
5860
5861 return false;
5862 }
5863
5864 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5865 "Lost colon or comma in memory operand?!");
5866 if (Tok.is(AsmToken::Comma)) {
5867 Parser.Lex(); // Eat the comma.
5868 }
5869
5870 // If we have a ':', it's an alignment specifier.
5871 if (Parser.getTok().is(AsmToken::Colon)) {
5872 Parser.Lex(); // Eat the ':'.
5873 E = Parser.getTok().getLoc();
5874 SMLoc AlignmentLoc = Tok.getLoc();
5875
5876 const MCExpr *Expr;
5877 if (getParser().parseExpression(Expr))
5878 return true;
5879
5880 // The expression has to be a constant. Memory references with relocations
5881 // don't come through here, as they use the <label> forms of the relevant
5882 // instructions.
5883 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5884 if (!CE)
5885 return Error (E, "constant expression expected");
5886
5887 unsigned Align = 0;
5888 switch (CE->getValue()) {
5889 default:
5890 return Error(E,
5891 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5892 case 16: Align = 2; break;
5893 case 32: Align = 4; break;
5894 case 64: Align = 8; break;
5895 case 128: Align = 16; break;
5896 case 256: Align = 32; break;
5897 }
5898
5899 // Now we should have the closing ']'
5900 if (Parser.getTok().isNot(AsmToken::RBrac))
5901 return Error(Parser.getTok().getLoc(), "']' expected");
5902 E = Parser.getTok().getEndLoc();
5903 Parser.Lex(); // Eat right bracket token.
5904
5905 // Don't worry about range checking the value here. That's handled by
5906 // the is*() predicates.
5907 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5908 ARM_AM::no_shift, 0, Align,
5909 false, S, E, AlignmentLoc));
5910
5911 // If there's a pre-indexing writeback marker, '!', just add it as a token
5912 // operand.
5913 if (Parser.getTok().is(AsmToken::Exclaim)) {
5914 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5915 Parser.Lex(); // Eat the '!'.
5916 }
5917
5918 return false;
5919 }
5920
5921 // If we have a '#' or '$', it's an immediate offset, else assume it's a
5922 // register offset. Be friendly and also accept a plain integer or expression
5923 // (without a leading hash) for gas compatibility.
5924 if (Parser.getTok().is(AsmToken::Hash) ||
5925 Parser.getTok().is(AsmToken::Dollar) ||
5926 Parser.getTok().is(AsmToken::LParen) ||
5927 Parser.getTok().is(AsmToken::Integer)) {
5928 if (Parser.getTok().is(AsmToken::Hash) ||
5929 Parser.getTok().is(AsmToken::Dollar))
5930 Parser.Lex(); // Eat '#' or '$'
5931 E = Parser.getTok().getLoc();
5932
5933 bool isNegative = getParser().getTok().is(AsmToken::Minus);
5934 const MCExpr *Offset, *AdjustedOffset;
5935 if (getParser().parseExpression(Offset))
5936 return true;
5937
5938 if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) {
5939 // If the constant was #-0, represent it as
5940 // std::numeric_limits<int32_t>::min().
5941 int32_t Val = CE->getValue();
5942 if (isNegative && Val == 0)
5943 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5944 getContext());
5945 // Don't worry about range checking the value here. That's handled by
5946 // the is*() predicates.
5947 AdjustedOffset = CE;
5948 } else
5949 AdjustedOffset = Offset;
5950 Operands.push_back(ARMOperand::CreateMem(
5951 BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E));
5952
5953 // Now we should have the closing ']'
5954 if (Parser.getTok().isNot(AsmToken::RBrac))
5955 return Error(Parser.getTok().getLoc(), "']' expected");
5956 E = Parser.getTok().getEndLoc();
5957 Parser.Lex(); // Eat right bracket token.
5958
5959 // If there's a pre-indexing writeback marker, '!', just add it as a token
5960 // operand.
5961 if (Parser.getTok().is(AsmToken::Exclaim)) {
5962 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5963 Parser.Lex(); // Eat the '!'.
5964 }
5965
5966 return false;
5967 }
5968
5969 // The register offset is optionally preceded by a '+' or '-'
5970 bool isNegative = false;
5971 if (Parser.getTok().is(AsmToken::Minus)) {
5972 isNegative = true;
5973 Parser.Lex(); // Eat the '-'.
5974 } else if (Parser.getTok().is(AsmToken::Plus)) {
5975 // Nothing to do.
5976 Parser.Lex(); // Eat the '+'.
5977 }
5978
5979 E = Parser.getTok().getLoc();
5980 int OffsetRegNum = tryParseRegister();
5981 if (OffsetRegNum == -1)
5982 return Error(E, "register expected");
5983
5984 // If there's a shift operator, handle it.
5985 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5986 unsigned ShiftImm = 0;
5987 if (Parser.getTok().is(AsmToken::Comma)) {
5988 Parser.Lex(); // Eat the ','.
5989 if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5990 return true;
5991 }
5992
5993 // Now we should have the closing ']'
5994 if (Parser.getTok().isNot(AsmToken::RBrac))
5995 return Error(Parser.getTok().getLoc(), "']' expected");
5996 E = Parser.getTok().getEndLoc();
5997 Parser.Lex(); // Eat right bracket token.
5998
5999 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
6000 ShiftType, ShiftImm, 0, isNegative,
6001 S, E));
6002
6003 // If there's a pre-indexing writeback marker, '!', just add it as a token
6004 // operand.
6005 if (Parser.getTok().is(AsmToken::Exclaim)) {
6006 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
6007 Parser.Lex(); // Eat the '!'.
6008 }
6009
6010 return false;
6011 }
6012
6013 /// parseMemRegOffsetShift - one of these two:
6014 /// ( lsl | lsr | asr | ror ) , # shift_amount
6015 /// rrx
6016 /// return true if it parses a shift otherwise it returns false.
parseMemRegOffsetShift(ARM_AM::ShiftOpc & St,unsigned & Amount)6017 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
6018 unsigned &Amount) {
6019 MCAsmParser &Parser = getParser();
6020 SMLoc Loc = Parser.getTok().getLoc();
6021 const AsmToken &Tok = Parser.getTok();
6022 if (Tok.isNot(AsmToken::Identifier))
6023 return Error(Loc, "illegal shift operator");
6024 StringRef ShiftName = Tok.getString();
6025 if (ShiftName == "lsl" || ShiftName == "LSL" ||
6026 ShiftName == "asl" || ShiftName == "ASL")
6027 St = ARM_AM::lsl;
6028 else if (ShiftName == "lsr" || ShiftName == "LSR")
6029 St = ARM_AM::lsr;
6030 else if (ShiftName == "asr" || ShiftName == "ASR")
6031 St = ARM_AM::asr;
6032 else if (ShiftName == "ror" || ShiftName == "ROR")
6033 St = ARM_AM::ror;
6034 else if (ShiftName == "rrx" || ShiftName == "RRX")
6035 St = ARM_AM::rrx;
6036 else if (ShiftName == "uxtw" || ShiftName == "UXTW")
6037 St = ARM_AM::uxtw;
6038 else
6039 return Error(Loc, "illegal shift operator");
6040 Parser.Lex(); // Eat shift type token.
6041
6042 // rrx stands alone.
6043 Amount = 0;
6044 if (St != ARM_AM::rrx) {
6045 Loc = Parser.getTok().getLoc();
6046 // A '#' and a shift amount.
6047 const AsmToken &HashTok = Parser.getTok();
6048 if (HashTok.isNot(AsmToken::Hash) &&
6049 HashTok.isNot(AsmToken::Dollar))
6050 return Error(HashTok.getLoc(), "'#' expected");
6051 Parser.Lex(); // Eat hash token.
6052
6053 const MCExpr *Expr;
6054 if (getParser().parseExpression(Expr))
6055 return true;
6056 // Range check the immediate.
6057 // lsl, ror: 0 <= imm <= 31
6058 // lsr, asr: 0 <= imm <= 32
6059 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
6060 if (!CE)
6061 return Error(Loc, "shift amount must be an immediate");
6062 int64_t Imm = CE->getValue();
6063 if (Imm < 0 ||
6064 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
6065 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
6066 return Error(Loc, "immediate shift value out of range");
6067 // If <ShiftTy> #0, turn it into a no_shift.
6068 if (Imm == 0)
6069 St = ARM_AM::lsl;
6070 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
6071 if (Imm == 32)
6072 Imm = 0;
6073 Amount = Imm;
6074 }
6075
6076 return false;
6077 }
6078
6079 /// parseFPImm - A floating point immediate expression operand.
6080 OperandMatchResultTy
parseFPImm(OperandVector & Operands)6081 ARMAsmParser::parseFPImm(OperandVector &Operands) {
6082 MCAsmParser &Parser = getParser();
6083 // Anything that can accept a floating point constant as an operand
6084 // needs to go through here, as the regular parseExpression is
6085 // integer only.
6086 //
6087 // This routine still creates a generic Immediate operand, containing
6088 // a bitcast of the 64-bit floating point value. The various operands
6089 // that accept floats can check whether the value is valid for them
6090 // via the standard is*() predicates.
6091
6092 SMLoc S = Parser.getTok().getLoc();
6093
6094 if (Parser.getTok().isNot(AsmToken::Hash) &&
6095 Parser.getTok().isNot(AsmToken::Dollar))
6096 return MatchOperand_NoMatch;
6097
6098 // Disambiguate the VMOV forms that can accept an FP immediate.
6099 // vmov.f32 <sreg>, #imm
6100 // vmov.f64 <dreg>, #imm
6101 // vmov.f32 <dreg>, #imm @ vector f32x2
6102 // vmov.f32 <qreg>, #imm @ vector f32x4
6103 //
6104 // There are also the NEON VMOV instructions which expect an
6105 // integer constant. Make sure we don't try to parse an FPImm
6106 // for these:
6107 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
6108 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
6109 bool isVmovf = TyOp.isToken() &&
6110 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
6111 TyOp.getToken() == ".f16");
6112 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
6113 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
6114 Mnemonic.getToken() == "fconsts");
6115 if (!(isVmovf || isFconst))
6116 return MatchOperand_NoMatch;
6117
6118 Parser.Lex(); // Eat '#' or '$'.
6119
6120 // Handle negation, as that still comes through as a separate token.
6121 bool isNegative = false;
6122 if (Parser.getTok().is(AsmToken::Minus)) {
6123 isNegative = true;
6124 Parser.Lex();
6125 }
6126 const AsmToken &Tok = Parser.getTok();
6127 SMLoc Loc = Tok.getLoc();
6128 if (Tok.is(AsmToken::Real) && isVmovf) {
6129 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
6130 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
6131 // If we had a '-' in front, toggle the sign bit.
6132 IntVal ^= (uint64_t)isNegative << 31;
6133 Parser.Lex(); // Eat the token.
6134 Operands.push_back(ARMOperand::CreateImm(
6135 MCConstantExpr::create(IntVal, getContext()),
6136 S, Parser.getTok().getLoc()));
6137 return MatchOperand_Success;
6138 }
6139 // Also handle plain integers. Instructions which allow floating point
6140 // immediates also allow a raw encoded 8-bit value.
6141 if (Tok.is(AsmToken::Integer) && isFconst) {
6142 int64_t Val = Tok.getIntVal();
6143 Parser.Lex(); // Eat the token.
6144 if (Val > 255 || Val < 0) {
6145 Error(Loc, "encoded floating point value out of range");
6146 return MatchOperand_ParseFail;
6147 }
6148 float RealVal = ARM_AM::getFPImmFloat(Val);
6149 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
6150
6151 Operands.push_back(ARMOperand::CreateImm(
6152 MCConstantExpr::create(Val, getContext()), S,
6153 Parser.getTok().getLoc()));
6154 return MatchOperand_Success;
6155 }
6156
6157 Error(Loc, "invalid floating point immediate");
6158 return MatchOperand_ParseFail;
6159 }
6160
6161 /// Parse a arm instruction operand. For now this parses the operand regardless
6162 /// of the mnemonic.
parseOperand(OperandVector & Operands,StringRef Mnemonic)6163 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
6164 MCAsmParser &Parser = getParser();
6165 SMLoc S, E;
6166
6167 // Check if the current operand has a custom associated parser, if so, try to
6168 // custom parse the operand, or fallback to the general approach.
6169 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
6170 if (ResTy == MatchOperand_Success)
6171 return false;
6172 // If there wasn't a custom match, try the generic matcher below. Otherwise,
6173 // there was a match, but an error occurred, in which case, just return that
6174 // the operand parsing failed.
6175 if (ResTy == MatchOperand_ParseFail)
6176 return true;
6177
6178 switch (getLexer().getKind()) {
6179 default:
6180 Error(Parser.getTok().getLoc(), "unexpected token in operand");
6181 return true;
6182 case AsmToken::Identifier: {
6183 // If we've seen a branch mnemonic, the next operand must be a label. This
6184 // is true even if the label is a register name. So "br r1" means branch to
6185 // label "r1".
6186 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6187 if (!ExpectLabel) {
6188 if (!tryParseRegisterWithWriteBack(Operands))
6189 return false;
6190 int Res = tryParseShiftRegister(Operands);
6191 if (Res == 0) // success
6192 return false;
6193 else if (Res == -1) // irrecoverable error
6194 return true;
6195 // If this is VMRS, check for the apsr_nzcv operand.
6196 if (Mnemonic == "vmrs" &&
6197 Parser.getTok().getString().equals_lower("apsr_nzcv")) {
6198 S = Parser.getTok().getLoc();
6199 Parser.Lex();
6200 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6201 return false;
6202 }
6203 }
6204
6205 // Fall though for the Identifier case that is not a register or a
6206 // special name.
6207 LLVM_FALLTHROUGH;
6208 }
6209 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
6210 case AsmToken::Integer: // things like 1f and 2b as a branch targets
6211 case AsmToken::String: // quoted label names.
6212 case AsmToken::Dot: { // . as a branch target
6213 // This was not a register so parse other operands that start with an
6214 // identifier (like labels) as expressions and create them as immediates.
6215 const MCExpr *IdVal;
6216 S = Parser.getTok().getLoc();
6217 if (getParser().parseExpression(IdVal))
6218 return true;
6219 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6220 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6221 return false;
6222 }
6223 case AsmToken::LBrac:
6224 return parseMemory(Operands);
6225 case AsmToken::LCurly:
6226 return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6227 case AsmToken::Dollar:
6228 case AsmToken::Hash: {
6229 // #42 -> immediate
6230 // $ 42 -> immediate
6231 // $foo -> symbol name
6232 // $42 -> symbol name
6233 S = Parser.getTok().getLoc();
6234
6235 // Favor the interpretation of $-prefixed operands as symbol names.
6236 // Cases where immediates are explicitly expected are handled by their
6237 // specific ParseMethod implementations.
6238 auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false);
6239 bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) &&
6240 (AdjacentToken.is(AsmToken::Identifier) ||
6241 AdjacentToken.is(AsmToken::Integer));
6242 if (!ExpectIdentifier) {
6243 // Token is not part of identifier. Drop leading $ or # before parsing
6244 // expression.
6245 Parser.Lex();
6246 }
6247
6248 if (Parser.getTok().isNot(AsmToken::Colon)) {
6249 bool IsNegative = Parser.getTok().is(AsmToken::Minus);
6250 const MCExpr *ImmVal;
6251 if (getParser().parseExpression(ImmVal))
6252 return true;
6253 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6254 if (CE) {
6255 int32_t Val = CE->getValue();
6256 if (IsNegative && Val == 0)
6257 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6258 getContext());
6259 }
6260 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6261 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6262
6263 // There can be a trailing '!' on operands that we want as a separate
6264 // '!' Token operand. Handle that here. For example, the compatibility
6265 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6266 if (Parser.getTok().is(AsmToken::Exclaim)) {
6267 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6268 Parser.getTok().getLoc()));
6269 Parser.Lex(); // Eat exclaim token
6270 }
6271 return false;
6272 }
6273 // w/ a ':' after the '#', it's just like a plain ':'.
6274 LLVM_FALLTHROUGH;
6275 }
6276 case AsmToken::Colon: {
6277 S = Parser.getTok().getLoc();
6278 // ":lower16:" and ":upper16:" expression prefixes
6279 // FIXME: Check it's an expression prefix,
6280 // e.g. (FOO - :lower16:BAR) isn't legal.
6281 ARMMCExpr::VariantKind RefKind;
6282 if (parsePrefix(RefKind))
6283 return true;
6284
6285 const MCExpr *SubExprVal;
6286 if (getParser().parseExpression(SubExprVal))
6287 return true;
6288
6289 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6290 getContext());
6291 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6292 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6293 return false;
6294 }
6295 case AsmToken::Equal: {
6296 S = Parser.getTok().getLoc();
6297 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6298 return Error(S, "unexpected token in operand");
6299 Parser.Lex(); // Eat '='
6300 const MCExpr *SubExprVal;
6301 if (getParser().parseExpression(SubExprVal))
6302 return true;
6303 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6304
6305 // execute-only: we assume that assembly programmers know what they are
6306 // doing and allow literal pool creation here
6307 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6308 return false;
6309 }
6310 }
6311 }
6312
6313 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6314 // :lower16: and :upper16:.
parsePrefix(ARMMCExpr::VariantKind & RefKind)6315 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6316 MCAsmParser &Parser = getParser();
6317 RefKind = ARMMCExpr::VK_ARM_None;
6318
6319 // consume an optional '#' (GNU compatibility)
6320 if (getLexer().is(AsmToken::Hash))
6321 Parser.Lex();
6322
6323 // :lower16: and :upper16: modifiers
6324 assert(getLexer().is(AsmToken::Colon) && "expected a :");
6325 Parser.Lex(); // Eat ':'
6326
6327 if (getLexer().isNot(AsmToken::Identifier)) {
6328 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6329 return true;
6330 }
6331
6332 enum {
6333 COFF = (1 << MCContext::IsCOFF),
6334 ELF = (1 << MCContext::IsELF),
6335 MACHO = (1 << MCContext::IsMachO),
6336 WASM = (1 << MCContext::IsWasm),
6337 };
6338 static const struct PrefixEntry {
6339 const char *Spelling;
6340 ARMMCExpr::VariantKind VariantKind;
6341 uint8_t SupportedFormats;
6342 } PrefixEntries[] = {
6343 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6344 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6345 };
6346
6347 StringRef IDVal = Parser.getTok().getIdentifier();
6348
6349 const auto &Prefix =
6350 llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) {
6351 return PE.Spelling == IDVal;
6352 });
6353 if (Prefix == std::end(PrefixEntries)) {
6354 Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6355 return true;
6356 }
6357
6358 uint8_t CurrentFormat;
6359 switch (getContext().getObjectFileType()) {
6360 case MCContext::IsMachO:
6361 CurrentFormat = MACHO;
6362 break;
6363 case MCContext::IsELF:
6364 CurrentFormat = ELF;
6365 break;
6366 case MCContext::IsCOFF:
6367 CurrentFormat = COFF;
6368 break;
6369 case MCContext::IsWasm:
6370 CurrentFormat = WASM;
6371 break;
6372 case MCContext::IsXCOFF:
6373 llvm_unreachable("unexpected object format");
6374 break;
6375 }
6376
6377 if (~Prefix->SupportedFormats & CurrentFormat) {
6378 Error(Parser.getTok().getLoc(),
6379 "cannot represent relocation in the current file format");
6380 return true;
6381 }
6382
6383 RefKind = Prefix->VariantKind;
6384 Parser.Lex();
6385
6386 if (getLexer().isNot(AsmToken::Colon)) {
6387 Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6388 return true;
6389 }
6390 Parser.Lex(); // Eat the last ':'
6391
6392 return false;
6393 }
6394
6395 /// Given a mnemonic, split out possible predication code and carry
6396 /// setting letters to form a canonical mnemonic and flags.
6397 //
6398 // FIXME: Would be nice to autogen this.
6399 // FIXME: This is a bit of a maze of special cases.
splitMnemonic(StringRef Mnemonic,StringRef ExtraToken,unsigned & PredicationCode,unsigned & VPTPredicationCode,bool & CarrySetting,unsigned & ProcessorIMod,StringRef & ITMask)6400 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6401 StringRef ExtraToken,
6402 unsigned &PredicationCode,
6403 unsigned &VPTPredicationCode,
6404 bool &CarrySetting,
6405 unsigned &ProcessorIMod,
6406 StringRef &ITMask) {
6407 PredicationCode = ARMCC::AL;
6408 VPTPredicationCode = ARMVCC::None;
6409 CarrySetting = false;
6410 ProcessorIMod = 0;
6411
6412 // Ignore some mnemonics we know aren't predicated forms.
6413 //
6414 // FIXME: Would be nice to autogen this.
6415 if ((Mnemonic == "movs" && isThumb()) ||
6416 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
6417 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
6418 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
6419 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
6420 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
6421 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
6422 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
6423 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6424 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6425 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
6426 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6427 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6428 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6429 Mnemonic == "bxns" || Mnemonic == "blxns" ||
6430 Mnemonic == "vdot" || Mnemonic == "vmmla" ||
6431 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6432 Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6433 Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6434 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" ||
6435 Mnemonic == "csel" || Mnemonic == "csinc" ||
6436 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6437 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" ||
6438 Mnemonic == "csetm")
6439 return Mnemonic;
6440
6441 // First, split out any predication code. Ignore mnemonics we know aren't
6442 // predicated but do have a carry-set and so weren't caught above.
6443 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6444 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6445 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6446 Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6447 !(hasMVE() &&
6448 (Mnemonic == "vmine" ||
6449 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6450 Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6451 Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6452 Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6453 Mnemonic == "vmule" || Mnemonic == "vmult" ||
6454 Mnemonic == "vrintne" ||
6455 Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6456 Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6457 Mnemonic.startswith("vq")))) {
6458 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6459 if (CC != ~0U) {
6460 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6461 PredicationCode = CC;
6462 }
6463 }
6464
6465 // Next, determine if we have a carry setting bit. We explicitly ignore all
6466 // the instructions we know end in 's'.
6467 if (Mnemonic.endswith("s") &&
6468 !(Mnemonic == "cps" || Mnemonic == "mls" ||
6469 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6470 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6471 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6472 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6473 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6474 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6475 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6476 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6477 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6478 Mnemonic == "vmlas" ||
6479 (Mnemonic == "movs" && isThumb()))) {
6480 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6481 CarrySetting = true;
6482 }
6483
6484 // The "cps" instruction can have a interrupt mode operand which is glued into
6485 // the mnemonic. Check if this is the case, split it and parse the imod op
6486 if (Mnemonic.startswith("cps")) {
6487 // Split out any imod code.
6488 unsigned IMod =
6489 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6490 .Case("ie", ARM_PROC::IE)
6491 .Case("id", ARM_PROC::ID)
6492 .Default(~0U);
6493 if (IMod != ~0U) {
6494 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6495 ProcessorIMod = IMod;
6496 }
6497 }
6498
6499 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6500 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6501 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6502 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6503 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6504 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6505 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6506 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6507 if (CC != ~0U) {
6508 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6509 VPTPredicationCode = CC;
6510 }
6511 return Mnemonic;
6512 }
6513
6514 // The "it" instruction has the condition mask on the end of the mnemonic.
6515 if (Mnemonic.startswith("it")) {
6516 ITMask = Mnemonic.slice(2, Mnemonic.size());
6517 Mnemonic = Mnemonic.slice(0, 2);
6518 }
6519
6520 if (Mnemonic.startswith("vpst")) {
6521 ITMask = Mnemonic.slice(4, Mnemonic.size());
6522 Mnemonic = Mnemonic.slice(0, 4);
6523 }
6524 else if (Mnemonic.startswith("vpt")) {
6525 ITMask = Mnemonic.slice(3, Mnemonic.size());
6526 Mnemonic = Mnemonic.slice(0, 3);
6527 }
6528
6529 return Mnemonic;
6530 }
6531
6532 /// Given a canonical mnemonic, determine if the instruction ever allows
6533 /// inclusion of carry set or predication code operands.
6534 //
6535 // FIXME: It would be nice to autogen this.
getMnemonicAcceptInfo(StringRef Mnemonic,StringRef ExtraToken,StringRef FullInst,bool & CanAcceptCarrySet,bool & CanAcceptPredicationCode,bool & CanAcceptVPTPredicationCode)6536 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6537 StringRef ExtraToken,
6538 StringRef FullInst,
6539 bool &CanAcceptCarrySet,
6540 bool &CanAcceptPredicationCode,
6541 bool &CanAcceptVPTPredicationCode) {
6542 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6543
6544 CanAcceptCarrySet =
6545 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6546 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6547 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6548 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6549 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6550 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6551 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6552 (!isThumb() &&
6553 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6554 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6555
6556 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6557 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6558 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6559 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6560 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6561 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6562 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6563 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6564 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6565 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6566 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6567 Mnemonic == "vmovx" || Mnemonic == "vins" ||
6568 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6569 Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6570 Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6571 Mnemonic == "vfmat" || Mnemonic == "vfmab" ||
6572 Mnemonic == "vdot" || Mnemonic == "vmmla" ||
6573 Mnemonic == "sb" || Mnemonic == "ssbb" ||
6574 Mnemonic == "pssbb" || Mnemonic == "vsmmla" ||
6575 Mnemonic == "vummla" || Mnemonic == "vusmmla" ||
6576 Mnemonic == "vusdot" || Mnemonic == "vsudot" ||
6577 Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6578 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6579 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6580 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6581 Mnemonic == "cset" || Mnemonic == "csetm" ||
6582 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6583 (hasCDE() && MS.isCDEInstr(Mnemonic) &&
6584 !MS.isITPredicableCDEInstr(Mnemonic)) ||
6585 (hasMVE() &&
6586 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6587 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6588 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6589 Mnemonic.startswith("letp")))) {
6590 // These mnemonics are never predicable
6591 CanAcceptPredicationCode = false;
6592 } else if (!isThumb()) {
6593 // Some instructions are only predicable in Thumb mode
6594 CanAcceptPredicationCode =
6595 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6596 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6597 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6598 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6599 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6600 Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6601 Mnemonic != "tsb" &&
6602 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6603 } else if (isThumbOne()) {
6604 if (hasV6MOps())
6605 CanAcceptPredicationCode = Mnemonic != "movs";
6606 else
6607 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6608 } else
6609 CanAcceptPredicationCode = true;
6610 }
6611
6612 // Some Thumb instructions have two operand forms that are not
6613 // available as three operand, convert to two operand form if possible.
6614 //
6615 // FIXME: We would really like to be able to tablegen'erate this.
tryConvertingToTwoOperandForm(StringRef Mnemonic,bool CarrySetting,OperandVector & Operands)6616 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6617 bool CarrySetting,
6618 OperandVector &Operands) {
6619 if (Operands.size() != 6)
6620 return;
6621
6622 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6623 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6624 if (!Op3.isReg() || !Op4.isReg())
6625 return;
6626
6627 auto Op3Reg = Op3.getReg();
6628 auto Op4Reg = Op4.getReg();
6629
6630 // For most Thumb2 cases we just generate the 3 operand form and reduce
6631 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6632 // won't accept SP or PC so we do the transformation here taking care
6633 // with immediate range in the 'add sp, sp #imm' case.
6634 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6635 if (isThumbTwo()) {
6636 if (Mnemonic != "add")
6637 return;
6638 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6639 (Op5.isReg() && Op5.getReg() == ARM::PC);
6640 if (!TryTransform) {
6641 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6642 (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6643 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6644 Op5.isImm() && !Op5.isImm0_508s4());
6645 }
6646 if (!TryTransform)
6647 return;
6648 } else if (!isThumbOne())
6649 return;
6650
6651 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6652 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6653 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6654 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6655 return;
6656
6657 // If first 2 operands of a 3 operand instruction are the same
6658 // then transform to 2 operand version of the same instruction
6659 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6660 bool Transform = Op3Reg == Op4Reg;
6661
6662 // For communtative operations, we might be able to transform if we swap
6663 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
6664 // as tADDrsp.
6665 const ARMOperand *LastOp = &Op5;
6666 bool Swap = false;
6667 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6668 ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6669 Mnemonic == "and" || Mnemonic == "eor" ||
6670 Mnemonic == "adc" || Mnemonic == "orr")) {
6671 Swap = true;
6672 LastOp = &Op4;
6673 Transform = true;
6674 }
6675
6676 // If both registers are the same then remove one of them from
6677 // the operand list, with certain exceptions.
6678 if (Transform) {
6679 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6680 // 2 operand forms don't exist.
6681 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6682 LastOp->isReg())
6683 Transform = false;
6684
6685 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6686 // 3-bits because the ARMARM says not to.
6687 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6688 Transform = false;
6689 }
6690
6691 if (Transform) {
6692 if (Swap)
6693 std::swap(Op4, Op5);
6694 Operands.erase(Operands.begin() + 3);
6695 }
6696 }
6697
shouldOmitCCOutOperand(StringRef Mnemonic,OperandVector & Operands)6698 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6699 OperandVector &Operands) {
6700 // FIXME: This is all horribly hacky. We really need a better way to deal
6701 // with optional operands like this in the matcher table.
6702
6703 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6704 // another does not. Specifically, the MOVW instruction does not. So we
6705 // special case it here and remove the defaulted (non-setting) cc_out
6706 // operand if that's the instruction we're trying to match.
6707 //
6708 // We do this as post-processing of the explicit operands rather than just
6709 // conditionally adding the cc_out in the first place because we need
6710 // to check the type of the parsed immediate operand.
6711 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6712 !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6713 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6714 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6715 return true;
6716
6717 // Register-register 'add' for thumb does not have a cc_out operand
6718 // when there are only two register operands.
6719 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6720 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6721 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6722 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6723 return true;
6724 // Register-register 'add' for thumb does not have a cc_out operand
6725 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6726 // have to check the immediate range here since Thumb2 has a variant
6727 // that can handle a different range and has a cc_out operand.
6728 if (((isThumb() && Mnemonic == "add") ||
6729 (isThumbTwo() && Mnemonic == "sub")) &&
6730 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6731 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6732 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6733 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6734 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6735 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6736 return true;
6737 // For Thumb2, add/sub immediate does not have a cc_out operand for the
6738 // imm0_4095 variant. That's the least-preferred variant when
6739 // selecting via the generic "add" mnemonic, so to know that we
6740 // should remove the cc_out operand, we have to explicitly check that
6741 // it's not one of the other variants. Ugh.
6742 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6743 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6744 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6745 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6746 // Nest conditions rather than one big 'if' statement for readability.
6747 //
6748 // If both registers are low, we're in an IT block, and the immediate is
6749 // in range, we should use encoding T1 instead, which has a cc_out.
6750 if (inITBlock() &&
6751 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6752 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6753 static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6754 return false;
6755 // Check against T3. If the second register is the PC, this is an
6756 // alternate form of ADR, which uses encoding T4, so check for that too.
6757 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6758 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() ||
6759 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg()))
6760 return false;
6761
6762 // Otherwise, we use encoding T4, which does not have a cc_out
6763 // operand.
6764 return true;
6765 }
6766
6767 // The thumb2 multiply instruction doesn't have a CCOut register, so
6768 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6769 // use the 16-bit encoding or not.
6770 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6771 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6772 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6773 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6774 static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6775 // If the registers aren't low regs, the destination reg isn't the
6776 // same as one of the source regs, or the cc_out operand is zero
6777 // outside of an IT block, we have to use the 32-bit encoding, so
6778 // remove the cc_out operand.
6779 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6780 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6781 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6782 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6783 static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6784 static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6785 static_cast<ARMOperand &>(*Operands[4]).getReg())))
6786 return true;
6787
6788 // Also check the 'mul' syntax variant that doesn't specify an explicit
6789 // destination register.
6790 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6791 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6792 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6793 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6794 // If the registers aren't low regs or the cc_out operand is zero
6795 // outside of an IT block, we have to use the 32-bit encoding, so
6796 // remove the cc_out operand.
6797 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6798 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6799 !inITBlock()))
6800 return true;
6801
6802 // Register-register 'add/sub' for thumb does not have a cc_out operand
6803 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6804 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6805 // right, this will result in better diagnostics (which operand is off)
6806 // anyway.
6807 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6808 (Operands.size() == 5 || Operands.size() == 6) &&
6809 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6810 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6811 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6812 (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6813 (Operands.size() == 6 &&
6814 static_cast<ARMOperand &>(*Operands[5]).isImm()))) {
6815 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
6816 return (!(isThumbTwo() &&
6817 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() ||
6818 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg())));
6819 }
6820 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
6821 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
6822 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
6823 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6824 (Operands.size() == 5) &&
6825 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6826 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP &&
6827 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC &&
6828 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6829 static_cast<ARMOperand &>(*Operands[4]).isImm()) {
6830 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]);
6831 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg())
6832 return false; // add.w / sub.w
6833 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) {
6834 const int64_t Value = CE->getValue();
6835 // Thumb1 imm8 sub / add
6836 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) &&
6837 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()))
6838 return false;
6839 return true; // Thumb2 T4 addw / subw
6840 }
6841 }
6842 return false;
6843 }
6844
shouldOmitPredicateOperand(StringRef Mnemonic,OperandVector & Operands)6845 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6846 OperandVector &Operands) {
6847 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6848 unsigned RegIdx = 3;
6849 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6850 Mnemonic == "vrintr") &&
6851 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6852 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6853 if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6854 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6855 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6856 RegIdx = 4;
6857
6858 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6859 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6860 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6861 ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6862 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6863 return true;
6864 }
6865 return false;
6866 }
6867
shouldOmitVectorPredicateOperand(StringRef Mnemonic,OperandVector & Operands)6868 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6869 OperandVector &Operands) {
6870 if (!hasMVE() || Operands.size() < 3)
6871 return true;
6872
6873 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6874 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6875 return true;
6876
6877 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6878 return false;
6879
6880 if (Mnemonic.startswith("vmov") &&
6881 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6882 Mnemonic.startswith("vmovx"))) {
6883 for (auto &Operand : Operands) {
6884 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6885 ((*Operand).isReg() &&
6886 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6887 (*Operand).getReg()) ||
6888 ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6889 (*Operand).getReg())))) {
6890 return true;
6891 }
6892 }
6893 return false;
6894 } else {
6895 for (auto &Operand : Operands) {
6896 // We check the larger class QPR instead of just the legal class
6897 // MQPR, to more accurately report errors when using Q registers
6898 // outside of the allowed range.
6899 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6900 (Operand->isReg() &&
6901 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6902 Operand->getReg()))))
6903 return false;
6904 }
6905 return true;
6906 }
6907 }
6908
isDataTypeToken(StringRef Tok)6909 static bool isDataTypeToken(StringRef Tok) {
6910 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6911 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6912 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6913 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6914 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6915 Tok == ".f" || Tok == ".d";
6916 }
6917
6918 // FIXME: This bit should probably be handled via an explicit match class
6919 // in the .td files that matches the suffix instead of having it be
6920 // a literal string token the way it is now.
doesIgnoreDataTypeSuffix(StringRef Mnemonic,StringRef DT)6921 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6922 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6923 }
6924
6925 static void applyMnemonicAliases(StringRef &Mnemonic,
6926 const FeatureBitset &Features,
6927 unsigned VariantID);
6928
6929 // The GNU assembler has aliases of ldrd and strd with the second register
6930 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6931 //
6932 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6933 // the assembly parser could then generate confusing diagnostics refering to
6934 // it. If we do find anything that prevents us from doing the transformation we
6935 // bail out, and let the assembly parser report an error on the instruction as
6936 // it is written.
fixupGNULDRDAlias(StringRef Mnemonic,OperandVector & Operands)6937 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6938 OperandVector &Operands) {
6939 if (Mnemonic != "ldrd" && Mnemonic != "strd")
6940 return;
6941 if (Operands.size() < 4)
6942 return;
6943
6944 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6945 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6946
6947 if (!Op2.isReg())
6948 return;
6949 if (!Op3.isGPRMem())
6950 return;
6951
6952 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6953 if (!GPR.contains(Op2.getReg()))
6954 return;
6955
6956 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6957 if (!isThumb() && (RtEncoding & 1)) {
6958 // In ARM mode, the registers must be from an aligned pair, this
6959 // restriction does not apply in Thumb mode.
6960 return;
6961 }
6962 if (Op2.getReg() == ARM::PC)
6963 return;
6964 unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6965 if (!PairedReg || PairedReg == ARM::PC ||
6966 (PairedReg == ARM::SP && !hasV8Ops()))
6967 return;
6968
6969 Operands.insert(
6970 Operands.begin() + 3,
6971 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6972 }
6973
6974 // Dual-register instruction have the following syntax:
6975 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm
6976 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair
6977 // operand. If the conversion fails an error is diagnosed, and the function
6978 // returns true.
CDEConvertDualRegOperand(StringRef Mnemonic,OperandVector & Operands)6979 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic,
6980 OperandVector &Operands) {
6981 assert(MS.isCDEDualRegInstr(Mnemonic));
6982 bool isPredicable =
6983 Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da";
6984 size_t NumPredOps = isPredicable ? 1 : 0;
6985
6986 if (Operands.size() <= 3 + NumPredOps)
6987 return false;
6988
6989 StringRef Op2Diag(
6990 "operand must be an even-numbered register in the range [r0, r10]");
6991
6992 const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps];
6993 if (!Op2.isReg())
6994 return Error(Op2.getStartLoc(), Op2Diag);
6995
6996 unsigned RNext;
6997 unsigned RPair;
6998 switch (Op2.getReg()) {
6999 default:
7000 return Error(Op2.getStartLoc(), Op2Diag);
7001 case ARM::R0:
7002 RNext = ARM::R1;
7003 RPair = ARM::R0_R1;
7004 break;
7005 case ARM::R2:
7006 RNext = ARM::R3;
7007 RPair = ARM::R2_R3;
7008 break;
7009 case ARM::R4:
7010 RNext = ARM::R5;
7011 RPair = ARM::R4_R5;
7012 break;
7013 case ARM::R6:
7014 RNext = ARM::R7;
7015 RPair = ARM::R6_R7;
7016 break;
7017 case ARM::R8:
7018 RNext = ARM::R9;
7019 RPair = ARM::R8_R9;
7020 break;
7021 case ARM::R10:
7022 RNext = ARM::R11;
7023 RPair = ARM::R10_R11;
7024 break;
7025 }
7026
7027 const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps];
7028 if (!Op3.isReg() || Op3.getReg() != RNext)
7029 return Error(Op3.getStartLoc(), "operand must be a consecutive register");
7030
7031 Operands.erase(Operands.begin() + 3 + NumPredOps);
7032 Operands[2 + NumPredOps] =
7033 ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc());
7034 return false;
7035 }
7036
7037 /// Parse an arm instruction mnemonic followed by its operands.
ParseInstruction(ParseInstructionInfo & Info,StringRef Name,SMLoc NameLoc,OperandVector & Operands)7038 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
7039 SMLoc NameLoc, OperandVector &Operands) {
7040 MCAsmParser &Parser = getParser();
7041
7042 // Apply mnemonic aliases before doing anything else, as the destination
7043 // mnemonic may include suffices and we want to handle them normally.
7044 // The generic tblgen'erated code does this later, at the start of
7045 // MatchInstructionImpl(), but that's too late for aliases that include
7046 // any sort of suffix.
7047 const FeatureBitset &AvailableFeatures = getAvailableFeatures();
7048 unsigned AssemblerDialect = getParser().getAssemblerDialect();
7049 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
7050
7051 // First check for the ARM-specific .req directive.
7052 if (Parser.getTok().is(AsmToken::Identifier) &&
7053 Parser.getTok().getIdentifier().lower() == ".req") {
7054 parseDirectiveReq(Name, NameLoc);
7055 // We always return 'error' for this, as we're done with this
7056 // statement and don't need to match the 'instruction."
7057 return true;
7058 }
7059
7060 // Create the leading tokens for the mnemonic, split by '.' characters.
7061 size_t Start = 0, Next = Name.find('.');
7062 StringRef Mnemonic = Name.slice(Start, Next);
7063 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
7064
7065 // Split out the predication code and carry setting flag from the mnemonic.
7066 unsigned PredicationCode;
7067 unsigned VPTPredicationCode;
7068 unsigned ProcessorIMod;
7069 bool CarrySetting;
7070 StringRef ITMask;
7071 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
7072 CarrySetting, ProcessorIMod, ITMask);
7073
7074 // In Thumb1, only the branch (B) instruction can be predicated.
7075 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
7076 return Error(NameLoc, "conditional execution not supported in Thumb1");
7077 }
7078
7079 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
7080
7081 // Handle the mask for IT and VPT instructions. In ARMOperand and
7082 // MCOperand, this is stored in a format independent of the
7083 // condition code: the lowest set bit indicates the end of the
7084 // encoding, and above that, a 1 bit indicates 'else', and an 0
7085 // indicates 'then'. E.g.
7086 // IT -> 1000
7087 // ITx -> x100 (ITT -> 0100, ITE -> 1100)
7088 // ITxy -> xy10 (e.g. ITET -> 1010)
7089 // ITxyz -> xyz1 (e.g. ITEET -> 1101)
7090 // Note: See the ARM::PredBlockMask enum in
7091 // /lib/Target/ARM/Utils/ARMBaseInfo.h
7092 if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
7093 Mnemonic.startswith("vpst")) {
7094 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
7095 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
7096 SMLoc::getFromPointer(NameLoc.getPointer() + 4);
7097 if (ITMask.size() > 3) {
7098 if (Mnemonic == "it")
7099 return Error(Loc, "too many conditions on IT instruction");
7100 return Error(Loc, "too many conditions on VPT instruction");
7101 }
7102 unsigned Mask = 8;
7103 for (unsigned i = ITMask.size(); i != 0; --i) {
7104 char pos = ITMask[i - 1];
7105 if (pos != 't' && pos != 'e') {
7106 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
7107 }
7108 Mask >>= 1;
7109 if (ITMask[i - 1] == 'e')
7110 Mask |= 8;
7111 }
7112 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
7113 }
7114
7115 // FIXME: This is all a pretty gross hack. We should automatically handle
7116 // optional operands like this via tblgen.
7117
7118 // Next, add the CCOut and ConditionCode operands, if needed.
7119 //
7120 // For mnemonics which can ever incorporate a carry setting bit or predication
7121 // code, our matching model involves us always generating CCOut and
7122 // ConditionCode operands to match the mnemonic "as written" and then we let
7123 // the matcher deal with finding the right instruction or generating an
7124 // appropriate error.
7125 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
7126 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
7127 CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
7128
7129 // If we had a carry-set on an instruction that can't do that, issue an
7130 // error.
7131 if (!CanAcceptCarrySet && CarrySetting) {
7132 return Error(NameLoc, "instruction '" + Mnemonic +
7133 "' can not set flags, but 's' suffix specified");
7134 }
7135 // If we had a predication code on an instruction that can't do that, issue an
7136 // error.
7137 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
7138 return Error(NameLoc, "instruction '" + Mnemonic +
7139 "' is not predicable, but condition code specified");
7140 }
7141
7142 // If we had a VPT predication code on an instruction that can't do that, issue an
7143 // error.
7144 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
7145 return Error(NameLoc, "instruction '" + Mnemonic +
7146 "' is not VPT predicable, but VPT code T/E is specified");
7147 }
7148
7149 // Add the carry setting operand, if necessary.
7150 if (CanAcceptCarrySet) {
7151 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
7152 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
7153 Loc));
7154 }
7155
7156 // Add the predication code operand, if necessary.
7157 if (CanAcceptPredicationCode) {
7158 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7159 CarrySetting);
7160 Operands.push_back(ARMOperand::CreateCondCode(
7161 ARMCC::CondCodes(PredicationCode), Loc));
7162 }
7163
7164 // Add the VPT predication code operand, if necessary.
7165 // FIXME: We don't add them for the instructions filtered below as these can
7166 // have custom operands which need special parsing. This parsing requires
7167 // the operand to be in the same place in the OperandVector as their
7168 // definition in tblgen. Since these instructions may also have the
7169 // scalar predication operand we do not add the vector one and leave until
7170 // now to fix it up.
7171 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
7172 !Mnemonic.startswith("vcmp") &&
7173 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
7174 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
7175 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7176 CarrySetting);
7177 Operands.push_back(ARMOperand::CreateVPTPred(
7178 ARMVCC::VPTCodes(VPTPredicationCode), Loc));
7179 }
7180
7181 // Add the processor imod operand, if necessary.
7182 if (ProcessorIMod) {
7183 Operands.push_back(ARMOperand::CreateImm(
7184 MCConstantExpr::create(ProcessorIMod, getContext()),
7185 NameLoc, NameLoc));
7186 } else if (Mnemonic == "cps" && isMClass()) {
7187 return Error(NameLoc, "instruction 'cps' requires effect for M-class");
7188 }
7189
7190 // Add the remaining tokens in the mnemonic.
7191 while (Next != StringRef::npos) {
7192 Start = Next;
7193 Next = Name.find('.', Start + 1);
7194 ExtraToken = Name.slice(Start, Next);
7195
7196 // Some NEON instructions have an optional datatype suffix that is
7197 // completely ignored. Check for that.
7198 if (isDataTypeToken(ExtraToken) &&
7199 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
7200 continue;
7201
7202 // For for ARM mode generate an error if the .n qualifier is used.
7203 if (ExtraToken == ".n" && !isThumb()) {
7204 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7205 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
7206 "arm mode");
7207 }
7208
7209 // The .n qualifier is always discarded as that is what the tables
7210 // and matcher expect. In ARM mode the .w qualifier has no effect,
7211 // so discard it to avoid errors that can be caused by the matcher.
7212 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
7213 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7214 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
7215 }
7216 }
7217
7218 // Read the remaining operands.
7219 if (getLexer().isNot(AsmToken::EndOfStatement)) {
7220 // Read the first operand.
7221 if (parseOperand(Operands, Mnemonic)) {
7222 return true;
7223 }
7224
7225 while (parseOptionalToken(AsmToken::Comma)) {
7226 // Parse and remember the operand.
7227 if (parseOperand(Operands, Mnemonic)) {
7228 return true;
7229 }
7230 }
7231 }
7232
7233 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
7234 return true;
7235
7236 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
7237
7238 if (hasCDE() && MS.isCDEInstr(Mnemonic)) {
7239 // Dual-register instructions use even-odd register pairs as their
7240 // destination operand, in assembly such pair is spelled as two
7241 // consecutive registers, without any special syntax. ConvertDualRegOperand
7242 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3.
7243 // It returns true, if an error message has been emitted. If the function
7244 // returns false, the function either succeeded or an error (e.g. missing
7245 // operand) will be diagnosed elsewhere.
7246 if (MS.isCDEDualRegInstr(Mnemonic)) {
7247 bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands);
7248 if (GotError)
7249 return GotError;
7250 }
7251 }
7252
7253 // Some instructions, mostly Thumb, have forms for the same mnemonic that
7254 // do and don't have a cc_out optional-def operand. With some spot-checks
7255 // of the operand list, we can figure out which variant we're trying to
7256 // parse and adjust accordingly before actually matching. We shouldn't ever
7257 // try to remove a cc_out operand that was explicitly set on the
7258 // mnemonic, of course (CarrySetting == true). Reason number #317 the
7259 // table driven matcher doesn't fit well with the ARM instruction set.
7260 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
7261 Operands.erase(Operands.begin() + 1);
7262
7263 // Some instructions have the same mnemonic, but don't always
7264 // have a predicate. Distinguish them here and delete the
7265 // appropriate predicate if needed. This could be either the scalar
7266 // predication code or the vector predication code.
7267 if (PredicationCode == ARMCC::AL &&
7268 shouldOmitPredicateOperand(Mnemonic, Operands))
7269 Operands.erase(Operands.begin() + 1);
7270
7271
7272 if (hasMVE()) {
7273 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
7274 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
7275 // Very nasty hack to deal with the vector predicated variant of vmovlt
7276 // the scalar predicated vmov with condition 'lt'. We can not tell them
7277 // apart until we have parsed their operands.
7278 Operands.erase(Operands.begin() + 1);
7279 Operands.erase(Operands.begin());
7280 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7281 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7282 Mnemonic.size() - 1 + CarrySetting);
7283 Operands.insert(Operands.begin(),
7284 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
7285 Operands.insert(Operands.begin(),
7286 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
7287 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
7288 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7289 // Another nasty hack to deal with the ambiguity between vcvt with scalar
7290 // predication 'ne' and vcvtn with vector predication 'e'. As above we
7291 // can only distinguish between the two after we have parsed their
7292 // operands.
7293 Operands.erase(Operands.begin() + 1);
7294 Operands.erase(Operands.begin());
7295 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7296 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7297 Mnemonic.size() - 1 + CarrySetting);
7298 Operands.insert(Operands.begin(),
7299 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
7300 Operands.insert(Operands.begin(),
7301 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
7302 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
7303 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7304 // Another hack, this time to distinguish between scalar predicated vmul
7305 // with 'lt' predication code and the vector instruction vmullt with
7306 // vector predication code "none"
7307 Operands.erase(Operands.begin() + 1);
7308 Operands.erase(Operands.begin());
7309 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7310 Operands.insert(Operands.begin(),
7311 ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7312 }
7313 // For vmov and vcmp, as mentioned earlier, we did not add the vector
7314 // predication code, since these may contain operands that require
7315 // special parsing. So now we have to see if they require vector
7316 // predication and replace the scalar one with the vector predication
7317 // operand if that is the case.
7318 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7319 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7320 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7321 !Mnemonic.startswith("vcvtm"))) {
7322 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7323 // We could not split the vector predicate off vcvt because it might
7324 // have been the scalar vcvtt instruction. Now we know its a vector
7325 // instruction, we still need to check whether its the vector
7326 // predicated vcvt with 'Then' predication or the vector vcvtt. We can
7327 // distinguish the two based on the suffixes, if it is any of
7328 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7329 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7330 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7331 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7332 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7333 Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7334 Operands.erase(Operands.begin());
7335 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7336 VPTPredicationCode = ARMVCC::Then;
7337
7338 Mnemonic = Mnemonic.substr(0, 4);
7339 Operands.insert(Operands.begin(),
7340 ARMOperand::CreateToken(Mnemonic, MLoc));
7341 }
7342 }
7343 Operands.erase(Operands.begin() + 1);
7344 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7345 Mnemonic.size() + CarrySetting);
7346 Operands.insert(Operands.begin() + 1,
7347 ARMOperand::CreateVPTPred(
7348 ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7349 }
7350 } else if (CanAcceptVPTPredicationCode) {
7351 // For all other instructions, make sure only one of the two
7352 // predication operands is left behind, depending on whether we should
7353 // use the vector predication.
7354 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7355 if (CanAcceptPredicationCode)
7356 Operands.erase(Operands.begin() + 2);
7357 else
7358 Operands.erase(Operands.begin() + 1);
7359 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7360 Operands.erase(Operands.begin() + 1);
7361 }
7362 }
7363 }
7364
7365 if (VPTPredicationCode != ARMVCC::None) {
7366 bool usedVPTPredicationCode = false;
7367 for (unsigned I = 1; I < Operands.size(); ++I)
7368 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7369 usedVPTPredicationCode = true;
7370 if (!usedVPTPredicationCode) {
7371 // If we have a VPT predication code and we haven't just turned it
7372 // into an operand, then it was a mistake for splitMnemonic to
7373 // separate it from the rest of the mnemonic in the first place,
7374 // and this may lead to wrong disassembly (e.g. scalar floating
7375 // point VCMPE is actually a different instruction from VCMP, so
7376 // we mustn't treat them the same). In that situation, glue it
7377 // back on.
7378 Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7379 Operands.erase(Operands.begin());
7380 Operands.insert(Operands.begin(),
7381 ARMOperand::CreateToken(Mnemonic, NameLoc));
7382 }
7383 }
7384
7385 // ARM mode 'blx' need special handling, as the register operand version
7386 // is predicable, but the label operand version is not. So, we can't rely
7387 // on the Mnemonic based checking to correctly figure out when to put
7388 // a k_CondCode operand in the list. If we're trying to match the label
7389 // version, remove the k_CondCode operand here.
7390 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7391 static_cast<ARMOperand &>(*Operands[2]).isImm())
7392 Operands.erase(Operands.begin() + 1);
7393
7394 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7395 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7396 // a single GPRPair reg operand is used in the .td file to replace the two
7397 // GPRs. However, when parsing from asm, the two GRPs cannot be
7398 // automatically
7399 // expressed as a GPRPair, so we have to manually merge them.
7400 // FIXME: We would really like to be able to tablegen'erate this.
7401 if (!isThumb() && Operands.size() > 4 &&
7402 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7403 Mnemonic == "stlexd")) {
7404 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7405 unsigned Idx = isLoad ? 2 : 3;
7406 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7407 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7408
7409 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7410 // Adjust only if Op1 and Op2 are GPRs.
7411 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7412 MRC.contains(Op2.getReg())) {
7413 unsigned Reg1 = Op1.getReg();
7414 unsigned Reg2 = Op2.getReg();
7415 unsigned Rt = MRI->getEncodingValue(Reg1);
7416 unsigned Rt2 = MRI->getEncodingValue(Reg2);
7417
7418 // Rt2 must be Rt + 1 and Rt must be even.
7419 if (Rt + 1 != Rt2 || (Rt & 1)) {
7420 return Error(Op2.getStartLoc(),
7421 isLoad ? "destination operands must be sequential"
7422 : "source operands must be sequential");
7423 }
7424 unsigned NewReg = MRI->getMatchingSuperReg(
7425 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7426 Operands[Idx] =
7427 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7428 Operands.erase(Operands.begin() + Idx + 1);
7429 }
7430 }
7431
7432 // GNU Assembler extension (compatibility).
7433 fixupGNULDRDAlias(Mnemonic, Operands);
7434
7435 // FIXME: As said above, this is all a pretty gross hack. This instruction
7436 // does not fit with other "subs" and tblgen.
7437 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7438 // so the Mnemonic is the original name "subs" and delete the predicate
7439 // operand so it will match the table entry.
7440 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7441 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7442 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7443 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7444 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7445 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7446 Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7447 Operands.erase(Operands.begin() + 1);
7448 }
7449 return false;
7450 }
7451
7452 // Validate context-sensitive operand constraints.
7453
7454 // return 'true' if register list contains non-low GPR registers,
7455 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7456 // 'containsReg' to true.
checkLowRegisterList(const MCInst & Inst,unsigned OpNo,unsigned Reg,unsigned HiReg,bool & containsReg)7457 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7458 unsigned Reg, unsigned HiReg,
7459 bool &containsReg) {
7460 containsReg = false;
7461 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7462 unsigned OpReg = Inst.getOperand(i).getReg();
7463 if (OpReg == Reg)
7464 containsReg = true;
7465 // Anything other than a low register isn't legal here.
7466 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7467 return true;
7468 }
7469 return false;
7470 }
7471
7472 // Check if the specified regisgter is in the register list of the inst,
7473 // starting at the indicated operand number.
listContainsReg(const MCInst & Inst,unsigned OpNo,unsigned Reg)7474 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7475 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7476 unsigned OpReg = Inst.getOperand(i).getReg();
7477 if (OpReg == Reg)
7478 return true;
7479 }
7480 return false;
7481 }
7482
7483 // Return true if instruction has the interesting property of being
7484 // allowed in IT blocks, but not being predicable.
instIsBreakpoint(const MCInst & Inst)7485 static bool instIsBreakpoint(const MCInst &Inst) {
7486 return Inst.getOpcode() == ARM::tBKPT ||
7487 Inst.getOpcode() == ARM::BKPT ||
7488 Inst.getOpcode() == ARM::tHLT ||
7489 Inst.getOpcode() == ARM::HLT;
7490 }
7491
validatetLDMRegList(const MCInst & Inst,const OperandVector & Operands,unsigned ListNo,bool IsARPop)7492 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7493 const OperandVector &Operands,
7494 unsigned ListNo, bool IsARPop) {
7495 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7496 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7497
7498 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7499 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7500 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7501
7502 if (!IsARPop && ListContainsSP)
7503 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7504 "SP may not be in the register list");
7505 else if (ListContainsPC && ListContainsLR)
7506 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7507 "PC and LR may not be in the register list simultaneously");
7508 return false;
7509 }
7510
validatetSTMRegList(const MCInst & Inst,const OperandVector & Operands,unsigned ListNo)7511 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7512 const OperandVector &Operands,
7513 unsigned ListNo) {
7514 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7515 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7516
7517 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7518 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7519
7520 if (ListContainsSP && ListContainsPC)
7521 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7522 "SP and PC may not be in the register list");
7523 else if (ListContainsSP)
7524 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7525 "SP may not be in the register list");
7526 else if (ListContainsPC)
7527 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7528 "PC may not be in the register list");
7529 return false;
7530 }
7531
validateLDRDSTRD(MCInst & Inst,const OperandVector & Operands,bool Load,bool ARMMode,bool Writeback)7532 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7533 const OperandVector &Operands,
7534 bool Load, bool ARMMode, bool Writeback) {
7535 unsigned RtIndex = Load || !Writeback ? 0 : 1;
7536 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7537 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7538
7539 if (ARMMode) {
7540 // Rt can't be R14.
7541 if (Rt == 14)
7542 return Error(Operands[3]->getStartLoc(),
7543 "Rt can't be R14");
7544
7545 // Rt must be even-numbered.
7546 if ((Rt & 1) == 1)
7547 return Error(Operands[3]->getStartLoc(),
7548 "Rt must be even-numbered");
7549
7550 // Rt2 must be Rt + 1.
7551 if (Rt2 != Rt + 1) {
7552 if (Load)
7553 return Error(Operands[3]->getStartLoc(),
7554 "destination operands must be sequential");
7555 else
7556 return Error(Operands[3]->getStartLoc(),
7557 "source operands must be sequential");
7558 }
7559
7560 // FIXME: Diagnose m == 15
7561 // FIXME: Diagnose ldrd with m == t || m == t2.
7562 }
7563
7564 if (!ARMMode && Load) {
7565 if (Rt2 == Rt)
7566 return Error(Operands[3]->getStartLoc(),
7567 "destination operands can't be identical");
7568 }
7569
7570 if (Writeback) {
7571 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7572
7573 if (Rn == Rt || Rn == Rt2) {
7574 if (Load)
7575 return Error(Operands[3]->getStartLoc(),
7576 "base register needs to be different from destination "
7577 "registers");
7578 else
7579 return Error(Operands[3]->getStartLoc(),
7580 "source register and base register can't be identical");
7581 }
7582
7583 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7584 // (Except the immediate form of ldrd?)
7585 }
7586
7587 return false;
7588 }
7589
findFirstVectorPredOperandIdx(const MCInstrDesc & MCID)7590 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7591 for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7592 if (ARM::isVpred(MCID.OpInfo[i].OperandType))
7593 return i;
7594 }
7595 return -1;
7596 }
7597
isVectorPredicable(const MCInstrDesc & MCID)7598 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7599 return findFirstVectorPredOperandIdx(MCID) != -1;
7600 }
7601
7602 // FIXME: We would really like to be able to tablegen'erate this.
validateInstruction(MCInst & Inst,const OperandVector & Operands)7603 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7604 const OperandVector &Operands) {
7605 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7606 SMLoc Loc = Operands[0]->getStartLoc();
7607
7608 // Check the IT block state first.
7609 // NOTE: BKPT and HLT instructions have the interesting property of being
7610 // allowed in IT blocks, but not being predicable. They just always execute.
7611 if (inITBlock() && !instIsBreakpoint(Inst)) {
7612 // The instruction must be predicable.
7613 if (!MCID.isPredicable())
7614 return Error(Loc, "instructions in IT block must be predicable");
7615 ARMCC::CondCodes Cond = ARMCC::CondCodes(
7616 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7617 if (Cond != currentITCond()) {
7618 // Find the condition code Operand to get its SMLoc information.
7619 SMLoc CondLoc;
7620 for (unsigned I = 1; I < Operands.size(); ++I)
7621 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7622 CondLoc = Operands[I]->getStartLoc();
7623 return Error(CondLoc, "incorrect condition in IT block; got '" +
7624 StringRef(ARMCondCodeToString(Cond)) +
7625 "', but expected '" +
7626 ARMCondCodeToString(currentITCond()) + "'");
7627 }
7628 // Check for non-'al' condition codes outside of the IT block.
7629 } else if (isThumbTwo() && MCID.isPredicable() &&
7630 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7631 ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7632 Inst.getOpcode() != ARM::t2Bcc &&
7633 Inst.getOpcode() != ARM::t2BFic) {
7634 return Error(Loc, "predicated instructions must be in IT block");
7635 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7636 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7637 ARMCC::AL) {
7638 return Warning(Loc, "predicated instructions should be in IT block");
7639 } else if (!MCID.isPredicable()) {
7640 // Check the instruction doesn't have a predicate operand anyway
7641 // that it's not allowed to use. Sometimes this happens in order
7642 // to keep instructions the same shape even though one cannot
7643 // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7644 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7645 if (MCID.OpInfo[i].isPredicate()) {
7646 if (Inst.getOperand(i).getImm() != ARMCC::AL)
7647 return Error(Loc, "instruction is not predicable");
7648 break;
7649 }
7650 }
7651 }
7652
7653 // PC-setting instructions in an IT block, but not the last instruction of
7654 // the block, are UNPREDICTABLE.
7655 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7656 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7657 }
7658
7659 if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7660 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7661 if (!isVectorPredicable(MCID))
7662 return Error(Loc, "instruction in VPT block must be predicable");
7663 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7664 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7665 if (Pred != VPTPred) {
7666 SMLoc PredLoc;
7667 for (unsigned I = 1; I < Operands.size(); ++I)
7668 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7669 PredLoc = Operands[I]->getStartLoc();
7670 return Error(PredLoc, "incorrect predication in VPT block; got '" +
7671 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7672 "', but expected '" +
7673 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7674 }
7675 }
7676 else if (isVectorPredicable(MCID) &&
7677 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7678 ARMVCC::None)
7679 return Error(Loc, "VPT predicated instructions must be in VPT block");
7680
7681 const unsigned Opcode = Inst.getOpcode();
7682 switch (Opcode) {
7683 case ARM::t2IT: {
7684 // Encoding is unpredictable if it ever results in a notional 'NV'
7685 // predicate. Since we don't parse 'NV' directly this means an 'AL'
7686 // predicate with an "else" mask bit.
7687 unsigned Cond = Inst.getOperand(0).getImm();
7688 unsigned Mask = Inst.getOperand(1).getImm();
7689
7690 // Conditions only allowing a 't' are those with no set bit except
7691 // the lowest-order one that indicates the end of the sequence. In
7692 // other words, powers of 2.
7693 if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
7694 return Error(Loc, "unpredictable IT predicate sequence");
7695 break;
7696 }
7697 case ARM::LDRD:
7698 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7699 /*Writeback*/false))
7700 return true;
7701 break;
7702 case ARM::LDRD_PRE:
7703 case ARM::LDRD_POST:
7704 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7705 /*Writeback*/true))
7706 return true;
7707 break;
7708 case ARM::t2LDRDi8:
7709 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7710 /*Writeback*/false))
7711 return true;
7712 break;
7713 case ARM::t2LDRD_PRE:
7714 case ARM::t2LDRD_POST:
7715 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7716 /*Writeback*/true))
7717 return true;
7718 break;
7719 case ARM::t2BXJ: {
7720 const unsigned RmReg = Inst.getOperand(0).getReg();
7721 // Rm = SP is no longer unpredictable in v8-A
7722 if (RmReg == ARM::SP && !hasV8Ops())
7723 return Error(Operands[2]->getStartLoc(),
7724 "r13 (SP) is an unpredictable operand to BXJ");
7725 return false;
7726 }
7727 case ARM::STRD:
7728 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7729 /*Writeback*/false))
7730 return true;
7731 break;
7732 case ARM::STRD_PRE:
7733 case ARM::STRD_POST:
7734 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7735 /*Writeback*/true))
7736 return true;
7737 break;
7738 case ARM::t2STRD_PRE:
7739 case ARM::t2STRD_POST:
7740 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7741 /*Writeback*/true))
7742 return true;
7743 break;
7744 case ARM::STR_PRE_IMM:
7745 case ARM::STR_PRE_REG:
7746 case ARM::t2STR_PRE:
7747 case ARM::STR_POST_IMM:
7748 case ARM::STR_POST_REG:
7749 case ARM::t2STR_POST:
7750 case ARM::STRH_PRE:
7751 case ARM::t2STRH_PRE:
7752 case ARM::STRH_POST:
7753 case ARM::t2STRH_POST:
7754 case ARM::STRB_PRE_IMM:
7755 case ARM::STRB_PRE_REG:
7756 case ARM::t2STRB_PRE:
7757 case ARM::STRB_POST_IMM:
7758 case ARM::STRB_POST_REG:
7759 case ARM::t2STRB_POST: {
7760 // Rt must be different from Rn.
7761 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7762 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7763
7764 if (Rt == Rn)
7765 return Error(Operands[3]->getStartLoc(),
7766 "source register and base register can't be identical");
7767 return false;
7768 }
7769 case ARM::t2LDR_PRE_imm:
7770 case ARM::t2LDR_POST_imm:
7771 case ARM::t2STR_PRE_imm:
7772 case ARM::t2STR_POST_imm: {
7773 // Rt must be different from Rn.
7774 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7775 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7776
7777 if (Rt == Rn)
7778 return Error(Operands[3]->getStartLoc(),
7779 "destination register and base register can't be identical");
7780 if (Inst.getOpcode() == ARM::t2LDR_POST_imm ||
7781 Inst.getOpcode() == ARM::t2STR_POST_imm) {
7782 int Imm = Inst.getOperand(2).getImm();
7783 if (Imm > 255 || Imm < -255)
7784 return Error(Operands[5]->getStartLoc(),
7785 "operand must be in range [-255, 255]");
7786 }
7787 if (Inst.getOpcode() == ARM::t2STR_PRE_imm ||
7788 Inst.getOpcode() == ARM::t2STR_POST_imm) {
7789 if (Inst.getOperand(0).getReg() == ARM::PC) {
7790 return Error(Operands[3]->getStartLoc(),
7791 "operand must be a register in range [r0, r14]");
7792 }
7793 }
7794 return false;
7795 }
7796 case ARM::LDR_PRE_IMM:
7797 case ARM::LDR_PRE_REG:
7798 case ARM::t2LDR_PRE:
7799 case ARM::LDR_POST_IMM:
7800 case ARM::LDR_POST_REG:
7801 case ARM::t2LDR_POST:
7802 case ARM::LDRH_PRE:
7803 case ARM::t2LDRH_PRE:
7804 case ARM::LDRH_POST:
7805 case ARM::t2LDRH_POST:
7806 case ARM::LDRSH_PRE:
7807 case ARM::t2LDRSH_PRE:
7808 case ARM::LDRSH_POST:
7809 case ARM::t2LDRSH_POST:
7810 case ARM::LDRB_PRE_IMM:
7811 case ARM::LDRB_PRE_REG:
7812 case ARM::t2LDRB_PRE:
7813 case ARM::LDRB_POST_IMM:
7814 case ARM::LDRB_POST_REG:
7815 case ARM::t2LDRB_POST:
7816 case ARM::LDRSB_PRE:
7817 case ARM::t2LDRSB_PRE:
7818 case ARM::LDRSB_POST:
7819 case ARM::t2LDRSB_POST: {
7820 // Rt must be different from Rn.
7821 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7822 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7823
7824 if (Rt == Rn)
7825 return Error(Operands[3]->getStartLoc(),
7826 "destination register and base register can't be identical");
7827 return false;
7828 }
7829
7830 case ARM::MVE_VLDRBU8_rq:
7831 case ARM::MVE_VLDRBU16_rq:
7832 case ARM::MVE_VLDRBS16_rq:
7833 case ARM::MVE_VLDRBU32_rq:
7834 case ARM::MVE_VLDRBS32_rq:
7835 case ARM::MVE_VLDRHU16_rq:
7836 case ARM::MVE_VLDRHU16_rq_u:
7837 case ARM::MVE_VLDRHU32_rq:
7838 case ARM::MVE_VLDRHU32_rq_u:
7839 case ARM::MVE_VLDRHS32_rq:
7840 case ARM::MVE_VLDRHS32_rq_u:
7841 case ARM::MVE_VLDRWU32_rq:
7842 case ARM::MVE_VLDRWU32_rq_u:
7843 case ARM::MVE_VLDRDU64_rq:
7844 case ARM::MVE_VLDRDU64_rq_u:
7845 case ARM::MVE_VLDRWU32_qi:
7846 case ARM::MVE_VLDRWU32_qi_pre:
7847 case ARM::MVE_VLDRDU64_qi:
7848 case ARM::MVE_VLDRDU64_qi_pre: {
7849 // Qd must be different from Qm.
7850 unsigned QdIdx = 0, QmIdx = 2;
7851 bool QmIsPointer = false;
7852 switch (Opcode) {
7853 case ARM::MVE_VLDRWU32_qi:
7854 case ARM::MVE_VLDRDU64_qi:
7855 QmIdx = 1;
7856 QmIsPointer = true;
7857 break;
7858 case ARM::MVE_VLDRWU32_qi_pre:
7859 case ARM::MVE_VLDRDU64_qi_pre:
7860 QdIdx = 1;
7861 QmIsPointer = true;
7862 break;
7863 }
7864
7865 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7866 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7867
7868 if (Qd == Qm) {
7869 return Error(Operands[3]->getStartLoc(),
7870 Twine("destination vector register and vector ") +
7871 (QmIsPointer ? "pointer" : "offset") +
7872 " register can't be identical");
7873 }
7874 return false;
7875 }
7876
7877 case ARM::SBFX:
7878 case ARM::t2SBFX:
7879 case ARM::UBFX:
7880 case ARM::t2UBFX: {
7881 // Width must be in range [1, 32-lsb].
7882 unsigned LSB = Inst.getOperand(2).getImm();
7883 unsigned Widthm1 = Inst.getOperand(3).getImm();
7884 if (Widthm1 >= 32 - LSB)
7885 return Error(Operands[5]->getStartLoc(),
7886 "bitfield width must be in range [1,32-lsb]");
7887 return false;
7888 }
7889 // Notionally handles ARM::tLDMIA_UPD too.
7890 case ARM::tLDMIA: {
7891 // If we're parsing Thumb2, the .w variant is available and handles
7892 // most cases that are normally illegal for a Thumb1 LDM instruction.
7893 // We'll make the transformation in processInstruction() if necessary.
7894 //
7895 // Thumb LDM instructions are writeback iff the base register is not
7896 // in the register list.
7897 unsigned Rn = Inst.getOperand(0).getReg();
7898 bool HasWritebackToken =
7899 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7900 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7901 bool ListContainsBase;
7902 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7903 return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7904 "registers must be in range r0-r7");
7905 // If we should have writeback, then there should be a '!' token.
7906 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7907 return Error(Operands[2]->getStartLoc(),
7908 "writeback operator '!' expected");
7909 // If we should not have writeback, there must not be a '!'. This is
7910 // true even for the 32-bit wide encodings.
7911 if (ListContainsBase && HasWritebackToken)
7912 return Error(Operands[3]->getStartLoc(),
7913 "writeback operator '!' not allowed when base register "
7914 "in register list");
7915
7916 if (validatetLDMRegList(Inst, Operands, 3))
7917 return true;
7918 break;
7919 }
7920 case ARM::LDMIA_UPD:
7921 case ARM::LDMDB_UPD:
7922 case ARM::LDMIB_UPD:
7923 case ARM::LDMDA_UPD:
7924 // ARM variants loading and updating the same register are only officially
7925 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7926 if (!hasV7Ops())
7927 break;
7928 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7929 return Error(Operands.back()->getStartLoc(),
7930 "writeback register not allowed in register list");
7931 break;
7932 case ARM::t2LDMIA:
7933 case ARM::t2LDMDB:
7934 if (validatetLDMRegList(Inst, Operands, 3))
7935 return true;
7936 break;
7937 case ARM::t2STMIA:
7938 case ARM::t2STMDB:
7939 if (validatetSTMRegList(Inst, Operands, 3))
7940 return true;
7941 break;
7942 case ARM::t2LDMIA_UPD:
7943 case ARM::t2LDMDB_UPD:
7944 case ARM::t2STMIA_UPD:
7945 case ARM::t2STMDB_UPD:
7946 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7947 return Error(Operands.back()->getStartLoc(),
7948 "writeback register not allowed in register list");
7949
7950 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7951 if (validatetLDMRegList(Inst, Operands, 3))
7952 return true;
7953 } else {
7954 if (validatetSTMRegList(Inst, Operands, 3))
7955 return true;
7956 }
7957 break;
7958
7959 case ARM::sysLDMIA_UPD:
7960 case ARM::sysLDMDA_UPD:
7961 case ARM::sysLDMDB_UPD:
7962 case ARM::sysLDMIB_UPD:
7963 if (!listContainsReg(Inst, 3, ARM::PC))
7964 return Error(Operands[4]->getStartLoc(),
7965 "writeback register only allowed on system LDM "
7966 "if PC in register-list");
7967 break;
7968 case ARM::sysSTMIA_UPD:
7969 case ARM::sysSTMDA_UPD:
7970 case ARM::sysSTMDB_UPD:
7971 case ARM::sysSTMIB_UPD:
7972 return Error(Operands[2]->getStartLoc(),
7973 "system STM cannot have writeback register");
7974 case ARM::tMUL:
7975 // The second source operand must be the same register as the destination
7976 // operand.
7977 //
7978 // In this case, we must directly check the parsed operands because the
7979 // cvtThumbMultiply() function is written in such a way that it guarantees
7980 // this first statement is always true for the new Inst. Essentially, the
7981 // destination is unconditionally copied into the second source operand
7982 // without checking to see if it matches what we actually parsed.
7983 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
7984 ((ARMOperand &)*Operands[5]).getReg()) &&
7985 (((ARMOperand &)*Operands[3]).getReg() !=
7986 ((ARMOperand &)*Operands[4]).getReg())) {
7987 return Error(Operands[3]->getStartLoc(),
7988 "destination register must match source register");
7989 }
7990 break;
7991
7992 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
7993 // so only issue a diagnostic for thumb1. The instructions will be
7994 // switched to the t2 encodings in processInstruction() if necessary.
7995 case ARM::tPOP: {
7996 bool ListContainsBase;
7997 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
7998 !isThumbTwo())
7999 return Error(Operands[2]->getStartLoc(),
8000 "registers must be in range r0-r7 or pc");
8001 if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
8002 return true;
8003 break;
8004 }
8005 case ARM::tPUSH: {
8006 bool ListContainsBase;
8007 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
8008 !isThumbTwo())
8009 return Error(Operands[2]->getStartLoc(),
8010 "registers must be in range r0-r7 or lr");
8011 if (validatetSTMRegList(Inst, Operands, 2))
8012 return true;
8013 break;
8014 }
8015 case ARM::tSTMIA_UPD: {
8016 bool ListContainsBase, InvalidLowList;
8017 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
8018 0, ListContainsBase);
8019 if (InvalidLowList && !isThumbTwo())
8020 return Error(Operands[4]->getStartLoc(),
8021 "registers must be in range r0-r7");
8022
8023 // This would be converted to a 32-bit stm, but that's not valid if the
8024 // writeback register is in the list.
8025 if (InvalidLowList && ListContainsBase)
8026 return Error(Operands[4]->getStartLoc(),
8027 "writeback operator '!' not allowed when base register "
8028 "in register list");
8029
8030 if (validatetSTMRegList(Inst, Operands, 4))
8031 return true;
8032 break;
8033 }
8034 case ARM::tADDrSP:
8035 // If the non-SP source operand and the destination operand are not the
8036 // same, we need thumb2 (for the wide encoding), or we have an error.
8037 if (!isThumbTwo() &&
8038 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8039 return Error(Operands[4]->getStartLoc(),
8040 "source register must be the same as destination");
8041 }
8042 break;
8043
8044 case ARM::t2ADDrr:
8045 case ARM::t2ADDrs:
8046 case ARM::t2SUBrr:
8047 case ARM::t2SUBrs:
8048 if (Inst.getOperand(0).getReg() == ARM::SP &&
8049 Inst.getOperand(1).getReg() != ARM::SP)
8050 return Error(Operands[4]->getStartLoc(),
8051 "source register must be sp if destination is sp");
8052 break;
8053
8054 // Final range checking for Thumb unconditional branch instructions.
8055 case ARM::tB:
8056 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
8057 return Error(Operands[2]->getStartLoc(), "branch target out of range");
8058 break;
8059 case ARM::t2B: {
8060 int op = (Operands[2]->isImm()) ? 2 : 3;
8061 ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]);
8062 // Delay the checks of symbolic expressions until they are resolved.
8063 if (!isa<MCBinaryExpr>(Operand.getImm()) &&
8064 !Operand.isSignedOffset<24, 1>())
8065 return Error(Operands[op]->getStartLoc(), "branch target out of range");
8066 break;
8067 }
8068 // Final range checking for Thumb conditional branch instructions.
8069 case ARM::tBcc:
8070 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
8071 return Error(Operands[2]->getStartLoc(), "branch target out of range");
8072 break;
8073 case ARM::t2Bcc: {
8074 int Op = (Operands[2]->isImm()) ? 2 : 3;
8075 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
8076 return Error(Operands[Op]->getStartLoc(), "branch target out of range");
8077 break;
8078 }
8079 case ARM::tCBZ:
8080 case ARM::tCBNZ: {
8081 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
8082 return Error(Operands[2]->getStartLoc(), "branch target out of range");
8083 break;
8084 }
8085 case ARM::MOVi16:
8086 case ARM::MOVTi16:
8087 case ARM::t2MOVi16:
8088 case ARM::t2MOVTi16:
8089 {
8090 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
8091 // especially when we turn it into a movw and the expression <symbol> does
8092 // not have a :lower16: or :upper16 as part of the expression. We don't
8093 // want the behavior of silently truncating, which can be unexpected and
8094 // lead to bugs that are difficult to find since this is an easy mistake
8095 // to make.
8096 int i = (Operands[3]->isImm()) ? 3 : 4;
8097 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
8098 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
8099 if (CE) break;
8100 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
8101 if (!E) break;
8102 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
8103 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
8104 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
8105 return Error(
8106 Op.getStartLoc(),
8107 "immediate expression for mov requires :lower16: or :upper16");
8108 break;
8109 }
8110 case ARM::HINT:
8111 case ARM::t2HINT: {
8112 unsigned Imm8 = Inst.getOperand(0).getImm();
8113 unsigned Pred = Inst.getOperand(1).getImm();
8114 // ESB is not predicable (pred must be AL). Without the RAS extension, this
8115 // behaves as any other unallocated hint.
8116 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
8117 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
8118 "predicable, but condition "
8119 "code specified");
8120 if (Imm8 == 0x14 && Pred != ARMCC::AL)
8121 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
8122 "predicable, but condition "
8123 "code specified");
8124 break;
8125 }
8126 case ARM::t2BFi:
8127 case ARM::t2BFr:
8128 case ARM::t2BFLi:
8129 case ARM::t2BFLr: {
8130 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
8131 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8132 return Error(Operands[2]->getStartLoc(),
8133 "branch location out of range or not a multiple of 2");
8134
8135 if (Opcode == ARM::t2BFi) {
8136 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
8137 return Error(Operands[3]->getStartLoc(),
8138 "branch target out of range or not a multiple of 2");
8139 } else if (Opcode == ARM::t2BFLi) {
8140 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
8141 return Error(Operands[3]->getStartLoc(),
8142 "branch target out of range or not a multiple of 2");
8143 }
8144 break;
8145 }
8146 case ARM::t2BFic: {
8147 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
8148 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8149 return Error(Operands[1]->getStartLoc(),
8150 "branch location out of range or not a multiple of 2");
8151
8152 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
8153 return Error(Operands[2]->getStartLoc(),
8154 "branch target out of range or not a multiple of 2");
8155
8156 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
8157 "branch location and else branch target should either both be "
8158 "immediates or both labels");
8159
8160 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
8161 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
8162 if (Diff != 4 && Diff != 2)
8163 return Error(
8164 Operands[3]->getStartLoc(),
8165 "else branch target must be 2 or 4 greater than the branch location");
8166 }
8167 break;
8168 }
8169 case ARM::t2CLRM: {
8170 for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
8171 if (Inst.getOperand(i).isReg() &&
8172 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
8173 Inst.getOperand(i).getReg())) {
8174 return Error(Operands[2]->getStartLoc(),
8175 "invalid register in register list. Valid registers are "
8176 "r0-r12, lr/r14 and APSR.");
8177 }
8178 }
8179 break;
8180 }
8181 case ARM::DSB:
8182 case ARM::t2DSB: {
8183
8184 if (Inst.getNumOperands() < 2)
8185 break;
8186
8187 unsigned Option = Inst.getOperand(0).getImm();
8188 unsigned Pred = Inst.getOperand(1).getImm();
8189
8190 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
8191 if (Option == 0 && Pred != ARMCC::AL)
8192 return Error(Operands[1]->getStartLoc(),
8193 "instruction 'ssbb' is not predicable, but condition code "
8194 "specified");
8195 if (Option == 4 && Pred != ARMCC::AL)
8196 return Error(Operands[1]->getStartLoc(),
8197 "instruction 'pssbb' is not predicable, but condition code "
8198 "specified");
8199 break;
8200 }
8201 case ARM::VMOVRRS: {
8202 // Source registers must be sequential.
8203 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
8204 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
8205 if (Sm1 != Sm + 1)
8206 return Error(Operands[5]->getStartLoc(),
8207 "source operands must be sequential");
8208 break;
8209 }
8210 case ARM::VMOVSRR: {
8211 // Destination registers must be sequential.
8212 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
8213 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
8214 if (Sm1 != Sm + 1)
8215 return Error(Operands[3]->getStartLoc(),
8216 "destination operands must be sequential");
8217 break;
8218 }
8219 case ARM::VLDMDIA:
8220 case ARM::VSTMDIA: {
8221 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
8222 auto &RegList = Op.getRegList();
8223 if (RegList.size() < 1 || RegList.size() > 16)
8224 return Error(Operands[3]->getStartLoc(),
8225 "list of registers must be at least 1 and at most 16");
8226 break;
8227 }
8228 case ARM::MVE_VQDMULLs32bh:
8229 case ARM::MVE_VQDMULLs32th:
8230 case ARM::MVE_VCMULf32:
8231 case ARM::MVE_VMULLBs32:
8232 case ARM::MVE_VMULLTs32:
8233 case ARM::MVE_VMULLBu32:
8234 case ARM::MVE_VMULLTu32: {
8235 if (Operands[3]->getReg() == Operands[4]->getReg()) {
8236 return Error (Operands[3]->getStartLoc(),
8237 "Qd register and Qn register can't be identical");
8238 }
8239 if (Operands[3]->getReg() == Operands[5]->getReg()) {
8240 return Error (Operands[3]->getStartLoc(),
8241 "Qd register and Qm register can't be identical");
8242 }
8243 break;
8244 }
8245 case ARM::MVE_VMOV_rr_q: {
8246 if (Operands[4]->getReg() != Operands[6]->getReg())
8247 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
8248 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
8249 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
8250 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8251 break;
8252 }
8253 case ARM::MVE_VMOV_q_rr: {
8254 if (Operands[2]->getReg() != Operands[4]->getReg())
8255 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
8256 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
8257 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
8258 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8259 break;
8260 }
8261 case ARM::UMAAL:
8262 case ARM::UMLAL:
8263 case ARM::UMULL:
8264 case ARM::t2UMAAL:
8265 case ARM::t2UMLAL:
8266 case ARM::t2UMULL:
8267 case ARM::SMLAL:
8268 case ARM::SMLALBB:
8269 case ARM::SMLALBT:
8270 case ARM::SMLALD:
8271 case ARM::SMLALDX:
8272 case ARM::SMLALTB:
8273 case ARM::SMLALTT:
8274 case ARM::SMLSLD:
8275 case ARM::SMLSLDX:
8276 case ARM::SMULL:
8277 case ARM::t2SMLAL:
8278 case ARM::t2SMLALBB:
8279 case ARM::t2SMLALBT:
8280 case ARM::t2SMLALD:
8281 case ARM::t2SMLALDX:
8282 case ARM::t2SMLALTB:
8283 case ARM::t2SMLALTT:
8284 case ARM::t2SMLSLD:
8285 case ARM::t2SMLSLDX:
8286 case ARM::t2SMULL: {
8287 unsigned RdHi = Inst.getOperand(0).getReg();
8288 unsigned RdLo = Inst.getOperand(1).getReg();
8289 if(RdHi == RdLo) {
8290 return Error(Loc,
8291 "unpredictable instruction, RdHi and RdLo must be different");
8292 }
8293 break;
8294 }
8295
8296 case ARM::CDE_CX1:
8297 case ARM::CDE_CX1A:
8298 case ARM::CDE_CX1D:
8299 case ARM::CDE_CX1DA:
8300 case ARM::CDE_CX2:
8301 case ARM::CDE_CX2A:
8302 case ARM::CDE_CX2D:
8303 case ARM::CDE_CX2DA:
8304 case ARM::CDE_CX3:
8305 case ARM::CDE_CX3A:
8306 case ARM::CDE_CX3D:
8307 case ARM::CDE_CX3DA:
8308 case ARM::CDE_VCX1_vec:
8309 case ARM::CDE_VCX1_fpsp:
8310 case ARM::CDE_VCX1_fpdp:
8311 case ARM::CDE_VCX1A_vec:
8312 case ARM::CDE_VCX1A_fpsp:
8313 case ARM::CDE_VCX1A_fpdp:
8314 case ARM::CDE_VCX2_vec:
8315 case ARM::CDE_VCX2_fpsp:
8316 case ARM::CDE_VCX2_fpdp:
8317 case ARM::CDE_VCX2A_vec:
8318 case ARM::CDE_VCX2A_fpsp:
8319 case ARM::CDE_VCX2A_fpdp:
8320 case ARM::CDE_VCX3_vec:
8321 case ARM::CDE_VCX3_fpsp:
8322 case ARM::CDE_VCX3_fpdp:
8323 case ARM::CDE_VCX3A_vec:
8324 case ARM::CDE_VCX3A_fpsp:
8325 case ARM::CDE_VCX3A_fpdp: {
8326 assert(Inst.getOperand(1).isImm() &&
8327 "CDE operand 1 must be a coprocessor ID");
8328 int64_t Coproc = Inst.getOperand(1).getImm();
8329 if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI))
8330 return Error(Operands[1]->getStartLoc(),
8331 "coprocessor must be configured as CDE");
8332 else if (Coproc >= 8)
8333 return Error(Operands[1]->getStartLoc(),
8334 "coprocessor must be in the range [p0, p7]");
8335 break;
8336 }
8337
8338 case ARM::t2CDP:
8339 case ARM::t2CDP2:
8340 case ARM::t2LDC2L_OFFSET:
8341 case ARM::t2LDC2L_OPTION:
8342 case ARM::t2LDC2L_POST:
8343 case ARM::t2LDC2L_PRE:
8344 case ARM::t2LDC2_OFFSET:
8345 case ARM::t2LDC2_OPTION:
8346 case ARM::t2LDC2_POST:
8347 case ARM::t2LDC2_PRE:
8348 case ARM::t2LDCL_OFFSET:
8349 case ARM::t2LDCL_OPTION:
8350 case ARM::t2LDCL_POST:
8351 case ARM::t2LDCL_PRE:
8352 case ARM::t2LDC_OFFSET:
8353 case ARM::t2LDC_OPTION:
8354 case ARM::t2LDC_POST:
8355 case ARM::t2LDC_PRE:
8356 case ARM::t2MCR:
8357 case ARM::t2MCR2:
8358 case ARM::t2MCRR:
8359 case ARM::t2MCRR2:
8360 case ARM::t2MRC:
8361 case ARM::t2MRC2:
8362 case ARM::t2MRRC:
8363 case ARM::t2MRRC2:
8364 case ARM::t2STC2L_OFFSET:
8365 case ARM::t2STC2L_OPTION:
8366 case ARM::t2STC2L_POST:
8367 case ARM::t2STC2L_PRE:
8368 case ARM::t2STC2_OFFSET:
8369 case ARM::t2STC2_OPTION:
8370 case ARM::t2STC2_POST:
8371 case ARM::t2STC2_PRE:
8372 case ARM::t2STCL_OFFSET:
8373 case ARM::t2STCL_OPTION:
8374 case ARM::t2STCL_POST:
8375 case ARM::t2STCL_PRE:
8376 case ARM::t2STC_OFFSET:
8377 case ARM::t2STC_OPTION:
8378 case ARM::t2STC_POST:
8379 case ARM::t2STC_PRE: {
8380 unsigned Opcode = Inst.getOpcode();
8381 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags,
8382 // CopInd is the index of the coprocessor operand.
8383 size_t CopInd = 0;
8384 if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2)
8385 CopInd = 2;
8386 else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2)
8387 CopInd = 1;
8388 assert(Inst.getOperand(CopInd).isImm() &&
8389 "Operand must be a coprocessor ID");
8390 int64_t Coproc = Inst.getOperand(CopInd).getImm();
8391 // Operands[2] is the coprocessor operand at syntactic level
8392 if (ARM::isCDECoproc(Coproc, *STI))
8393 return Error(Operands[2]->getStartLoc(),
8394 "coprocessor must be configured as GCP");
8395 break;
8396 }
8397 }
8398
8399 return false;
8400 }
8401
getRealVSTOpcode(unsigned Opc,unsigned & Spacing)8402 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
8403 switch(Opc) {
8404 default: llvm_unreachable("unexpected opcode!");
8405 // VST1LN
8406 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
8407 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8408 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8409 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
8410 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8411 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8412 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
8413 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
8414 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
8415
8416 // VST2LN
8417 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
8418 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8419 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8420 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8421 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8422
8423 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
8424 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8425 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8426 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8427 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8428
8429 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
8430 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
8431 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
8432 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
8433 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
8434
8435 // VST3LN
8436 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
8437 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8438 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8439 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
8440 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8441 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
8442 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8443 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8444 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
8445 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8446 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
8447 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
8448 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
8449 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
8450 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
8451
8452 // VST3
8453 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
8454 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8455 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8456 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
8457 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8458 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8459 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
8460 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8461 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8462 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
8463 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8464 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8465 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
8466 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
8467 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
8468 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
8469 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8470 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8471
8472 // VST4LN
8473 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
8474 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8475 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8476 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8477 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8478 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
8479 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8480 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8481 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8482 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8483 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
8484 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8485 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8486 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8487 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8488
8489 // VST4
8490 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
8491 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8492 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8493 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
8494 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8495 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8496 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
8497 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8498 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8499 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
8500 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8501 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8502 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
8503 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8504 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8505 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
8506 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8507 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8508 }
8509 }
8510
getRealVLDOpcode(unsigned Opc,unsigned & Spacing)8511 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8512 switch(Opc) {
8513 default: llvm_unreachable("unexpected opcode!");
8514 // VLD1LN
8515 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
8516 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8517 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8518 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
8519 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8520 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8521 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
8522 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8523 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8524
8525 // VLD2LN
8526 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
8527 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8528 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8529 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8530 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8531 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
8532 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8533 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8534 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8535 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8536 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
8537 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8538 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8539 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8540 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8541
8542 // VLD3DUP
8543 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
8544 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8545 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8546 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8547 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8548 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8549 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
8550 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8551 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8552 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8553 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8554 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8555 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
8556 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8557 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8558 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8559 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8560 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8561
8562 // VLD3LN
8563 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
8564 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8565 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8566 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8567 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8568 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
8569 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8570 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8571 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8572 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8573 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
8574 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8575 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8576 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8577 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8578
8579 // VLD3
8580 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
8581 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8582 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8583 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
8584 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8585 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8586 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
8587 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8588 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8589 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
8590 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8591 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8592 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
8593 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8594 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8595 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
8596 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8597 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8598
8599 // VLD4LN
8600 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
8601 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8602 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8603 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8604 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8605 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
8606 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8607 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8608 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8609 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8610 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
8611 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8612 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8613 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8614 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8615
8616 // VLD4DUP
8617 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
8618 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8619 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8620 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8621 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8622 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8623 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
8624 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8625 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8626 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8627 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8628 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8629 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
8630 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8631 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8632 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8633 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8634 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8635
8636 // VLD4
8637 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
8638 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8639 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8640 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
8641 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8642 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8643 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
8644 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8645 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8646 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
8647 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8648 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8649 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
8650 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8651 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8652 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
8653 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8654 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8655 }
8656 }
8657
processInstruction(MCInst & Inst,const OperandVector & Operands,MCStreamer & Out)8658 bool ARMAsmParser::processInstruction(MCInst &Inst,
8659 const OperandVector &Operands,
8660 MCStreamer &Out) {
8661 // Check if we have the wide qualifier, because if it's present we
8662 // must avoid selecting a 16-bit thumb instruction.
8663 bool HasWideQualifier = false;
8664 for (auto &Op : Operands) {
8665 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8666 if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8667 HasWideQualifier = true;
8668 break;
8669 }
8670 }
8671
8672 switch (Inst.getOpcode()) {
8673 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8674 case ARM::LDRT_POST:
8675 case ARM::LDRBT_POST: {
8676 const unsigned Opcode =
8677 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8678 : ARM::LDRBT_POST_IMM;
8679 MCInst TmpInst;
8680 TmpInst.setOpcode(Opcode);
8681 TmpInst.addOperand(Inst.getOperand(0));
8682 TmpInst.addOperand(Inst.getOperand(1));
8683 TmpInst.addOperand(Inst.getOperand(1));
8684 TmpInst.addOperand(MCOperand::createReg(0));
8685 TmpInst.addOperand(MCOperand::createImm(0));
8686 TmpInst.addOperand(Inst.getOperand(2));
8687 TmpInst.addOperand(Inst.getOperand(3));
8688 Inst = TmpInst;
8689 return true;
8690 }
8691 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate.
8692 case ARM::LDRSBTii:
8693 case ARM::LDRHTii:
8694 case ARM::LDRSHTii: {
8695 MCInst TmpInst;
8696
8697 if (Inst.getOpcode() == ARM::LDRSBTii)
8698 TmpInst.setOpcode(ARM::LDRSBTi);
8699 else if (Inst.getOpcode() == ARM::LDRHTii)
8700 TmpInst.setOpcode(ARM::LDRHTi);
8701 else if (Inst.getOpcode() == ARM::LDRSHTii)
8702 TmpInst.setOpcode(ARM::LDRSHTi);
8703 TmpInst.addOperand(Inst.getOperand(0));
8704 TmpInst.addOperand(Inst.getOperand(1));
8705 TmpInst.addOperand(Inst.getOperand(1));
8706 TmpInst.addOperand(MCOperand::createImm(256));
8707 TmpInst.addOperand(Inst.getOperand(2));
8708 Inst = TmpInst;
8709 return true;
8710 }
8711 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8712 case ARM::STRT_POST:
8713 case ARM::STRBT_POST: {
8714 const unsigned Opcode =
8715 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8716 : ARM::STRBT_POST_IMM;
8717 MCInst TmpInst;
8718 TmpInst.setOpcode(Opcode);
8719 TmpInst.addOperand(Inst.getOperand(1));
8720 TmpInst.addOperand(Inst.getOperand(0));
8721 TmpInst.addOperand(Inst.getOperand(1));
8722 TmpInst.addOperand(MCOperand::createReg(0));
8723 TmpInst.addOperand(MCOperand::createImm(0));
8724 TmpInst.addOperand(Inst.getOperand(2));
8725 TmpInst.addOperand(Inst.getOperand(3));
8726 Inst = TmpInst;
8727 return true;
8728 }
8729 // Alias for alternate form of 'ADR Rd, #imm' instruction.
8730 case ARM::ADDri: {
8731 if (Inst.getOperand(1).getReg() != ARM::PC ||
8732 Inst.getOperand(5).getReg() != 0 ||
8733 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8734 return false;
8735 MCInst TmpInst;
8736 TmpInst.setOpcode(ARM::ADR);
8737 TmpInst.addOperand(Inst.getOperand(0));
8738 if (Inst.getOperand(2).isImm()) {
8739 // Immediate (mod_imm) will be in its encoded form, we must unencode it
8740 // before passing it to the ADR instruction.
8741 unsigned Enc = Inst.getOperand(2).getImm();
8742 TmpInst.addOperand(MCOperand::createImm(
8743 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8744 } else {
8745 // Turn PC-relative expression into absolute expression.
8746 // Reading PC provides the start of the current instruction + 8 and
8747 // the transform to adr is biased by that.
8748 MCSymbol *Dot = getContext().createTempSymbol();
8749 Out.emitLabel(Dot);
8750 const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8751 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8752 MCSymbolRefExpr::VK_None,
8753 getContext());
8754 const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8755 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8756 getContext());
8757 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8758 getContext());
8759 TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8760 }
8761 TmpInst.addOperand(Inst.getOperand(3));
8762 TmpInst.addOperand(Inst.getOperand(4));
8763 Inst = TmpInst;
8764 return true;
8765 }
8766 // Aliases for imm syntax of LDR instructions.
8767 case ARM::t2LDR_PRE_imm:
8768 case ARM::t2LDR_POST_imm: {
8769 MCInst TmpInst;
8770 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE
8771 : ARM::t2LDR_POST);
8772 TmpInst.addOperand(Inst.getOperand(0)); // Rt
8773 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8774 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8775 TmpInst.addOperand(Inst.getOperand(2)); // imm
8776 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8777 Inst = TmpInst;
8778 return true;
8779 }
8780 // Aliases for imm syntax of STR instructions.
8781 case ARM::t2STR_PRE_imm:
8782 case ARM::t2STR_POST_imm: {
8783 MCInst TmpInst;
8784 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE
8785 : ARM::t2STR_POST);
8786 TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8787 TmpInst.addOperand(Inst.getOperand(0)); // Rt
8788 TmpInst.addOperand(Inst.getOperand(1)); // Rn
8789 TmpInst.addOperand(Inst.getOperand(2)); // imm
8790 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8791 Inst = TmpInst;
8792 return true;
8793 }
8794 // Aliases for alternate PC+imm syntax of LDR instructions.
8795 case ARM::t2LDRpcrel:
8796 // Select the narrow version if the immediate will fit.
8797 if (Inst.getOperand(1).getImm() > 0 &&
8798 Inst.getOperand(1).getImm() <= 0xff &&
8799 !HasWideQualifier)
8800 Inst.setOpcode(ARM::tLDRpci);
8801 else
8802 Inst.setOpcode(ARM::t2LDRpci);
8803 return true;
8804 case ARM::t2LDRBpcrel:
8805 Inst.setOpcode(ARM::t2LDRBpci);
8806 return true;
8807 case ARM::t2LDRHpcrel:
8808 Inst.setOpcode(ARM::t2LDRHpci);
8809 return true;
8810 case ARM::t2LDRSBpcrel:
8811 Inst.setOpcode(ARM::t2LDRSBpci);
8812 return true;
8813 case ARM::t2LDRSHpcrel:
8814 Inst.setOpcode(ARM::t2LDRSHpci);
8815 return true;
8816 case ARM::LDRConstPool:
8817 case ARM::tLDRConstPool:
8818 case ARM::t2LDRConstPool: {
8819 // Pseudo instruction ldr rt, =immediate is converted to a
8820 // MOV rt, immediate if immediate is known and representable
8821 // otherwise we create a constant pool entry that we load from.
8822 MCInst TmpInst;
8823 if (Inst.getOpcode() == ARM::LDRConstPool)
8824 TmpInst.setOpcode(ARM::LDRi12);
8825 else if (Inst.getOpcode() == ARM::tLDRConstPool)
8826 TmpInst.setOpcode(ARM::tLDRpci);
8827 else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8828 TmpInst.setOpcode(ARM::t2LDRpci);
8829 const ARMOperand &PoolOperand =
8830 (HasWideQualifier ?
8831 static_cast<ARMOperand &>(*Operands[4]) :
8832 static_cast<ARMOperand &>(*Operands[3]));
8833 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8834 // If SubExprVal is a constant we may be able to use a MOV
8835 if (isa<MCConstantExpr>(SubExprVal) &&
8836 Inst.getOperand(0).getReg() != ARM::PC &&
8837 Inst.getOperand(0).getReg() != ARM::SP) {
8838 int64_t Value =
8839 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8840 bool UseMov = true;
8841 bool MovHasS = true;
8842 if (Inst.getOpcode() == ARM::LDRConstPool) {
8843 // ARM Constant
8844 if (ARM_AM::getSOImmVal(Value) != -1) {
8845 Value = ARM_AM::getSOImmVal(Value);
8846 TmpInst.setOpcode(ARM::MOVi);
8847 }
8848 else if (ARM_AM::getSOImmVal(~Value) != -1) {
8849 Value = ARM_AM::getSOImmVal(~Value);
8850 TmpInst.setOpcode(ARM::MVNi);
8851 }
8852 else if (hasV6T2Ops() &&
8853 Value >=0 && Value < 65536) {
8854 TmpInst.setOpcode(ARM::MOVi16);
8855 MovHasS = false;
8856 }
8857 else
8858 UseMov = false;
8859 }
8860 else {
8861 // Thumb/Thumb2 Constant
8862 if (hasThumb2() &&
8863 ARM_AM::getT2SOImmVal(Value) != -1)
8864 TmpInst.setOpcode(ARM::t2MOVi);
8865 else if (hasThumb2() &&
8866 ARM_AM::getT2SOImmVal(~Value) != -1) {
8867 TmpInst.setOpcode(ARM::t2MVNi);
8868 Value = ~Value;
8869 }
8870 else if (hasV8MBaseline() &&
8871 Value >=0 && Value < 65536) {
8872 TmpInst.setOpcode(ARM::t2MOVi16);
8873 MovHasS = false;
8874 }
8875 else
8876 UseMov = false;
8877 }
8878 if (UseMov) {
8879 TmpInst.addOperand(Inst.getOperand(0)); // Rt
8880 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate
8881 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8882 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8883 if (MovHasS)
8884 TmpInst.addOperand(MCOperand::createReg(0)); // S
8885 Inst = TmpInst;
8886 return true;
8887 }
8888 }
8889 // No opportunity to use MOV/MVN create constant pool
8890 const MCExpr *CPLoc =
8891 getTargetStreamer().addConstantPoolEntry(SubExprVal,
8892 PoolOperand.getStartLoc());
8893 TmpInst.addOperand(Inst.getOperand(0)); // Rt
8894 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8895 if (TmpInst.getOpcode() == ARM::LDRi12)
8896 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset
8897 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8898 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8899 Inst = TmpInst;
8900 return true;
8901 }
8902 // Handle NEON VST complex aliases.
8903 case ARM::VST1LNdWB_register_Asm_8:
8904 case ARM::VST1LNdWB_register_Asm_16:
8905 case ARM::VST1LNdWB_register_Asm_32: {
8906 MCInst TmpInst;
8907 // Shuffle the operands around so the lane index operand is in the
8908 // right place.
8909 unsigned Spacing;
8910 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8911 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8912 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8913 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8914 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8915 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8916 TmpInst.addOperand(Inst.getOperand(1)); // lane
8917 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8918 TmpInst.addOperand(Inst.getOperand(6));
8919 Inst = TmpInst;
8920 return true;
8921 }
8922
8923 case ARM::VST2LNdWB_register_Asm_8:
8924 case ARM::VST2LNdWB_register_Asm_16:
8925 case ARM::VST2LNdWB_register_Asm_32:
8926 case ARM::VST2LNqWB_register_Asm_16:
8927 case ARM::VST2LNqWB_register_Asm_32: {
8928 MCInst TmpInst;
8929 // Shuffle the operands around so the lane index operand is in the
8930 // right place.
8931 unsigned Spacing;
8932 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8933 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8934 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8935 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8936 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8937 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8938 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8939 Spacing));
8940 TmpInst.addOperand(Inst.getOperand(1)); // lane
8941 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8942 TmpInst.addOperand(Inst.getOperand(6));
8943 Inst = TmpInst;
8944 return true;
8945 }
8946
8947 case ARM::VST3LNdWB_register_Asm_8:
8948 case ARM::VST3LNdWB_register_Asm_16:
8949 case ARM::VST3LNdWB_register_Asm_32:
8950 case ARM::VST3LNqWB_register_Asm_16:
8951 case ARM::VST3LNqWB_register_Asm_32: {
8952 MCInst TmpInst;
8953 // Shuffle the operands around so the lane index operand is in the
8954 // right place.
8955 unsigned Spacing;
8956 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8957 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8958 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8959 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8960 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8961 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8962 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8963 Spacing));
8964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8965 Spacing * 2));
8966 TmpInst.addOperand(Inst.getOperand(1)); // lane
8967 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8968 TmpInst.addOperand(Inst.getOperand(6));
8969 Inst = TmpInst;
8970 return true;
8971 }
8972
8973 case ARM::VST4LNdWB_register_Asm_8:
8974 case ARM::VST4LNdWB_register_Asm_16:
8975 case ARM::VST4LNdWB_register_Asm_32:
8976 case ARM::VST4LNqWB_register_Asm_16:
8977 case ARM::VST4LNqWB_register_Asm_32: {
8978 MCInst TmpInst;
8979 // Shuffle the operands around so the lane index operand is in the
8980 // right place.
8981 unsigned Spacing;
8982 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8983 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8984 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8985 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8986 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8987 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8988 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8989 Spacing));
8990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8991 Spacing * 2));
8992 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8993 Spacing * 3));
8994 TmpInst.addOperand(Inst.getOperand(1)); // lane
8995 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8996 TmpInst.addOperand(Inst.getOperand(6));
8997 Inst = TmpInst;
8998 return true;
8999 }
9000
9001 case ARM::VST1LNdWB_fixed_Asm_8:
9002 case ARM::VST1LNdWB_fixed_Asm_16:
9003 case ARM::VST1LNdWB_fixed_Asm_32: {
9004 MCInst TmpInst;
9005 // Shuffle the operands around so the lane index operand is in the
9006 // right place.
9007 unsigned Spacing;
9008 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9009 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9010 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9011 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9012 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9013 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9014 TmpInst.addOperand(Inst.getOperand(1)); // lane
9015 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9016 TmpInst.addOperand(Inst.getOperand(5));
9017 Inst = TmpInst;
9018 return true;
9019 }
9020
9021 case ARM::VST2LNdWB_fixed_Asm_8:
9022 case ARM::VST2LNdWB_fixed_Asm_16:
9023 case ARM::VST2LNdWB_fixed_Asm_32:
9024 case ARM::VST2LNqWB_fixed_Asm_16:
9025 case ARM::VST2LNqWB_fixed_Asm_32: {
9026 MCInst TmpInst;
9027 // Shuffle the operands around so the lane index operand is in the
9028 // right place.
9029 unsigned Spacing;
9030 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9031 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9032 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9033 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9034 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9035 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9036 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9037 Spacing));
9038 TmpInst.addOperand(Inst.getOperand(1)); // lane
9039 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9040 TmpInst.addOperand(Inst.getOperand(5));
9041 Inst = TmpInst;
9042 return true;
9043 }
9044
9045 case ARM::VST3LNdWB_fixed_Asm_8:
9046 case ARM::VST3LNdWB_fixed_Asm_16:
9047 case ARM::VST3LNdWB_fixed_Asm_32:
9048 case ARM::VST3LNqWB_fixed_Asm_16:
9049 case ARM::VST3LNqWB_fixed_Asm_32: {
9050 MCInst TmpInst;
9051 // Shuffle the operands around so the lane index operand is in the
9052 // right place.
9053 unsigned Spacing;
9054 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9055 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9056 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9057 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9058 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9059 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9060 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9061 Spacing));
9062 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9063 Spacing * 2));
9064 TmpInst.addOperand(Inst.getOperand(1)); // lane
9065 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9066 TmpInst.addOperand(Inst.getOperand(5));
9067 Inst = TmpInst;
9068 return true;
9069 }
9070
9071 case ARM::VST4LNdWB_fixed_Asm_8:
9072 case ARM::VST4LNdWB_fixed_Asm_16:
9073 case ARM::VST4LNdWB_fixed_Asm_32:
9074 case ARM::VST4LNqWB_fixed_Asm_16:
9075 case ARM::VST4LNqWB_fixed_Asm_32: {
9076 MCInst TmpInst;
9077 // Shuffle the operands around so the lane index operand is in the
9078 // right place.
9079 unsigned Spacing;
9080 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9081 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9082 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9083 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9084 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9085 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9086 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9087 Spacing));
9088 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9089 Spacing * 2));
9090 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9091 Spacing * 3));
9092 TmpInst.addOperand(Inst.getOperand(1)); // lane
9093 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9094 TmpInst.addOperand(Inst.getOperand(5));
9095 Inst = TmpInst;
9096 return true;
9097 }
9098
9099 case ARM::VST1LNdAsm_8:
9100 case ARM::VST1LNdAsm_16:
9101 case ARM::VST1LNdAsm_32: {
9102 MCInst TmpInst;
9103 // Shuffle the operands around so the lane index operand is in the
9104 // right place.
9105 unsigned Spacing;
9106 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9107 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9108 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9109 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9110 TmpInst.addOperand(Inst.getOperand(1)); // lane
9111 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9112 TmpInst.addOperand(Inst.getOperand(5));
9113 Inst = TmpInst;
9114 return true;
9115 }
9116
9117 case ARM::VST2LNdAsm_8:
9118 case ARM::VST2LNdAsm_16:
9119 case ARM::VST2LNdAsm_32:
9120 case ARM::VST2LNqAsm_16:
9121 case ARM::VST2LNqAsm_32: {
9122 MCInst TmpInst;
9123 // Shuffle the operands around so the lane index operand is in the
9124 // right place.
9125 unsigned Spacing;
9126 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9127 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9128 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9129 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9130 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9131 Spacing));
9132 TmpInst.addOperand(Inst.getOperand(1)); // lane
9133 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9134 TmpInst.addOperand(Inst.getOperand(5));
9135 Inst = TmpInst;
9136 return true;
9137 }
9138
9139 case ARM::VST3LNdAsm_8:
9140 case ARM::VST3LNdAsm_16:
9141 case ARM::VST3LNdAsm_32:
9142 case ARM::VST3LNqAsm_16:
9143 case ARM::VST3LNqAsm_32: {
9144 MCInst TmpInst;
9145 // Shuffle the operands around so the lane index operand is in the
9146 // right place.
9147 unsigned Spacing;
9148 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9149 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9150 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9151 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9152 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9153 Spacing));
9154 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9155 Spacing * 2));
9156 TmpInst.addOperand(Inst.getOperand(1)); // lane
9157 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9158 TmpInst.addOperand(Inst.getOperand(5));
9159 Inst = TmpInst;
9160 return true;
9161 }
9162
9163 case ARM::VST4LNdAsm_8:
9164 case ARM::VST4LNdAsm_16:
9165 case ARM::VST4LNdAsm_32:
9166 case ARM::VST4LNqAsm_16:
9167 case ARM::VST4LNqAsm_32: {
9168 MCInst TmpInst;
9169 // Shuffle the operands around so the lane index operand is in the
9170 // right place.
9171 unsigned Spacing;
9172 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9173 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9174 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9175 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9176 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9177 Spacing));
9178 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9179 Spacing * 2));
9180 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9181 Spacing * 3));
9182 TmpInst.addOperand(Inst.getOperand(1)); // lane
9183 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9184 TmpInst.addOperand(Inst.getOperand(5));
9185 Inst = TmpInst;
9186 return true;
9187 }
9188
9189 // Handle NEON VLD complex aliases.
9190 case ARM::VLD1LNdWB_register_Asm_8:
9191 case ARM::VLD1LNdWB_register_Asm_16:
9192 case ARM::VLD1LNdWB_register_Asm_32: {
9193 MCInst TmpInst;
9194 // Shuffle the operands around so the lane index operand is in the
9195 // right place.
9196 unsigned Spacing;
9197 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9198 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9199 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9200 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9201 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9202 TmpInst.addOperand(Inst.getOperand(4)); // Rm
9203 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9204 TmpInst.addOperand(Inst.getOperand(1)); // lane
9205 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9206 TmpInst.addOperand(Inst.getOperand(6));
9207 Inst = TmpInst;
9208 return true;
9209 }
9210
9211 case ARM::VLD2LNdWB_register_Asm_8:
9212 case ARM::VLD2LNdWB_register_Asm_16:
9213 case ARM::VLD2LNdWB_register_Asm_32:
9214 case ARM::VLD2LNqWB_register_Asm_16:
9215 case ARM::VLD2LNqWB_register_Asm_32: {
9216 MCInst TmpInst;
9217 // Shuffle the operands around so the lane index operand is in the
9218 // right place.
9219 unsigned Spacing;
9220 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9221 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9222 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9223 Spacing));
9224 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9225 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9226 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9227 TmpInst.addOperand(Inst.getOperand(4)); // Rm
9228 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9229 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9230 Spacing));
9231 TmpInst.addOperand(Inst.getOperand(1)); // lane
9232 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9233 TmpInst.addOperand(Inst.getOperand(6));
9234 Inst = TmpInst;
9235 return true;
9236 }
9237
9238 case ARM::VLD3LNdWB_register_Asm_8:
9239 case ARM::VLD3LNdWB_register_Asm_16:
9240 case ARM::VLD3LNdWB_register_Asm_32:
9241 case ARM::VLD3LNqWB_register_Asm_16:
9242 case ARM::VLD3LNqWB_register_Asm_32: {
9243 MCInst TmpInst;
9244 // Shuffle the operands around so the lane index operand is in the
9245 // right place.
9246 unsigned Spacing;
9247 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9248 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9249 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9250 Spacing));
9251 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9252 Spacing * 2));
9253 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9254 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9255 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9256 TmpInst.addOperand(Inst.getOperand(4)); // Rm
9257 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9258 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9259 Spacing));
9260 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9261 Spacing * 2));
9262 TmpInst.addOperand(Inst.getOperand(1)); // lane
9263 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9264 TmpInst.addOperand(Inst.getOperand(6));
9265 Inst = TmpInst;
9266 return true;
9267 }
9268
9269 case ARM::VLD4LNdWB_register_Asm_8:
9270 case ARM::VLD4LNdWB_register_Asm_16:
9271 case ARM::VLD4LNdWB_register_Asm_32:
9272 case ARM::VLD4LNqWB_register_Asm_16:
9273 case ARM::VLD4LNqWB_register_Asm_32: {
9274 MCInst TmpInst;
9275 // Shuffle the operands around so the lane index operand is in the
9276 // right place.
9277 unsigned Spacing;
9278 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9279 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9280 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9281 Spacing));
9282 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9283 Spacing * 2));
9284 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9285 Spacing * 3));
9286 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9287 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9288 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9289 TmpInst.addOperand(Inst.getOperand(4)); // Rm
9290 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9291 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9292 Spacing));
9293 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9294 Spacing * 2));
9295 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9296 Spacing * 3));
9297 TmpInst.addOperand(Inst.getOperand(1)); // lane
9298 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9299 TmpInst.addOperand(Inst.getOperand(6));
9300 Inst = TmpInst;
9301 return true;
9302 }
9303
9304 case ARM::VLD1LNdWB_fixed_Asm_8:
9305 case ARM::VLD1LNdWB_fixed_Asm_16:
9306 case ARM::VLD1LNdWB_fixed_Asm_32: {
9307 MCInst TmpInst;
9308 // Shuffle the operands around so the lane index operand is in the
9309 // right place.
9310 unsigned Spacing;
9311 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9312 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9313 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9314 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9315 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9316 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9317 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9318 TmpInst.addOperand(Inst.getOperand(1)); // lane
9319 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9320 TmpInst.addOperand(Inst.getOperand(5));
9321 Inst = TmpInst;
9322 return true;
9323 }
9324
9325 case ARM::VLD2LNdWB_fixed_Asm_8:
9326 case ARM::VLD2LNdWB_fixed_Asm_16:
9327 case ARM::VLD2LNdWB_fixed_Asm_32:
9328 case ARM::VLD2LNqWB_fixed_Asm_16:
9329 case ARM::VLD2LNqWB_fixed_Asm_32: {
9330 MCInst TmpInst;
9331 // Shuffle the operands around so the lane index operand is in the
9332 // right place.
9333 unsigned Spacing;
9334 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9335 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9336 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9337 Spacing));
9338 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9339 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9340 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9341 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9342 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9343 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9344 Spacing));
9345 TmpInst.addOperand(Inst.getOperand(1)); // lane
9346 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9347 TmpInst.addOperand(Inst.getOperand(5));
9348 Inst = TmpInst;
9349 return true;
9350 }
9351
9352 case ARM::VLD3LNdWB_fixed_Asm_8:
9353 case ARM::VLD3LNdWB_fixed_Asm_16:
9354 case ARM::VLD3LNdWB_fixed_Asm_32:
9355 case ARM::VLD3LNqWB_fixed_Asm_16:
9356 case ARM::VLD3LNqWB_fixed_Asm_32: {
9357 MCInst TmpInst;
9358 // Shuffle the operands around so the lane index operand is in the
9359 // right place.
9360 unsigned Spacing;
9361 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9362 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9363 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9364 Spacing));
9365 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9366 Spacing * 2));
9367 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9368 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9369 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9370 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9371 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9372 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9373 Spacing));
9374 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9375 Spacing * 2));
9376 TmpInst.addOperand(Inst.getOperand(1)); // lane
9377 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9378 TmpInst.addOperand(Inst.getOperand(5));
9379 Inst = TmpInst;
9380 return true;
9381 }
9382
9383 case ARM::VLD4LNdWB_fixed_Asm_8:
9384 case ARM::VLD4LNdWB_fixed_Asm_16:
9385 case ARM::VLD4LNdWB_fixed_Asm_32:
9386 case ARM::VLD4LNqWB_fixed_Asm_16:
9387 case ARM::VLD4LNqWB_fixed_Asm_32: {
9388 MCInst TmpInst;
9389 // Shuffle the operands around so the lane index operand is in the
9390 // right place.
9391 unsigned Spacing;
9392 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9393 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9394 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9395 Spacing));
9396 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9397 Spacing * 2));
9398 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9399 Spacing * 3));
9400 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9401 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9402 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9403 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9404 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9405 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9406 Spacing));
9407 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9408 Spacing * 2));
9409 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9410 Spacing * 3));
9411 TmpInst.addOperand(Inst.getOperand(1)); // lane
9412 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9413 TmpInst.addOperand(Inst.getOperand(5));
9414 Inst = TmpInst;
9415 return true;
9416 }
9417
9418 case ARM::VLD1LNdAsm_8:
9419 case ARM::VLD1LNdAsm_16:
9420 case ARM::VLD1LNdAsm_32: {
9421 MCInst TmpInst;
9422 // Shuffle the operands around so the lane index operand is in the
9423 // right place.
9424 unsigned Spacing;
9425 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9426 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9427 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9428 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9429 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9430 TmpInst.addOperand(Inst.getOperand(1)); // lane
9431 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9432 TmpInst.addOperand(Inst.getOperand(5));
9433 Inst = TmpInst;
9434 return true;
9435 }
9436
9437 case ARM::VLD2LNdAsm_8:
9438 case ARM::VLD2LNdAsm_16:
9439 case ARM::VLD2LNdAsm_32:
9440 case ARM::VLD2LNqAsm_16:
9441 case ARM::VLD2LNqAsm_32: {
9442 MCInst TmpInst;
9443 // Shuffle the operands around so the lane index operand is in the
9444 // right place.
9445 unsigned Spacing;
9446 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9447 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9448 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9449 Spacing));
9450 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9451 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9452 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9453 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9454 Spacing));
9455 TmpInst.addOperand(Inst.getOperand(1)); // lane
9456 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9457 TmpInst.addOperand(Inst.getOperand(5));
9458 Inst = TmpInst;
9459 return true;
9460 }
9461
9462 case ARM::VLD3LNdAsm_8:
9463 case ARM::VLD3LNdAsm_16:
9464 case ARM::VLD3LNdAsm_32:
9465 case ARM::VLD3LNqAsm_16:
9466 case ARM::VLD3LNqAsm_32: {
9467 MCInst TmpInst;
9468 // Shuffle the operands around so the lane index operand is in the
9469 // right place.
9470 unsigned Spacing;
9471 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9472 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9473 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9474 Spacing));
9475 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9476 Spacing * 2));
9477 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9478 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9479 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9480 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9481 Spacing));
9482 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9483 Spacing * 2));
9484 TmpInst.addOperand(Inst.getOperand(1)); // lane
9485 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9486 TmpInst.addOperand(Inst.getOperand(5));
9487 Inst = TmpInst;
9488 return true;
9489 }
9490
9491 case ARM::VLD4LNdAsm_8:
9492 case ARM::VLD4LNdAsm_16:
9493 case ARM::VLD4LNdAsm_32:
9494 case ARM::VLD4LNqAsm_16:
9495 case ARM::VLD4LNqAsm_32: {
9496 MCInst TmpInst;
9497 // Shuffle the operands around so the lane index operand is in the
9498 // right place.
9499 unsigned Spacing;
9500 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9501 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9502 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9503 Spacing));
9504 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9505 Spacing * 2));
9506 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9507 Spacing * 3));
9508 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9509 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9510 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9512 Spacing));
9513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9514 Spacing * 2));
9515 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9516 Spacing * 3));
9517 TmpInst.addOperand(Inst.getOperand(1)); // lane
9518 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9519 TmpInst.addOperand(Inst.getOperand(5));
9520 Inst = TmpInst;
9521 return true;
9522 }
9523
9524 // VLD3DUP single 3-element structure to all lanes instructions.
9525 case ARM::VLD3DUPdAsm_8:
9526 case ARM::VLD3DUPdAsm_16:
9527 case ARM::VLD3DUPdAsm_32:
9528 case ARM::VLD3DUPqAsm_8:
9529 case ARM::VLD3DUPqAsm_16:
9530 case ARM::VLD3DUPqAsm_32: {
9531 MCInst TmpInst;
9532 unsigned Spacing;
9533 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9534 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9535 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9536 Spacing));
9537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9538 Spacing * 2));
9539 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9540 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9541 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9542 TmpInst.addOperand(Inst.getOperand(4));
9543 Inst = TmpInst;
9544 return true;
9545 }
9546
9547 case ARM::VLD3DUPdWB_fixed_Asm_8:
9548 case ARM::VLD3DUPdWB_fixed_Asm_16:
9549 case ARM::VLD3DUPdWB_fixed_Asm_32:
9550 case ARM::VLD3DUPqWB_fixed_Asm_8:
9551 case ARM::VLD3DUPqWB_fixed_Asm_16:
9552 case ARM::VLD3DUPqWB_fixed_Asm_32: {
9553 MCInst TmpInst;
9554 unsigned Spacing;
9555 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9556 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9557 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9558 Spacing));
9559 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9560 Spacing * 2));
9561 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9562 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9563 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9564 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9565 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9566 TmpInst.addOperand(Inst.getOperand(4));
9567 Inst = TmpInst;
9568 return true;
9569 }
9570
9571 case ARM::VLD3DUPdWB_register_Asm_8:
9572 case ARM::VLD3DUPdWB_register_Asm_16:
9573 case ARM::VLD3DUPdWB_register_Asm_32:
9574 case ARM::VLD3DUPqWB_register_Asm_8:
9575 case ARM::VLD3DUPqWB_register_Asm_16:
9576 case ARM::VLD3DUPqWB_register_Asm_32: {
9577 MCInst TmpInst;
9578 unsigned Spacing;
9579 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9580 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9581 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9582 Spacing));
9583 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9584 Spacing * 2));
9585 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9586 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9587 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9588 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9589 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9590 TmpInst.addOperand(Inst.getOperand(5));
9591 Inst = TmpInst;
9592 return true;
9593 }
9594
9595 // VLD3 multiple 3-element structure instructions.
9596 case ARM::VLD3dAsm_8:
9597 case ARM::VLD3dAsm_16:
9598 case ARM::VLD3dAsm_32:
9599 case ARM::VLD3qAsm_8:
9600 case ARM::VLD3qAsm_16:
9601 case ARM::VLD3qAsm_32: {
9602 MCInst TmpInst;
9603 unsigned Spacing;
9604 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9605 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9606 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9607 Spacing));
9608 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9609 Spacing * 2));
9610 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9611 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9612 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9613 TmpInst.addOperand(Inst.getOperand(4));
9614 Inst = TmpInst;
9615 return true;
9616 }
9617
9618 case ARM::VLD3dWB_fixed_Asm_8:
9619 case ARM::VLD3dWB_fixed_Asm_16:
9620 case ARM::VLD3dWB_fixed_Asm_32:
9621 case ARM::VLD3qWB_fixed_Asm_8:
9622 case ARM::VLD3qWB_fixed_Asm_16:
9623 case ARM::VLD3qWB_fixed_Asm_32: {
9624 MCInst TmpInst;
9625 unsigned Spacing;
9626 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9627 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9628 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9629 Spacing));
9630 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9631 Spacing * 2));
9632 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9633 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9634 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9635 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9636 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9637 TmpInst.addOperand(Inst.getOperand(4));
9638 Inst = TmpInst;
9639 return true;
9640 }
9641
9642 case ARM::VLD3dWB_register_Asm_8:
9643 case ARM::VLD3dWB_register_Asm_16:
9644 case ARM::VLD3dWB_register_Asm_32:
9645 case ARM::VLD3qWB_register_Asm_8:
9646 case ARM::VLD3qWB_register_Asm_16:
9647 case ARM::VLD3qWB_register_Asm_32: {
9648 MCInst TmpInst;
9649 unsigned Spacing;
9650 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9651 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9652 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9653 Spacing));
9654 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9655 Spacing * 2));
9656 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9657 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9658 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9659 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9660 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9661 TmpInst.addOperand(Inst.getOperand(5));
9662 Inst = TmpInst;
9663 return true;
9664 }
9665
9666 // VLD4DUP single 3-element structure to all lanes instructions.
9667 case ARM::VLD4DUPdAsm_8:
9668 case ARM::VLD4DUPdAsm_16:
9669 case ARM::VLD4DUPdAsm_32:
9670 case ARM::VLD4DUPqAsm_8:
9671 case ARM::VLD4DUPqAsm_16:
9672 case ARM::VLD4DUPqAsm_32: {
9673 MCInst TmpInst;
9674 unsigned Spacing;
9675 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9676 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9677 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9678 Spacing));
9679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9680 Spacing * 2));
9681 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9682 Spacing * 3));
9683 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9684 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9685 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9686 TmpInst.addOperand(Inst.getOperand(4));
9687 Inst = TmpInst;
9688 return true;
9689 }
9690
9691 case ARM::VLD4DUPdWB_fixed_Asm_8:
9692 case ARM::VLD4DUPdWB_fixed_Asm_16:
9693 case ARM::VLD4DUPdWB_fixed_Asm_32:
9694 case ARM::VLD4DUPqWB_fixed_Asm_8:
9695 case ARM::VLD4DUPqWB_fixed_Asm_16:
9696 case ARM::VLD4DUPqWB_fixed_Asm_32: {
9697 MCInst TmpInst;
9698 unsigned Spacing;
9699 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9700 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9701 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9702 Spacing));
9703 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9704 Spacing * 2));
9705 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9706 Spacing * 3));
9707 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9708 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9709 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9710 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9711 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9712 TmpInst.addOperand(Inst.getOperand(4));
9713 Inst = TmpInst;
9714 return true;
9715 }
9716
9717 case ARM::VLD4DUPdWB_register_Asm_8:
9718 case ARM::VLD4DUPdWB_register_Asm_16:
9719 case ARM::VLD4DUPdWB_register_Asm_32:
9720 case ARM::VLD4DUPqWB_register_Asm_8:
9721 case ARM::VLD4DUPqWB_register_Asm_16:
9722 case ARM::VLD4DUPqWB_register_Asm_32: {
9723 MCInst TmpInst;
9724 unsigned Spacing;
9725 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9726 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9727 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9728 Spacing));
9729 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9730 Spacing * 2));
9731 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9732 Spacing * 3));
9733 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9734 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9735 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9736 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9737 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9738 TmpInst.addOperand(Inst.getOperand(5));
9739 Inst = TmpInst;
9740 return true;
9741 }
9742
9743 // VLD4 multiple 4-element structure instructions.
9744 case ARM::VLD4dAsm_8:
9745 case ARM::VLD4dAsm_16:
9746 case ARM::VLD4dAsm_32:
9747 case ARM::VLD4qAsm_8:
9748 case ARM::VLD4qAsm_16:
9749 case ARM::VLD4qAsm_32: {
9750 MCInst TmpInst;
9751 unsigned Spacing;
9752 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9753 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9754 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9755 Spacing));
9756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9757 Spacing * 2));
9758 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9759 Spacing * 3));
9760 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9761 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9762 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9763 TmpInst.addOperand(Inst.getOperand(4));
9764 Inst = TmpInst;
9765 return true;
9766 }
9767
9768 case ARM::VLD4dWB_fixed_Asm_8:
9769 case ARM::VLD4dWB_fixed_Asm_16:
9770 case ARM::VLD4dWB_fixed_Asm_32:
9771 case ARM::VLD4qWB_fixed_Asm_8:
9772 case ARM::VLD4qWB_fixed_Asm_16:
9773 case ARM::VLD4qWB_fixed_Asm_32: {
9774 MCInst TmpInst;
9775 unsigned Spacing;
9776 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9777 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9778 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9779 Spacing));
9780 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9781 Spacing * 2));
9782 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9783 Spacing * 3));
9784 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9785 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9786 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9787 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9788 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9789 TmpInst.addOperand(Inst.getOperand(4));
9790 Inst = TmpInst;
9791 return true;
9792 }
9793
9794 case ARM::VLD4dWB_register_Asm_8:
9795 case ARM::VLD4dWB_register_Asm_16:
9796 case ARM::VLD4dWB_register_Asm_32:
9797 case ARM::VLD4qWB_register_Asm_8:
9798 case ARM::VLD4qWB_register_Asm_16:
9799 case ARM::VLD4qWB_register_Asm_32: {
9800 MCInst TmpInst;
9801 unsigned Spacing;
9802 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9803 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9804 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9805 Spacing));
9806 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9807 Spacing * 2));
9808 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9809 Spacing * 3));
9810 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9811 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9812 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9813 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9814 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9815 TmpInst.addOperand(Inst.getOperand(5));
9816 Inst = TmpInst;
9817 return true;
9818 }
9819
9820 // VST3 multiple 3-element structure instructions.
9821 case ARM::VST3dAsm_8:
9822 case ARM::VST3dAsm_16:
9823 case ARM::VST3dAsm_32:
9824 case ARM::VST3qAsm_8:
9825 case ARM::VST3qAsm_16:
9826 case ARM::VST3qAsm_32: {
9827 MCInst TmpInst;
9828 unsigned Spacing;
9829 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9830 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9831 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9832 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9833 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9834 Spacing));
9835 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9836 Spacing * 2));
9837 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9838 TmpInst.addOperand(Inst.getOperand(4));
9839 Inst = TmpInst;
9840 return true;
9841 }
9842
9843 case ARM::VST3dWB_fixed_Asm_8:
9844 case ARM::VST3dWB_fixed_Asm_16:
9845 case ARM::VST3dWB_fixed_Asm_32:
9846 case ARM::VST3qWB_fixed_Asm_8:
9847 case ARM::VST3qWB_fixed_Asm_16:
9848 case ARM::VST3qWB_fixed_Asm_32: {
9849 MCInst TmpInst;
9850 unsigned Spacing;
9851 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9852 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9853 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9854 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9855 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9856 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9857 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9858 Spacing));
9859 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9860 Spacing * 2));
9861 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9862 TmpInst.addOperand(Inst.getOperand(4));
9863 Inst = TmpInst;
9864 return true;
9865 }
9866
9867 case ARM::VST3dWB_register_Asm_8:
9868 case ARM::VST3dWB_register_Asm_16:
9869 case ARM::VST3dWB_register_Asm_32:
9870 case ARM::VST3qWB_register_Asm_8:
9871 case ARM::VST3qWB_register_Asm_16:
9872 case ARM::VST3qWB_register_Asm_32: {
9873 MCInst TmpInst;
9874 unsigned Spacing;
9875 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9876 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9877 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9878 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9879 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9880 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9881 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9882 Spacing));
9883 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9884 Spacing * 2));
9885 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9886 TmpInst.addOperand(Inst.getOperand(5));
9887 Inst = TmpInst;
9888 return true;
9889 }
9890
9891 // VST4 multiple 3-element structure instructions.
9892 case ARM::VST4dAsm_8:
9893 case ARM::VST4dAsm_16:
9894 case ARM::VST4dAsm_32:
9895 case ARM::VST4qAsm_8:
9896 case ARM::VST4qAsm_16:
9897 case ARM::VST4qAsm_32: {
9898 MCInst TmpInst;
9899 unsigned Spacing;
9900 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9901 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9902 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9903 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9904 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9905 Spacing));
9906 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9907 Spacing * 2));
9908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9909 Spacing * 3));
9910 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9911 TmpInst.addOperand(Inst.getOperand(4));
9912 Inst = TmpInst;
9913 return true;
9914 }
9915
9916 case ARM::VST4dWB_fixed_Asm_8:
9917 case ARM::VST4dWB_fixed_Asm_16:
9918 case ARM::VST4dWB_fixed_Asm_32:
9919 case ARM::VST4qWB_fixed_Asm_8:
9920 case ARM::VST4qWB_fixed_Asm_16:
9921 case ARM::VST4qWB_fixed_Asm_32: {
9922 MCInst TmpInst;
9923 unsigned Spacing;
9924 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9925 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9926 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9927 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9928 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9929 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9930 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9931 Spacing));
9932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9933 Spacing * 2));
9934 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9935 Spacing * 3));
9936 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9937 TmpInst.addOperand(Inst.getOperand(4));
9938 Inst = TmpInst;
9939 return true;
9940 }
9941
9942 case ARM::VST4dWB_register_Asm_8:
9943 case ARM::VST4dWB_register_Asm_16:
9944 case ARM::VST4dWB_register_Asm_32:
9945 case ARM::VST4qWB_register_Asm_8:
9946 case ARM::VST4qWB_register_Asm_16:
9947 case ARM::VST4qWB_register_Asm_32: {
9948 MCInst TmpInst;
9949 unsigned Spacing;
9950 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9951 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9952 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9953 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9954 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9955 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9956 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9957 Spacing));
9958 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9959 Spacing * 2));
9960 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9961 Spacing * 3));
9962 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9963 TmpInst.addOperand(Inst.getOperand(5));
9964 Inst = TmpInst;
9965 return true;
9966 }
9967
9968 // Handle encoding choice for the shift-immediate instructions.
9969 case ARM::t2LSLri:
9970 case ARM::t2LSRri:
9971 case ARM::t2ASRri:
9972 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9973 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9974 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9975 !HasWideQualifier) {
9976 unsigned NewOpc;
9977 switch (Inst.getOpcode()) {
9978 default: llvm_unreachable("unexpected opcode");
9979 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
9980 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
9981 case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
9982 }
9983 // The Thumb1 operands aren't in the same order. Awesome, eh?
9984 MCInst TmpInst;
9985 TmpInst.setOpcode(NewOpc);
9986 TmpInst.addOperand(Inst.getOperand(0));
9987 TmpInst.addOperand(Inst.getOperand(5));
9988 TmpInst.addOperand(Inst.getOperand(1));
9989 TmpInst.addOperand(Inst.getOperand(2));
9990 TmpInst.addOperand(Inst.getOperand(3));
9991 TmpInst.addOperand(Inst.getOperand(4));
9992 Inst = TmpInst;
9993 return true;
9994 }
9995 return false;
9996
9997 // Handle the Thumb2 mode MOV complex aliases.
9998 case ARM::t2MOVsr:
9999 case ARM::t2MOVSsr: {
10000 // Which instruction to expand to depends on the CCOut operand and
10001 // whether we're in an IT block if the register operands are low
10002 // registers.
10003 bool isNarrow = false;
10004 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10005 isARMLowRegister(Inst.getOperand(1).getReg()) &&
10006 isARMLowRegister(Inst.getOperand(2).getReg()) &&
10007 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10008 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
10009 !HasWideQualifier)
10010 isNarrow = true;
10011 MCInst TmpInst;
10012 unsigned newOpc;
10013 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
10014 default: llvm_unreachable("unexpected opcode!");
10015 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
10016 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
10017 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
10018 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
10019 }
10020 TmpInst.setOpcode(newOpc);
10021 TmpInst.addOperand(Inst.getOperand(0)); // Rd
10022 if (isNarrow)
10023 TmpInst.addOperand(MCOperand::createReg(
10024 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10025 TmpInst.addOperand(Inst.getOperand(1)); // Rn
10026 TmpInst.addOperand(Inst.getOperand(2)); // Rm
10027 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
10028 TmpInst.addOperand(Inst.getOperand(5));
10029 if (!isNarrow)
10030 TmpInst.addOperand(MCOperand::createReg(
10031 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10032 Inst = TmpInst;
10033 return true;
10034 }
10035 case ARM::t2MOVsi:
10036 case ARM::t2MOVSsi: {
10037 // Which instruction to expand to depends on the CCOut operand and
10038 // whether we're in an IT block if the register operands are low
10039 // registers.
10040 bool isNarrow = false;
10041 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10042 isARMLowRegister(Inst.getOperand(1).getReg()) &&
10043 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
10044 !HasWideQualifier)
10045 isNarrow = true;
10046 MCInst TmpInst;
10047 unsigned newOpc;
10048 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10049 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
10050 bool isMov = false;
10051 // MOV rd, rm, LSL #0 is actually a MOV instruction
10052 if (Shift == ARM_AM::lsl && Amount == 0) {
10053 isMov = true;
10054 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
10055 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
10056 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
10057 // instead.
10058 if (inITBlock()) {
10059 isNarrow = false;
10060 }
10061 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
10062 } else {
10063 switch(Shift) {
10064 default: llvm_unreachable("unexpected opcode!");
10065 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
10066 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
10067 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
10068 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
10069 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
10070 }
10071 }
10072 if (Amount == 32) Amount = 0;
10073 TmpInst.setOpcode(newOpc);
10074 TmpInst.addOperand(Inst.getOperand(0)); // Rd
10075 if (isNarrow && !isMov)
10076 TmpInst.addOperand(MCOperand::createReg(
10077 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10078 TmpInst.addOperand(Inst.getOperand(1)); // Rn
10079 if (newOpc != ARM::t2RRX && !isMov)
10080 TmpInst.addOperand(MCOperand::createImm(Amount));
10081 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10082 TmpInst.addOperand(Inst.getOperand(4));
10083 if (!isNarrow)
10084 TmpInst.addOperand(MCOperand::createReg(
10085 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10086 Inst = TmpInst;
10087 return true;
10088 }
10089 // Handle the ARM mode MOV complex aliases.
10090 case ARM::ASRr:
10091 case ARM::LSRr:
10092 case ARM::LSLr:
10093 case ARM::RORr: {
10094 ARM_AM::ShiftOpc ShiftTy;
10095 switch(Inst.getOpcode()) {
10096 default: llvm_unreachable("unexpected opcode!");
10097 case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
10098 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
10099 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
10100 case ARM::RORr: ShiftTy = ARM_AM::ror; break;
10101 }
10102 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
10103 MCInst TmpInst;
10104 TmpInst.setOpcode(ARM::MOVsr);
10105 TmpInst.addOperand(Inst.getOperand(0)); // Rd
10106 TmpInst.addOperand(Inst.getOperand(1)); // Rn
10107 TmpInst.addOperand(Inst.getOperand(2)); // Rm
10108 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10109 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10110 TmpInst.addOperand(Inst.getOperand(4));
10111 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10112 Inst = TmpInst;
10113 return true;
10114 }
10115 case ARM::ASRi:
10116 case ARM::LSRi:
10117 case ARM::LSLi:
10118 case ARM::RORi: {
10119 ARM_AM::ShiftOpc ShiftTy;
10120 switch(Inst.getOpcode()) {
10121 default: llvm_unreachable("unexpected opcode!");
10122 case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
10123 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
10124 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
10125 case ARM::RORi: ShiftTy = ARM_AM::ror; break;
10126 }
10127 // A shift by zero is a plain MOVr, not a MOVsi.
10128 unsigned Amt = Inst.getOperand(2).getImm();
10129 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
10130 // A shift by 32 should be encoded as 0 when permitted
10131 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
10132 Amt = 0;
10133 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
10134 MCInst TmpInst;
10135 TmpInst.setOpcode(Opc);
10136 TmpInst.addOperand(Inst.getOperand(0)); // Rd
10137 TmpInst.addOperand(Inst.getOperand(1)); // Rn
10138 if (Opc == ARM::MOVsi)
10139 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10140 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10141 TmpInst.addOperand(Inst.getOperand(4));
10142 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10143 Inst = TmpInst;
10144 return true;
10145 }
10146 case ARM::RRXi: {
10147 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
10148 MCInst TmpInst;
10149 TmpInst.setOpcode(ARM::MOVsi);
10150 TmpInst.addOperand(Inst.getOperand(0)); // Rd
10151 TmpInst.addOperand(Inst.getOperand(1)); // Rn
10152 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10153 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10154 TmpInst.addOperand(Inst.getOperand(3));
10155 TmpInst.addOperand(Inst.getOperand(4)); // cc_out
10156 Inst = TmpInst;
10157 return true;
10158 }
10159 case ARM::t2LDMIA_UPD: {
10160 // If this is a load of a single register, then we should use
10161 // a post-indexed LDR instruction instead, per the ARM ARM.
10162 if (Inst.getNumOperands() != 5)
10163 return false;
10164 MCInst TmpInst;
10165 TmpInst.setOpcode(ARM::t2LDR_POST);
10166 TmpInst.addOperand(Inst.getOperand(4)); // Rt
10167 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10168 TmpInst.addOperand(Inst.getOperand(1)); // Rn
10169 TmpInst.addOperand(MCOperand::createImm(4));
10170 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10171 TmpInst.addOperand(Inst.getOperand(3));
10172 Inst = TmpInst;
10173 return true;
10174 }
10175 case ARM::t2STMDB_UPD: {
10176 // If this is a store of a single register, then we should use
10177 // a pre-indexed STR instruction instead, per the ARM ARM.
10178 if (Inst.getNumOperands() != 5)
10179 return false;
10180 MCInst TmpInst;
10181 TmpInst.setOpcode(ARM::t2STR_PRE);
10182 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10183 TmpInst.addOperand(Inst.getOperand(4)); // Rt
10184 TmpInst.addOperand(Inst.getOperand(1)); // Rn
10185 TmpInst.addOperand(MCOperand::createImm(-4));
10186 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10187 TmpInst.addOperand(Inst.getOperand(3));
10188 Inst = TmpInst;
10189 return true;
10190 }
10191 case ARM::LDMIA_UPD:
10192 // If this is a load of a single register via a 'pop', then we should use
10193 // a post-indexed LDR instruction instead, per the ARM ARM.
10194 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
10195 Inst.getNumOperands() == 5) {
10196 MCInst TmpInst;
10197 TmpInst.setOpcode(ARM::LDR_POST_IMM);
10198 TmpInst.addOperand(Inst.getOperand(4)); // Rt
10199 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10200 TmpInst.addOperand(Inst.getOperand(1)); // Rn
10201 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset
10202 TmpInst.addOperand(MCOperand::createImm(4));
10203 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10204 TmpInst.addOperand(Inst.getOperand(3));
10205 Inst = TmpInst;
10206 return true;
10207 }
10208 break;
10209 case ARM::STMDB_UPD:
10210 // If this is a store of a single register via a 'push', then we should use
10211 // a pre-indexed STR instruction instead, per the ARM ARM.
10212 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
10213 Inst.getNumOperands() == 5) {
10214 MCInst TmpInst;
10215 TmpInst.setOpcode(ARM::STR_PRE_IMM);
10216 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10217 TmpInst.addOperand(Inst.getOperand(4)); // Rt
10218 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
10219 TmpInst.addOperand(MCOperand::createImm(-4));
10220 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10221 TmpInst.addOperand(Inst.getOperand(3));
10222 Inst = TmpInst;
10223 }
10224 break;
10225 case ARM::t2ADDri12:
10226 case ARM::t2SUBri12:
10227 case ARM::t2ADDspImm12:
10228 case ARM::t2SUBspImm12: {
10229 // If the immediate fits for encoding T3 and the generic
10230 // mnemonic was used, encoding T3 is preferred.
10231 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken();
10232 if ((Token != "add" && Token != "sub") ||
10233 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
10234 break;
10235 switch (Inst.getOpcode()) {
10236 case ARM::t2ADDri12:
10237 Inst.setOpcode(ARM::t2ADDri);
10238 break;
10239 case ARM::t2SUBri12:
10240 Inst.setOpcode(ARM::t2SUBri);
10241 break;
10242 case ARM::t2ADDspImm12:
10243 Inst.setOpcode(ARM::t2ADDspImm);
10244 break;
10245 case ARM::t2SUBspImm12:
10246 Inst.setOpcode(ARM::t2SUBspImm);
10247 break;
10248 }
10249
10250 Inst.addOperand(MCOperand::createReg(0)); // cc_out
10251 return true;
10252 }
10253 case ARM::tADDi8:
10254 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10255 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10256 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10257 // to encoding T1 if <Rd> is omitted."
10258 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10259 Inst.setOpcode(ARM::tADDi3);
10260 return true;
10261 }
10262 break;
10263 case ARM::tSUBi8:
10264 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10265 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10266 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10267 // to encoding T1 if <Rd> is omitted."
10268 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10269 Inst.setOpcode(ARM::tSUBi3);
10270 return true;
10271 }
10272 break;
10273 case ARM::t2ADDri:
10274 case ARM::t2SUBri: {
10275 // If the destination and first source operand are the same, and
10276 // the flags are compatible with the current IT status, use encoding T2
10277 // instead of T3. For compatibility with the system 'as'. Make sure the
10278 // wide encoding wasn't explicit.
10279 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
10280 !isARMLowRegister(Inst.getOperand(0).getReg()) ||
10281 (Inst.getOperand(2).isImm() &&
10282 (unsigned)Inst.getOperand(2).getImm() > 255) ||
10283 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
10284 HasWideQualifier)
10285 break;
10286 MCInst TmpInst;
10287 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
10288 ARM::tADDi8 : ARM::tSUBi8);
10289 TmpInst.addOperand(Inst.getOperand(0));
10290 TmpInst.addOperand(Inst.getOperand(5));
10291 TmpInst.addOperand(Inst.getOperand(0));
10292 TmpInst.addOperand(Inst.getOperand(2));
10293 TmpInst.addOperand(Inst.getOperand(3));
10294 TmpInst.addOperand(Inst.getOperand(4));
10295 Inst = TmpInst;
10296 return true;
10297 }
10298 case ARM::t2ADDspImm:
10299 case ARM::t2SUBspImm: {
10300 // Prefer T1 encoding if possible
10301 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier)
10302 break;
10303 unsigned V = Inst.getOperand(2).getImm();
10304 if (V & 3 || V > ((1 << 7) - 1) << 2)
10305 break;
10306 MCInst TmpInst;
10307 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi
10308 : ARM::tSUBspi);
10309 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg
10310 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg
10311 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate
10312 TmpInst.addOperand(Inst.getOperand(3)); // pred
10313 TmpInst.addOperand(Inst.getOperand(4));
10314 Inst = TmpInst;
10315 return true;
10316 }
10317 case ARM::t2ADDrr: {
10318 // If the destination and first source operand are the same, and
10319 // there's no setting of the flags, use encoding T2 instead of T3.
10320 // Note that this is only for ADD, not SUB. This mirrors the system
10321 // 'as' behaviour. Also take advantage of ADD being commutative.
10322 // Make sure the wide encoding wasn't explicit.
10323 bool Swap = false;
10324 auto DestReg = Inst.getOperand(0).getReg();
10325 bool Transform = DestReg == Inst.getOperand(1).getReg();
10326 if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
10327 Transform = true;
10328 Swap = true;
10329 }
10330 if (!Transform ||
10331 Inst.getOperand(5).getReg() != 0 ||
10332 HasWideQualifier)
10333 break;
10334 MCInst TmpInst;
10335 TmpInst.setOpcode(ARM::tADDhirr);
10336 TmpInst.addOperand(Inst.getOperand(0));
10337 TmpInst.addOperand(Inst.getOperand(0));
10338 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
10339 TmpInst.addOperand(Inst.getOperand(3));
10340 TmpInst.addOperand(Inst.getOperand(4));
10341 Inst = TmpInst;
10342 return true;
10343 }
10344 case ARM::tADDrSP:
10345 // If the non-SP source operand and the destination operand are not the
10346 // same, we need to use the 32-bit encoding if it's available.
10347 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
10348 Inst.setOpcode(ARM::t2ADDrr);
10349 Inst.addOperand(MCOperand::createReg(0)); // cc_out
10350 return true;
10351 }
10352 break;
10353 case ARM::tB:
10354 // A Thumb conditional branch outside of an IT block is a tBcc.
10355 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
10356 Inst.setOpcode(ARM::tBcc);
10357 return true;
10358 }
10359 break;
10360 case ARM::t2B:
10361 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
10362 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
10363 Inst.setOpcode(ARM::t2Bcc);
10364 return true;
10365 }
10366 break;
10367 case ARM::t2Bcc:
10368 // If the conditional is AL or we're in an IT block, we really want t2B.
10369 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
10370 Inst.setOpcode(ARM::t2B);
10371 return true;
10372 }
10373 break;
10374 case ARM::tBcc:
10375 // If the conditional is AL, we really want tB.
10376 if (Inst.getOperand(1).getImm() == ARMCC::AL) {
10377 Inst.setOpcode(ARM::tB);
10378 return true;
10379 }
10380 break;
10381 case ARM::tLDMIA: {
10382 // If the register list contains any high registers, or if the writeback
10383 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
10384 // instead if we're in Thumb2. Otherwise, this should have generated
10385 // an error in validateInstruction().
10386 unsigned Rn = Inst.getOperand(0).getReg();
10387 bool hasWritebackToken =
10388 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
10389 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
10390 bool listContainsBase;
10391 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
10392 (!listContainsBase && !hasWritebackToken) ||
10393 (listContainsBase && hasWritebackToken)) {
10394 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10395 assert(isThumbTwo());
10396 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
10397 // If we're switching to the updating version, we need to insert
10398 // the writeback tied operand.
10399 if (hasWritebackToken)
10400 Inst.insert(Inst.begin(),
10401 MCOperand::createReg(Inst.getOperand(0).getReg()));
10402 return true;
10403 }
10404 break;
10405 }
10406 case ARM::tSTMIA_UPD: {
10407 // If the register list contains any high registers, we need to use
10408 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10409 // should have generated an error in validateInstruction().
10410 unsigned Rn = Inst.getOperand(0).getReg();
10411 bool listContainsBase;
10412 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
10413 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10414 assert(isThumbTwo());
10415 Inst.setOpcode(ARM::t2STMIA_UPD);
10416 return true;
10417 }
10418 break;
10419 }
10420 case ARM::tPOP: {
10421 bool listContainsBase;
10422 // If the register list contains any high registers, we need to use
10423 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10424 // should have generated an error in validateInstruction().
10425 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
10426 return false;
10427 assert(isThumbTwo());
10428 Inst.setOpcode(ARM::t2LDMIA_UPD);
10429 // Add the base register and writeback operands.
10430 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10431 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10432 return true;
10433 }
10434 case ARM::tPUSH: {
10435 bool listContainsBase;
10436 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
10437 return false;
10438 assert(isThumbTwo());
10439 Inst.setOpcode(ARM::t2STMDB_UPD);
10440 // Add the base register and writeback operands.
10441 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10442 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10443 return true;
10444 }
10445 case ARM::t2MOVi:
10446 // If we can use the 16-bit encoding and the user didn't explicitly
10447 // request the 32-bit variant, transform it here.
10448 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10449 (Inst.getOperand(1).isImm() &&
10450 (unsigned)Inst.getOperand(1).getImm() <= 255) &&
10451 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10452 !HasWideQualifier) {
10453 // The operands aren't in the same order for tMOVi8...
10454 MCInst TmpInst;
10455 TmpInst.setOpcode(ARM::tMOVi8);
10456 TmpInst.addOperand(Inst.getOperand(0));
10457 TmpInst.addOperand(Inst.getOperand(4));
10458 TmpInst.addOperand(Inst.getOperand(1));
10459 TmpInst.addOperand(Inst.getOperand(2));
10460 TmpInst.addOperand(Inst.getOperand(3));
10461 Inst = TmpInst;
10462 return true;
10463 }
10464 break;
10465
10466 case ARM::t2MOVr:
10467 // If we can use the 16-bit encoding and the user didn't explicitly
10468 // request the 32-bit variant, transform it here.
10469 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10470 isARMLowRegister(Inst.getOperand(1).getReg()) &&
10471 Inst.getOperand(2).getImm() == ARMCC::AL &&
10472 Inst.getOperand(4).getReg() == ARM::CPSR &&
10473 !HasWideQualifier) {
10474 // The operands aren't the same for tMOV[S]r... (no cc_out)
10475 MCInst TmpInst;
10476 unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr;
10477 TmpInst.setOpcode(Op);
10478 TmpInst.addOperand(Inst.getOperand(0));
10479 TmpInst.addOperand(Inst.getOperand(1));
10480 if (Op == ARM::tMOVr) {
10481 TmpInst.addOperand(Inst.getOperand(2));
10482 TmpInst.addOperand(Inst.getOperand(3));
10483 }
10484 Inst = TmpInst;
10485 return true;
10486 }
10487 break;
10488
10489 case ARM::t2SXTH:
10490 case ARM::t2SXTB:
10491 case ARM::t2UXTH:
10492 case ARM::t2UXTB:
10493 // If we can use the 16-bit encoding and the user didn't explicitly
10494 // request the 32-bit variant, transform it here.
10495 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10496 isARMLowRegister(Inst.getOperand(1).getReg()) &&
10497 Inst.getOperand(2).getImm() == 0 &&
10498 !HasWideQualifier) {
10499 unsigned NewOpc;
10500 switch (Inst.getOpcode()) {
10501 default: llvm_unreachable("Illegal opcode!");
10502 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
10503 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
10504 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10505 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10506 }
10507 // The operands aren't the same for thumb1 (no rotate operand).
10508 MCInst TmpInst;
10509 TmpInst.setOpcode(NewOpc);
10510 TmpInst.addOperand(Inst.getOperand(0));
10511 TmpInst.addOperand(Inst.getOperand(1));
10512 TmpInst.addOperand(Inst.getOperand(3));
10513 TmpInst.addOperand(Inst.getOperand(4));
10514 Inst = TmpInst;
10515 return true;
10516 }
10517 break;
10518
10519 case ARM::MOVsi: {
10520 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10521 // rrx shifts and asr/lsr of #32 is encoded as 0
10522 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10523 return false;
10524 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10525 // Shifting by zero is accepted as a vanilla 'MOVr'
10526 MCInst TmpInst;
10527 TmpInst.setOpcode(ARM::MOVr);
10528 TmpInst.addOperand(Inst.getOperand(0));
10529 TmpInst.addOperand(Inst.getOperand(1));
10530 TmpInst.addOperand(Inst.getOperand(3));
10531 TmpInst.addOperand(Inst.getOperand(4));
10532 TmpInst.addOperand(Inst.getOperand(5));
10533 Inst = TmpInst;
10534 return true;
10535 }
10536 return false;
10537 }
10538 case ARM::ANDrsi:
10539 case ARM::ORRrsi:
10540 case ARM::EORrsi:
10541 case ARM::BICrsi:
10542 case ARM::SUBrsi:
10543 case ARM::ADDrsi: {
10544 unsigned newOpc;
10545 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10546 if (SOpc == ARM_AM::rrx) return false;
10547 switch (Inst.getOpcode()) {
10548 default: llvm_unreachable("unexpected opcode!");
10549 case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10550 case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10551 case ARM::EORrsi: newOpc = ARM::EORrr; break;
10552 case ARM::BICrsi: newOpc = ARM::BICrr; break;
10553 case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10554 case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10555 }
10556 // If the shift is by zero, use the non-shifted instruction definition.
10557 // The exception is for right shifts, where 0 == 32
10558 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10559 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10560 MCInst TmpInst;
10561 TmpInst.setOpcode(newOpc);
10562 TmpInst.addOperand(Inst.getOperand(0));
10563 TmpInst.addOperand(Inst.getOperand(1));
10564 TmpInst.addOperand(Inst.getOperand(2));
10565 TmpInst.addOperand(Inst.getOperand(4));
10566 TmpInst.addOperand(Inst.getOperand(5));
10567 TmpInst.addOperand(Inst.getOperand(6));
10568 Inst = TmpInst;
10569 return true;
10570 }
10571 return false;
10572 }
10573 case ARM::ITasm:
10574 case ARM::t2IT: {
10575 // Set up the IT block state according to the IT instruction we just
10576 // matched.
10577 assert(!inITBlock() && "nested IT blocks?!");
10578 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10579 Inst.getOperand(1).getImm());
10580 break;
10581 }
10582 case ARM::t2LSLrr:
10583 case ARM::t2LSRrr:
10584 case ARM::t2ASRrr:
10585 case ARM::t2SBCrr:
10586 case ARM::t2RORrr:
10587 case ARM::t2BICrr:
10588 // Assemblers should use the narrow encodings of these instructions when permissible.
10589 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10590 isARMLowRegister(Inst.getOperand(2).getReg())) &&
10591 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10592 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10593 !HasWideQualifier) {
10594 unsigned NewOpc;
10595 switch (Inst.getOpcode()) {
10596 default: llvm_unreachable("unexpected opcode");
10597 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10598 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10599 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10600 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10601 case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10602 case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10603 }
10604 MCInst TmpInst;
10605 TmpInst.setOpcode(NewOpc);
10606 TmpInst.addOperand(Inst.getOperand(0));
10607 TmpInst.addOperand(Inst.getOperand(5));
10608 TmpInst.addOperand(Inst.getOperand(1));
10609 TmpInst.addOperand(Inst.getOperand(2));
10610 TmpInst.addOperand(Inst.getOperand(3));
10611 TmpInst.addOperand(Inst.getOperand(4));
10612 Inst = TmpInst;
10613 return true;
10614 }
10615 return false;
10616
10617 case ARM::t2ANDrr:
10618 case ARM::t2EORrr:
10619 case ARM::t2ADCrr:
10620 case ARM::t2ORRrr:
10621 // Assemblers should use the narrow encodings of these instructions when permissible.
10622 // These instructions are special in that they are commutable, so shorter encodings
10623 // are available more often.
10624 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10625 isARMLowRegister(Inst.getOperand(2).getReg())) &&
10626 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10627 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10628 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10629 !HasWideQualifier) {
10630 unsigned NewOpc;
10631 switch (Inst.getOpcode()) {
10632 default: llvm_unreachable("unexpected opcode");
10633 case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10634 case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10635 case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10636 case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10637 }
10638 MCInst TmpInst;
10639 TmpInst.setOpcode(NewOpc);
10640 TmpInst.addOperand(Inst.getOperand(0));
10641 TmpInst.addOperand(Inst.getOperand(5));
10642 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10643 TmpInst.addOperand(Inst.getOperand(1));
10644 TmpInst.addOperand(Inst.getOperand(2));
10645 } else {
10646 TmpInst.addOperand(Inst.getOperand(2));
10647 TmpInst.addOperand(Inst.getOperand(1));
10648 }
10649 TmpInst.addOperand(Inst.getOperand(3));
10650 TmpInst.addOperand(Inst.getOperand(4));
10651 Inst = TmpInst;
10652 return true;
10653 }
10654 return false;
10655 case ARM::MVE_VPST:
10656 case ARM::MVE_VPTv16i8:
10657 case ARM::MVE_VPTv8i16:
10658 case ARM::MVE_VPTv4i32:
10659 case ARM::MVE_VPTv16u8:
10660 case ARM::MVE_VPTv8u16:
10661 case ARM::MVE_VPTv4u32:
10662 case ARM::MVE_VPTv16s8:
10663 case ARM::MVE_VPTv8s16:
10664 case ARM::MVE_VPTv4s32:
10665 case ARM::MVE_VPTv4f32:
10666 case ARM::MVE_VPTv8f16:
10667 case ARM::MVE_VPTv16i8r:
10668 case ARM::MVE_VPTv8i16r:
10669 case ARM::MVE_VPTv4i32r:
10670 case ARM::MVE_VPTv16u8r:
10671 case ARM::MVE_VPTv8u16r:
10672 case ARM::MVE_VPTv4u32r:
10673 case ARM::MVE_VPTv16s8r:
10674 case ARM::MVE_VPTv8s16r:
10675 case ARM::MVE_VPTv4s32r:
10676 case ARM::MVE_VPTv4f32r:
10677 case ARM::MVE_VPTv8f16r: {
10678 assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10679 MCOperand &MO = Inst.getOperand(0);
10680 VPTState.Mask = MO.getImm();
10681 VPTState.CurPosition = 0;
10682 break;
10683 }
10684 }
10685 return false;
10686 }
10687
checkTargetMatchPredicate(MCInst & Inst)10688 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10689 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10690 // suffix depending on whether they're in an IT block or not.
10691 unsigned Opc = Inst.getOpcode();
10692 const MCInstrDesc &MCID = MII.get(Opc);
10693 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10694 assert(MCID.hasOptionalDef() &&
10695 "optionally flag setting instruction missing optional def operand");
10696 assert(MCID.NumOperands == Inst.getNumOperands() &&
10697 "operand count mismatch!");
10698 // Find the optional-def operand (cc_out).
10699 unsigned OpNo;
10700 for (OpNo = 0;
10701 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10702 ++OpNo)
10703 ;
10704 // If we're parsing Thumb1, reject it completely.
10705 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10706 return Match_RequiresFlagSetting;
10707 // If we're parsing Thumb2, which form is legal depends on whether we're
10708 // in an IT block.
10709 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10710 !inITBlock())
10711 return Match_RequiresITBlock;
10712 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10713 inITBlock())
10714 return Match_RequiresNotITBlock;
10715 // LSL with zero immediate is not allowed in an IT block
10716 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10717 return Match_RequiresNotITBlock;
10718 } else if (isThumbOne()) {
10719 // Some high-register supporting Thumb1 encodings only allow both registers
10720 // to be from r0-r7 when in Thumb2.
10721 if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10722 isARMLowRegister(Inst.getOperand(1).getReg()) &&
10723 isARMLowRegister(Inst.getOperand(2).getReg()))
10724 return Match_RequiresThumb2;
10725 // Others only require ARMv6 or later.
10726 else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10727 isARMLowRegister(Inst.getOperand(0).getReg()) &&
10728 isARMLowRegister(Inst.getOperand(1).getReg()))
10729 return Match_RequiresV6;
10730 }
10731
10732 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10733 // than the loop below can handle, so it uses the GPRnopc register class and
10734 // we do SP handling here.
10735 if (Opc == ARM::t2MOVr && !hasV8Ops())
10736 {
10737 // SP as both source and destination is not allowed
10738 if (Inst.getOperand(0).getReg() == ARM::SP &&
10739 Inst.getOperand(1).getReg() == ARM::SP)
10740 return Match_RequiresV8;
10741 // When flags-setting SP as either source or destination is not allowed
10742 if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10743 (Inst.getOperand(0).getReg() == ARM::SP ||
10744 Inst.getOperand(1).getReg() == ARM::SP))
10745 return Match_RequiresV8;
10746 }
10747
10748 switch (Inst.getOpcode()) {
10749 case ARM::VMRS:
10750 case ARM::VMSR:
10751 case ARM::VMRS_FPCXTS:
10752 case ARM::VMRS_FPCXTNS:
10753 case ARM::VMSR_FPCXTS:
10754 case ARM::VMSR_FPCXTNS:
10755 case ARM::VMRS_FPSCR_NZCVQC:
10756 case ARM::VMSR_FPSCR_NZCVQC:
10757 case ARM::FMSTAT:
10758 case ARM::VMRS_VPR:
10759 case ARM::VMRS_P0:
10760 case ARM::VMSR_VPR:
10761 case ARM::VMSR_P0:
10762 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10763 // ARMv8-A.
10764 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10765 (isThumb() && !hasV8Ops()))
10766 return Match_InvalidOperand;
10767 break;
10768 case ARM::t2TBB:
10769 case ARM::t2TBH:
10770 // Rn = sp is only allowed with ARMv8-A
10771 if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP))
10772 return Match_RequiresV8;
10773 break;
10774 default:
10775 break;
10776 }
10777
10778 for (unsigned I = 0; I < MCID.NumOperands; ++I)
10779 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
10780 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10781 const auto &Op = Inst.getOperand(I);
10782 if (!Op.isReg()) {
10783 // This can happen in awkward cases with tied operands, e.g. a
10784 // writeback load/store with a complex addressing mode in
10785 // which there's an output operand corresponding to the
10786 // updated written-back base register: the Tablegen-generated
10787 // AsmMatcher will have written a placeholder operand to that
10788 // slot in the form of an immediate 0, because it can't
10789 // generate the register part of the complex addressing-mode
10790 // operand ahead of time.
10791 continue;
10792 }
10793
10794 unsigned Reg = Op.getReg();
10795 if ((Reg == ARM::SP) && !hasV8Ops())
10796 return Match_RequiresV8;
10797 else if (Reg == ARM::PC)
10798 return Match_InvalidOperand;
10799 }
10800
10801 return Match_Success;
10802 }
10803
10804 namespace llvm {
10805
IsCPSRDead(const MCInst * Instr)10806 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10807 return true; // In an assembly source, no need to second-guess
10808 }
10809
10810 } // end namespace llvm
10811
10812 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10813 // the last instruction in the block.
isITBlockTerminator(MCInst & Inst) const10814 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10815 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10816
10817 // All branch & call instructions terminate IT blocks with the exception of
10818 // SVC.
10819 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10820 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10821 return true;
10822
10823 // Any arithmetic instruction which writes to the PC also terminates the IT
10824 // block.
10825 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10826 return true;
10827
10828 return false;
10829 }
10830
MatchInstruction(OperandVector & Operands,MCInst & Inst,SmallVectorImpl<NearMissInfo> & NearMisses,bool MatchingInlineAsm,bool & EmitInITBlock,MCStreamer & Out)10831 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10832 SmallVectorImpl<NearMissInfo> &NearMisses,
10833 bool MatchingInlineAsm,
10834 bool &EmitInITBlock,
10835 MCStreamer &Out) {
10836 // If we can't use an implicit IT block here, just match as normal.
10837 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10838 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10839
10840 // Try to match the instruction in an extension of the current IT block (if
10841 // there is one).
10842 if (inImplicitITBlock()) {
10843 extendImplicitITBlock(ITState.Cond);
10844 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10845 Match_Success) {
10846 // The match succeded, but we still have to check that the instruction is
10847 // valid in this implicit IT block.
10848 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10849 if (MCID.isPredicable()) {
10850 ARMCC::CondCodes InstCond =
10851 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10852 .getImm();
10853 ARMCC::CondCodes ITCond = currentITCond();
10854 if (InstCond == ITCond) {
10855 EmitInITBlock = true;
10856 return Match_Success;
10857 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10858 invertCurrentITCondition();
10859 EmitInITBlock = true;
10860 return Match_Success;
10861 }
10862 }
10863 }
10864 rewindImplicitITPosition();
10865 }
10866
10867 // Finish the current IT block, and try to match outside any IT block.
10868 flushPendingInstructions(Out);
10869 unsigned PlainMatchResult =
10870 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10871 if (PlainMatchResult == Match_Success) {
10872 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10873 if (MCID.isPredicable()) {
10874 ARMCC::CondCodes InstCond =
10875 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10876 .getImm();
10877 // Some forms of the branch instruction have their own condition code
10878 // fields, so can be conditionally executed without an IT block.
10879 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10880 EmitInITBlock = false;
10881 return Match_Success;
10882 }
10883 if (InstCond == ARMCC::AL) {
10884 EmitInITBlock = false;
10885 return Match_Success;
10886 }
10887 } else {
10888 EmitInITBlock = false;
10889 return Match_Success;
10890 }
10891 }
10892
10893 // Try to match in a new IT block. The matcher doesn't check the actual
10894 // condition, so we create an IT block with a dummy condition, and fix it up
10895 // once we know the actual condition.
10896 startImplicitITBlock();
10897 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10898 Match_Success) {
10899 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10900 if (MCID.isPredicable()) {
10901 ITState.Cond =
10902 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10903 .getImm();
10904 EmitInITBlock = true;
10905 return Match_Success;
10906 }
10907 }
10908 discardImplicitITBlock();
10909
10910 // If none of these succeed, return the error we got when trying to match
10911 // outside any IT blocks.
10912 EmitInITBlock = false;
10913 return PlainMatchResult;
10914 }
10915
10916 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10917 unsigned VariantID = 0);
10918
10919 static const char *getSubtargetFeatureName(uint64_t Val);
MatchAndEmitInstruction(SMLoc IDLoc,unsigned & Opcode,OperandVector & Operands,MCStreamer & Out,uint64_t & ErrorInfo,bool MatchingInlineAsm)10920 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10921 OperandVector &Operands,
10922 MCStreamer &Out, uint64_t &ErrorInfo,
10923 bool MatchingInlineAsm) {
10924 MCInst Inst;
10925 unsigned MatchResult;
10926 bool PendConditionalInstruction = false;
10927
10928 SmallVector<NearMissInfo, 4> NearMisses;
10929 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10930 PendConditionalInstruction, Out);
10931
10932 switch (MatchResult) {
10933 case Match_Success:
10934 LLVM_DEBUG(dbgs() << "Parsed as: ";
10935 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10936 dbgs() << "\n");
10937
10938 // Context sensitive operand constraints aren't handled by the matcher,
10939 // so check them here.
10940 if (validateInstruction(Inst, Operands)) {
10941 // Still progress the IT block, otherwise one wrong condition causes
10942 // nasty cascading errors.
10943 forwardITPosition();
10944 forwardVPTPosition();
10945 return true;
10946 }
10947
10948 { // processInstruction() updates inITBlock state, we need to save it away
10949 bool wasInITBlock = inITBlock();
10950
10951 // Some instructions need post-processing to, for example, tweak which
10952 // encoding is selected. Loop on it while changes happen so the
10953 // individual transformations can chain off each other. E.g.,
10954 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10955 while (processInstruction(Inst, Operands, Out))
10956 LLVM_DEBUG(dbgs() << "Changed to: ";
10957 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10958 dbgs() << "\n");
10959
10960 // Only after the instruction is fully processed, we can validate it
10961 if (wasInITBlock && hasV8Ops() && isThumb() &&
10962 !isV8EligibleForIT(&Inst)) {
10963 Warning(IDLoc, "deprecated instruction in IT block");
10964 }
10965 }
10966
10967 // Only move forward at the very end so that everything in validate
10968 // and process gets a consistent answer about whether we're in an IT
10969 // block.
10970 forwardITPosition();
10971 forwardVPTPosition();
10972
10973 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10974 // doesn't actually encode.
10975 if (Inst.getOpcode() == ARM::ITasm)
10976 return false;
10977
10978 Inst.setLoc(IDLoc);
10979 if (PendConditionalInstruction) {
10980 PendingConditionalInsts.push_back(Inst);
10981 if (isITBlockFull() || isITBlockTerminator(Inst))
10982 flushPendingInstructions(Out);
10983 } else {
10984 Out.emitInstruction(Inst, getSTI());
10985 }
10986 return false;
10987 case Match_NearMisses:
10988 ReportNearMisses(NearMisses, IDLoc, Operands);
10989 return true;
10990 case Match_MnemonicFail: {
10991 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
10992 std::string Suggestion = ARMMnemonicSpellCheck(
10993 ((ARMOperand &)*Operands[0]).getToken(), FBS);
10994 return Error(IDLoc, "invalid instruction" + Suggestion,
10995 ((ARMOperand &)*Operands[0]).getLocRange());
10996 }
10997 }
10998
10999 llvm_unreachable("Implement any new match types added!");
11000 }
11001
11002 /// parseDirective parses the arm specific directives
ParseDirective(AsmToken DirectiveID)11003 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
11004 const MCContext::Environment Format = getContext().getObjectFileType();
11005 bool IsMachO = Format == MCContext::IsMachO;
11006 bool IsCOFF = Format == MCContext::IsCOFF;
11007
11008 std::string IDVal = DirectiveID.getIdentifier().lower();
11009 if (IDVal == ".word")
11010 parseLiteralValues(4, DirectiveID.getLoc());
11011 else if (IDVal == ".short" || IDVal == ".hword")
11012 parseLiteralValues(2, DirectiveID.getLoc());
11013 else if (IDVal == ".thumb")
11014 parseDirectiveThumb(DirectiveID.getLoc());
11015 else if (IDVal == ".arm")
11016 parseDirectiveARM(DirectiveID.getLoc());
11017 else if (IDVal == ".thumb_func")
11018 parseDirectiveThumbFunc(DirectiveID.getLoc());
11019 else if (IDVal == ".code")
11020 parseDirectiveCode(DirectiveID.getLoc());
11021 else if (IDVal == ".syntax")
11022 parseDirectiveSyntax(DirectiveID.getLoc());
11023 else if (IDVal == ".unreq")
11024 parseDirectiveUnreq(DirectiveID.getLoc());
11025 else if (IDVal == ".fnend")
11026 parseDirectiveFnEnd(DirectiveID.getLoc());
11027 else if (IDVal == ".cantunwind")
11028 parseDirectiveCantUnwind(DirectiveID.getLoc());
11029 else if (IDVal == ".personality")
11030 parseDirectivePersonality(DirectiveID.getLoc());
11031 else if (IDVal == ".handlerdata")
11032 parseDirectiveHandlerData(DirectiveID.getLoc());
11033 else if (IDVal == ".setfp")
11034 parseDirectiveSetFP(DirectiveID.getLoc());
11035 else if (IDVal == ".pad")
11036 parseDirectivePad(DirectiveID.getLoc());
11037 else if (IDVal == ".save")
11038 parseDirectiveRegSave(DirectiveID.getLoc(), false);
11039 else if (IDVal == ".vsave")
11040 parseDirectiveRegSave(DirectiveID.getLoc(), true);
11041 else if (IDVal == ".ltorg" || IDVal == ".pool")
11042 parseDirectiveLtorg(DirectiveID.getLoc());
11043 else if (IDVal == ".even")
11044 parseDirectiveEven(DirectiveID.getLoc());
11045 else if (IDVal == ".personalityindex")
11046 parseDirectivePersonalityIndex(DirectiveID.getLoc());
11047 else if (IDVal == ".unwind_raw")
11048 parseDirectiveUnwindRaw(DirectiveID.getLoc());
11049 else if (IDVal == ".movsp")
11050 parseDirectiveMovSP(DirectiveID.getLoc());
11051 else if (IDVal == ".arch_extension")
11052 parseDirectiveArchExtension(DirectiveID.getLoc());
11053 else if (IDVal == ".align")
11054 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
11055 else if (IDVal == ".thumb_set")
11056 parseDirectiveThumbSet(DirectiveID.getLoc());
11057 else if (IDVal == ".inst")
11058 parseDirectiveInst(DirectiveID.getLoc());
11059 else if (IDVal == ".inst.n")
11060 parseDirectiveInst(DirectiveID.getLoc(), 'n');
11061 else if (IDVal == ".inst.w")
11062 parseDirectiveInst(DirectiveID.getLoc(), 'w');
11063 else if (!IsMachO && !IsCOFF) {
11064 if (IDVal == ".arch")
11065 parseDirectiveArch(DirectiveID.getLoc());
11066 else if (IDVal == ".cpu")
11067 parseDirectiveCPU(DirectiveID.getLoc());
11068 else if (IDVal == ".eabi_attribute")
11069 parseDirectiveEabiAttr(DirectiveID.getLoc());
11070 else if (IDVal == ".fpu")
11071 parseDirectiveFPU(DirectiveID.getLoc());
11072 else if (IDVal == ".fnstart")
11073 parseDirectiveFnStart(DirectiveID.getLoc());
11074 else if (IDVal == ".object_arch")
11075 parseDirectiveObjectArch(DirectiveID.getLoc());
11076 else if (IDVal == ".tlsdescseq")
11077 parseDirectiveTLSDescSeq(DirectiveID.getLoc());
11078 else
11079 return true;
11080 } else
11081 return true;
11082 return false;
11083 }
11084
11085 /// parseLiteralValues
11086 /// ::= .hword expression [, expression]*
11087 /// ::= .short expression [, expression]*
11088 /// ::= .word expression [, expression]*
parseLiteralValues(unsigned Size,SMLoc L)11089 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
11090 auto parseOne = [&]() -> bool {
11091 const MCExpr *Value;
11092 if (getParser().parseExpression(Value))
11093 return true;
11094 getParser().getStreamer().emitValue(Value, Size, L);
11095 return false;
11096 };
11097 return (parseMany(parseOne));
11098 }
11099
11100 /// parseDirectiveThumb
11101 /// ::= .thumb
parseDirectiveThumb(SMLoc L)11102 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
11103 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
11104 check(!hasThumb(), L, "target does not support Thumb mode"))
11105 return true;
11106
11107 if (!isThumb())
11108 SwitchMode();
11109
11110 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11111 return false;
11112 }
11113
11114 /// parseDirectiveARM
11115 /// ::= .arm
parseDirectiveARM(SMLoc L)11116 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
11117 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
11118 check(!hasARM(), L, "target does not support ARM mode"))
11119 return true;
11120
11121 if (isThumb())
11122 SwitchMode();
11123 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11124 return false;
11125 }
11126
doBeforeLabelEmit(MCSymbol * Symbol)11127 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
11128 // We need to flush the current implicit IT block on a label, because it is
11129 // not legal to branch into an IT block.
11130 flushPendingInstructions(getStreamer());
11131 }
11132
onLabelParsed(MCSymbol * Symbol)11133 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
11134 if (NextSymbolIsThumb) {
11135 getParser().getStreamer().emitThumbFunc(Symbol);
11136 NextSymbolIsThumb = false;
11137 }
11138 }
11139
11140 /// parseDirectiveThumbFunc
11141 /// ::= .thumbfunc symbol_name
parseDirectiveThumbFunc(SMLoc L)11142 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
11143 MCAsmParser &Parser = getParser();
11144 const auto Format = getContext().getObjectFileType();
11145 bool IsMachO = Format == MCContext::IsMachO;
11146
11147 // Darwin asm has (optionally) function name after .thumb_func direction
11148 // ELF doesn't
11149
11150 if (IsMachO) {
11151 if (Parser.getTok().is(AsmToken::Identifier) ||
11152 Parser.getTok().is(AsmToken::String)) {
11153 MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
11154 Parser.getTok().getIdentifier());
11155 getParser().getStreamer().emitThumbFunc(Func);
11156 Parser.Lex();
11157 if (parseToken(AsmToken::EndOfStatement,
11158 "unexpected token in '.thumb_func' directive"))
11159 return true;
11160 return false;
11161 }
11162 }
11163
11164 if (parseToken(AsmToken::EndOfStatement,
11165 "unexpected token in '.thumb_func' directive"))
11166 return true;
11167
11168 // .thumb_func implies .thumb
11169 if (!isThumb())
11170 SwitchMode();
11171
11172 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11173
11174 NextSymbolIsThumb = true;
11175 return false;
11176 }
11177
11178 /// parseDirectiveSyntax
11179 /// ::= .syntax unified | divided
parseDirectiveSyntax(SMLoc L)11180 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
11181 MCAsmParser &Parser = getParser();
11182 const AsmToken &Tok = Parser.getTok();
11183 if (Tok.isNot(AsmToken::Identifier)) {
11184 Error(L, "unexpected token in .syntax directive");
11185 return false;
11186 }
11187
11188 StringRef Mode = Tok.getString();
11189 Parser.Lex();
11190 if (check(Mode == "divided" || Mode == "DIVIDED", L,
11191 "'.syntax divided' arm assembly not supported") ||
11192 check(Mode != "unified" && Mode != "UNIFIED", L,
11193 "unrecognized syntax mode in .syntax directive") ||
11194 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11195 return true;
11196
11197 // TODO tell the MC streamer the mode
11198 // getParser().getStreamer().Emit???();
11199 return false;
11200 }
11201
11202 /// parseDirectiveCode
11203 /// ::= .code 16 | 32
parseDirectiveCode(SMLoc L)11204 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
11205 MCAsmParser &Parser = getParser();
11206 const AsmToken &Tok = Parser.getTok();
11207 if (Tok.isNot(AsmToken::Integer))
11208 return Error(L, "unexpected token in .code directive");
11209 int64_t Val = Parser.getTok().getIntVal();
11210 if (Val != 16 && Val != 32) {
11211 Error(L, "invalid operand to .code directive");
11212 return false;
11213 }
11214 Parser.Lex();
11215
11216 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11217 return true;
11218
11219 if (Val == 16) {
11220 if (!hasThumb())
11221 return Error(L, "target does not support Thumb mode");
11222
11223 if (!isThumb())
11224 SwitchMode();
11225 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11226 } else {
11227 if (!hasARM())
11228 return Error(L, "target does not support ARM mode");
11229
11230 if (isThumb())
11231 SwitchMode();
11232 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11233 }
11234
11235 return false;
11236 }
11237
11238 /// parseDirectiveReq
11239 /// ::= name .req registername
parseDirectiveReq(StringRef Name,SMLoc L)11240 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
11241 MCAsmParser &Parser = getParser();
11242 Parser.Lex(); // Eat the '.req' token.
11243 unsigned Reg;
11244 SMLoc SRegLoc, ERegLoc;
11245 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
11246 "register name expected") ||
11247 parseToken(AsmToken::EndOfStatement,
11248 "unexpected input in .req directive."))
11249 return true;
11250
11251 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
11252 return Error(SRegLoc,
11253 "redefinition of '" + Name + "' does not match original.");
11254
11255 return false;
11256 }
11257
11258 /// parseDirectiveUneq
11259 /// ::= .unreq registername
parseDirectiveUnreq(SMLoc L)11260 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
11261 MCAsmParser &Parser = getParser();
11262 if (Parser.getTok().isNot(AsmToken::Identifier))
11263 return Error(L, "unexpected input in .unreq directive.");
11264 RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
11265 Parser.Lex(); // Eat the identifier.
11266 if (parseToken(AsmToken::EndOfStatement,
11267 "unexpected input in '.unreq' directive"))
11268 return true;
11269 return false;
11270 }
11271
11272 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
11273 // before, if supported by the new target, or emit mapping symbols for the mode
11274 // switch.
FixModeAfterArchChange(bool WasThumb,SMLoc Loc)11275 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
11276 if (WasThumb != isThumb()) {
11277 if (WasThumb && hasThumb()) {
11278 // Stay in Thumb mode
11279 SwitchMode();
11280 } else if (!WasThumb && hasARM()) {
11281 // Stay in ARM mode
11282 SwitchMode();
11283 } else {
11284 // Mode switch forced, because the new arch doesn't support the old mode.
11285 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16
11286 : MCAF_Code32);
11287 // Warn about the implcit mode switch. GAS does not switch modes here,
11288 // but instead stays in the old mode, reporting an error on any following
11289 // instructions as the mode does not exist on the target.
11290 Warning(Loc, Twine("new target does not support ") +
11291 (WasThumb ? "thumb" : "arm") + " mode, switching to " +
11292 (!WasThumb ? "thumb" : "arm") + " mode");
11293 }
11294 }
11295 }
11296
11297 /// parseDirectiveArch
11298 /// ::= .arch token
parseDirectiveArch(SMLoc L)11299 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
11300 StringRef Arch = getParser().parseStringToEndOfStatement().trim();
11301 ARM::ArchKind ID = ARM::parseArch(Arch);
11302
11303 if (ID == ARM::ArchKind::INVALID)
11304 return Error(L, "Unknown arch name");
11305
11306 bool WasThumb = isThumb();
11307 Triple T;
11308 MCSubtargetInfo &STI = copySTI();
11309 STI.setDefaultFeatures("", /*TuneCPU*/ "",
11310 ("+" + ARM::getArchName(ID)).str());
11311 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11312 FixModeAfterArchChange(WasThumb, L);
11313
11314 getTargetStreamer().emitArch(ID);
11315 return false;
11316 }
11317
11318 /// parseDirectiveEabiAttr
11319 /// ::= .eabi_attribute int, int [, "str"]
11320 /// ::= .eabi_attribute Tag_name, int [, "str"]
parseDirectiveEabiAttr(SMLoc L)11321 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
11322 MCAsmParser &Parser = getParser();
11323 int64_t Tag;
11324 SMLoc TagLoc;
11325 TagLoc = Parser.getTok().getLoc();
11326 if (Parser.getTok().is(AsmToken::Identifier)) {
11327 StringRef Name = Parser.getTok().getIdentifier();
11328 Optional<unsigned> Ret =
11329 ELFAttrs::attrTypeFromString(Name, ARMBuildAttrs::ARMAttributeTags);
11330 if (!Ret.hasValue()) {
11331 Error(TagLoc, "attribute name not recognised: " + Name);
11332 return false;
11333 }
11334 Tag = Ret.getValue();
11335 Parser.Lex();
11336 } else {
11337 const MCExpr *AttrExpr;
11338
11339 TagLoc = Parser.getTok().getLoc();
11340 if (Parser.parseExpression(AttrExpr))
11341 return true;
11342
11343 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
11344 if (check(!CE, TagLoc, "expected numeric constant"))
11345 return true;
11346
11347 Tag = CE->getValue();
11348 }
11349
11350 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11351 return true;
11352
11353 StringRef StringValue = "";
11354 bool IsStringValue = false;
11355
11356 int64_t IntegerValue = 0;
11357 bool IsIntegerValue = false;
11358
11359 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
11360 IsStringValue = true;
11361 else if (Tag == ARMBuildAttrs::compatibility) {
11362 IsStringValue = true;
11363 IsIntegerValue = true;
11364 } else if (Tag < 32 || Tag % 2 == 0)
11365 IsIntegerValue = true;
11366 else if (Tag % 2 == 1)
11367 IsStringValue = true;
11368 else
11369 llvm_unreachable("invalid tag type");
11370
11371 if (IsIntegerValue) {
11372 const MCExpr *ValueExpr;
11373 SMLoc ValueExprLoc = Parser.getTok().getLoc();
11374 if (Parser.parseExpression(ValueExpr))
11375 return true;
11376
11377 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
11378 if (!CE)
11379 return Error(ValueExprLoc, "expected numeric constant");
11380 IntegerValue = CE->getValue();
11381 }
11382
11383 if (Tag == ARMBuildAttrs::compatibility) {
11384 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11385 return true;
11386 }
11387
11388 if (IsStringValue) {
11389 if (Parser.getTok().isNot(AsmToken::String))
11390 return Error(Parser.getTok().getLoc(), "bad string constant");
11391
11392 StringValue = Parser.getTok().getStringContents();
11393 Parser.Lex();
11394 }
11395
11396 if (Parser.parseToken(AsmToken::EndOfStatement,
11397 "unexpected token in '.eabi_attribute' directive"))
11398 return true;
11399
11400 if (IsIntegerValue && IsStringValue) {
11401 assert(Tag == ARMBuildAttrs::compatibility);
11402 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
11403 } else if (IsIntegerValue)
11404 getTargetStreamer().emitAttribute(Tag, IntegerValue);
11405 else if (IsStringValue)
11406 getTargetStreamer().emitTextAttribute(Tag, StringValue);
11407 return false;
11408 }
11409
11410 /// parseDirectiveCPU
11411 /// ::= .cpu str
parseDirectiveCPU(SMLoc L)11412 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
11413 StringRef CPU = getParser().parseStringToEndOfStatement().trim();
11414 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
11415
11416 // FIXME: This is using table-gen data, but should be moved to
11417 // ARMTargetParser once that is table-gen'd.
11418 if (!getSTI().isCPUStringValid(CPU))
11419 return Error(L, "Unknown CPU name");
11420
11421 bool WasThumb = isThumb();
11422 MCSubtargetInfo &STI = copySTI();
11423 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
11424 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11425 FixModeAfterArchChange(WasThumb, L);
11426
11427 return false;
11428 }
11429
11430 /// parseDirectiveFPU
11431 /// ::= .fpu str
parseDirectiveFPU(SMLoc L)11432 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
11433 SMLoc FPUNameLoc = getTok().getLoc();
11434 StringRef FPU = getParser().parseStringToEndOfStatement().trim();
11435
11436 unsigned ID = ARM::parseFPU(FPU);
11437 std::vector<StringRef> Features;
11438 if (!ARM::getFPUFeatures(ID, Features))
11439 return Error(FPUNameLoc, "Unknown FPU name");
11440
11441 MCSubtargetInfo &STI = copySTI();
11442 for (auto Feature : Features)
11443 STI.ApplyFeatureFlag(Feature);
11444 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11445
11446 getTargetStreamer().emitFPU(ID);
11447 return false;
11448 }
11449
11450 /// parseDirectiveFnStart
11451 /// ::= .fnstart
parseDirectiveFnStart(SMLoc L)11452 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
11453 if (parseToken(AsmToken::EndOfStatement,
11454 "unexpected token in '.fnstart' directive"))
11455 return true;
11456
11457 if (UC.hasFnStart()) {
11458 Error(L, ".fnstart starts before the end of previous one");
11459 UC.emitFnStartLocNotes();
11460 return true;
11461 }
11462
11463 // Reset the unwind directives parser state
11464 UC.reset();
11465
11466 getTargetStreamer().emitFnStart();
11467
11468 UC.recordFnStart(L);
11469 return false;
11470 }
11471
11472 /// parseDirectiveFnEnd
11473 /// ::= .fnend
parseDirectiveFnEnd(SMLoc L)11474 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
11475 if (parseToken(AsmToken::EndOfStatement,
11476 "unexpected token in '.fnend' directive"))
11477 return true;
11478 // Check the ordering of unwind directives
11479 if (!UC.hasFnStart())
11480 return Error(L, ".fnstart must precede .fnend directive");
11481
11482 // Reset the unwind directives parser state
11483 getTargetStreamer().emitFnEnd();
11484
11485 UC.reset();
11486 return false;
11487 }
11488
11489 /// parseDirectiveCantUnwind
11490 /// ::= .cantunwind
parseDirectiveCantUnwind(SMLoc L)11491 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
11492 if (parseToken(AsmToken::EndOfStatement,
11493 "unexpected token in '.cantunwind' directive"))
11494 return true;
11495
11496 UC.recordCantUnwind(L);
11497 // Check the ordering of unwind directives
11498 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
11499 return true;
11500
11501 if (UC.hasHandlerData()) {
11502 Error(L, ".cantunwind can't be used with .handlerdata directive");
11503 UC.emitHandlerDataLocNotes();
11504 return true;
11505 }
11506 if (UC.hasPersonality()) {
11507 Error(L, ".cantunwind can't be used with .personality directive");
11508 UC.emitPersonalityLocNotes();
11509 return true;
11510 }
11511
11512 getTargetStreamer().emitCantUnwind();
11513 return false;
11514 }
11515
11516 /// parseDirectivePersonality
11517 /// ::= .personality name
parseDirectivePersonality(SMLoc L)11518 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11519 MCAsmParser &Parser = getParser();
11520 bool HasExistingPersonality = UC.hasPersonality();
11521
11522 // Parse the name of the personality routine
11523 if (Parser.getTok().isNot(AsmToken::Identifier))
11524 return Error(L, "unexpected input in .personality directive.");
11525 StringRef Name(Parser.getTok().getIdentifier());
11526 Parser.Lex();
11527
11528 if (parseToken(AsmToken::EndOfStatement,
11529 "unexpected token in '.personality' directive"))
11530 return true;
11531
11532 UC.recordPersonality(L);
11533
11534 // Check the ordering of unwind directives
11535 if (!UC.hasFnStart())
11536 return Error(L, ".fnstart must precede .personality directive");
11537 if (UC.cantUnwind()) {
11538 Error(L, ".personality can't be used with .cantunwind directive");
11539 UC.emitCantUnwindLocNotes();
11540 return true;
11541 }
11542 if (UC.hasHandlerData()) {
11543 Error(L, ".personality must precede .handlerdata directive");
11544 UC.emitHandlerDataLocNotes();
11545 return true;
11546 }
11547 if (HasExistingPersonality) {
11548 Error(L, "multiple personality directives");
11549 UC.emitPersonalityLocNotes();
11550 return true;
11551 }
11552
11553 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11554 getTargetStreamer().emitPersonality(PR);
11555 return false;
11556 }
11557
11558 /// parseDirectiveHandlerData
11559 /// ::= .handlerdata
parseDirectiveHandlerData(SMLoc L)11560 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11561 if (parseToken(AsmToken::EndOfStatement,
11562 "unexpected token in '.handlerdata' directive"))
11563 return true;
11564
11565 UC.recordHandlerData(L);
11566 // Check the ordering of unwind directives
11567 if (!UC.hasFnStart())
11568 return Error(L, ".fnstart must precede .personality directive");
11569 if (UC.cantUnwind()) {
11570 Error(L, ".handlerdata can't be used with .cantunwind directive");
11571 UC.emitCantUnwindLocNotes();
11572 return true;
11573 }
11574
11575 getTargetStreamer().emitHandlerData();
11576 return false;
11577 }
11578
11579 /// parseDirectiveSetFP
11580 /// ::= .setfp fpreg, spreg [, offset]
parseDirectiveSetFP(SMLoc L)11581 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11582 MCAsmParser &Parser = getParser();
11583 // Check the ordering of unwind directives
11584 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11585 check(UC.hasHandlerData(), L,
11586 ".setfp must precede .handlerdata directive"))
11587 return true;
11588
11589 // Parse fpreg
11590 SMLoc FPRegLoc = Parser.getTok().getLoc();
11591 int FPReg = tryParseRegister();
11592
11593 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11594 Parser.parseToken(AsmToken::Comma, "comma expected"))
11595 return true;
11596
11597 // Parse spreg
11598 SMLoc SPRegLoc = Parser.getTok().getLoc();
11599 int SPReg = tryParseRegister();
11600 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11601 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11602 "register should be either $sp or the latest fp register"))
11603 return true;
11604
11605 // Update the frame pointer register
11606 UC.saveFPReg(FPReg);
11607
11608 // Parse offset
11609 int64_t Offset = 0;
11610 if (Parser.parseOptionalToken(AsmToken::Comma)) {
11611 if (Parser.getTok().isNot(AsmToken::Hash) &&
11612 Parser.getTok().isNot(AsmToken::Dollar))
11613 return Error(Parser.getTok().getLoc(), "'#' expected");
11614 Parser.Lex(); // skip hash token.
11615
11616 const MCExpr *OffsetExpr;
11617 SMLoc ExLoc = Parser.getTok().getLoc();
11618 SMLoc EndLoc;
11619 if (getParser().parseExpression(OffsetExpr, EndLoc))
11620 return Error(ExLoc, "malformed setfp offset");
11621 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11622 if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11623 return true;
11624 Offset = CE->getValue();
11625 }
11626
11627 if (Parser.parseToken(AsmToken::EndOfStatement))
11628 return true;
11629
11630 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11631 static_cast<unsigned>(SPReg), Offset);
11632 return false;
11633 }
11634
11635 /// parseDirective
11636 /// ::= .pad offset
parseDirectivePad(SMLoc L)11637 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11638 MCAsmParser &Parser = getParser();
11639 // Check the ordering of unwind directives
11640 if (!UC.hasFnStart())
11641 return Error(L, ".fnstart must precede .pad directive");
11642 if (UC.hasHandlerData())
11643 return Error(L, ".pad must precede .handlerdata directive");
11644
11645 // Parse the offset
11646 if (Parser.getTok().isNot(AsmToken::Hash) &&
11647 Parser.getTok().isNot(AsmToken::Dollar))
11648 return Error(Parser.getTok().getLoc(), "'#' expected");
11649 Parser.Lex(); // skip hash token.
11650
11651 const MCExpr *OffsetExpr;
11652 SMLoc ExLoc = Parser.getTok().getLoc();
11653 SMLoc EndLoc;
11654 if (getParser().parseExpression(OffsetExpr, EndLoc))
11655 return Error(ExLoc, "malformed pad offset");
11656 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11657 if (!CE)
11658 return Error(ExLoc, "pad offset must be an immediate");
11659
11660 if (parseToken(AsmToken::EndOfStatement,
11661 "unexpected token in '.pad' directive"))
11662 return true;
11663
11664 getTargetStreamer().emitPad(CE->getValue());
11665 return false;
11666 }
11667
11668 /// parseDirectiveRegSave
11669 /// ::= .save { registers }
11670 /// ::= .vsave { registers }
parseDirectiveRegSave(SMLoc L,bool IsVector)11671 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11672 // Check the ordering of unwind directives
11673 if (!UC.hasFnStart())
11674 return Error(L, ".fnstart must precede .save or .vsave directives");
11675 if (UC.hasHandlerData())
11676 return Error(L, ".save or .vsave must precede .handlerdata directive");
11677
11678 // RAII object to make sure parsed operands are deleted.
11679 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11680
11681 // Parse the register list
11682 if (parseRegisterList(Operands) ||
11683 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11684 return true;
11685 ARMOperand &Op = (ARMOperand &)*Operands[0];
11686 if (!IsVector && !Op.isRegList())
11687 return Error(L, ".save expects GPR registers");
11688 if (IsVector && !Op.isDPRRegList())
11689 return Error(L, ".vsave expects DPR registers");
11690
11691 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11692 return false;
11693 }
11694
11695 /// parseDirectiveInst
11696 /// ::= .inst opcode [, ...]
11697 /// ::= .inst.n opcode [, ...]
11698 /// ::= .inst.w opcode [, ...]
parseDirectiveInst(SMLoc Loc,char Suffix)11699 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11700 int Width = 4;
11701
11702 if (isThumb()) {
11703 switch (Suffix) {
11704 case 'n':
11705 Width = 2;
11706 break;
11707 case 'w':
11708 break;
11709 default:
11710 Width = 0;
11711 break;
11712 }
11713 } else {
11714 if (Suffix)
11715 return Error(Loc, "width suffixes are invalid in ARM mode");
11716 }
11717
11718 auto parseOne = [&]() -> bool {
11719 const MCExpr *Expr;
11720 if (getParser().parseExpression(Expr))
11721 return true;
11722 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11723 if (!Value) {
11724 return Error(Loc, "expected constant expression");
11725 }
11726
11727 char CurSuffix = Suffix;
11728 switch (Width) {
11729 case 2:
11730 if (Value->getValue() > 0xffff)
11731 return Error(Loc, "inst.n operand is too big, use inst.w instead");
11732 break;
11733 case 4:
11734 if (Value->getValue() > 0xffffffff)
11735 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11736 " operand is too big");
11737 break;
11738 case 0:
11739 // Thumb mode, no width indicated. Guess from the opcode, if possible.
11740 if (Value->getValue() < 0xe800)
11741 CurSuffix = 'n';
11742 else if (Value->getValue() >= 0xe8000000)
11743 CurSuffix = 'w';
11744 else
11745 return Error(Loc, "cannot determine Thumb instruction size, "
11746 "use inst.n/inst.w instead");
11747 break;
11748 default:
11749 llvm_unreachable("only supported widths are 2 and 4");
11750 }
11751
11752 getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11753 return false;
11754 };
11755
11756 if (parseOptionalToken(AsmToken::EndOfStatement))
11757 return Error(Loc, "expected expression following directive");
11758 if (parseMany(parseOne))
11759 return true;
11760 return false;
11761 }
11762
11763 /// parseDirectiveLtorg
11764 /// ::= .ltorg | .pool
parseDirectiveLtorg(SMLoc L)11765 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11766 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11767 return true;
11768 getTargetStreamer().emitCurrentConstantPool();
11769 return false;
11770 }
11771
parseDirectiveEven(SMLoc L)11772 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11773 const MCSection *Section = getStreamer().getCurrentSectionOnly();
11774
11775 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11776 return true;
11777
11778 if (!Section) {
11779 getStreamer().InitSections(false);
11780 Section = getStreamer().getCurrentSectionOnly();
11781 }
11782
11783 assert(Section && "must have section to emit alignment");
11784 if (Section->UseCodeAlign())
11785 getStreamer().emitCodeAlignment(2);
11786 else
11787 getStreamer().emitValueToAlignment(2);
11788
11789 return false;
11790 }
11791
11792 /// parseDirectivePersonalityIndex
11793 /// ::= .personalityindex index
parseDirectivePersonalityIndex(SMLoc L)11794 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11795 MCAsmParser &Parser = getParser();
11796 bool HasExistingPersonality = UC.hasPersonality();
11797
11798 const MCExpr *IndexExpression;
11799 SMLoc IndexLoc = Parser.getTok().getLoc();
11800 if (Parser.parseExpression(IndexExpression) ||
11801 parseToken(AsmToken::EndOfStatement,
11802 "unexpected token in '.personalityindex' directive")) {
11803 return true;
11804 }
11805
11806 UC.recordPersonalityIndex(L);
11807
11808 if (!UC.hasFnStart()) {
11809 return Error(L, ".fnstart must precede .personalityindex directive");
11810 }
11811 if (UC.cantUnwind()) {
11812 Error(L, ".personalityindex cannot be used with .cantunwind");
11813 UC.emitCantUnwindLocNotes();
11814 return true;
11815 }
11816 if (UC.hasHandlerData()) {
11817 Error(L, ".personalityindex must precede .handlerdata directive");
11818 UC.emitHandlerDataLocNotes();
11819 return true;
11820 }
11821 if (HasExistingPersonality) {
11822 Error(L, "multiple personality directives");
11823 UC.emitPersonalityLocNotes();
11824 return true;
11825 }
11826
11827 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11828 if (!CE)
11829 return Error(IndexLoc, "index must be a constant number");
11830 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11831 return Error(IndexLoc,
11832 "personality routine index should be in range [0-3]");
11833
11834 getTargetStreamer().emitPersonalityIndex(CE->getValue());
11835 return false;
11836 }
11837
11838 /// parseDirectiveUnwindRaw
11839 /// ::= .unwind_raw offset, opcode [, opcode...]
parseDirectiveUnwindRaw(SMLoc L)11840 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11841 MCAsmParser &Parser = getParser();
11842 int64_t StackOffset;
11843 const MCExpr *OffsetExpr;
11844 SMLoc OffsetLoc = getLexer().getLoc();
11845
11846 if (!UC.hasFnStart())
11847 return Error(L, ".fnstart must precede .unwind_raw directives");
11848 if (getParser().parseExpression(OffsetExpr))
11849 return Error(OffsetLoc, "expected expression");
11850
11851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11852 if (!CE)
11853 return Error(OffsetLoc, "offset must be a constant");
11854
11855 StackOffset = CE->getValue();
11856
11857 if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11858 return true;
11859
11860 SmallVector<uint8_t, 16> Opcodes;
11861
11862 auto parseOne = [&]() -> bool {
11863 const MCExpr *OE = nullptr;
11864 SMLoc OpcodeLoc = getLexer().getLoc();
11865 if (check(getLexer().is(AsmToken::EndOfStatement) ||
11866 Parser.parseExpression(OE),
11867 OpcodeLoc, "expected opcode expression"))
11868 return true;
11869 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11870 if (!OC)
11871 return Error(OpcodeLoc, "opcode value must be a constant");
11872 const int64_t Opcode = OC->getValue();
11873 if (Opcode & ~0xff)
11874 return Error(OpcodeLoc, "invalid opcode");
11875 Opcodes.push_back(uint8_t(Opcode));
11876 return false;
11877 };
11878
11879 // Must have at least 1 element
11880 SMLoc OpcodeLoc = getLexer().getLoc();
11881 if (parseOptionalToken(AsmToken::EndOfStatement))
11882 return Error(OpcodeLoc, "expected opcode expression");
11883 if (parseMany(parseOne))
11884 return true;
11885
11886 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11887 return false;
11888 }
11889
11890 /// parseDirectiveTLSDescSeq
11891 /// ::= .tlsdescseq tls-variable
parseDirectiveTLSDescSeq(SMLoc L)11892 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11893 MCAsmParser &Parser = getParser();
11894
11895 if (getLexer().isNot(AsmToken::Identifier))
11896 return TokError("expected variable after '.tlsdescseq' directive");
11897
11898 const MCSymbolRefExpr *SRE =
11899 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11900 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11901 Lex();
11902
11903 if (parseToken(AsmToken::EndOfStatement,
11904 "unexpected token in '.tlsdescseq' directive"))
11905 return true;
11906
11907 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
11908 return false;
11909 }
11910
11911 /// parseDirectiveMovSP
11912 /// ::= .movsp reg [, #offset]
parseDirectiveMovSP(SMLoc L)11913 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11914 MCAsmParser &Parser = getParser();
11915 if (!UC.hasFnStart())
11916 return Error(L, ".fnstart must precede .movsp directives");
11917 if (UC.getFPReg() != ARM::SP)
11918 return Error(L, "unexpected .movsp directive");
11919
11920 SMLoc SPRegLoc = Parser.getTok().getLoc();
11921 int SPReg = tryParseRegister();
11922 if (SPReg == -1)
11923 return Error(SPRegLoc, "register expected");
11924 if (SPReg == ARM::SP || SPReg == ARM::PC)
11925 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11926
11927 int64_t Offset = 0;
11928 if (Parser.parseOptionalToken(AsmToken::Comma)) {
11929 if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
11930 return true;
11931
11932 const MCExpr *OffsetExpr;
11933 SMLoc OffsetLoc = Parser.getTok().getLoc();
11934
11935 if (Parser.parseExpression(OffsetExpr))
11936 return Error(OffsetLoc, "malformed offset expression");
11937
11938 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11939 if (!CE)
11940 return Error(OffsetLoc, "offset must be an immediate constant");
11941
11942 Offset = CE->getValue();
11943 }
11944
11945 if (parseToken(AsmToken::EndOfStatement,
11946 "unexpected token in '.movsp' directive"))
11947 return true;
11948
11949 getTargetStreamer().emitMovSP(SPReg, Offset);
11950 UC.saveFPReg(SPReg);
11951
11952 return false;
11953 }
11954
11955 /// parseDirectiveObjectArch
11956 /// ::= .object_arch name
parseDirectiveObjectArch(SMLoc L)11957 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
11958 MCAsmParser &Parser = getParser();
11959 if (getLexer().isNot(AsmToken::Identifier))
11960 return Error(getLexer().getLoc(), "unexpected token");
11961
11962 StringRef Arch = Parser.getTok().getString();
11963 SMLoc ArchLoc = Parser.getTok().getLoc();
11964 Lex();
11965
11966 ARM::ArchKind ID = ARM::parseArch(Arch);
11967
11968 if (ID == ARM::ArchKind::INVALID)
11969 return Error(ArchLoc, "unknown architecture '" + Arch + "'");
11970 if (parseToken(AsmToken::EndOfStatement))
11971 return true;
11972
11973 getTargetStreamer().emitObjectArch(ID);
11974 return false;
11975 }
11976
11977 /// parseDirectiveAlign
11978 /// ::= .align
parseDirectiveAlign(SMLoc L)11979 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
11980 // NOTE: if this is not the end of the statement, fall back to the target
11981 // agnostic handling for this directive which will correctly handle this.
11982 if (parseOptionalToken(AsmToken::EndOfStatement)) {
11983 // '.align' is target specifically handled to mean 2**2 byte alignment.
11984 const MCSection *Section = getStreamer().getCurrentSectionOnly();
11985 assert(Section && "must have section to emit alignment");
11986 if (Section->UseCodeAlign())
11987 getStreamer().emitCodeAlignment(4, 0);
11988 else
11989 getStreamer().emitValueToAlignment(4, 0, 1, 0);
11990 return false;
11991 }
11992 return true;
11993 }
11994
11995 /// parseDirectiveThumbSet
11996 /// ::= .thumb_set name, value
parseDirectiveThumbSet(SMLoc L)11997 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
11998 MCAsmParser &Parser = getParser();
11999
12000 StringRef Name;
12001 if (check(Parser.parseIdentifier(Name),
12002 "expected identifier after '.thumb_set'") ||
12003 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
12004 return true;
12005
12006 MCSymbol *Sym;
12007 const MCExpr *Value;
12008 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
12009 Parser, Sym, Value))
12010 return true;
12011
12012 getTargetStreamer().emitThumbSet(Sym, Value);
12013 return false;
12014 }
12015
12016 /// Force static initialization.
LLVMInitializeARMAsmParser()12017 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() {
12018 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
12019 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
12020 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
12021 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
12022 }
12023
12024 #define GET_REGISTER_MATCHER
12025 #define GET_SUBTARGET_FEATURE_NAME
12026 #define GET_MATCHER_IMPLEMENTATION
12027 #define GET_MNEMONIC_SPELL_CHECKER
12028 #include "ARMGenAsmMatcher.inc"
12029
12030 // Some diagnostics need to vary with subtarget features, so they are handled
12031 // here. For example, the DPR class has either 16 or 32 registers, depending
12032 // on the FPU available.
12033 const char *
getCustomOperandDiag(ARMMatchResultTy MatchError)12034 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
12035 switch (MatchError) {
12036 // rGPR contains sp starting with ARMv8.
12037 case Match_rGPR:
12038 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
12039 : "operand must be a register in range [r0, r12] or r14";
12040 // DPR contains 16 registers for some FPUs, and 32 for others.
12041 case Match_DPR:
12042 return hasD32() ? "operand must be a register in range [d0, d31]"
12043 : "operand must be a register in range [d0, d15]";
12044 case Match_DPR_RegList:
12045 return hasD32() ? "operand must be a list of registers in range [d0, d31]"
12046 : "operand must be a list of registers in range [d0, d15]";
12047
12048 // For all other diags, use the static string from tablegen.
12049 default:
12050 return getMatchKindDiag(MatchError);
12051 }
12052 }
12053
12054 // Process the list of near-misses, throwing away ones we don't want to report
12055 // to the user, and converting the rest to a source location and string that
12056 // should be reported.
12057 void
FilterNearMisses(SmallVectorImpl<NearMissInfo> & NearMissesIn,SmallVectorImpl<NearMissMessage> & NearMissesOut,SMLoc IDLoc,OperandVector & Operands)12058 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
12059 SmallVectorImpl<NearMissMessage> &NearMissesOut,
12060 SMLoc IDLoc, OperandVector &Operands) {
12061 // TODO: If operand didn't match, sub in a dummy one and run target
12062 // predicate, so that we can avoid reporting near-misses that are invalid?
12063 // TODO: Many operand types dont have SuperClasses set, so we report
12064 // redundant ones.
12065 // TODO: Some operands are superclasses of registers (e.g.
12066 // MCK_RegShiftedImm), we don't have any way to represent that currently.
12067 // TODO: This is not all ARM-specific, can some of it be factored out?
12068
12069 // Record some information about near-misses that we have already seen, so
12070 // that we can avoid reporting redundant ones. For example, if there are
12071 // variants of an instruction that take 8- and 16-bit immediates, we want
12072 // to only report the widest one.
12073 std::multimap<unsigned, unsigned> OperandMissesSeen;
12074 SmallSet<FeatureBitset, 4> FeatureMissesSeen;
12075 bool ReportedTooFewOperands = false;
12076
12077 // Process the near-misses in reverse order, so that we see more general ones
12078 // first, and so can avoid emitting more specific ones.
12079 for (NearMissInfo &I : reverse(NearMissesIn)) {
12080 switch (I.getKind()) {
12081 case NearMissInfo::NearMissOperand: {
12082 SMLoc OperandLoc =
12083 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
12084 const char *OperandDiag =
12085 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
12086
12087 // If we have already emitted a message for a superclass, don't also report
12088 // the sub-class. We consider all operand classes that we don't have a
12089 // specialised diagnostic for to be equal for the propose of this check,
12090 // so that we don't report the generic error multiple times on the same
12091 // operand.
12092 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
12093 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
12094 if (std::any_of(PrevReports.first, PrevReports.second,
12095 [DupCheckMatchClass](
12096 const std::pair<unsigned, unsigned> Pair) {
12097 if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
12098 return Pair.second == DupCheckMatchClass;
12099 else
12100 return isSubclass((MatchClassKind)DupCheckMatchClass,
12101 (MatchClassKind)Pair.second);
12102 }))
12103 break;
12104 OperandMissesSeen.insert(
12105 std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
12106
12107 NearMissMessage Message;
12108 Message.Loc = OperandLoc;
12109 if (OperandDiag) {
12110 Message.Message = OperandDiag;
12111 } else if (I.getOperandClass() == InvalidMatchClass) {
12112 Message.Message = "too many operands for instruction";
12113 } else {
12114 Message.Message = "invalid operand for instruction";
12115 LLVM_DEBUG(
12116 dbgs() << "Missing diagnostic string for operand class "
12117 << getMatchClassName((MatchClassKind)I.getOperandClass())
12118 << I.getOperandClass() << ", error " << I.getOperandError()
12119 << ", opcode " << MII.getName(I.getOpcode()) << "\n");
12120 }
12121 NearMissesOut.emplace_back(Message);
12122 break;
12123 }
12124 case NearMissInfo::NearMissFeature: {
12125 const FeatureBitset &MissingFeatures = I.getFeatures();
12126 // Don't report the same set of features twice.
12127 if (FeatureMissesSeen.count(MissingFeatures))
12128 break;
12129 FeatureMissesSeen.insert(MissingFeatures);
12130
12131 // Special case: don't report a feature set which includes arm-mode for
12132 // targets that don't have ARM mode.
12133 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
12134 break;
12135 // Don't report any near-misses that both require switching instruction
12136 // set, and adding other subtarget features.
12137 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
12138 MissingFeatures.count() > 1)
12139 break;
12140 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
12141 MissingFeatures.count() > 1)
12142 break;
12143 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
12144 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
12145 Feature_IsThumbBit})).any())
12146 break;
12147 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
12148 break;
12149
12150 NearMissMessage Message;
12151 Message.Loc = IDLoc;
12152 raw_svector_ostream OS(Message.Message);
12153
12154 OS << "instruction requires:";
12155 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
12156 if (MissingFeatures.test(i))
12157 OS << ' ' << getSubtargetFeatureName(i);
12158
12159 NearMissesOut.emplace_back(Message);
12160
12161 break;
12162 }
12163 case NearMissInfo::NearMissPredicate: {
12164 NearMissMessage Message;
12165 Message.Loc = IDLoc;
12166 switch (I.getPredicateError()) {
12167 case Match_RequiresNotITBlock:
12168 Message.Message = "flag setting instruction only valid outside IT block";
12169 break;
12170 case Match_RequiresITBlock:
12171 Message.Message = "instruction only valid inside IT block";
12172 break;
12173 case Match_RequiresV6:
12174 Message.Message = "instruction variant requires ARMv6 or later";
12175 break;
12176 case Match_RequiresThumb2:
12177 Message.Message = "instruction variant requires Thumb2";
12178 break;
12179 case Match_RequiresV8:
12180 Message.Message = "instruction variant requires ARMv8 or later";
12181 break;
12182 case Match_RequiresFlagSetting:
12183 Message.Message = "no flag-preserving variant of this instruction available";
12184 break;
12185 case Match_InvalidOperand:
12186 Message.Message = "invalid operand for instruction";
12187 break;
12188 default:
12189 llvm_unreachable("Unhandled target predicate error");
12190 break;
12191 }
12192 NearMissesOut.emplace_back(Message);
12193 break;
12194 }
12195 case NearMissInfo::NearMissTooFewOperands: {
12196 if (!ReportedTooFewOperands) {
12197 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
12198 NearMissesOut.emplace_back(NearMissMessage{
12199 EndLoc, StringRef("too few operands for instruction")});
12200 ReportedTooFewOperands = true;
12201 }
12202 break;
12203 }
12204 case NearMissInfo::NoNearMiss:
12205 // This should never leave the matcher.
12206 llvm_unreachable("not a near-miss");
12207 break;
12208 }
12209 }
12210 }
12211
ReportNearMisses(SmallVectorImpl<NearMissInfo> & NearMisses,SMLoc IDLoc,OperandVector & Operands)12212 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
12213 SMLoc IDLoc, OperandVector &Operands) {
12214 SmallVector<NearMissMessage, 4> Messages;
12215 FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
12216
12217 if (Messages.size() == 0) {
12218 // No near-misses were found, so the best we can do is "invalid
12219 // instruction".
12220 Error(IDLoc, "invalid instruction");
12221 } else if (Messages.size() == 1) {
12222 // One near miss was found, report it as the sole error.
12223 Error(Messages[0].Loc, Messages[0].Message);
12224 } else {
12225 // More than one near miss, so report a generic "invalid instruction"
12226 // error, followed by notes for each of the near-misses.
12227 Error(IDLoc, "invalid instruction, any one of the following would fix this:");
12228 for (auto &M : Messages) {
12229 Note(M.Loc, M.Message);
12230 }
12231 }
12232 }
12233
enableArchExtFeature(StringRef Name,SMLoc & ExtLoc)12234 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) {
12235 // FIXME: This structure should be moved inside ARMTargetParser
12236 // when we start to table-generate them, and we can use the ARM
12237 // flags below, that were generated by table-gen.
12238 static const struct {
12239 const uint64_t Kind;
12240 const FeatureBitset ArchCheck;
12241 const FeatureBitset Features;
12242 } Extensions[] = {
12243 {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}},
12244 {ARM::AEK_AES,
12245 {Feature_HasV8Bit},
12246 {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12247 {ARM::AEK_SHA2,
12248 {Feature_HasV8Bit},
12249 {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12250 {ARM::AEK_CRYPTO,
12251 {Feature_HasV8Bit},
12252 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12253 {ARM::AEK_FP,
12254 {Feature_HasV8Bit},
12255 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12256 {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
12257 {Feature_HasV7Bit, Feature_IsNotMClassBit},
12258 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}},
12259 {ARM::AEK_MP,
12260 {Feature_HasV7Bit, Feature_IsNotMClassBit},
12261 {ARM::FeatureMP}},
12262 {ARM::AEK_SIMD,
12263 {Feature_HasV8Bit},
12264 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12265 {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}},
12266 // FIXME: Only available in A-class, isel not predicated
12267 {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}},
12268 {ARM::AEK_FP16,
12269 {Feature_HasV8_2aBit},
12270 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}},
12271 {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}},
12272 {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}},
12273 // FIXME: Unsupported extensions.
12274 {ARM::AEK_OS, {}, {}},
12275 {ARM::AEK_IWMMXT, {}, {}},
12276 {ARM::AEK_IWMMXT2, {}, {}},
12277 {ARM::AEK_MAVERICK, {}, {}},
12278 {ARM::AEK_XSCALE, {}, {}},
12279 };
12280 bool EnableFeature = true;
12281 if (Name.startswith_lower("no")) {
12282 EnableFeature = false;
12283 Name = Name.substr(2);
12284 }
12285 uint64_t FeatureKind = ARM::parseArchExt(Name);
12286 if (FeatureKind == ARM::AEK_INVALID)
12287 return Error(ExtLoc, "unknown architectural extension: " + Name);
12288
12289 for (const auto &Extension : Extensions) {
12290 if (Extension.Kind != FeatureKind)
12291 continue;
12292
12293 if (Extension.Features.none())
12294 return Error(ExtLoc, "unsupported architectural extension: " + Name);
12295
12296 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
12297 return Error(ExtLoc, "architectural extension '" + Name +
12298 "' is not "
12299 "allowed for the current base architecture");
12300
12301 MCSubtargetInfo &STI = copySTI();
12302 if (EnableFeature) {
12303 STI.SetFeatureBitsTransitively(Extension.Features);
12304 } else {
12305 STI.ClearFeatureBitsTransitively(Extension.Features);
12306 }
12307 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
12308 setAvailableFeatures(Features);
12309 return true;
12310 }
12311 return false;
12312 }
12313
12314 /// parseDirectiveArchExtension
12315 /// ::= .arch_extension [no]feature
parseDirectiveArchExtension(SMLoc L)12316 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
12317
12318 MCAsmParser &Parser = getParser();
12319
12320 if (getLexer().isNot(AsmToken::Identifier))
12321 return Error(getLexer().getLoc(), "expected architecture extension name");
12322
12323 StringRef Name = Parser.getTok().getString();
12324 SMLoc ExtLoc = Parser.getTok().getLoc();
12325 Lex();
12326
12327 if (parseToken(AsmToken::EndOfStatement,
12328 "unexpected token in '.arch_extension' directive"))
12329 return true;
12330
12331 if (Name == "nocrypto") {
12332 enableArchExtFeature("nosha2", ExtLoc);
12333 enableArchExtFeature("noaes", ExtLoc);
12334 }
12335
12336 if (enableArchExtFeature(Name, ExtLoc))
12337 return false;
12338
12339 return Error(ExtLoc, "unknown architectural extension: " + Name);
12340 }
12341
12342 // Define this matcher function after the auto-generated include so we
12343 // have the match class enum definitions.
validateTargetOperandClass(MCParsedAsmOperand & AsmOp,unsigned Kind)12344 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
12345 unsigned Kind) {
12346 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
12347 // If the kind is a token for a literal immediate, check if our asm
12348 // operand matches. This is for InstAliases which have a fixed-value
12349 // immediate in the syntax.
12350 switch (Kind) {
12351 default: break;
12352 case MCK__HASH_0:
12353 if (Op.isImm())
12354 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12355 if (CE->getValue() == 0)
12356 return Match_Success;
12357 break;
12358 case MCK__HASH_8:
12359 if (Op.isImm())
12360 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12361 if (CE->getValue() == 8)
12362 return Match_Success;
12363 break;
12364 case MCK__HASH_16:
12365 if (Op.isImm())
12366 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12367 if (CE->getValue() == 16)
12368 return Match_Success;
12369 break;
12370 case MCK_ModImm:
12371 if (Op.isImm()) {
12372 const MCExpr *SOExpr = Op.getImm();
12373 int64_t Value;
12374 if (!SOExpr->evaluateAsAbsolute(Value))
12375 return Match_Success;
12376 assert((Value >= std::numeric_limits<int32_t>::min() &&
12377 Value <= std::numeric_limits<uint32_t>::max()) &&
12378 "expression value must be representable in 32 bits");
12379 }
12380 break;
12381 case MCK_rGPR:
12382 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
12383 return Match_Success;
12384 return Match_rGPR;
12385 case MCK_GPRPair:
12386 if (Op.isReg() &&
12387 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
12388 return Match_Success;
12389 break;
12390 }
12391 return Match_InvalidOperand;
12392 }
12393
isMnemonicVPTPredicable(StringRef Mnemonic,StringRef ExtraToken)12394 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
12395 StringRef ExtraToken) {
12396 if (!hasMVE())
12397 return false;
12398
12399 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
12400 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
12401 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
12402 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
12403 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
12404 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
12405 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
12406 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
12407 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
12408 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
12409 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
12410 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
12411 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
12412 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
12413 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
12414 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
12415 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
12416 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
12417 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
12418 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
12419 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
12420 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
12421 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
12422 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
12423 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
12424 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
12425 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
12426 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
12427 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
12428 Mnemonic.startswith("vqabs") ||
12429 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
12430 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
12431 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
12432 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
12433 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
12434 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
12435 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
12436 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
12437 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
12438 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
12439 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
12440 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
12441 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
12442 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
12443 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
12444 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
12445 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
12446 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
12447 Mnemonic.startswith("vldrb") ||
12448 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
12449 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
12450 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
12451 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
12452 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
12453 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
12454 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
12455 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
12456 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
12457 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
12458 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
12459 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
12460 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
12461 Mnemonic.startswith("vcvt") ||
12462 MS.isVPTPredicableCDEInstr(Mnemonic) ||
12463 (Mnemonic.startswith("vmov") &&
12464 !(ExtraToken == ".f16" || ExtraToken == ".32" ||
12465 ExtraToken == ".16" || ExtraToken == ".8"));
12466 }
12467