1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AMDGPU.h"
17 #include "GCNSubtarget.h"
18 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19 #include "llvm/CodeGen/TargetPassConfig.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstVisitor.h"
22 #include "llvm/IR/IntrinsicsAMDGPU.h"
23 #include "llvm/InitializePasses.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26
27 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
28
29 using namespace llvm;
30 using namespace llvm::AMDGPU;
31
32 namespace {
33
34 struct ReplacementInfo {
35 Instruction *I;
36 AtomicRMWInst::BinOp Op;
37 unsigned ValIdx;
38 bool ValDivergent;
39 };
40
41 class AMDGPUAtomicOptimizer : public FunctionPass,
42 public InstVisitor<AMDGPUAtomicOptimizer> {
43 private:
44 SmallVector<ReplacementInfo, 8> ToReplace;
45 const LegacyDivergenceAnalysis *DA;
46 const DataLayout *DL;
47 DominatorTree *DT;
48 const GCNSubtarget *ST;
49 bool IsPixelShader;
50
51 Value *buildReduction(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
52 Value *const Identity) const;
53 Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
54 Value *const Identity) const;
55 Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
56 void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
57 bool ValDivergent) const;
58
59 public:
60 static char ID;
61
AMDGPUAtomicOptimizer()62 AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
63
64 bool runOnFunction(Function &F) override;
65
getAnalysisUsage(AnalysisUsage & AU) const66 void getAnalysisUsage(AnalysisUsage &AU) const override {
67 AU.addPreserved<DominatorTreeWrapperPass>();
68 AU.addRequired<LegacyDivergenceAnalysis>();
69 AU.addRequired<TargetPassConfig>();
70 }
71
72 void visitAtomicRMWInst(AtomicRMWInst &I);
73 void visitIntrinsicInst(IntrinsicInst &I);
74 };
75
76 } // namespace
77
78 char AMDGPUAtomicOptimizer::ID = 0;
79
80 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
81
runOnFunction(Function & F)82 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
83 if (skipFunction(F)) {
84 return false;
85 }
86
87 DA = &getAnalysis<LegacyDivergenceAnalysis>();
88 DL = &F.getParent()->getDataLayout();
89 DominatorTreeWrapperPass *const DTW =
90 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
91 DT = DTW ? &DTW->getDomTree() : nullptr;
92 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
93 const TargetMachine &TM = TPC.getTM<TargetMachine>();
94 ST = &TM.getSubtarget<GCNSubtarget>(F);
95 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
96
97 visit(F);
98
99 const bool Changed = !ToReplace.empty();
100
101 for (ReplacementInfo &Info : ToReplace) {
102 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
103 }
104
105 ToReplace.clear();
106
107 return Changed;
108 }
109
visitAtomicRMWInst(AtomicRMWInst & I)110 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
111 // Early exit for unhandled address space atomic instructions.
112 switch (I.getPointerAddressSpace()) {
113 default:
114 return;
115 case AMDGPUAS::GLOBAL_ADDRESS:
116 case AMDGPUAS::LOCAL_ADDRESS:
117 break;
118 }
119
120 AtomicRMWInst::BinOp Op = I.getOperation();
121
122 switch (Op) {
123 default:
124 return;
125 case AtomicRMWInst::Add:
126 case AtomicRMWInst::Sub:
127 case AtomicRMWInst::And:
128 case AtomicRMWInst::Or:
129 case AtomicRMWInst::Xor:
130 case AtomicRMWInst::Max:
131 case AtomicRMWInst::Min:
132 case AtomicRMWInst::UMax:
133 case AtomicRMWInst::UMin:
134 break;
135 }
136
137 const unsigned PtrIdx = 0;
138 const unsigned ValIdx = 1;
139
140 // If the pointer operand is divergent, then each lane is doing an atomic
141 // operation on a different address, and we cannot optimize that.
142 if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) {
143 return;
144 }
145
146 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
147
148 // If the value operand is divergent, each lane is contributing a different
149 // value to the atomic calculation. We can only optimize divergent values if
150 // we have DPP available on our subtarget, and the atomic operation is 32
151 // bits.
152 if (ValDivergent &&
153 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
154 return;
155 }
156
157 // If we get here, we can optimize the atomic using a single wavefront-wide
158 // atomic operation to do the calculation for the entire wavefront, so
159 // remember the instruction so we can come back to it.
160 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
161
162 ToReplace.push_back(Info);
163 }
164
visitIntrinsicInst(IntrinsicInst & I)165 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
166 AtomicRMWInst::BinOp Op;
167
168 switch (I.getIntrinsicID()) {
169 default:
170 return;
171 case Intrinsic::amdgcn_buffer_atomic_add:
172 case Intrinsic::amdgcn_struct_buffer_atomic_add:
173 case Intrinsic::amdgcn_raw_buffer_atomic_add:
174 Op = AtomicRMWInst::Add;
175 break;
176 case Intrinsic::amdgcn_buffer_atomic_sub:
177 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
178 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
179 Op = AtomicRMWInst::Sub;
180 break;
181 case Intrinsic::amdgcn_buffer_atomic_and:
182 case Intrinsic::amdgcn_struct_buffer_atomic_and:
183 case Intrinsic::amdgcn_raw_buffer_atomic_and:
184 Op = AtomicRMWInst::And;
185 break;
186 case Intrinsic::amdgcn_buffer_atomic_or:
187 case Intrinsic::amdgcn_struct_buffer_atomic_or:
188 case Intrinsic::amdgcn_raw_buffer_atomic_or:
189 Op = AtomicRMWInst::Or;
190 break;
191 case Intrinsic::amdgcn_buffer_atomic_xor:
192 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
193 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
194 Op = AtomicRMWInst::Xor;
195 break;
196 case Intrinsic::amdgcn_buffer_atomic_smin:
197 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
198 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
199 Op = AtomicRMWInst::Min;
200 break;
201 case Intrinsic::amdgcn_buffer_atomic_umin:
202 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
203 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
204 Op = AtomicRMWInst::UMin;
205 break;
206 case Intrinsic::amdgcn_buffer_atomic_smax:
207 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
208 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
209 Op = AtomicRMWInst::Max;
210 break;
211 case Intrinsic::amdgcn_buffer_atomic_umax:
212 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
213 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
214 Op = AtomicRMWInst::UMax;
215 break;
216 }
217
218 const unsigned ValIdx = 0;
219
220 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
221
222 // If the value operand is divergent, each lane is contributing a different
223 // value to the atomic calculation. We can only optimize divergent values if
224 // we have DPP available on our subtarget, and the atomic operation is 32
225 // bits.
226 if (ValDivergent &&
227 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
228 return;
229 }
230
231 // If any of the other arguments to the intrinsic are divergent, we can't
232 // optimize the operation.
233 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
234 if (DA->isDivergentUse(&I.getOperandUse(Idx))) {
235 return;
236 }
237 }
238
239 // If we get here, we can optimize the atomic using a single wavefront-wide
240 // atomic operation to do the calculation for the entire wavefront, so
241 // remember the instruction so we can come back to it.
242 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
243
244 ToReplace.push_back(Info);
245 }
246
247 // Use the builder to create the non-atomic counterpart of the specified
248 // atomicrmw binary op.
buildNonAtomicBinOp(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * LHS,Value * RHS)249 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
250 Value *LHS, Value *RHS) {
251 CmpInst::Predicate Pred;
252
253 switch (Op) {
254 default:
255 llvm_unreachable("Unhandled atomic op");
256 case AtomicRMWInst::Add:
257 return B.CreateBinOp(Instruction::Add, LHS, RHS);
258 case AtomicRMWInst::Sub:
259 return B.CreateBinOp(Instruction::Sub, LHS, RHS);
260 case AtomicRMWInst::And:
261 return B.CreateBinOp(Instruction::And, LHS, RHS);
262 case AtomicRMWInst::Or:
263 return B.CreateBinOp(Instruction::Or, LHS, RHS);
264 case AtomicRMWInst::Xor:
265 return B.CreateBinOp(Instruction::Xor, LHS, RHS);
266
267 case AtomicRMWInst::Max:
268 Pred = CmpInst::ICMP_SGT;
269 break;
270 case AtomicRMWInst::Min:
271 Pred = CmpInst::ICMP_SLT;
272 break;
273 case AtomicRMWInst::UMax:
274 Pred = CmpInst::ICMP_UGT;
275 break;
276 case AtomicRMWInst::UMin:
277 Pred = CmpInst::ICMP_ULT;
278 break;
279 }
280 Value *Cond = B.CreateICmp(Pred, LHS, RHS);
281 return B.CreateSelect(Cond, LHS, RHS);
282 }
283
284 // Use the builder to create a reduction of V across the wavefront, with all
285 // lanes active, returning the same result in all lanes.
buildReduction(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * const Identity) const286 Value *AMDGPUAtomicOptimizer::buildReduction(IRBuilder<> &B,
287 AtomicRMWInst::BinOp Op, Value *V,
288 Value *const Identity) const {
289 Type *const Ty = V->getType();
290 Module *M = B.GetInsertBlock()->getModule();
291 Function *UpdateDPP =
292 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
293
294 // Reduce within each row of 16 lanes.
295 for (unsigned Idx = 0; Idx < 4; Idx++) {
296 V = buildNonAtomicBinOp(
297 B, Op, V,
298 B.CreateCall(UpdateDPP,
299 {Identity, V, B.getInt32(DPP::ROW_XMASK0 | 1 << Idx),
300 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
301 }
302
303 // Reduce within each pair of rows (i.e. 32 lanes).
304 assert(ST->hasPermLaneX16());
305 V = buildNonAtomicBinOp(
306 B, Op, V,
307 B.CreateIntrinsic(
308 Intrinsic::amdgcn_permlanex16, {},
309 {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()}));
310
311 if (ST->isWave32())
312 return V;
313
314 if (ST->hasPermLane64()) {
315 // Reduce across the upper and lower 32 lanes.
316 return buildNonAtomicBinOp(
317 B, Op, V, B.CreateIntrinsic(Intrinsic::amdgcn_permlane64, {}, V));
318 }
319
320 // Pick an arbitrary lane from 0..31 and an arbitrary lane from 32..63 and
321 // combine them with a scalar operation.
322 Function *ReadLane =
323 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
324 Value *const Lane0 = B.CreateCall(ReadLane, {V, B.getInt32(0)});
325 Value *const Lane32 = B.CreateCall(ReadLane, {V, B.getInt32(32)});
326 return buildNonAtomicBinOp(B, Op, Lane0, Lane32);
327 }
328
329 // Use the builder to create an inclusive scan of V across the wavefront, with
330 // all lanes active.
buildScan(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * const Identity) const331 Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
332 Value *V, Value *const Identity) const {
333 Type *const Ty = V->getType();
334 Module *M = B.GetInsertBlock()->getModule();
335 Function *UpdateDPP =
336 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
337
338 for (unsigned Idx = 0; Idx < 4; Idx++) {
339 V = buildNonAtomicBinOp(
340 B, Op, V,
341 B.CreateCall(UpdateDPP,
342 {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
343 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
344 }
345 if (ST->hasDPPBroadcasts()) {
346 // GFX9 has DPP row broadcast operations.
347 V = buildNonAtomicBinOp(
348 B, Op, V,
349 B.CreateCall(UpdateDPP,
350 {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
351 B.getInt32(0xf), B.getFalse()}));
352 V = buildNonAtomicBinOp(
353 B, Op, V,
354 B.CreateCall(UpdateDPP,
355 {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
356 B.getInt32(0xf), B.getFalse()}));
357 } else {
358 // On GFX10 all DPP operations are confined to a single row. To get cross-
359 // row operations we have to use permlane or readlane.
360
361 // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
362 // 48..63).
363 assert(ST->hasPermLaneX16());
364 Value *const PermX = B.CreateIntrinsic(
365 Intrinsic::amdgcn_permlanex16, {},
366 {V, V, B.getInt32(-1), B.getInt32(-1), B.getFalse(), B.getFalse()});
367 V = buildNonAtomicBinOp(
368 B, Op, V,
369 B.CreateCall(UpdateDPP,
370 {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
371 B.getInt32(0xa), B.getInt32(0xf), B.getFalse()}));
372 if (!ST->isWave32()) {
373 // Combine lane 31 into lanes 32..63.
374 Value *const Lane31 = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
375 {V, B.getInt32(31)});
376 V = buildNonAtomicBinOp(
377 B, Op, V,
378 B.CreateCall(UpdateDPP,
379 {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
380 B.getInt32(0xc), B.getInt32(0xf), B.getFalse()}));
381 }
382 }
383 return V;
384 }
385
386 // Use the builder to create a shift right of V across the wavefront, with all
387 // lanes active, to turn an inclusive scan into an exclusive scan.
buildShiftRight(IRBuilder<> & B,Value * V,Value * const Identity) const388 Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V,
389 Value *const Identity) const {
390 Type *const Ty = V->getType();
391 Module *M = B.GetInsertBlock()->getModule();
392 Function *UpdateDPP =
393 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
394
395 if (ST->hasDPPWavefrontShifts()) {
396 // GFX9 has DPP wavefront shift operations.
397 V = B.CreateCall(UpdateDPP,
398 {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
399 B.getInt32(0xf), B.getFalse()});
400 } else {
401 Function *ReadLane =
402 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
403 Function *WriteLane =
404 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {});
405
406 // On GFX10 all DPP operations are confined to a single row. To get cross-
407 // row operations we have to use permlane or readlane.
408 Value *Old = V;
409 V = B.CreateCall(UpdateDPP,
410 {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
411 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
412
413 // Copy the old lane 15 to the new lane 16.
414 V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
415 B.getInt32(16), V});
416
417 if (!ST->isWave32()) {
418 // Copy the old lane 31 to the new lane 32.
419 V = B.CreateCall(
420 WriteLane,
421 {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
422
423 // Copy the old lane 47 to the new lane 48.
424 V = B.CreateCall(
425 WriteLane,
426 {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
427 }
428 }
429
430 return V;
431 }
432
getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,unsigned BitWidth)433 static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
434 unsigned BitWidth) {
435 switch (Op) {
436 default:
437 llvm_unreachable("Unhandled atomic op");
438 case AtomicRMWInst::Add:
439 case AtomicRMWInst::Sub:
440 case AtomicRMWInst::Or:
441 case AtomicRMWInst::Xor:
442 case AtomicRMWInst::UMax:
443 return APInt::getMinValue(BitWidth);
444 case AtomicRMWInst::And:
445 case AtomicRMWInst::UMin:
446 return APInt::getMaxValue(BitWidth);
447 case AtomicRMWInst::Max:
448 return APInt::getSignedMinValue(BitWidth);
449 case AtomicRMWInst::Min:
450 return APInt::getSignedMaxValue(BitWidth);
451 }
452 }
453
buildMul(IRBuilder<> & B,Value * LHS,Value * RHS)454 static Value *buildMul(IRBuilder<> &B, Value *LHS, Value *RHS) {
455 const ConstantInt *CI = dyn_cast<ConstantInt>(LHS);
456 return (CI && CI->isOne()) ? RHS : B.CreateMul(LHS, RHS);
457 }
458
optimizeAtomic(Instruction & I,AtomicRMWInst::BinOp Op,unsigned ValIdx,bool ValDivergent) const459 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
460 AtomicRMWInst::BinOp Op,
461 unsigned ValIdx,
462 bool ValDivergent) const {
463 // Start building just before the instruction.
464 IRBuilder<> B(&I);
465
466 // If we are in a pixel shader, because of how we have to mask out helper
467 // lane invocations, we need to record the entry and exit BB's.
468 BasicBlock *PixelEntryBB = nullptr;
469 BasicBlock *PixelExitBB = nullptr;
470
471 // If we're optimizing an atomic within a pixel shader, we need to wrap the
472 // entire atomic operation in a helper-lane check. We do not want any helper
473 // lanes that are around only for the purposes of derivatives to take part
474 // in any cross-lane communication, and we use a branch on whether the lane is
475 // live to do this.
476 if (IsPixelShader) {
477 // Record I's original position as the entry block.
478 PixelEntryBB = I.getParent();
479
480 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
481 Instruction *const NonHelperTerminator =
482 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
483
484 // Record I's new position as the exit block.
485 PixelExitBB = I.getParent();
486
487 I.moveBefore(NonHelperTerminator);
488 B.SetInsertPoint(&I);
489 }
490
491 Type *const Ty = I.getType();
492 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
493 auto *const VecTy = FixedVectorType::get(B.getInt32Ty(), 2);
494
495 // This is the value in the atomic operation we need to combine in order to
496 // reduce the number of atomic operations.
497 Value *const V = I.getOperand(ValIdx);
498
499 // We need to know how many lanes are active within the wavefront, and we do
500 // this by doing a ballot of active lanes.
501 Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
502 CallInst *const Ballot =
503 B.CreateIntrinsic(Intrinsic::amdgcn_ballot, WaveTy, B.getTrue());
504
505 // We need to know how many lanes are active within the wavefront that are
506 // below us. If we counted each lane linearly starting from 0, a lane is
507 // below us only if its associated index was less than ours. We do this by
508 // using the mbcnt intrinsic.
509 Value *Mbcnt;
510 if (ST->isWave32()) {
511 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
512 {Ballot, B.getInt32(0)});
513 } else {
514 Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
515 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
516 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
517 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
518 {ExtractLo, B.getInt32(0)});
519 Mbcnt =
520 B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
521 }
522 Mbcnt = B.CreateIntCast(Mbcnt, Ty, false);
523
524 Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
525
526 Value *ExclScan = nullptr;
527 Value *NewV = nullptr;
528
529 const bool NeedResult = !I.use_empty();
530
531 // If we have a divergent value in each lane, we need to combine the value
532 // using DPP.
533 if (ValDivergent) {
534 // First we need to set all inactive invocations to the identity value, so
535 // that they can correctly contribute to the final result.
536 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
537
538 const AtomicRMWInst::BinOp ScanOp =
539 Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op;
540 if (!NeedResult && ST->hasPermLaneX16()) {
541 // On GFX10 the permlanex16 instruction helps us build a reduction without
542 // too many readlanes and writelanes, which are generally bad for
543 // performance.
544 NewV = buildReduction(B, ScanOp, NewV, Identity);
545 } else {
546 NewV = buildScan(B, ScanOp, NewV, Identity);
547 if (NeedResult)
548 ExclScan = buildShiftRight(B, NewV, Identity);
549
550 // Read the value from the last lane, which has accumulated the values of
551 // each active lane in the wavefront. This will be our new value which we
552 // will provide to the atomic operation.
553 Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
554 assert(TyBitWidth == 32);
555 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
556 {NewV, LastLaneIdx});
557 }
558
559 // Finally mark the readlanes in the WWM section.
560 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, NewV);
561 } else {
562 switch (Op) {
563 default:
564 llvm_unreachable("Unhandled atomic op");
565
566 case AtomicRMWInst::Add:
567 case AtomicRMWInst::Sub: {
568 // The new value we will be contributing to the atomic operation is the
569 // old value times the number of active lanes.
570 Value *const Ctpop = B.CreateIntCast(
571 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
572 NewV = buildMul(B, V, Ctpop);
573 break;
574 }
575
576 case AtomicRMWInst::And:
577 case AtomicRMWInst::Or:
578 case AtomicRMWInst::Max:
579 case AtomicRMWInst::Min:
580 case AtomicRMWInst::UMax:
581 case AtomicRMWInst::UMin:
582 // These operations with a uniform value are idempotent: doing the atomic
583 // operation multiple times has the same effect as doing it once.
584 NewV = V;
585 break;
586
587 case AtomicRMWInst::Xor:
588 // The new value we will be contributing to the atomic operation is the
589 // old value times the parity of the number of active lanes.
590 Value *const Ctpop = B.CreateIntCast(
591 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
592 NewV = buildMul(B, V, B.CreateAnd(Ctpop, 1));
593 break;
594 }
595 }
596
597 // We only want a single lane to enter our new control flow, and we do this
598 // by checking if there are any active lanes below us. Only one lane will
599 // have 0 active lanes below us, so that will be the only one to progress.
600 Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));
601
602 // Store I's original basic block before we split the block.
603 BasicBlock *const EntryBB = I.getParent();
604
605 // We need to introduce some new control flow to force a single lane to be
606 // active. We do this by splitting I's basic block at I, and introducing the
607 // new block such that:
608 // entry --> single_lane -\
609 // \------------------> exit
610 Instruction *const SingleLaneTerminator =
611 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
612
613 // Move the IR builder into single_lane next.
614 B.SetInsertPoint(SingleLaneTerminator);
615
616 // Clone the original atomic operation into single lane, replacing the
617 // original value with our newly created one.
618 Instruction *const NewI = I.clone();
619 B.Insert(NewI);
620 NewI->setOperand(ValIdx, NewV);
621
622 // Move the IR builder into exit next, and start inserting just before the
623 // original instruction.
624 B.SetInsertPoint(&I);
625
626 if (NeedResult) {
627 // Create a PHI node to get our new atomic result into the exit block.
628 PHINode *const PHI = B.CreatePHI(Ty, 2);
629 PHI->addIncoming(PoisonValue::get(Ty), EntryBB);
630 PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
631
632 // We need to broadcast the value who was the lowest active lane (the first
633 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
634 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
635 Value *BroadcastI = nullptr;
636
637 if (TyBitWidth == 64) {
638 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
639 Value *const ExtractHi =
640 B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty());
641 CallInst *const ReadFirstLaneLo =
642 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
643 CallInst *const ReadFirstLaneHi =
644 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
645 Value *const PartialInsert = B.CreateInsertElement(
646 PoisonValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
647 Value *const Insert =
648 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
649 BroadcastI = B.CreateBitCast(Insert, Ty);
650 } else if (TyBitWidth == 32) {
651
652 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
653 } else {
654 llvm_unreachable("Unhandled atomic bit width");
655 }
656
657 // Now that we have the result of our single atomic operation, we need to
658 // get our individual lane's slice into the result. We use the lane offset
659 // we previously calculated combined with the atomic result value we got
660 // from the first lane, to get our lane's index into the atomic result.
661 Value *LaneOffset = nullptr;
662 if (ValDivergent) {
663 LaneOffset =
664 B.CreateIntrinsic(Intrinsic::amdgcn_strict_wwm, Ty, ExclScan);
665 } else {
666 switch (Op) {
667 default:
668 llvm_unreachable("Unhandled atomic op");
669 case AtomicRMWInst::Add:
670 case AtomicRMWInst::Sub:
671 LaneOffset = buildMul(B, V, Mbcnt);
672 break;
673 case AtomicRMWInst::And:
674 case AtomicRMWInst::Or:
675 case AtomicRMWInst::Max:
676 case AtomicRMWInst::Min:
677 case AtomicRMWInst::UMax:
678 case AtomicRMWInst::UMin:
679 LaneOffset = B.CreateSelect(Cond, Identity, V);
680 break;
681 case AtomicRMWInst::Xor:
682 LaneOffset = buildMul(B, V, B.CreateAnd(Mbcnt, 1));
683 break;
684 }
685 }
686 Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
687
688 if (IsPixelShader) {
689 // Need a final PHI to reconverge to above the helper lane branch mask.
690 B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
691
692 PHINode *const PHI = B.CreatePHI(Ty, 2);
693 PHI->addIncoming(PoisonValue::get(Ty), PixelEntryBB);
694 PHI->addIncoming(Result, I.getParent());
695 I.replaceAllUsesWith(PHI);
696 } else {
697 // Replace the original atomic instruction with the new one.
698 I.replaceAllUsesWith(Result);
699 }
700 }
701
702 // And delete the original.
703 I.eraseFromParent();
704 }
705
706 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
707 "AMDGPU atomic optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)708 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
709 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
710 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
711 "AMDGPU atomic optimizations", false, false)
712
713 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
714 return new AMDGPUAtomicOptimizer();
715 }
716