1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI pass --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements a TargetTransformInfo analysis pass specific to the
11 /// AArch64 target machine. It uses the target's detailed information to provide
12 /// more precise answers to certain TTI queries, while letting the target
13 /// independent and default TTI implementations handle the rest.
14 ///
15 //===----------------------------------------------------------------------===//
16
17 #include "AArch64.h"
18 #include "AArch64TargetMachine.h"
19 #include "MCTargetDesc/AArch64AddressingModes.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Target/CostTable.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include <algorithm>
25 using namespace llvm;
26
27 #define DEBUG_TYPE "aarch64tti"
28
29 // Declare the pass initialization routine locally as target-specific passes
30 // don't have a target-wide initialization entry point, and so we rely on the
31 // pass constructor initialization.
32 namespace llvm {
33 void initializeAArch64TTIPass(PassRegistry &);
34 }
35
36 namespace {
37
38 class AArch64TTI final : public ImmutablePass, public TargetTransformInfo {
39 const AArch64TargetMachine *TM;
40 const AArch64Subtarget *ST;
41 const AArch64TargetLowering *TLI;
42
43 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
44 /// are set if the result needs to be inserted and/or extracted from vectors.
45 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
46
47 public:
AArch64TTI()48 AArch64TTI() : ImmutablePass(ID), TM(nullptr), ST(nullptr), TLI(nullptr) {
49 llvm_unreachable("This pass cannot be directly constructed");
50 }
51
AArch64TTI(const AArch64TargetMachine * TM)52 AArch64TTI(const AArch64TargetMachine *TM)
53 : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
54 TLI(TM->getSubtargetImpl()->getTargetLowering()) {
55 initializeAArch64TTIPass(*PassRegistry::getPassRegistry());
56 }
57
initializePass()58 void initializePass() override { pushTTIStack(this); }
59
getAnalysisUsage(AnalysisUsage & AU) const60 void getAnalysisUsage(AnalysisUsage &AU) const override {
61 TargetTransformInfo::getAnalysisUsage(AU);
62 }
63
64 /// Pass identification.
65 static char ID;
66
67 /// Provide necessary pointer adjustments for the two base classes.
getAdjustedAnalysisPointer(const void * ID)68 void *getAdjustedAnalysisPointer(const void *ID) override {
69 if (ID == &TargetTransformInfo::ID)
70 return (TargetTransformInfo *)this;
71 return this;
72 }
73
74 /// \name Scalar TTI Implementations
75 /// @{
76 unsigned getIntImmCost(int64_t Val) const;
77 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
78 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
79 Type *Ty) const override;
80 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
81 Type *Ty) const override;
82 PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
83
84 /// @}
85
86 /// \name Vector TTI Implementations
87 /// @{
88
getNumberOfRegisters(bool Vector) const89 unsigned getNumberOfRegisters(bool Vector) const override {
90 if (Vector) {
91 if (ST->hasNEON())
92 return 32;
93 return 0;
94 }
95 return 31;
96 }
97
getRegisterBitWidth(bool Vector) const98 unsigned getRegisterBitWidth(bool Vector) const override {
99 if (Vector) {
100 if (ST->hasNEON())
101 return 128;
102 return 0;
103 }
104 return 64;
105 }
106
107 unsigned getMaxInterleaveFactor() const override;
108
109 unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
110 override;
111
112 unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
113 override;
114
115 unsigned getArithmeticInstrCost(
116 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
117 OperandValueKind Opd2Info = OK_AnyValue,
118 OperandValueProperties Opd1PropInfo = OP_None,
119 OperandValueProperties Opd2PropInfo = OP_None) const override;
120
121 unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
122
123 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
124 override;
125
126 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
127 unsigned AddressSpace) const override;
128
129 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const override;
130
131 void getUnrollingPreferences(const Function *F, Loop *L,
132 UnrollingPreferences &UP) const override;
133
134
135 /// @}
136 };
137
138 } // end anonymous namespace
139
140 INITIALIZE_AG_PASS(AArch64TTI, TargetTransformInfo, "aarch64tti",
141 "AArch64 Target Transform Info", true, true, false)
142 char AArch64TTI::ID = 0;
143
144 ImmutablePass *
createAArch64TargetTransformInfoPass(const AArch64TargetMachine * TM)145 llvm::createAArch64TargetTransformInfoPass(const AArch64TargetMachine *TM) {
146 return new AArch64TTI(TM);
147 }
148
149 /// \brief Calculate the cost of materializing a 64-bit value. This helper
150 /// method might only calculate a fraction of a larger immediate. Therefore it
151 /// is valid to return a cost of ZERO.
getIntImmCost(int64_t Val) const152 unsigned AArch64TTI::getIntImmCost(int64_t Val) const {
153 // Check if the immediate can be encoded within an instruction.
154 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
155 return 0;
156
157 if (Val < 0)
158 Val = ~Val;
159
160 // Calculate how many moves we will need to materialize this constant.
161 unsigned LZ = countLeadingZeros((uint64_t)Val);
162 return (64 - LZ + 15) / 16;
163 }
164
165 /// \brief Calculate the cost of materializing the given constant.
getIntImmCost(const APInt & Imm,Type * Ty) const166 unsigned AArch64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
167 assert(Ty->isIntegerTy());
168
169 unsigned BitSize = Ty->getPrimitiveSizeInBits();
170 if (BitSize == 0)
171 return ~0U;
172
173 // Sign-extend all constants to a multiple of 64-bit.
174 APInt ImmVal = Imm;
175 if (BitSize & 0x3f)
176 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
177
178 // Split the constant into 64-bit chunks and calculate the cost for each
179 // chunk.
180 unsigned Cost = 0;
181 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
182 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
183 int64_t Val = Tmp.getSExtValue();
184 Cost += getIntImmCost(Val);
185 }
186 // We need at least one instruction to materialze the constant.
187 return std::max(1U, Cost);
188 }
189
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty) const190 unsigned AArch64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
191 const APInt &Imm, Type *Ty) const {
192 assert(Ty->isIntegerTy());
193
194 unsigned BitSize = Ty->getPrimitiveSizeInBits();
195 // There is no cost model for constants with a bit size of 0. Return TCC_Free
196 // here, so that constant hoisting will ignore this constant.
197 if (BitSize == 0)
198 return TCC_Free;
199
200 unsigned ImmIdx = ~0U;
201 switch (Opcode) {
202 default:
203 return TCC_Free;
204 case Instruction::GetElementPtr:
205 // Always hoist the base address of a GetElementPtr.
206 if (Idx == 0)
207 return 2 * TCC_Basic;
208 return TCC_Free;
209 case Instruction::Store:
210 ImmIdx = 0;
211 break;
212 case Instruction::Add:
213 case Instruction::Sub:
214 case Instruction::Mul:
215 case Instruction::UDiv:
216 case Instruction::SDiv:
217 case Instruction::URem:
218 case Instruction::SRem:
219 case Instruction::And:
220 case Instruction::Or:
221 case Instruction::Xor:
222 case Instruction::ICmp:
223 ImmIdx = 1;
224 break;
225 // Always return TCC_Free for the shift value of a shift instruction.
226 case Instruction::Shl:
227 case Instruction::LShr:
228 case Instruction::AShr:
229 if (Idx == 1)
230 return TCC_Free;
231 break;
232 case Instruction::Trunc:
233 case Instruction::ZExt:
234 case Instruction::SExt:
235 case Instruction::IntToPtr:
236 case Instruction::PtrToInt:
237 case Instruction::BitCast:
238 case Instruction::PHI:
239 case Instruction::Call:
240 case Instruction::Select:
241 case Instruction::Ret:
242 case Instruction::Load:
243 break;
244 }
245
246 if (Idx == ImmIdx) {
247 unsigned NumConstants = (BitSize + 63) / 64;
248 unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
249 return (Cost <= NumConstants * TCC_Basic)
250 ? static_cast<unsigned>(TCC_Free) : Cost;
251 }
252 return AArch64TTI::getIntImmCost(Imm, Ty);
253 }
254
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty) const255 unsigned AArch64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
256 const APInt &Imm, Type *Ty) const {
257 assert(Ty->isIntegerTy());
258
259 unsigned BitSize = Ty->getPrimitiveSizeInBits();
260 // There is no cost model for constants with a bit size of 0. Return TCC_Free
261 // here, so that constant hoisting will ignore this constant.
262 if (BitSize == 0)
263 return TCC_Free;
264
265 switch (IID) {
266 default:
267 return TCC_Free;
268 case Intrinsic::sadd_with_overflow:
269 case Intrinsic::uadd_with_overflow:
270 case Intrinsic::ssub_with_overflow:
271 case Intrinsic::usub_with_overflow:
272 case Intrinsic::smul_with_overflow:
273 case Intrinsic::umul_with_overflow:
274 if (Idx == 1) {
275 unsigned NumConstants = (BitSize + 63) / 64;
276 unsigned Cost = AArch64TTI::getIntImmCost(Imm, Ty);
277 return (Cost <= NumConstants * TCC_Basic)
278 ? static_cast<unsigned>(TCC_Free) : Cost;
279 }
280 break;
281 case Intrinsic::experimental_stackmap:
282 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
283 return TCC_Free;
284 break;
285 case Intrinsic::experimental_patchpoint_void:
286 case Intrinsic::experimental_patchpoint_i64:
287 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
288 return TCC_Free;
289 break;
290 }
291 return AArch64TTI::getIntImmCost(Imm, Ty);
292 }
293
294 AArch64TTI::PopcntSupportKind
getPopcntSupport(unsigned TyWidth) const295 AArch64TTI::getPopcntSupport(unsigned TyWidth) const {
296 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
297 if (TyWidth == 32 || TyWidth == 64)
298 return PSK_FastHardware;
299 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
300 return PSK_Software;
301 }
302
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src) const303 unsigned AArch64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
304 Type *Src) const {
305 int ISD = TLI->InstructionOpcodeToISD(Opcode);
306 assert(ISD && "Invalid opcode");
307
308 EVT SrcTy = TLI->getValueType(Src);
309 EVT DstTy = TLI->getValueType(Dst);
310
311 if (!SrcTy.isSimple() || !DstTy.isSimple())
312 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
313
314 static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
315 // LowerVectorINT_TO_FP:
316 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
317 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
318 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
319 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
320 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
321 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
322
323 // Complex: to v2f32
324 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
325 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
326 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
327 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
328 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
329 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
330
331 // Complex: to v4f32
332 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
333 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
334 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
335 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
336
337 // Complex: to v2f64
338 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
339 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
340 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
341 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
342 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
343 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
344
345
346 // LowerVectorFP_TO_INT
347 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
348 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
349 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
350 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
351 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
352 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
353
354 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
355 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
356 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
357 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
358 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
359 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
360 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
361
362 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
363 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
364 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
365 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
366 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
367
368 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
369 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
370 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
371 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
372 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
373 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
374 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
375 };
376
377 int Idx = ConvertCostTableLookup<MVT>(
378 ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
379 SrcTy.getSimpleVT());
380 if (Idx != -1)
381 return ConversionTbl[Idx].Cost;
382
383 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
384 }
385
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index) const386 unsigned AArch64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
387 unsigned Index) const {
388 assert(Val->isVectorTy() && "This must be a vector type");
389
390 if (Index != -1U) {
391 // Legalize the type.
392 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
393
394 // This type is legalized to a scalar type.
395 if (!LT.second.isVector())
396 return 0;
397
398 // The type may be split. Normalize the index to the new type.
399 unsigned Width = LT.second.getVectorNumElements();
400 Index = Index % Width;
401
402 // The element at index zero is already inside the vector.
403 if (Index == 0)
404 return 0;
405 }
406
407 // All other insert/extracts cost this much.
408 return 2;
409 }
410
getArithmeticInstrCost(unsigned Opcode,Type * Ty,OperandValueKind Opd1Info,OperandValueKind Opd2Info,OperandValueProperties Opd1PropInfo,OperandValueProperties Opd2PropInfo) const411 unsigned AArch64TTI::getArithmeticInstrCost(
412 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
413 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
414 OperandValueProperties Opd2PropInfo) const {
415 // Legalize the type.
416 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
417
418 int ISD = TLI->InstructionOpcodeToISD(Opcode);
419
420 if (ISD == ISD::SDIV &&
421 Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
422 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
423 // On AArch64, scalar signed division by constants power-of-two are
424 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
425 // The OperandValue properties many not be same as that of previous
426 // operation; conservatively assume OP_None.
427 unsigned Cost =
428 getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
429 TargetTransformInfo::OP_None,
430 TargetTransformInfo::OP_None);
431 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
432 TargetTransformInfo::OP_None,
433 TargetTransformInfo::OP_None);
434 Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
435 TargetTransformInfo::OP_None,
436 TargetTransformInfo::OP_None);
437 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
438 TargetTransformInfo::OP_None,
439 TargetTransformInfo::OP_None);
440 return Cost;
441 }
442
443 switch (ISD) {
444 default:
445 return TargetTransformInfo::getArithmeticInstrCost(
446 Opcode, Ty, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo);
447 case ISD::ADD:
448 case ISD::MUL:
449 case ISD::XOR:
450 case ISD::OR:
451 case ISD::AND:
452 // These nodes are marked as 'custom' for combining purposes only.
453 // We know that they are legal. See LowerAdd in ISelLowering.
454 return 1 * LT.first;
455 }
456 }
457
getAddressComputationCost(Type * Ty,bool IsComplex) const458 unsigned AArch64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
459 // Address computations in vectorized code with non-consecutive addresses will
460 // likely result in more instructions compared to scalar code where the
461 // computation can more often be merged into the index mode. The resulting
462 // extra micro-ops can significantly decrease throughput.
463 unsigned NumVectorInstToHideOverhead = 10;
464
465 if (Ty->isVectorTy() && IsComplex)
466 return NumVectorInstToHideOverhead;
467
468 // In many cases the address computation is not merged into the instruction
469 // addressing mode.
470 return 1;
471 }
472
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy) const473 unsigned AArch64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
474 Type *CondTy) const {
475
476 int ISD = TLI->InstructionOpcodeToISD(Opcode);
477 // We don't lower vector selects well that are wider than the register width.
478 if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
479 // We would need this many instructions to hide the scalarization happening.
480 unsigned AmortizationCost = 20;
481 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
482 VectorSelectTbl[] = {
483 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
484 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
485 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
486 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
487 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
488 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
489 };
490
491 EVT SelCondTy = TLI->getValueType(CondTy);
492 EVT SelValTy = TLI->getValueType(ValTy);
493 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
494 int Idx =
495 ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
496 SelValTy.getSimpleVT());
497 if (Idx != -1)
498 return VectorSelectTbl[Idx].Cost;
499 }
500 }
501 return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
502 }
503
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace) const504 unsigned AArch64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
505 unsigned Alignment,
506 unsigned AddressSpace) const {
507 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
508
509 if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
510 Src->getVectorElementType()->isIntegerTy(64)) {
511 // Unaligned stores are extremely inefficient. We don't split
512 // unaligned v2i64 stores because the negative impact that has shown in
513 // practice on inlined memcpy code.
514 // We make v2i64 stores expensive so that we will only vectorize if there
515 // are 6 other instructions getting vectorized.
516 unsigned AmortizationCost = 6;
517
518 return LT.first * 2 * AmortizationCost;
519 }
520
521 if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
522 Src->getVectorNumElements() < 8) {
523 // We scalarize the loads/stores because there is not v.4b register and we
524 // have to promote the elements to v.4h.
525 unsigned NumVecElts = Src->getVectorNumElements();
526 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
527 // We generate 2 instructions per vector element.
528 return NumVectorizableInstsToAmortize * NumVecElts * 2;
529 }
530
531 return LT.first;
532 }
533
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys) const534 unsigned AArch64TTI::getCostOfKeepingLiveOverCall(ArrayRef<Type*> Tys) const {
535 unsigned Cost = 0;
536 for (auto *I : Tys) {
537 if (!I->isVectorTy())
538 continue;
539 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
540 Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
541 getMemoryOpCost(Instruction::Load, I, 128, 0);
542 }
543 return Cost;
544 }
545
getMaxInterleaveFactor() const546 unsigned AArch64TTI::getMaxInterleaveFactor() const {
547 if (ST->isCortexA57())
548 return 4;
549 return 2;
550 }
551
getUnrollingPreferences(const Function * F,Loop * L,UnrollingPreferences & UP) const552 void AArch64TTI::getUnrollingPreferences(const Function *F, Loop *L,
553 UnrollingPreferences &UP) const {
554 // Disable partial & runtime unrolling on -Os.
555 UP.PartialOptSizeThreshold = 0;
556 }
557