1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/MC/MCAsmLayout.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40
41 namespace {
42 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 public:
ARMELFObjectWriter(uint8_t OSABI)44 ARMELFObjectWriter(uint8_t OSABI)
45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46 /*HasRelocationAddend*/ false) {}
47 };
48 } // end anonymous namespace
49
getFixupKind(StringRef Name) const50 std::optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
51 return std::nullopt;
52 }
53
54 std::optional<MCFixupKind>
getFixupKind(StringRef Name) const55 ARMAsmBackendELF::getFixupKind(StringRef Name) const {
56 unsigned Type = llvm::StringSwitch<unsigned>(Name)
57 #define ELF_RELOC(X, Y) .Case(#X, Y)
58 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
59 #undef ELF_RELOC
60 .Case("BFD_RELOC_NONE", ELF::R_ARM_NONE)
61 .Case("BFD_RELOC_8", ELF::R_ARM_ABS8)
62 .Case("BFD_RELOC_16", ELF::R_ARM_ABS16)
63 .Case("BFD_RELOC_32", ELF::R_ARM_ABS32)
64 .Default(-1u);
65 if (Type == -1u)
66 return std::nullopt;
67 return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
68 }
69
getFixupKindInfo(MCFixupKind Kind) const70 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
71 unsigned IsPCRelConstant =
72 MCFixupKindInfo::FKF_IsPCRel | MCFixupKindInfo::FKF_Constant;
73 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
74 // This table *must* be in the order that the fixup_* kinds are defined in
75 // ARMFixupKinds.h.
76 //
77 // Name Offset (bits) Size (bits) Flags
78 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
79 {"fixup_t2_ldst_pcrel_12", 0, 32,
80 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
81 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
82 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
83 {"fixup_t2_pcrel_10", 0, 32,
84 MCFixupKindInfo::FKF_IsPCRel |
85 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
86 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
87 {"fixup_t2_pcrel_9", 0, 32,
88 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
89 {"fixup_arm_ldst_abs_12", 0, 32, 0},
90 {"fixup_thumb_adr_pcrel_10", 0, 8,
91 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
92 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
93 {"fixup_t2_adr_pcrel_12", 0, 32,
94 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
95 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
96 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
97 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
98 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
99 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
100 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
101 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
102 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
103 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
104 {"fixup_arm_thumb_blx", 0, 32,
105 MCFixupKindInfo::FKF_IsPCRel |
106 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
107 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
108 {"fixup_arm_thumb_cp", 0, 8,
109 MCFixupKindInfo::FKF_IsPCRel |
110 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
111 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
112 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
113 // - 19.
114 {"fixup_arm_movt_hi16", 0, 20, 0},
115 {"fixup_arm_movw_lo16", 0, 20, 0},
116 {"fixup_t2_movt_hi16", 0, 20, 0},
117 {"fixup_t2_movw_lo16", 0, 20, 0},
118 {"fixup_arm_mod_imm", 0, 12, 0},
119 {"fixup_t2_so_imm", 0, 26, 0},
120 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
121 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
122 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
123 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124 {"fixup_bfcsel_else_target", 0, 32, 0},
125 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
126 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}};
127 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
128 // This table *must* be in the order that the fixup_* kinds are defined in
129 // ARMFixupKinds.h.
130 //
131 // Name Offset (bits) Size (bits) Flags
132 {"fixup_arm_ldst_pcrel_12", 0, 32, IsPCRelConstant},
133 {"fixup_t2_ldst_pcrel_12", 0, 32,
134 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
135 {"fixup_arm_pcrel_10_unscaled", 0, 32, IsPCRelConstant},
136 {"fixup_arm_pcrel_10", 0, 32, IsPCRelConstant},
137 {"fixup_t2_pcrel_10", 0, 32,
138 MCFixupKindInfo::FKF_IsPCRel |
139 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
140 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
141 {"fixup_t2_pcrel_9", 0, 32,
142 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
143 {"fixup_arm_ldst_abs_12", 0, 32, 0},
144 {"fixup_thumb_adr_pcrel_10", 8, 8,
145 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
146 {"fixup_arm_adr_pcrel_12", 0, 32, IsPCRelConstant},
147 {"fixup_t2_adr_pcrel_12", 0, 32,
148 IsPCRelConstant | MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
149 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
150 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
151 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
152 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
153 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
154 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
155 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
156 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
157 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
158 {"fixup_arm_thumb_blx", 0, 32,
159 MCFixupKindInfo::FKF_IsPCRel |
160 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
161 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
162 {"fixup_arm_thumb_cp", 8, 8,
163 MCFixupKindInfo::FKF_IsPCRel |
164 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
165 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
166 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
167 // - 19.
168 {"fixup_arm_movt_hi16", 12, 20, 0},
169 {"fixup_arm_movw_lo16", 12, 20, 0},
170 {"fixup_t2_movt_hi16", 12, 20, 0},
171 {"fixup_t2_movw_lo16", 12, 20, 0},
172 {"fixup_arm_mod_imm", 20, 12, 0},
173 {"fixup_t2_so_imm", 26, 6, 0},
174 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
175 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
176 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
177 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
178 {"fixup_bfcsel_else_target", 0, 32, 0},
179 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
180 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}};
181
182 // Fixup kinds from .reloc directive are like R_ARM_NONE. They do not require
183 // any extra processing.
184 if (Kind >= FirstLiteralRelocationKind)
185 return MCAsmBackend::getFixupKindInfo(FK_NONE);
186
187 if (Kind < FirstTargetFixupKind)
188 return MCAsmBackend::getFixupKindInfo(Kind);
189
190 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
191 "Invalid kind!");
192 return (Endian == support::little ? InfosLE
193 : InfosBE)[Kind - FirstTargetFixupKind];
194 }
195
handleAssemblerFlag(MCAssemblerFlag Flag)196 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
197 switch (Flag) {
198 default:
199 break;
200 case MCAF_Code16:
201 setIsThumb(true);
202 break;
203 case MCAF_Code32:
204 setIsThumb(false);
205 break;
206 }
207 }
208
getRelaxedOpcode(unsigned Op,const MCSubtargetInfo & STI) const209 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
210 const MCSubtargetInfo &STI) const {
211 bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
212 bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
213
214 switch (Op) {
215 default:
216 return Op;
217 case ARM::tBcc:
218 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
219 case ARM::tLDRpci:
220 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
221 case ARM::tADR:
222 return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
223 case ARM::tB:
224 return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
225 case ARM::tCBZ:
226 return ARM::tHINT;
227 case ARM::tCBNZ:
228 return ARM::tHINT;
229 }
230 }
231
mayNeedRelaxation(const MCInst & Inst,const MCSubtargetInfo & STI) const232 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
233 const MCSubtargetInfo &STI) const {
234 if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
235 return true;
236 return false;
237 }
238
checkPCRelOffset(uint64_t Value,int64_t Min,int64_t Max)239 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
240 int64_t Offset = int64_t(Value) - 4;
241 if (Offset < Min || Offset > Max)
242 return "out of range pc-relative fixup value";
243 return nullptr;
244 }
245
reasonForFixupRelaxation(const MCFixup & Fixup,uint64_t Value) const246 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
247 uint64_t Value) const {
248 switch (Fixup.getTargetKind()) {
249 case ARM::fixup_arm_thumb_br: {
250 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
251 // low bit being an implied zero. There's an implied +4 offset for the
252 // branch, so we adjust the other way here to determine what's
253 // encodable.
254 //
255 // Relax if the value is too big for a (signed) i8.
256 int64_t Offset = int64_t(Value) - 4;
257 if (Offset > 2046 || Offset < -2048)
258 return "out of range pc-relative fixup value";
259 break;
260 }
261 case ARM::fixup_arm_thumb_bcc: {
262 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
263 // low bit being an implied zero. There's an implied +4 offset for the
264 // branch, so we adjust the other way here to determine what's
265 // encodable.
266 //
267 // Relax if the value is too big for a (signed) i8.
268 int64_t Offset = int64_t(Value) - 4;
269 if (Offset > 254 || Offset < -256)
270 return "out of range pc-relative fixup value";
271 break;
272 }
273 case ARM::fixup_thumb_adr_pcrel_10:
274 case ARM::fixup_arm_thumb_cp: {
275 // If the immediate is negative, greater than 1020, or not a multiple
276 // of four, the wide version of the instruction must be used.
277 int64_t Offset = int64_t(Value) - 4;
278 if (Offset & 3)
279 return "misaligned pc-relative fixup value";
280 else if (Offset > 1020 || Offset < 0)
281 return "out of range pc-relative fixup value";
282 break;
283 }
284 case ARM::fixup_arm_thumb_cb: {
285 // If we have a Thumb CBZ or CBNZ instruction and its target is the next
286 // instruction it is actually out of range for the instruction.
287 // It will be changed to a NOP.
288 int64_t Offset = (Value & ~1);
289 if (Offset == 2)
290 return "will be converted to nop";
291 break;
292 }
293 case ARM::fixup_bf_branch:
294 return checkPCRelOffset(Value, 0, 30);
295 case ARM::fixup_bf_target:
296 return checkPCRelOffset(Value, -0x10000, +0xfffe);
297 case ARM::fixup_bfl_target:
298 return checkPCRelOffset(Value, -0x40000, +0x3fffe);
299 case ARM::fixup_bfc_target:
300 return checkPCRelOffset(Value, -0x1000, +0xffe);
301 case ARM::fixup_wls:
302 return checkPCRelOffset(Value, 0, +0xffe);
303 case ARM::fixup_le:
304 // The offset field in the LE and LETP instructions is an 11-bit
305 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
306 // interpreted as a negative offset from the value read from pc,
307 // i.e. from instruction_address+4.
308 //
309 // So an LE instruction can in principle address the instruction
310 // immediately after itself, or (not very usefully) the address
311 // half way through the 4-byte LE.
312 return checkPCRelOffset(Value, -0xffe, 0);
313 case ARM::fixup_bfcsel_else_target: {
314 if (Value != 2 && Value != 4)
315 return "out of range label-relative fixup value";
316 break;
317 }
318
319 default:
320 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
321 }
322 return nullptr;
323 }
324
fixupNeedsRelaxation(const MCFixup & Fixup,uint64_t Value,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const325 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
326 const MCRelaxableFragment *DF,
327 const MCAsmLayout &Layout) const {
328 return reasonForFixupRelaxation(Fixup, Value);
329 }
330
relaxInstruction(MCInst & Inst,const MCSubtargetInfo & STI) const331 void ARMAsmBackend::relaxInstruction(MCInst &Inst,
332 const MCSubtargetInfo &STI) const {
333 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
334
335 // Return a diagnostic if we get here w/ a bogus instruction.
336 if (RelaxedOp == Inst.getOpcode()) {
337 SmallString<256> Tmp;
338 raw_svector_ostream OS(Tmp);
339 Inst.dump_pretty(OS);
340 OS << "\n";
341 report_fatal_error("unexpected instruction to relax: " + OS.str());
342 }
343
344 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
345 // have to change the operands too.
346 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
347 RelaxedOp == ARM::tHINT) {
348 MCInst Res;
349 Res.setOpcode(RelaxedOp);
350 Res.addOperand(MCOperand::createImm(0));
351 Res.addOperand(MCOperand::createImm(14));
352 Res.addOperand(MCOperand::createReg(0));
353 Inst = std::move(Res);
354 return;
355 }
356
357 // The rest of instructions we're relaxing have the same operands.
358 // We just need to update to the proper opcode.
359 Inst.setOpcode(RelaxedOp);
360 }
361
writeNopData(raw_ostream & OS,uint64_t Count,const MCSubtargetInfo * STI) const362 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
363 const MCSubtargetInfo *STI) const {
364 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
365 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
366 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
367 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
368 if (isThumb()) {
369 const uint16_t nopEncoding =
370 hasNOP(STI) ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
371 uint64_t NumNops = Count / 2;
372 for (uint64_t i = 0; i != NumNops; ++i)
373 support::endian::write(OS, nopEncoding, Endian);
374 if (Count & 1)
375 OS << '\0';
376 return true;
377 }
378 // ARM mode
379 const uint32_t nopEncoding =
380 hasNOP(STI) ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
381 uint64_t NumNops = Count / 4;
382 for (uint64_t i = 0; i != NumNops; ++i)
383 support::endian::write(OS, nopEncoding, Endian);
384 // FIXME: should this function return false when unable to write exactly
385 // 'Count' bytes with NOP encodings?
386 switch (Count % 4) {
387 default:
388 break; // No leftover bytes to write
389 case 1:
390 OS << '\0';
391 break;
392 case 2:
393 OS.write("\0\0", 2);
394 break;
395 case 3:
396 OS.write("\0\0\xa0", 3);
397 break;
398 }
399
400 return true;
401 }
402
swapHalfWords(uint32_t Value,bool IsLittleEndian)403 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
404 if (IsLittleEndian) {
405 // Note that the halfwords are stored high first and low second in thumb;
406 // so we need to swap the fixup value here to map properly.
407 uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
408 Swapped |= (Value & 0x0000FFFF) << 16;
409 return Swapped;
410 } else
411 return Value;
412 }
413
joinHalfWords(uint32_t FirstHalf,uint32_t SecondHalf,bool IsLittleEndian)414 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
415 bool IsLittleEndian) {
416 uint32_t Value;
417
418 if (IsLittleEndian) {
419 Value = (SecondHalf & 0xFFFF) << 16;
420 Value |= (FirstHalf & 0xFFFF);
421 } else {
422 Value = (SecondHalf & 0xFFFF);
423 Value |= (FirstHalf & 0xFFFF) << 16;
424 }
425
426 return Value;
427 }
428
adjustFixupValue(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,uint64_t Value,bool IsResolved,MCContext & Ctx,const MCSubtargetInfo * STI) const429 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
430 const MCFixup &Fixup,
431 const MCValue &Target, uint64_t Value,
432 bool IsResolved, MCContext &Ctx,
433 const MCSubtargetInfo* STI) const {
434 unsigned Kind = Fixup.getKind();
435
436 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
437 // and .word relocations they put the Thumb bit into the addend if possible.
438 // Other relocation types don't want this bit though (branches couldn't encode
439 // it if it *was* present, and no other relocations exist) and it can
440 // interfere with checking valid expressions.
441 if (const MCSymbolRefExpr *A = Target.getSymA()) {
442 if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
443 A->getSymbol().isExternal() &&
444 (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
445 Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
446 Kind == ARM::fixup_t2_movt_hi16))
447 Value |= 1;
448 }
449
450 switch (Kind) {
451 default:
452 Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
453 return 0;
454 case FK_Data_1:
455 case FK_Data_2:
456 case FK_Data_4:
457 return Value;
458 case FK_SecRel_2:
459 return Value;
460 case FK_SecRel_4:
461 return Value;
462 case ARM::fixup_arm_movt_hi16:
463 assert(STI != nullptr);
464 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
465 Value >>= 16;
466 [[fallthrough]];
467 case ARM::fixup_arm_movw_lo16: {
468 unsigned Hi4 = (Value & 0xF000) >> 12;
469 unsigned Lo12 = Value & 0x0FFF;
470 // inst{19-16} = Hi4;
471 // inst{11-0} = Lo12;
472 Value = (Hi4 << 16) | (Lo12);
473 return Value;
474 }
475 case ARM::fixup_t2_movt_hi16:
476 assert(STI != nullptr);
477 if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
478 Value >>= 16;
479 [[fallthrough]];
480 case ARM::fixup_t2_movw_lo16: {
481 unsigned Hi4 = (Value & 0xF000) >> 12;
482 unsigned i = (Value & 0x800) >> 11;
483 unsigned Mid3 = (Value & 0x700) >> 8;
484 unsigned Lo8 = Value & 0x0FF;
485 // inst{19-16} = Hi4;
486 // inst{26} = i;
487 // inst{14-12} = Mid3;
488 // inst{7-0} = Lo8;
489 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
490 return swapHalfWords(Value, Endian == support::little);
491 }
492 case ARM::fixup_arm_ldst_pcrel_12:
493 // ARM PC-relative values are offset by 8.
494 Value -= 4;
495 [[fallthrough]];
496 case ARM::fixup_t2_ldst_pcrel_12:
497 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
498 Value -= 4;
499 [[fallthrough]];
500 case ARM::fixup_arm_ldst_abs_12: {
501 bool isAdd = true;
502 if ((int64_t)Value < 0) {
503 Value = -Value;
504 isAdd = false;
505 }
506 if (Value >= 4096) {
507 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
508 return 0;
509 }
510 Value |= isAdd << 23;
511
512 // Same addressing mode as fixup_arm_pcrel_10,
513 // but with 16-bit halfwords swapped.
514 if (Kind == ARM::fixup_t2_ldst_pcrel_12)
515 return swapHalfWords(Value, Endian == support::little);
516
517 return Value;
518 }
519 case ARM::fixup_arm_adr_pcrel_12: {
520 // ARM PC-relative values are offset by 8.
521 Value -= 8;
522 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
523 if ((int64_t)Value < 0) {
524 Value = -Value;
525 opc = 2; // 0b0010
526 }
527 if (ARM_AM::getSOImmVal(Value) == -1) {
528 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
529 return 0;
530 }
531 // Encode the immediate and shift the opcode into place.
532 return ARM_AM::getSOImmVal(Value) | (opc << 21);
533 }
534
535 case ARM::fixup_t2_adr_pcrel_12: {
536 Value -= 4;
537 unsigned opc = 0;
538 if ((int64_t)Value < 0) {
539 Value = -Value;
540 opc = 5;
541 }
542
543 uint32_t out = (opc << 21);
544 out |= (Value & 0x800) << 15;
545 out |= (Value & 0x700) << 4;
546 out |= (Value & 0x0FF);
547
548 return swapHalfWords(out, Endian == support::little);
549 }
550
551 case ARM::fixup_arm_condbranch:
552 case ARM::fixup_arm_uncondbranch:
553 case ARM::fixup_arm_uncondbl:
554 case ARM::fixup_arm_condbl:
555 case ARM::fixup_arm_blx:
556 // These values don't encode the low two bits since they're always zero.
557 // Offset by 8 just as above.
558 if (const MCSymbolRefExpr *SRE =
559 dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
560 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
561 return 0;
562 return 0xffffff & ((Value - 8) >> 2);
563 case ARM::fixup_t2_uncondbranch: {
564 Value = Value - 4;
565 if (!isInt<25>(Value)) {
566 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
567 return 0;
568 }
569
570 Value >>= 1; // Low bit is not encoded.
571
572 uint32_t out = 0;
573 bool I = Value & 0x800000;
574 bool J1 = Value & 0x400000;
575 bool J2 = Value & 0x200000;
576 J1 ^= I;
577 J2 ^= I;
578
579 out |= I << 26; // S bit
580 out |= !J1 << 13; // J1 bit
581 out |= !J2 << 11; // J2 bit
582 out |= (Value & 0x1FF800) << 5; // imm6 field
583 out |= (Value & 0x0007FF); // imm11 field
584
585 return swapHalfWords(out, Endian == support::little);
586 }
587 case ARM::fixup_t2_condbranch: {
588 Value = Value - 4;
589 if (!isInt<21>(Value)) {
590 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
591 return 0;
592 }
593
594 Value >>= 1; // Low bit is not encoded.
595
596 uint64_t out = 0;
597 out |= (Value & 0x80000) << 7; // S bit
598 out |= (Value & 0x40000) >> 7; // J2 bit
599 out |= (Value & 0x20000) >> 4; // J1 bit
600 out |= (Value & 0x1F800) << 5; // imm6 field
601 out |= (Value & 0x007FF); // imm11 field
602
603 return swapHalfWords(out, Endian == support::little);
604 }
605 case ARM::fixup_arm_thumb_bl: {
606 if (!isInt<25>(Value - 4) ||
607 (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
608 !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
609 !STI->getFeatureBits()[ARM::HasV6MOps] &&
610 !isInt<23>(Value - 4))) {
611 Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
612 return 0;
613 }
614
615 // The value doesn't encode the low bit (always zero) and is offset by
616 // four. The 32-bit immediate value is encoded as
617 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
618 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
619 // The value is encoded into disjoint bit positions in the destination
620 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
621 // J = either J1 or J2 bit
622 //
623 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
624 //
625 // Note that the halfwords are stored high first, low second; so we need
626 // to transpose the fixup value here to map properly.
627 uint32_t offset = (Value - 4) >> 1;
628 uint32_t signBit = (offset & 0x800000) >> 23;
629 uint32_t I1Bit = (offset & 0x400000) >> 22;
630 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
631 uint32_t I2Bit = (offset & 0x200000) >> 21;
632 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
633 uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
634 uint32_t imm11Bits = (offset & 0x000007FF);
635
636 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
637 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
638 (uint16_t)imm11Bits);
639 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
640 }
641 case ARM::fixup_arm_thumb_blx: {
642 // The value doesn't encode the low two bits (always zero) and is offset by
643 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
644 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
645 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
646 // The value is encoded into disjoint bit positions in the destination
647 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
648 // J = either J1 or J2 bit, 0 = zero.
649 //
650 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
651 //
652 // Note that the halfwords are stored high first, low second; so we need
653 // to transpose the fixup value here to map properly.
654 if (Value % 4 != 0) {
655 Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
656 return 0;
657 }
658
659 uint32_t offset = (Value - 4) >> 2;
660 if (const MCSymbolRefExpr *SRE =
661 dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
662 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
663 offset = 0;
664 uint32_t signBit = (offset & 0x400000) >> 22;
665 uint32_t I1Bit = (offset & 0x200000) >> 21;
666 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
667 uint32_t I2Bit = (offset & 0x100000) >> 20;
668 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
669 uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
670 uint32_t imm10LBits = (offset & 0x3FF);
671
672 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
673 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
674 ((uint16_t)imm10LBits) << 1);
675 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
676 }
677 case ARM::fixup_thumb_adr_pcrel_10:
678 case ARM::fixup_arm_thumb_cp:
679 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
680 // could have an error on our hands.
681 assert(STI != nullptr);
682 if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
683 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
684 if (FixupDiagnostic) {
685 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
686 return 0;
687 }
688 }
689 // Offset by 4, and don't encode the low two bits.
690 return ((Value - 4) >> 2) & 0xff;
691 case ARM::fixup_arm_thumb_cb: {
692 // CB instructions can only branch to offsets in [4, 126] in multiples of 2
693 // so ensure that the raw value LSB is zero and it lies in [2, 130].
694 // An offset of 2 will be relaxed to a NOP.
695 if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
696 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
697 return 0;
698 }
699 // Offset by 4 and don't encode the lower bit, which is always 0.
700 // FIXME: diagnose if no Thumb2
701 uint32_t Binary = (Value - 4) >> 1;
702 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
703 }
704 case ARM::fixup_arm_thumb_br:
705 // Offset by 4 and don't encode the lower bit, which is always 0.
706 assert(STI != nullptr);
707 if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
708 !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
709 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
710 if (FixupDiagnostic) {
711 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
712 return 0;
713 }
714 }
715 return ((Value - 4) >> 1) & 0x7ff;
716 case ARM::fixup_arm_thumb_bcc:
717 // Offset by 4 and don't encode the lower bit, which is always 0.
718 assert(STI != nullptr);
719 if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
720 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
721 if (FixupDiagnostic) {
722 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
723 return 0;
724 }
725 }
726 return ((Value - 4) >> 1) & 0xff;
727 case ARM::fixup_arm_pcrel_10_unscaled: {
728 Value = Value - 8; // ARM fixups offset by an additional word and don't
729 // need to adjust for the half-word ordering.
730 bool isAdd = true;
731 if ((int64_t)Value < 0) {
732 Value = -Value;
733 isAdd = false;
734 }
735 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
736 if (Value >= 256) {
737 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
738 return 0;
739 }
740 Value = (Value & 0xf) | ((Value & 0xf0) << 4);
741 return Value | (isAdd << 23);
742 }
743 case ARM::fixup_arm_pcrel_10:
744 Value = Value - 4; // ARM fixups offset by an additional word and don't
745 // need to adjust for the half-word ordering.
746 [[fallthrough]];
747 case ARM::fixup_t2_pcrel_10: {
748 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
749 Value = Value - 4;
750 bool isAdd = true;
751 if ((int64_t)Value < 0) {
752 Value = -Value;
753 isAdd = false;
754 }
755 // These values don't encode the low two bits since they're always zero.
756 Value >>= 2;
757 if (Value >= 256) {
758 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
759 return 0;
760 }
761 Value |= isAdd << 23;
762
763 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
764 // swapped.
765 if (Kind == ARM::fixup_t2_pcrel_10)
766 return swapHalfWords(Value, Endian == support::little);
767
768 return Value;
769 }
770 case ARM::fixup_arm_pcrel_9:
771 Value = Value - 4; // ARM fixups offset by an additional word and don't
772 // need to adjust for the half-word ordering.
773 [[fallthrough]];
774 case ARM::fixup_t2_pcrel_9: {
775 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
776 Value = Value - 4;
777 bool isAdd = true;
778 if ((int64_t)Value < 0) {
779 Value = -Value;
780 isAdd = false;
781 }
782 // These values don't encode the low bit since it's always zero.
783 if (Value & 1) {
784 Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
785 return 0;
786 }
787 Value >>= 1;
788 if (Value >= 256) {
789 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
790 return 0;
791 }
792 Value |= isAdd << 23;
793
794 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
795 // swapped.
796 if (Kind == ARM::fixup_t2_pcrel_9)
797 return swapHalfWords(Value, Endian == support::little);
798
799 return Value;
800 }
801 case ARM::fixup_arm_mod_imm:
802 Value = ARM_AM::getSOImmVal(Value);
803 if (Value >> 12) {
804 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
805 return 0;
806 }
807 return Value;
808 case ARM::fixup_t2_so_imm: {
809 Value = ARM_AM::getT2SOImmVal(Value);
810 if ((int64_t)Value < 0) {
811 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
812 return 0;
813 }
814 // Value will contain a 12-bit value broken up into a 4-bit shift in bits
815 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
816 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
817 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
818 // half-word.
819 uint64_t EncValue = 0;
820 EncValue |= (Value & 0x800) << 15;
821 EncValue |= (Value & 0x700) << 4;
822 EncValue |= (Value & 0xff);
823 return swapHalfWords(EncValue, Endian == support::little);
824 }
825 case ARM::fixup_bf_branch: {
826 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
827 if (FixupDiagnostic) {
828 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
829 return 0;
830 }
831 uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
832 return swapHalfWords(out, Endian == support::little);
833 }
834 case ARM::fixup_bf_target:
835 case ARM::fixup_bfl_target:
836 case ARM::fixup_bfc_target: {
837 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
838 if (FixupDiagnostic) {
839 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
840 return 0;
841 }
842 uint32_t out = 0;
843 uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
844 Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
845 out |= (((Value - 4) >> 1) & 0x1) << 11;
846 out |= (((Value - 4) >> 1) & 0x7fe);
847 out |= (((Value - 4) >> 1) & HighBitMask) << 5;
848 return swapHalfWords(out, Endian == support::little);
849 }
850 case ARM::fixup_bfcsel_else_target: {
851 // If this is a fixup of a branch future's else target then it should be a
852 // constant MCExpr representing the distance between the branch targetted
853 // and the instruction after that same branch.
854 Value = Target.getConstant();
855
856 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
857 if (FixupDiagnostic) {
858 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
859 return 0;
860 }
861 uint32_t out = ((Value >> 2) & 1) << 17;
862 return swapHalfWords(out, Endian == support::little);
863 }
864 case ARM::fixup_wls:
865 case ARM::fixup_le: {
866 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
867 if (FixupDiagnostic) {
868 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
869 return 0;
870 }
871 uint64_t real_value = Value - 4;
872 uint32_t out = 0;
873 if (Kind == ARM::fixup_le)
874 real_value = -real_value;
875 out |= ((real_value >> 1) & 0x1) << 11;
876 out |= ((real_value >> 1) & 0x7fe);
877 return swapHalfWords(out, Endian == support::little);
878 }
879 }
880 }
881
shouldForceRelocation(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target)882 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
883 const MCFixup &Fixup,
884 const MCValue &Target) {
885 const MCSymbolRefExpr *A = Target.getSymA();
886 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
887 const unsigned FixupKind = Fixup.getKind();
888 if (FixupKind >= FirstLiteralRelocationKind)
889 return true;
890 if (FixupKind == ARM::fixup_arm_thumb_bl) {
891 assert(Sym && "How did we resolve this?");
892
893 // If the symbol is external the linker will handle it.
894 // FIXME: Should we handle it as an optimization?
895
896 // If the symbol is out of range, produce a relocation and hope the
897 // linker can handle it. GNU AS produces an error in this case.
898 if (Sym->isExternal())
899 return true;
900 }
901 // Create relocations for unconditional branches to function symbols with
902 // different execution mode in ELF binaries.
903 if (Sym && Sym->isELF()) {
904 unsigned Type = cast<MCSymbolELF>(Sym)->getType();
905 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
906 if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
907 return true;
908 if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
909 FixupKind == ARM::fixup_arm_thumb_bl ||
910 FixupKind == ARM::fixup_t2_condbranch ||
911 FixupKind == ARM::fixup_t2_uncondbranch))
912 return true;
913 }
914 }
915 // We must always generate a relocation for BL/BLX instructions if we have
916 // a symbol to reference, as the linker relies on knowing the destination
917 // symbol's thumb-ness to get interworking right.
918 if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
919 FixupKind == ARM::fixup_arm_blx ||
920 FixupKind == ARM::fixup_arm_uncondbl ||
921 FixupKind == ARM::fixup_arm_condbl))
922 return true;
923 return false;
924 }
925
926 /// getFixupKindNumBytes - The number of bytes the fixup may change.
getFixupKindNumBytes(unsigned Kind)927 static unsigned getFixupKindNumBytes(unsigned Kind) {
928 switch (Kind) {
929 default:
930 llvm_unreachable("Unknown fixup kind!");
931
932 case FK_Data_1:
933 case ARM::fixup_arm_thumb_bcc:
934 case ARM::fixup_arm_thumb_cp:
935 case ARM::fixup_thumb_adr_pcrel_10:
936 return 1;
937
938 case FK_Data_2:
939 case ARM::fixup_arm_thumb_br:
940 case ARM::fixup_arm_thumb_cb:
941 case ARM::fixup_arm_mod_imm:
942 return 2;
943
944 case ARM::fixup_arm_pcrel_10_unscaled:
945 case ARM::fixup_arm_ldst_pcrel_12:
946 case ARM::fixup_arm_pcrel_10:
947 case ARM::fixup_arm_pcrel_9:
948 case ARM::fixup_arm_ldst_abs_12:
949 case ARM::fixup_arm_adr_pcrel_12:
950 case ARM::fixup_arm_uncondbl:
951 case ARM::fixup_arm_condbl:
952 case ARM::fixup_arm_blx:
953 case ARM::fixup_arm_condbranch:
954 case ARM::fixup_arm_uncondbranch:
955 return 3;
956
957 case FK_Data_4:
958 case ARM::fixup_t2_ldst_pcrel_12:
959 case ARM::fixup_t2_condbranch:
960 case ARM::fixup_t2_uncondbranch:
961 case ARM::fixup_t2_pcrel_10:
962 case ARM::fixup_t2_pcrel_9:
963 case ARM::fixup_t2_adr_pcrel_12:
964 case ARM::fixup_arm_thumb_bl:
965 case ARM::fixup_arm_thumb_blx:
966 case ARM::fixup_arm_movt_hi16:
967 case ARM::fixup_arm_movw_lo16:
968 case ARM::fixup_t2_movt_hi16:
969 case ARM::fixup_t2_movw_lo16:
970 case ARM::fixup_t2_so_imm:
971 case ARM::fixup_bf_branch:
972 case ARM::fixup_bf_target:
973 case ARM::fixup_bfl_target:
974 case ARM::fixup_bfc_target:
975 case ARM::fixup_bfcsel_else_target:
976 case ARM::fixup_wls:
977 case ARM::fixup_le:
978 return 4;
979
980 case FK_SecRel_2:
981 return 2;
982 case FK_SecRel_4:
983 return 4;
984 }
985 }
986
987 /// getFixupKindContainerSizeBytes - The number of bytes of the
988 /// container involved in big endian.
getFixupKindContainerSizeBytes(unsigned Kind)989 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
990 switch (Kind) {
991 default:
992 llvm_unreachable("Unknown fixup kind!");
993
994 case FK_Data_1:
995 return 1;
996 case FK_Data_2:
997 return 2;
998 case FK_Data_4:
999 return 4;
1000
1001 case ARM::fixup_arm_thumb_bcc:
1002 case ARM::fixup_arm_thumb_cp:
1003 case ARM::fixup_thumb_adr_pcrel_10:
1004 case ARM::fixup_arm_thumb_br:
1005 case ARM::fixup_arm_thumb_cb:
1006 // Instruction size is 2 bytes.
1007 return 2;
1008
1009 case ARM::fixup_arm_pcrel_10_unscaled:
1010 case ARM::fixup_arm_ldst_pcrel_12:
1011 case ARM::fixup_arm_pcrel_10:
1012 case ARM::fixup_arm_pcrel_9:
1013 case ARM::fixup_arm_adr_pcrel_12:
1014 case ARM::fixup_arm_uncondbl:
1015 case ARM::fixup_arm_condbl:
1016 case ARM::fixup_arm_blx:
1017 case ARM::fixup_arm_condbranch:
1018 case ARM::fixup_arm_uncondbranch:
1019 case ARM::fixup_t2_ldst_pcrel_12:
1020 case ARM::fixup_t2_condbranch:
1021 case ARM::fixup_t2_uncondbranch:
1022 case ARM::fixup_t2_pcrel_10:
1023 case ARM::fixup_t2_pcrel_9:
1024 case ARM::fixup_t2_adr_pcrel_12:
1025 case ARM::fixup_arm_thumb_bl:
1026 case ARM::fixup_arm_thumb_blx:
1027 case ARM::fixup_arm_movt_hi16:
1028 case ARM::fixup_arm_movw_lo16:
1029 case ARM::fixup_t2_movt_hi16:
1030 case ARM::fixup_t2_movw_lo16:
1031 case ARM::fixup_arm_mod_imm:
1032 case ARM::fixup_t2_so_imm:
1033 case ARM::fixup_bf_branch:
1034 case ARM::fixup_bf_target:
1035 case ARM::fixup_bfl_target:
1036 case ARM::fixup_bfc_target:
1037 case ARM::fixup_bfcsel_else_target:
1038 case ARM::fixup_wls:
1039 case ARM::fixup_le:
1040 // Instruction size is 4 bytes.
1041 return 4;
1042 }
1043 }
1044
applyFixup(const MCAssembler & Asm,const MCFixup & Fixup,const MCValue & Target,MutableArrayRef<char> Data,uint64_t Value,bool IsResolved,const MCSubtargetInfo * STI) const1045 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
1046 const MCValue &Target,
1047 MutableArrayRef<char> Data, uint64_t Value,
1048 bool IsResolved,
1049 const MCSubtargetInfo* STI) const {
1050 unsigned Kind = Fixup.getKind();
1051 if (Kind >= FirstLiteralRelocationKind)
1052 return;
1053 MCContext &Ctx = Asm.getContext();
1054 Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
1055 if (!Value)
1056 return; // Doesn't change encoding.
1057 const unsigned NumBytes = getFixupKindNumBytes(Kind);
1058
1059 unsigned Offset = Fixup.getOffset();
1060 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
1061
1062 // Used to point to big endian bytes.
1063 unsigned FullSizeBytes;
1064 if (Endian == support::big) {
1065 FullSizeBytes = getFixupKindContainerSizeBytes(Kind);
1066 assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
1067 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
1068 }
1069
1070 // For each byte of the fragment that the fixup touches, mask in the bits from
1071 // the fixup value. The Value has been "split up" into the appropriate
1072 // bitfields above.
1073 for (unsigned i = 0; i != NumBytes; ++i) {
1074 unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
1075 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
1076 }
1077 }
1078
1079 namespace CU {
1080
1081 /// Compact unwind encoding values.
1082 enum CompactUnwindEncodings {
1083 UNWIND_ARM_MODE_MASK = 0x0F000000,
1084 UNWIND_ARM_MODE_FRAME = 0x01000000,
1085 UNWIND_ARM_MODE_FRAME_D = 0x02000000,
1086 UNWIND_ARM_MODE_DWARF = 0x04000000,
1087
1088 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000,
1089
1090 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001,
1091 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002,
1092 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004,
1093
1094 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008,
1095 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010,
1096 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020,
1097 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040,
1098 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080,
1099
1100 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00,
1101
1102 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF
1103 };
1104
1105 } // end CU namespace
1106
1107 /// Generate compact unwind encoding for the function based on the CFI
1108 /// instructions. If the CFI instructions describe a frame that cannot be
1109 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1110 /// tells the runtime to fallback and unwind using dwarf.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const1111 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1112 ArrayRef<MCCFIInstruction> Instrs) const {
1113 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1114 // Only armv7k uses CFI based unwinding.
1115 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
1116 return 0;
1117 // No .cfi directives means no frame.
1118 if (Instrs.empty())
1119 return 0;
1120 // Start off assuming CFA is at SP+0.
1121 unsigned CFARegister = ARM::SP;
1122 int CFARegisterOffset = 0;
1123 // Mark savable registers as initially unsaved
1124 DenseMap<unsigned, int> RegOffsets;
1125 int FloatRegCount = 0;
1126 // Process each .cfi directive and build up compact unwind info.
1127 for (const MCCFIInstruction &Inst : Instrs) {
1128 unsigned Reg;
1129 switch (Inst.getOperation()) {
1130 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
1131 CFARegisterOffset = Inst.getOffset();
1132 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1133 break;
1134 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
1135 CFARegisterOffset = Inst.getOffset();
1136 break;
1137 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
1138 CFARegister = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1139 break;
1140 case MCCFIInstruction::OpOffset: // DW_CFA_offset
1141 Reg = *MRI.getLLVMRegNum(Inst.getRegister(), true);
1142 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
1143 RegOffsets[Reg] = Inst.getOffset();
1144 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1145 RegOffsets[Reg] = Inst.getOffset();
1146 ++FloatRegCount;
1147 } else {
1148 DEBUG_WITH_TYPE("compact-unwind",
1149 llvm::dbgs() << ".cfi_offset on unknown register="
1150 << Inst.getRegister() << "\n");
1151 return CU::UNWIND_ARM_MODE_DWARF;
1152 }
1153 break;
1154 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1155 // Ignore
1156 break;
1157 default:
1158 // Directive not convertable to compact unwind, bail out.
1159 DEBUG_WITH_TYPE("compact-unwind",
1160 llvm::dbgs()
1161 << "CFI directive not compatiable with comact "
1162 "unwind encoding, opcode=" << Inst.getOperation()
1163 << "\n");
1164 return CU::UNWIND_ARM_MODE_DWARF;
1165 break;
1166 }
1167 }
1168
1169 // If no frame set up, return no unwind info.
1170 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1171 return 0;
1172
1173 // Verify standard frame (lr/r7) was used.
1174 if (CFARegister != ARM::R7) {
1175 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1176 << CFARegister
1177 << " instead of r7\n");
1178 return CU::UNWIND_ARM_MODE_DWARF;
1179 }
1180 int StackAdjust = CFARegisterOffset - 8;
1181 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1182 DEBUG_WITH_TYPE("compact-unwind",
1183 llvm::dbgs()
1184 << "LR not saved as standard frame, StackAdjust="
1185 << StackAdjust
1186 << ", CFARegisterOffset=" << CFARegisterOffset
1187 << ", lr save at offset=" << RegOffsets[14] << "\n");
1188 return CU::UNWIND_ARM_MODE_DWARF;
1189 }
1190 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1191 DEBUG_WITH_TYPE("compact-unwind",
1192 llvm::dbgs() << "r7 not saved as standard frame\n");
1193 return CU::UNWIND_ARM_MODE_DWARF;
1194 }
1195 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1196
1197 // If var-args are used, there may be a stack adjust required.
1198 switch (StackAdjust) {
1199 case 0:
1200 break;
1201 case 4:
1202 CompactUnwindEncoding |= 0x00400000;
1203 break;
1204 case 8:
1205 CompactUnwindEncoding |= 0x00800000;
1206 break;
1207 case 12:
1208 CompactUnwindEncoding |= 0x00C00000;
1209 break;
1210 default:
1211 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1212 << ".cfi_def_cfa stack adjust ("
1213 << StackAdjust << ") out of range\n");
1214 return CU::UNWIND_ARM_MODE_DWARF;
1215 }
1216
1217 // If r6 is saved, it must be right below r7.
1218 static struct {
1219 unsigned Reg;
1220 unsigned Encoding;
1221 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1222 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1223 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1224 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1225 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1226 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1227 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1228 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1229
1230 int CurOffset = -8 - StackAdjust;
1231 for (auto CSReg : GPRCSRegs) {
1232 auto Offset = RegOffsets.find(CSReg.Reg);
1233 if (Offset == RegOffsets.end())
1234 continue;
1235
1236 int RegOffset = Offset->second;
1237 if (RegOffset != CurOffset - 4) {
1238 DEBUG_WITH_TYPE("compact-unwind",
1239 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1240 << RegOffset << " but only supported at "
1241 << CurOffset << "\n");
1242 return CU::UNWIND_ARM_MODE_DWARF;
1243 }
1244 CompactUnwindEncoding |= CSReg.Encoding;
1245 CurOffset -= 4;
1246 }
1247
1248 // If no floats saved, we are done.
1249 if (FloatRegCount == 0)
1250 return CompactUnwindEncoding;
1251
1252 // Switch mode to include D register saving.
1253 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1254 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1255
1256 // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1257 // but needs coordination with the linker and libunwind.
1258 if (FloatRegCount > 4) {
1259 DEBUG_WITH_TYPE("compact-unwind",
1260 llvm::dbgs() << "unsupported number of D registers saved ("
1261 << FloatRegCount << ")\n");
1262 return CU::UNWIND_ARM_MODE_DWARF;
1263 }
1264
1265 // Floating point registers must either be saved sequentially, or we defer to
1266 // DWARF. No gaps allowed here so check that each saved d-register is
1267 // precisely where it should be.
1268 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1269 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1270 auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1271 if (Offset == RegOffsets.end()) {
1272 DEBUG_WITH_TYPE("compact-unwind",
1273 llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1274 << MRI.getName(FPRCSRegs[Idx])
1275 << " not saved\n");
1276 return CU::UNWIND_ARM_MODE_DWARF;
1277 } else if (Offset->second != CurOffset - 8) {
1278 DEBUG_WITH_TYPE("compact-unwind",
1279 llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1280 << MRI.getName(FPRCSRegs[Idx])
1281 << " saved at " << Offset->second
1282 << ", expected at " << CurOffset - 8
1283 << "\n");
1284 return CU::UNWIND_ARM_MODE_DWARF;
1285 }
1286 CurOffset -= 8;
1287 }
1288
1289 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1290 }
1291
createARMAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options,support::endianness Endian)1292 static MCAsmBackend *createARMAsmBackend(const Target &T,
1293 const MCSubtargetInfo &STI,
1294 const MCRegisterInfo &MRI,
1295 const MCTargetOptions &Options,
1296 support::endianness Endian) {
1297 const Triple &TheTriple = STI.getTargetTriple();
1298 switch (TheTriple.getObjectFormat()) {
1299 default:
1300 llvm_unreachable("unsupported object format");
1301 case Triple::MachO:
1302 return new ARMAsmBackendDarwin(T, STI, MRI);
1303 case Triple::COFF:
1304 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1305 return new ARMAsmBackendWinCOFF(T, STI.getTargetTriple().isThumb());
1306 case Triple::ELF:
1307 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1308 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1309 return new ARMAsmBackendELF(T, STI.getTargetTriple().isThumb(), OSABI,
1310 Endian);
1311 }
1312 }
1313
createARMLEAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options)1314 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1315 const MCSubtargetInfo &STI,
1316 const MCRegisterInfo &MRI,
1317 const MCTargetOptions &Options) {
1318 return createARMAsmBackend(T, STI, MRI, Options, support::little);
1319 }
1320
createARMBEAsmBackend(const Target & T,const MCSubtargetInfo & STI,const MCRegisterInfo & MRI,const MCTargetOptions & Options)1321 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1322 const MCSubtargetInfo &STI,
1323 const MCRegisterInfo &MRI,
1324 const MCTargetOptions &Options) {
1325 return createARMAsmBackend(T, STI, MRI, Options, support::big);
1326 }
1327