xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements a TargetTransformInfo analysis pass specific to the
11 // AMDGPU target machine. It uses the target's detailed information to provide
12 // more precise answers to certain TTI queries, while letting the target
13 // independent and default TTI implementations handle the rest.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "AMDGPUTargetTransformInfo.h"
18 #include "AMDGPUTargetMachine.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Support/KnownBits.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "AMDGPUtti"
28 
29 static cl::opt<unsigned> UnrollThresholdPrivate(
30   "amdgpu-unroll-threshold-private",
31   cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
32   cl::init(2700), cl::Hidden);
33 
34 static cl::opt<unsigned> UnrollThresholdLocal(
35   "amdgpu-unroll-threshold-local",
36   cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
37   cl::init(1000), cl::Hidden);
38 
39 static cl::opt<unsigned> UnrollThresholdIf(
40   "amdgpu-unroll-threshold-if",
41   cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
42   cl::init(200), cl::Hidden);
43 
44 static cl::opt<bool> UnrollRuntimeLocal(
45   "amdgpu-unroll-runtime-local",
46   cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
47   cl::init(true), cl::Hidden);
48 
49 static cl::opt<bool> UseLegacyDA(
50   "amdgpu-use-legacy-divergence-analysis",
51   cl::desc("Enable legacy divergence analysis for AMDGPU"),
52   cl::init(false), cl::Hidden);
53 
54 static cl::opt<unsigned> UnrollMaxBlockToAnalyze(
55     "amdgpu-unroll-max-block-to-analyze",
56     cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
57     cl::init(32), cl::Hidden);
58 
59 static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
60                                        cl::Hidden, cl::init(4000),
61                                        cl::desc("Cost of alloca argument"));
62 
63 // If the amount of scratch memory to eliminate exceeds our ability to allocate
64 // it into registers we gain nothing by aggressively inlining functions for that
65 // heuristic.
66 static cl::opt<unsigned>
67     ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
68                     cl::init(256),
69                     cl::desc("Maximum alloca size to use for inline cost"));
70 
71 // Inliner constraint to achieve reasonable compilation time.
72 static cl::opt<size_t> InlineMaxBB(
73     "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
74     cl::desc("Maximum number of BBs allowed in a function after inlining"
75              " (compile time constraint)"));
76 
dependsOnLocalPhi(const Loop * L,const Value * Cond,unsigned Depth=0)77 static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
78                               unsigned Depth = 0) {
79   const Instruction *I = dyn_cast<Instruction>(Cond);
80   if (!I)
81     return false;
82 
83   for (const Value *V : I->operand_values()) {
84     if (!L->contains(I))
85       continue;
86     if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
87       if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
88                   return SubLoop->contains(PHI); }))
89         return true;
90     } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
91       return true;
92   }
93   return false;
94 }
95 
AMDGPUTTIImpl(const AMDGPUTargetMachine * TM,const Function & F)96 AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
97     : BaseT(TM, F.getParent()->getDataLayout()),
98       TargetTriple(TM->getTargetTriple()),
99       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
100       TLI(ST->getTargetLowering()) {}
101 
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP)102 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
103                                             TTI::UnrollingPreferences &UP) {
104   const Function &F = *L->getHeader()->getParent();
105   UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
106   UP.MaxCount = std::numeric_limits<unsigned>::max();
107   UP.Partial = true;
108 
109   // Conditional branch in a loop back edge needs 3 additional exec
110   // manipulations in average.
111   UP.BEInsns += 3;
112 
113   // TODO: Do we want runtime unrolling?
114 
115   // Maximum alloca size than can fit registers. Reserve 16 registers.
116   const unsigned MaxAlloca = (256 - 16) * 4;
117   unsigned ThresholdPrivate = UnrollThresholdPrivate;
118   unsigned ThresholdLocal = UnrollThresholdLocal;
119 
120   // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
121   // provided threshold value as the default for Threshold
122   if (MDNode *LoopUnrollThreshold =
123           findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
124     if (LoopUnrollThreshold->getNumOperands() == 2) {
125       ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
126           LoopUnrollThreshold->getOperand(1));
127       if (MetaThresholdValue) {
128         // We will also use the supplied value for PartialThreshold for now.
129         // We may introduce additional metadata if it becomes necessary in the
130         // future.
131         UP.Threshold = MetaThresholdValue->getSExtValue();
132         UP.PartialThreshold = UP.Threshold;
133         ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
134         ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
135       }
136     }
137   }
138 
139   unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
140   for (const BasicBlock *BB : L->getBlocks()) {
141     const DataLayout &DL = BB->getModule()->getDataLayout();
142     unsigned LocalGEPsSeen = 0;
143 
144     if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
145                return SubLoop->contains(BB); }))
146         continue; // Block belongs to an inner loop.
147 
148     for (const Instruction &I : *BB) {
149       // Unroll a loop which contains an "if" statement whose condition
150       // defined by a PHI belonging to the loop. This may help to eliminate
151       // if region and potentially even PHI itself, saving on both divergence
152       // and registers used for the PHI.
153       // Add a small bonus for each of such "if" statements.
154       if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
155         if (UP.Threshold < MaxBoost && Br->isConditional()) {
156           BasicBlock *Succ0 = Br->getSuccessor(0);
157           BasicBlock *Succ1 = Br->getSuccessor(1);
158           if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
159               (L->contains(Succ1) && L->isLoopExiting(Succ1)))
160             continue;
161           if (dependsOnLocalPhi(L, Br->getCondition())) {
162             UP.Threshold += UnrollThresholdIf;
163             LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
164                               << " for loop:\n"
165                               << *L << " due to " << *Br << '\n');
166             if (UP.Threshold >= MaxBoost)
167               return;
168           }
169         }
170         continue;
171       }
172 
173       const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
174       if (!GEP)
175         continue;
176 
177       unsigned AS = GEP->getAddressSpace();
178       unsigned Threshold = 0;
179       if (AS == AMDGPUAS::PRIVATE_ADDRESS)
180         Threshold = ThresholdPrivate;
181       else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
182         Threshold = ThresholdLocal;
183       else
184         continue;
185 
186       if (UP.Threshold >= Threshold)
187         continue;
188 
189       if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
190         const Value *Ptr = GEP->getPointerOperand();
191         const AllocaInst *Alloca =
192             dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
193         if (!Alloca || !Alloca->isStaticAlloca())
194           continue;
195         Type *Ty = Alloca->getAllocatedType();
196         unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
197         if (AllocaSize > MaxAlloca)
198           continue;
199       } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
200                  AS == AMDGPUAS::REGION_ADDRESS) {
201         LocalGEPsSeen++;
202         // Inhibit unroll for local memory if we have seen addressing not to
203         // a variable, most likely we will be unable to combine it.
204         // Do not unroll too deep inner loops for local memory to give a chance
205         // to unroll an outer loop for a more important reason.
206         if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
207             (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
208              !isa<Argument>(GEP->getPointerOperand())))
209           continue;
210         LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
211                           << *L << " due to LDS use.\n");
212         UP.Runtime = UnrollRuntimeLocal;
213       }
214 
215       // Check if GEP depends on a value defined by this loop itself.
216       bool HasLoopDef = false;
217       for (const Value *Op : GEP->operands()) {
218         const Instruction *Inst = dyn_cast<Instruction>(Op);
219         if (!Inst || L->isLoopInvariant(Op))
220           continue;
221 
222         if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
223              return SubLoop->contains(Inst); }))
224           continue;
225         HasLoopDef = true;
226         break;
227       }
228       if (!HasLoopDef)
229         continue;
230 
231       // We want to do whatever we can to limit the number of alloca
232       // instructions that make it through to the code generator.  allocas
233       // require us to use indirect addressing, which is slow and prone to
234       // compiler bugs.  If this loop does an address calculation on an
235       // alloca ptr, then we want to use a higher than normal loop unroll
236       // threshold. This will give SROA a better chance to eliminate these
237       // allocas.
238       //
239       // We also want to have more unrolling for local memory to let ds
240       // instructions with different offsets combine.
241       //
242       // Don't use the maximum allowed value here as it will make some
243       // programs way too big.
244       UP.Threshold = Threshold;
245       LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
246                         << " for loop:\n"
247                         << *L << " due to " << *GEP << '\n');
248       if (UP.Threshold >= MaxBoost)
249         return;
250     }
251 
252     // If we got a GEP in a small BB from inner loop then increase max trip
253     // count to analyze for better estimation cost in unroll
254     if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
255       UP.MaxIterationsCountToAnalyze = 32;
256   }
257 }
258 
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)259 void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
260                                           TTI::PeelingPreferences &PP) {
261   BaseT::getPeelingPreferences(L, SE, PP);
262 }
263 
264 const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
265     // Codegen control options which don't matter.
266     AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
267     AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
268     AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
269     AMDGPU::FeatureUnalignedAccessMode,
270 
271     AMDGPU::FeatureAutoWaitcntBeforeBarrier,
272 
273     // Property of the kernel/environment which can't actually differ.
274     AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
275     AMDGPU::FeatureTrapHandler,
276 
277     // The default assumption needs to be ecc is enabled, but no directly
278     // exposed operations depend on it, so it can be safely inlined.
279     AMDGPU::FeatureSRAMECC,
280 
281     // Perf-tuning features
282     AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
283 
GCNTTIImpl(const AMDGPUTargetMachine * TM,const Function & F)284 GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
285     : BaseT(TM, F.getParent()->getDataLayout()),
286       ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
287       TLI(ST->getTargetLowering()), CommonTTI(TM, F),
288       IsGraphics(AMDGPU::isGraphics(F.getCallingConv())),
289       MaxVGPRs(ST->getMaxNumVGPRs(
290           std::max(ST->getWavesPerEU(F).first,
291                    ST->getWavesPerEUForWorkGroup(
292                        ST->getFlatWorkGroupSizes(F).second)))) {
293   AMDGPU::SIModeRegisterDefaults Mode(F);
294   HasFP32Denormals = Mode.allFP32Denormals();
295   HasFP64FP16Denormals = Mode.allFP64FP16Denormals();
296 }
297 
getHardwareNumberOfRegisters(bool Vec) const298 unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
299   // The concept of vector registers doesn't really exist. Some packed vector
300   // operations operate on the normal 32-bit registers.
301   return MaxVGPRs;
302 }
303 
getNumberOfRegisters(bool Vec) const304 unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
305   // This is really the number of registers to fill when vectorizing /
306   // interleaving loops, so we lie to avoid trying to use all registers.
307   return getHardwareNumberOfRegisters(Vec) >> 3;
308 }
309 
getNumberOfRegisters(unsigned RCID) const310 unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
311   const SIRegisterInfo *TRI = ST->getRegisterInfo();
312   const TargetRegisterClass *RC = TRI->getRegClass(RCID);
313   unsigned NumVGPRs = (TRI->getRegSizeInBits(*RC) + 31) / 32;
314   return getHardwareNumberOfRegisters(false) / NumVGPRs;
315 }
316 
317 TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const318 GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
319   switch (K) {
320   case TargetTransformInfo::RGK_Scalar:
321     return TypeSize::getFixed(32);
322   case TargetTransformInfo::RGK_FixedWidthVector:
323     return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
324   case TargetTransformInfo::RGK_ScalableVector:
325     return TypeSize::getScalable(0);
326   }
327   llvm_unreachable("Unsupported register kind");
328 }
329 
getMinVectorRegisterBitWidth() const330 unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
331   return 32;
332 }
333 
getMaximumVF(unsigned ElemWidth,unsigned Opcode) const334 unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
335   if (Opcode == Instruction::Load || Opcode == Instruction::Store)
336     return 32 * 4 / ElemWidth;
337   return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
338        : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
339        : 1;
340 }
341 
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy) const342 unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
343                                          unsigned ChainSizeInBytes,
344                                          VectorType *VecTy) const {
345   unsigned VecRegBitWidth = VF * LoadSize;
346   if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
347     // TODO: Support element-size less than 32bit?
348     return 128 / LoadSize;
349 
350   return VF;
351 }
352 
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy) const353 unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
354                                              unsigned ChainSizeInBytes,
355                                              VectorType *VecTy) const {
356   unsigned VecRegBitWidth = VF * StoreSize;
357   if (VecRegBitWidth > 128)
358     return 128 / StoreSize;
359 
360   return VF;
361 }
362 
getLoadStoreVecRegBitWidth(unsigned AddrSpace) const363 unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
364   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
365       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
366       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
367       AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
368     return 512;
369   }
370 
371   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
372     return 8 * ST->getMaxPrivateElementSize();
373 
374   // Common to flat, global, local and region. Assume for unknown addrspace.
375   return 128;
376 }
377 
isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const378 bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
379                                             Align Alignment,
380                                             unsigned AddrSpace) const {
381   // We allow vectorization of flat stores, even though we may need to decompose
382   // them later if they may access private memory. We don't have enough context
383   // here, and legalization can handle it.
384   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
385     return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
386       ChainSizeInBytes <= ST->getMaxPrivateElementSize();
387   }
388   return true;
389 }
390 
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const391 bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
392                                              Align Alignment,
393                                              unsigned AddrSpace) const {
394   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
395 }
396 
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const397 bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
398                                               Align Alignment,
399                                               unsigned AddrSpace) const {
400   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
401 }
402 
403 // FIXME: Really we would like to issue multiple 128-bit loads and stores per
404 // iteration. Should we report a larger size and let it legalize?
405 //
406 // FIXME: Should we use narrower types for local/region, or account for when
407 // unaligned access is legal?
408 //
409 // FIXME: This could use fine tuning and microbenchmarks.
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign) const410 Type *GCNTTIImpl::getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
411                                             unsigned SrcAddrSpace,
412                                             unsigned DestAddrSpace,
413                                             unsigned SrcAlign,
414                                             unsigned DestAlign) const {
415   unsigned MinAlign = std::min(SrcAlign, DestAlign);
416 
417   // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
418   // hardware into byte accesses. If you assume all alignments are equally
419   // probable, it's more efficient on average to use short accesses for this
420   // case.
421   if (MinAlign == 2)
422     return Type::getInt16Ty(Context);
423 
424   // Not all subtargets have 128-bit DS instructions, and we currently don't
425   // form them by default.
426   if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
427       SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
428       DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
429       DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
430     return FixedVectorType::get(Type::getInt32Ty(Context), 2);
431   }
432 
433   // Global memory works best with 16-byte accesses. Private memory will also
434   // hit this, although they'll be decomposed.
435   return FixedVectorType::get(Type::getInt32Ty(Context), 4);
436 }
437 
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAddrSpace,unsigned DestAddrSpace,unsigned SrcAlign,unsigned DestAlign) const438 void GCNTTIImpl::getMemcpyLoopResidualLoweringType(
439   SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
440   unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
441   unsigned SrcAlign, unsigned DestAlign) const {
442   assert(RemainingBytes < 16);
443 
444   unsigned MinAlign = std::min(SrcAlign, DestAlign);
445 
446   if (MinAlign != 2) {
447     Type *I64Ty = Type::getInt64Ty(Context);
448     while (RemainingBytes >= 8) {
449       OpsOut.push_back(I64Ty);
450       RemainingBytes -= 8;
451     }
452 
453     Type *I32Ty = Type::getInt32Ty(Context);
454     while (RemainingBytes >= 4) {
455       OpsOut.push_back(I32Ty);
456       RemainingBytes -= 4;
457     }
458   }
459 
460   Type *I16Ty = Type::getInt16Ty(Context);
461   while (RemainingBytes >= 2) {
462     OpsOut.push_back(I16Ty);
463     RemainingBytes -= 2;
464   }
465 
466   Type *I8Ty = Type::getInt8Ty(Context);
467   while (RemainingBytes) {
468     OpsOut.push_back(I8Ty);
469     --RemainingBytes;
470   }
471 }
472 
getMaxInterleaveFactor(unsigned VF)473 unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
474   // Disable unrolling if the loop is not vectorized.
475   // TODO: Enable this again.
476   if (VF == 1)
477     return 1;
478 
479   return 8;
480 }
481 
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info) const482 bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
483                                        MemIntrinsicInfo &Info) const {
484   switch (Inst->getIntrinsicID()) {
485   case Intrinsic::amdgcn_atomic_inc:
486   case Intrinsic::amdgcn_atomic_dec:
487   case Intrinsic::amdgcn_ds_ordered_add:
488   case Intrinsic::amdgcn_ds_ordered_swap:
489   case Intrinsic::amdgcn_ds_fadd:
490   case Intrinsic::amdgcn_ds_fmin:
491   case Intrinsic::amdgcn_ds_fmax: {
492     auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
493     auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
494     if (!Ordering || !Volatile)
495       return false; // Invalid.
496 
497     unsigned OrderingVal = Ordering->getZExtValue();
498     if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
499       return false;
500 
501     Info.PtrVal = Inst->getArgOperand(0);
502     Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
503     Info.ReadMem = true;
504     Info.WriteMem = true;
505     Info.IsVolatile = !Volatile->isNullValue();
506     return true;
507   }
508   default:
509     return false;
510   }
511 }
512 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::TargetCostKind CostKind,TTI::OperandValueKind Opd1Info,TTI::OperandValueKind Opd2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args,const Instruction * CxtI)513 InstructionCost GCNTTIImpl::getArithmeticInstrCost(
514     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
515     TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
516     TTI::OperandValueProperties Opd1PropInfo,
517     TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
518     const Instruction *CxtI) {
519   EVT OrigTy = TLI->getValueType(DL, Ty);
520   if (!OrigTy.isSimple()) {
521     // FIXME: We're having to query the throughput cost so that the basic
522     // implementation tries to generate legalize and scalarization costs. Maybe
523     // we could hoist the scalarization code here?
524     if (CostKind != TTI::TCK_CodeSize)
525       return BaseT::getArithmeticInstrCost(Opcode, Ty, TTI::TCK_RecipThroughput,
526                                            Opd1Info, Opd2Info, Opd1PropInfo,
527                                            Opd2PropInfo, Args, CxtI);
528     // Scalarization
529 
530     // Check if any of the operands are vector operands.
531     int ISD = TLI->InstructionOpcodeToISD(Opcode);
532     assert(ISD && "Invalid opcode");
533 
534     std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
535 
536     bool IsFloat = Ty->isFPOrFPVectorTy();
537     // Assume that floating point arithmetic operations cost twice as much as
538     // integer operations.
539     unsigned OpCost = (IsFloat ? 2 : 1);
540 
541     if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
542       // The operation is legal. Assume it costs 1.
543       // TODO: Once we have extract/insert subvector cost we need to use them.
544       return LT.first * OpCost;
545     }
546 
547     if (!TLI->isOperationExpand(ISD, LT.second)) {
548       // If the operation is custom lowered, then assume that the code is twice
549       // as expensive.
550       return LT.first * 2 * OpCost;
551     }
552 
553     // Else, assume that we need to scalarize this op.
554     // TODO: If one of the types get legalized by splitting, handle this
555     // similarly to what getCastInstrCost() does.
556     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
557       unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
558       InstructionCost Cost = getArithmeticInstrCost(
559           Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
560           Opd1PropInfo, Opd2PropInfo, Args, CxtI);
561       // Return the cost of multiple scalar invocation plus the cost of
562       // inserting and extracting the values.
563       SmallVector<Type *> Tys(Args.size(), Ty);
564       return getScalarizationOverhead(VTy, Args, Tys) + Num * Cost;
565     }
566 
567     // We don't know anything about this scalar instruction.
568     return OpCost;
569   }
570 
571   // Legalize the type.
572   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
573   int ISD = TLI->InstructionOpcodeToISD(Opcode);
574 
575   // Because we don't have any legal vector operations, but the legal types, we
576   // need to account for split vectors.
577   unsigned NElts = LT.second.isVector() ?
578     LT.second.getVectorNumElements() : 1;
579 
580   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
581 
582   switch (ISD) {
583   case ISD::SHL:
584   case ISD::SRL:
585   case ISD::SRA:
586     if (SLT == MVT::i64)
587       return get64BitInstrCost(CostKind) * LT.first * NElts;
588 
589     if (ST->has16BitInsts() && SLT == MVT::i16)
590       NElts = (NElts + 1) / 2;
591 
592     // i32
593     return getFullRateInstrCost() * LT.first * NElts;
594   case ISD::ADD:
595   case ISD::SUB:
596   case ISD::AND:
597   case ISD::OR:
598   case ISD::XOR:
599     if (SLT == MVT::i64) {
600       // and, or and xor are typically split into 2 VALU instructions.
601       return 2 * getFullRateInstrCost() * LT.first * NElts;
602     }
603 
604     if (ST->has16BitInsts() && SLT == MVT::i16)
605       NElts = (NElts + 1) / 2;
606 
607     return LT.first * NElts * getFullRateInstrCost();
608   case ISD::MUL: {
609     const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
610     if (SLT == MVT::i64) {
611       const int FullRateCost = getFullRateInstrCost();
612       return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
613     }
614 
615     if (ST->has16BitInsts() && SLT == MVT::i16)
616       NElts = (NElts + 1) / 2;
617 
618     // i32
619     return QuarterRateCost * NElts * LT.first;
620   }
621   case ISD::FMUL:
622     // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
623     // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
624     // fused operation.
625     if (CxtI && CxtI->hasOneUse())
626       if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
627         const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
628         if (OPC == ISD::FADD || OPC == ISD::FSUB) {
629           if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
630             return TargetTransformInfo::TCC_Free;
631           if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
632             return TargetTransformInfo::TCC_Free;
633 
634           // Estimate all types may be fused with contract/unsafe flags
635           const TargetOptions &Options = TLI->getTargetMachine().Options;
636           if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
637               Options.UnsafeFPMath ||
638               (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
639             return TargetTransformInfo::TCC_Free;
640         }
641       }
642     LLVM_FALLTHROUGH;
643   case ISD::FADD:
644   case ISD::FSUB:
645     if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
646       NElts = (NElts + 1) / 2;
647     if (SLT == MVT::f64)
648       return LT.first * NElts * get64BitInstrCost(CostKind);
649 
650     if (ST->has16BitInsts() && SLT == MVT::f16)
651       NElts = (NElts + 1) / 2;
652 
653     if (SLT == MVT::f32 || SLT == MVT::f16)
654       return LT.first * NElts * getFullRateInstrCost();
655     break;
656   case ISD::FDIV:
657   case ISD::FREM:
658     // FIXME: frem should be handled separately. The fdiv in it is most of it,
659     // but the current lowering is also not entirely correct.
660     if (SLT == MVT::f64) {
661       int Cost = 7 * get64BitInstrCost(CostKind) +
662                  getQuarterRateInstrCost(CostKind) +
663                  3 * getHalfRateInstrCost(CostKind);
664       // Add cost of workaround.
665       if (!ST->hasUsableDivScaleConditionOutput())
666         Cost += 3 * getFullRateInstrCost();
667 
668       return LT.first * Cost * NElts;
669     }
670 
671     if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
672       // TODO: This is more complicated, unsafe flags etc.
673       if ((SLT == MVT::f32 && !HasFP32Denormals) ||
674           (SLT == MVT::f16 && ST->has16BitInsts())) {
675         return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
676       }
677     }
678 
679     if (SLT == MVT::f16 && ST->has16BitInsts()) {
680       // 2 x v_cvt_f32_f16
681       // f32 rcp
682       // f32 fmul
683       // v_cvt_f16_f32
684       // f16 div_fixup
685       int Cost =
686           4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
687       return LT.first * Cost * NElts;
688     }
689 
690     if (SLT == MVT::f32 || SLT == MVT::f16) {
691       // 4 more v_cvt_* insts without f16 insts support
692       int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
693                  1 * getQuarterRateInstrCost(CostKind);
694 
695       if (!HasFP32Denormals) {
696         // FP mode switches.
697         Cost += 2 * getFullRateInstrCost();
698       }
699 
700       return LT.first * NElts * Cost;
701     }
702     break;
703   case ISD::FNEG:
704     // Use the backend' estimation. If fneg is not free each element will cost
705     // one additional instruction.
706     return TLI->isFNegFree(SLT) ? 0 : NElts;
707   default:
708     break;
709   }
710 
711   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
712                                        Opd1PropInfo, Opd2PropInfo, Args, CxtI);
713 }
714 
715 // Return true if there's a potential benefit from using v2f16/v2i16
716 // instructions for an intrinsic, even if it requires nontrivial legalization.
intrinsicHasPackedVectorBenefit(Intrinsic::ID ID)717 static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) {
718   switch (ID) {
719   case Intrinsic::fma: // TODO: fmuladd
720   // There's a small benefit to using vector ops in the legalized code.
721   case Intrinsic::round:
722   case Intrinsic::uadd_sat:
723   case Intrinsic::usub_sat:
724   case Intrinsic::sadd_sat:
725   case Intrinsic::ssub_sat:
726     return true;
727   default:
728     return false;
729   }
730 }
731 
732 InstructionCost
getIntrinsicInstrCost(const IntrinsicCostAttributes & ICA,TTI::TargetCostKind CostKind)733 GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
734                                   TTI::TargetCostKind CostKind) {
735   if (ICA.getID() == Intrinsic::fabs)
736     return 0;
737 
738   if (!intrinsicHasPackedVectorBenefit(ICA.getID()))
739     return BaseT::getIntrinsicInstrCost(ICA, CostKind);
740 
741   Type *RetTy = ICA.getReturnType();
742   EVT OrigTy = TLI->getValueType(DL, RetTy);
743   if (!OrigTy.isSimple()) {
744     if (CostKind != TTI::TCK_CodeSize)
745       return BaseT::getIntrinsicInstrCost(ICA, CostKind);
746 
747     // TODO: Combine these two logic paths.
748     if (ICA.isTypeBasedOnly())
749       return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
750 
751     unsigned RetVF =
752         (RetTy->isVectorTy() ? cast<FixedVectorType>(RetTy)->getNumElements()
753                              : 1);
754     const IntrinsicInst *I = ICA.getInst();
755     const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
756     FastMathFlags FMF = ICA.getFlags();
757     // Assume that we need to scalarize this intrinsic.
758 
759     // Compute the scalarization overhead based on Args for a vector
760     // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
761     // CostModel will pass a vector RetTy and VF is 1.
762     InstructionCost ScalarizationCost = InstructionCost::getInvalid();
763     if (RetVF > 1) {
764       ScalarizationCost = 0;
765       if (!RetTy->isVoidTy())
766         ScalarizationCost +=
767             getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
768       ScalarizationCost +=
769           getOperandsScalarizationOverhead(Args, ICA.getArgTypes());
770     }
771 
772     IntrinsicCostAttributes Attrs(ICA.getID(), RetTy, ICA.getArgTypes(), FMF, I,
773                                   ScalarizationCost);
774     return getIntrinsicInstrCost(Attrs, CostKind);
775   }
776 
777   // Legalize the type.
778   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
779 
780   unsigned NElts = LT.second.isVector() ?
781     LT.second.getVectorNumElements() : 1;
782 
783   MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
784 
785   if (SLT == MVT::f64)
786     return LT.first * NElts * get64BitInstrCost(CostKind);
787 
788   if ((ST->has16BitInsts() && SLT == MVT::f16) ||
789       (ST->hasPackedFP32Ops() && SLT == MVT::f32))
790     NElts = (NElts + 1) / 2;
791 
792   // TODO: Get more refined intrinsic costs?
793   unsigned InstRate = getQuarterRateInstrCost(CostKind);
794 
795   switch (ICA.getID()) {
796   case Intrinsic::fma:
797     InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
798                                    : getQuarterRateInstrCost(CostKind);
799     break;
800   case Intrinsic::uadd_sat:
801   case Intrinsic::usub_sat:
802   case Intrinsic::sadd_sat:
803   case Intrinsic::ssub_sat:
804     static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
805     if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
806       NElts = 1;
807     break;
808   }
809 
810   return LT.first * NElts * InstRate;
811 }
812 
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)813 InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode,
814                                            TTI::TargetCostKind CostKind,
815                                            const Instruction *I) {
816   assert((I == nullptr || I->getOpcode() == Opcode) &&
817          "Opcode should reflect passed instruction.");
818   const bool SCost =
819       (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency);
820   const int CBrCost = SCost ? 5 : 7;
821   switch (Opcode) {
822   case Instruction::Br: {
823     // Branch instruction takes about 4 slots on gfx900.
824     auto BI = dyn_cast_or_null<BranchInst>(I);
825     if (BI && BI->isUnconditional())
826       return SCost ? 1 : 4;
827     // Suppose conditional branch takes additional 3 exec manipulations
828     // instructions in average.
829     return CBrCost;
830   }
831   case Instruction::Switch: {
832     auto SI = dyn_cast_or_null<SwitchInst>(I);
833     // Each case (including default) takes 1 cmp + 1 cbr instructions in
834     // average.
835     return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
836   }
837   case Instruction::Ret:
838     return SCost ? 1 : 10;
839   case Instruction::PHI:
840     // TODO: 1. A prediction phi won't be eliminated?
841     //       2. Estimate data copy instructions in this case.
842     return 1;
843   }
844   return BaseT::getCFInstrCost(Opcode, CostKind, I);
845 }
846 
847 InstructionCost
getArithmeticReductionCost(unsigned Opcode,VectorType * Ty,bool IsPairwise,TTI::TargetCostKind CostKind)848 GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
849                                        bool IsPairwise,
850                                        TTI::TargetCostKind CostKind) {
851   EVT OrigTy = TLI->getValueType(DL, Ty);
852 
853   // Computes cost on targets that have packed math instructions(which support
854   // 16-bit types only).
855   if (IsPairwise ||
856       !ST->hasVOP3PInsts() ||
857       OrigTy.getScalarSizeInBits() != 16)
858     return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise, CostKind);
859 
860   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
861   return LT.first * getFullRateInstrCost();
862 }
863 
864 InstructionCost
getMinMaxReductionCost(VectorType * Ty,VectorType * CondTy,bool IsPairwise,bool IsUnsigned,TTI::TargetCostKind CostKind)865 GCNTTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
866                                    bool IsPairwise, bool IsUnsigned,
867                                    TTI::TargetCostKind CostKind) {
868   EVT OrigTy = TLI->getValueType(DL, Ty);
869 
870   // Computes cost on targets that have packed math instructions(which support
871   // 16-bit types only).
872   if (IsPairwise ||
873       !ST->hasVOP3PInsts() ||
874       OrigTy.getScalarSizeInBits() != 16)
875     return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned,
876                                          CostKind);
877 
878   std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
879   return LT.first * getHalfRateInstrCost(CostKind);
880 }
881 
getVectorInstrCost(unsigned Opcode,Type * ValTy,unsigned Index)882 InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
883                                                unsigned Index) {
884   switch (Opcode) {
885   case Instruction::ExtractElement:
886   case Instruction::InsertElement: {
887     unsigned EltSize
888       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
889     if (EltSize < 32) {
890       if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
891         return 0;
892       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
893     }
894 
895     // Extracts are just reads of a subregister, so are free. Inserts are
896     // considered free because we don't want to have any cost for scalarizing
897     // operations, and we don't have to copy into a different register class.
898 
899     // Dynamic indexing isn't free and is best avoided.
900     return Index == ~0u ? 2 : 0;
901   }
902   default:
903     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
904   }
905 }
906 
907 /// Analyze if the results of inline asm are divergent. If \p Indices is empty,
908 /// this is analyzing the collective result of all output registers. Otherwise,
909 /// this is only querying a specific result index if this returns multiple
910 /// registers in a struct.
isInlineAsmSourceOfDivergence(const CallInst * CI,ArrayRef<unsigned> Indices) const911 bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
912   const CallInst *CI, ArrayRef<unsigned> Indices) const {
913   // TODO: Handle complex extract indices
914   if (Indices.size() > 1)
915     return true;
916 
917   const DataLayout &DL = CI->getModule()->getDataLayout();
918   const SIRegisterInfo *TRI = ST->getRegisterInfo();
919   TargetLowering::AsmOperandInfoVector TargetConstraints =
920       TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
921 
922   const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
923 
924   int OutputIdx = 0;
925   for (auto &TC : TargetConstraints) {
926     if (TC.Type != InlineAsm::isOutput)
927       continue;
928 
929     // Skip outputs we don't care about.
930     if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
931       continue;
932 
933     TLI->ComputeConstraintToUse(TC, SDValue());
934 
935     Register AssignedReg;
936     const TargetRegisterClass *RC;
937     std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
938       TRI, TC.ConstraintCode, TC.ConstraintVT);
939     if (AssignedReg) {
940       // FIXME: This is a workaround for getRegForInlineAsmConstraint
941       // returning VS_32
942       RC = TRI->getPhysRegClass(AssignedReg);
943     }
944 
945     // For AGPR constraints null is returned on subtargets without AGPRs, so
946     // assume divergent for null.
947     if (!RC || !TRI->isSGPRClass(RC))
948       return true;
949   }
950 
951   return false;
952 }
953 
954 /// \returns true if the new GPU divergence analysis is enabled.
useGPUDivergenceAnalysis() const955 bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
956   return !UseLegacyDA;
957 }
958 
959 /// \returns true if the result of the value could potentially be
960 /// different across workitems in a wavefront.
isSourceOfDivergence(const Value * V) const961 bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
962   if (const Argument *A = dyn_cast<Argument>(V))
963     return !AMDGPU::isArgPassedInSGPR(A);
964 
965   // Loads from the private and flat address spaces are divergent, because
966   // threads can execute the load instruction with the same inputs and get
967   // different results.
968   //
969   // All other loads are not divergent, because if threads issue loads with the
970   // same arguments, they will always get the same result.
971   if (const LoadInst *Load = dyn_cast<LoadInst>(V))
972     return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
973            Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
974 
975   // Atomics are divergent because they are executed sequentially: when an
976   // atomic operation refers to the same address in each thread, then each
977   // thread after the first sees the value written by the previous thread as
978   // original value.
979   if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
980     return true;
981 
982   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
983     return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
984 
985   // Assume all function calls are a source of divergence.
986   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
987     if (CI->isInlineAsm())
988       return isInlineAsmSourceOfDivergence(CI);
989     return true;
990   }
991 
992   // Assume all function calls are a source of divergence.
993   if (isa<InvokeInst>(V))
994     return true;
995 
996   return false;
997 }
998 
isAlwaysUniform(const Value * V) const999 bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
1000   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
1001     switch (Intrinsic->getIntrinsicID()) {
1002     default:
1003       return false;
1004     case Intrinsic::amdgcn_readfirstlane:
1005     case Intrinsic::amdgcn_readlane:
1006     case Intrinsic::amdgcn_icmp:
1007     case Intrinsic::amdgcn_fcmp:
1008     case Intrinsic::amdgcn_ballot:
1009     case Intrinsic::amdgcn_if_break:
1010       return true;
1011     }
1012   }
1013 
1014   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
1015     if (CI->isInlineAsm())
1016       return !isInlineAsmSourceOfDivergence(CI);
1017     return false;
1018   }
1019 
1020   const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
1021   if (!ExtValue)
1022     return false;
1023 
1024   const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
1025   if (!CI)
1026     return false;
1027 
1028   if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
1029     switch (Intrinsic->getIntrinsicID()) {
1030     default:
1031       return false;
1032     case Intrinsic::amdgcn_if:
1033     case Intrinsic::amdgcn_else: {
1034       ArrayRef<unsigned> Indices = ExtValue->getIndices();
1035       return Indices.size() == 1 && Indices[0] == 1;
1036     }
1037     }
1038   }
1039 
1040   // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1041   // divergent for the overall struct return. We need to override it in the
1042   // case we're extracting an SGPR component here.
1043   if (CI->isInlineAsm())
1044     return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1045 
1046   return false;
1047 }
1048 
collectFlatAddressOperands(SmallVectorImpl<int> & OpIndexes,Intrinsic::ID IID) const1049 bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
1050                                             Intrinsic::ID IID) const {
1051   switch (IID) {
1052   case Intrinsic::amdgcn_atomic_inc:
1053   case Intrinsic::amdgcn_atomic_dec:
1054   case Intrinsic::amdgcn_ds_fadd:
1055   case Intrinsic::amdgcn_ds_fmin:
1056   case Intrinsic::amdgcn_ds_fmax:
1057   case Intrinsic::amdgcn_is_shared:
1058   case Intrinsic::amdgcn_is_private:
1059     OpIndexes.push_back(0);
1060     return true;
1061   default:
1062     return false;
1063   }
1064 }
1065 
rewriteIntrinsicWithAddressSpace(IntrinsicInst * II,Value * OldV,Value * NewV) const1066 Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II,
1067                                                     Value *OldV,
1068                                                     Value *NewV) const {
1069   auto IntrID = II->getIntrinsicID();
1070   switch (IntrID) {
1071   case Intrinsic::amdgcn_atomic_inc:
1072   case Intrinsic::amdgcn_atomic_dec:
1073   case Intrinsic::amdgcn_ds_fadd:
1074   case Intrinsic::amdgcn_ds_fmin:
1075   case Intrinsic::amdgcn_ds_fmax: {
1076     const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
1077     if (!IsVolatile->isZero())
1078       return nullptr;
1079     Module *M = II->getParent()->getParent()->getParent();
1080     Type *DestTy = II->getType();
1081     Type *SrcTy = NewV->getType();
1082     Function *NewDecl =
1083         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
1084     II->setArgOperand(0, NewV);
1085     II->setCalledFunction(NewDecl);
1086     return II;
1087   }
1088   case Intrinsic::amdgcn_is_shared:
1089   case Intrinsic::amdgcn_is_private: {
1090     unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1091       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
1092     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1093     LLVMContext &Ctx = NewV->getType()->getContext();
1094     ConstantInt *NewVal = (TrueAS == NewAS) ?
1095       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
1096     return NewVal;
1097   }
1098   case Intrinsic::ptrmask: {
1099     unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1100     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1101     Value *MaskOp = II->getArgOperand(1);
1102     Type *MaskTy = MaskOp->getType();
1103 
1104     bool DoTruncate = false;
1105 
1106     const GCNTargetMachine &TM =
1107         static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1108     if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1109       // All valid 64-bit to 32-bit casts work by chopping off the high
1110       // bits. Any masking only clearing the low bits will also apply in the new
1111       // address space.
1112       if (DL.getPointerSizeInBits(OldAS) != 64 ||
1113           DL.getPointerSizeInBits(NewAS) != 32)
1114         return nullptr;
1115 
1116       // TODO: Do we need to thread more context in here?
1117       KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1118       if (Known.countMinLeadingOnes() < 32)
1119         return nullptr;
1120 
1121       DoTruncate = true;
1122     }
1123 
1124     IRBuilder<> B(II);
1125     if (DoTruncate) {
1126       MaskTy = B.getInt32Ty();
1127       MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1128     }
1129 
1130     return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1131                              {NewV, MaskOp});
1132   }
1133   default:
1134     return nullptr;
1135   }
1136 }
1137 
getShuffleCost(TTI::ShuffleKind Kind,VectorType * VT,ArrayRef<int> Mask,int Index,VectorType * SubTp)1138 InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
1139                                            VectorType *VT, ArrayRef<int> Mask,
1140                                            int Index, VectorType *SubTp) {
1141   Kind = improveShuffleKindFromMask(Kind, Mask);
1142   if (ST->hasVOP3PInsts()) {
1143     if (cast<FixedVectorType>(VT)->getNumElements() == 2 &&
1144         DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1145       // With op_sel VOP3P instructions freely can access the low half or high
1146       // half of a register, so any swizzle is free.
1147 
1148       switch (Kind) {
1149       case TTI::SK_Broadcast:
1150       case TTI::SK_Reverse:
1151       case TTI::SK_PermuteSingleSrc:
1152         return 0;
1153       default:
1154         break;
1155       }
1156     }
1157   }
1158 
1159   return BaseT::getShuffleCost(Kind, VT, Mask, Index, SubTp);
1160 }
1161 
areInlineCompatible(const Function * Caller,const Function * Callee) const1162 bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
1163                                      const Function *Callee) const {
1164   const TargetMachine &TM = getTLI()->getTargetMachine();
1165   const GCNSubtarget *CallerST
1166     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1167   const GCNSubtarget *CalleeST
1168     = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1169 
1170   const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1171   const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1172 
1173   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1174   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1175   if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1176     return false;
1177 
1178   // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1179   // no way to support merge for backend defined attributes.
1180   AMDGPU::SIModeRegisterDefaults CallerMode(*Caller);
1181   AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee);
1182   if (!CallerMode.isInlineCompatible(CalleeMode))
1183     return false;
1184 
1185   if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1186       Callee->hasFnAttribute(Attribute::InlineHint))
1187     return true;
1188 
1189   // Hack to make compile times reasonable.
1190   if (InlineMaxBB) {
1191     // Single BB does not increase total BB amount.
1192     if (Callee->size() == 1)
1193       return true;
1194     size_t BBSize = Caller->size() + Callee->size() - 1;
1195     return BBSize <= InlineMaxBB;
1196   }
1197 
1198   return true;
1199 }
1200 
adjustInliningThreshold(const CallBase * CB) const1201 unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
1202   // If we have a pointer to private array passed into a function
1203   // it will not be optimized out, leaving scratch usage.
1204   // Increase the inline threshold to allow inlining in this case.
1205   uint64_t AllocaSize = 0;
1206   SmallPtrSet<const AllocaInst *, 8> AIVisited;
1207   for (Value *PtrArg : CB->args()) {
1208     PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1209     if (!Ty || (Ty->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS &&
1210                 Ty->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS))
1211       continue;
1212 
1213     PtrArg = getUnderlyingObject(PtrArg);
1214     if (const AllocaInst *AI = dyn_cast<AllocaInst>(PtrArg)) {
1215       if (!AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1216         continue;
1217       AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1218       // If the amount of stack memory is excessive we will not be able
1219       // to get rid of the scratch anyway, bail out.
1220       if (AllocaSize > ArgAllocaCutoff) {
1221         AllocaSize = 0;
1222         break;
1223       }
1224     }
1225   }
1226   if (AllocaSize)
1227     return ArgAllocaCost;
1228   return 0;
1229 }
1230 
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP)1231 void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1232                                          TTI::UnrollingPreferences &UP) {
1233   CommonTTI.getUnrollingPreferences(L, SE, UP);
1234 }
1235 
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)1236 void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1237                                        TTI::PeelingPreferences &PP) {
1238   CommonTTI.getPeelingPreferences(L, SE, PP);
1239 }
1240 
get64BitInstrCost(TTI::TargetCostKind CostKind) const1241 int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1242   return ST->hasFullRate64Ops()
1243              ? getFullRateInstrCost()
1244              : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1245                                       : getQuarterRateInstrCost(CostKind);
1246 }
1247 
R600TTIImpl(const AMDGPUTargetMachine * TM,const Function & F)1248 R600TTIImpl::R600TTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
1249     : BaseT(TM, F.getParent()->getDataLayout()),
1250       ST(static_cast<const R600Subtarget *>(TM->getSubtargetImpl(F))),
1251       TLI(ST->getTargetLowering()), CommonTTI(TM, F) {}
1252 
getHardwareNumberOfRegisters(bool Vec) const1253 unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
1254   return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
1255 }
1256 
getNumberOfRegisters(bool Vec) const1257 unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
1258   return getHardwareNumberOfRegisters(Vec);
1259 }
1260 
1261 TypeSize
getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const1262 R600TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
1263   return TypeSize::getFixed(32);
1264 }
1265 
getMinVectorRegisterBitWidth() const1266 unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
1267   return 32;
1268 }
1269 
getLoadStoreVecRegBitWidth(unsigned AddrSpace) const1270 unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
1271   if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
1272       AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
1273     return 128;
1274   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1275       AddrSpace == AMDGPUAS::REGION_ADDRESS)
1276     return 64;
1277   if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
1278     return 32;
1279 
1280   if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
1281       AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
1282       (AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
1283       AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
1284     return 128;
1285   llvm_unreachable("unhandled address space");
1286 }
1287 
isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const1288 bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
1289                                              Align Alignment,
1290                                              unsigned AddrSpace) const {
1291   // We allow vectorization of flat stores, even though we may need to decompose
1292   // them later if they may access private memory. We don't have enough context
1293   // here, and legalization can handle it.
1294   return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
1295 }
1296 
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const1297 bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1298                                               Align Alignment,
1299                                               unsigned AddrSpace) const {
1300   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1301 }
1302 
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,Align Alignment,unsigned AddrSpace) const1303 bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1304                                                Align Alignment,
1305                                                unsigned AddrSpace) const {
1306   return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
1307 }
1308 
getMaxInterleaveFactor(unsigned VF)1309 unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
1310   // Disable unrolling if the loop is not vectorized.
1311   // TODO: Enable this again.
1312   if (VF == 1)
1313     return 1;
1314 
1315   return 8;
1316 }
1317 
getCFInstrCost(unsigned Opcode,TTI::TargetCostKind CostKind,const Instruction * I)1318 InstructionCost R600TTIImpl::getCFInstrCost(unsigned Opcode,
1319                                             TTI::TargetCostKind CostKind,
1320                                             const Instruction *I) {
1321   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
1322     return Opcode == Instruction::PHI ? 0 : 1;
1323 
1324   // XXX - For some reason this isn't called for switch.
1325   switch (Opcode) {
1326   case Instruction::Br:
1327   case Instruction::Ret:
1328     return 10;
1329   default:
1330     return BaseT::getCFInstrCost(Opcode, CostKind, I);
1331   }
1332 }
1333 
getVectorInstrCost(unsigned Opcode,Type * ValTy,unsigned Index)1334 InstructionCost R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
1335                                                 unsigned Index) {
1336   switch (Opcode) {
1337   case Instruction::ExtractElement:
1338   case Instruction::InsertElement: {
1339     unsigned EltSize
1340       = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
1341     if (EltSize < 32) {
1342       return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1343     }
1344 
1345     // Extracts are just reads of a subregister, so are free. Inserts are
1346     // considered free because we don't want to have any cost for scalarizing
1347     // operations, and we don't have to copy into a different register class.
1348 
1349     // Dynamic indexing isn't free and is best avoided.
1350     return Index == ~0u ? 2 : 0;
1351   }
1352   default:
1353     return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
1354   }
1355 }
1356 
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,TTI::UnrollingPreferences & UP)1357 void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1358                                           TTI::UnrollingPreferences &UP) {
1359   CommonTTI.getUnrollingPreferences(L, SE, UP);
1360 }
1361 
getPeelingPreferences(Loop * L,ScalarEvolution & SE,TTI::PeelingPreferences & PP)1362 void R600TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
1363                                         TTI::PeelingPreferences &PP) {
1364   CommonTTI.getPeelingPreferences(L, SE, PP);
1365 }
1366