1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the AArch64 implementation of TargetFrameLowering class. 10 // 11 // On AArch64, stack frames are structured as follows: 12 // 13 // The stack grows downward. 14 // 15 // All of the individual frame areas on the frame below are optional, i.e. it's 16 // possible to create a function so that the particular area isn't present 17 // in the frame. 18 // 19 // At function entry, the "frame" looks as follows: 20 // 21 // | | Higher address 22 // |-----------------------------------| 23 // | | 24 // | arguments passed on the stack | 25 // | | 26 // |-----------------------------------| <- sp 27 // | | Lower address 28 // 29 // 30 // After the prologue has run, the frame has the following general structure. 31 // Note that this doesn't depict the case where a red-zone is used. Also, 32 // technically the last frame area (VLAs) doesn't get created until in the 33 // main function body, after the prologue is run. However, it's depicted here 34 // for completeness. 35 // 36 // | | Higher address 37 // |-----------------------------------| 38 // | | 39 // | arguments passed on the stack | 40 // | | 41 // |-----------------------------------| 42 // | | 43 // | (Win64 only) varargs from reg | 44 // | | 45 // |-----------------------------------| 46 // | | 47 // | callee-saved gpr registers | <--. 48 // | | | On Darwin platforms these 49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, 50 // | prev_lr | | (frame record first) 51 // | prev_fp | <--' 52 // | async context if needed | 53 // | (a.k.a. "frame record") | 54 // |-----------------------------------| <- fp(=x29) 55 // | <hazard padding> | 56 // |-----------------------------------| 57 // | | 58 // | callee-saved fp/simd/SVE regs | 59 // | | 60 // |-----------------------------------| 61 // | | 62 // | SVE stack objects | 63 // | | 64 // |-----------------------------------| 65 // |.empty.space.to.make.part.below....| 66 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 67 // |.the.standard.16-byte.alignment....| compile time; if present) 68 // |-----------------------------------| 69 // | local variables of fixed size | 70 // | including spill slots | 71 // | <FPR> | 72 // | <hazard padding> | 73 // | <GPR> | 74 // |-----------------------------------| <- bp(not defined by ABI, 75 // |.variable-sized.local.variables....| LLVM chooses X19) 76 // |.(VLAs)............................| (size of this area is unknown at 77 // |...................................| compile time) 78 // |-----------------------------------| <- sp 79 // | | Lower address 80 // 81 // 82 // To access the data in a frame, at-compile time, a constant offset must be 83 // computable from one of the pointers (fp, bp, sp) to access it. The size 84 // of the areas with a dotted background cannot be computed at compile-time 85 // if they are present, making it required to have all three of fp, bp and 86 // sp to be set up to be able to access all contents in the frame areas, 87 // assuming all of the frame areas are non-empty. 88 // 89 // For most functions, some of the frame areas are empty. For those functions, 90 // it may not be necessary to set up fp or bp: 91 // * A base pointer is definitely needed when there are both VLAs and local 92 // variables with more-than-default alignment requirements. 93 // * A frame pointer is definitely needed when there are local variables with 94 // more-than-default alignment requirements. 95 // 96 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the 97 // callee-saved area, since the unwind encoding does not allow for encoding 98 // this dynamically and existing tools depend on this layout. For other 99 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved 100 // area to allow SVE stack objects (allocated directly below the callee-saves, 101 // if available) to be accessed directly from the framepointer. 102 // The SVE spill/fill instructions have VL-scaled addressing modes such 103 // as: 104 // ldr z8, [fp, #-7 mul vl] 105 // For SVE the size of the vector length (VL) is not known at compile-time, so 106 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this 107 // layout, we don't need to add an unscaled offset to the framepointer before 108 // accessing the SVE object in the frame. 109 // 110 // In some cases when a base pointer is not strictly needed, it is generated 111 // anyway when offsets from the frame pointer to access local variables become 112 // so large that the offset can't be encoded in the immediate fields of loads 113 // or stores. 114 // 115 // Outgoing function arguments must be at the bottom of the stack frame when 116 // calling another function. If we do not have variable-sized stack objects, we 117 // can allocate a "reserved call frame" area at the bottom of the local 118 // variable area, large enough for all outgoing calls. If we do have VLAs, then 119 // the stack pointer must be decremented and incremented around each call to 120 // make space for the arguments below the VLAs. 121 // 122 // FIXME: also explain the redzone concept. 123 // 124 // About stack hazards: Under some SME contexts, a coprocessor with its own 125 // separate cache can used for FP operations. This can create hazards if the CPU 126 // and the SME unit try to access the same area of memory, including if the 127 // access is to an area of the stack. To try to alleviate this we attempt to 128 // introduce extra padding into the stack frame between FP and GPR accesses, 129 // controlled by the aarch64-stack-hazard-size option. Without changing the 130 // layout of the stack frame in the diagram above, a stack object of size 131 // aarch64-stack-hazard-size is added between GPR and FPR CSRs. Another is added 132 // to the stack objects section, and stack objects are sorted so that FPR > 133 // Hazard padding slot > GPRs (where possible). Unfortunately some things are 134 // not handled well (VLA area, arguments on the stack, objects with both GPR and 135 // FPR accesses), but if those are controlled by the user then the entire stack 136 // frame becomes GPR at the start/end with FPR in the middle, surrounded by 137 // Hazard padding. 138 // 139 // An example of the prologue: 140 // 141 // .globl __foo 142 // .align 2 143 // __foo: 144 // Ltmp0: 145 // .cfi_startproc 146 // .cfi_personality 155, ___gxx_personality_v0 147 // Leh_func_begin: 148 // .cfi_lsda 16, Lexception33 149 // 150 // stp xa,bx, [sp, -#offset]! 151 // ... 152 // stp x28, x27, [sp, #offset-32] 153 // stp fp, lr, [sp, #offset-16] 154 // add fp, sp, #offset - 16 155 // sub sp, sp, #1360 156 // 157 // The Stack: 158 // +-------------------------------------------+ 159 // 10000 | ........ | ........ | ........ | ........ | 160 // 10004 | ........ | ........ | ........ | ........ | 161 // +-------------------------------------------+ 162 // 10008 | ........ | ........ | ........ | ........ | 163 // 1000c | ........ | ........ | ........ | ........ | 164 // +===========================================+ 165 // 10010 | X28 Register | 166 // 10014 | X28 Register | 167 // +-------------------------------------------+ 168 // 10018 | X27 Register | 169 // 1001c | X27 Register | 170 // +===========================================+ 171 // 10020 | Frame Pointer | 172 // 10024 | Frame Pointer | 173 // +-------------------------------------------+ 174 // 10028 | Link Register | 175 // 1002c | Link Register | 176 // +===========================================+ 177 // 10030 | ........ | ........ | ........ | ........ | 178 // 10034 | ........ | ........ | ........ | ........ | 179 // +-------------------------------------------+ 180 // 10038 | ........ | ........ | ........ | ........ | 181 // 1003c | ........ | ........ | ........ | ........ | 182 // +-------------------------------------------+ 183 // 184 // [sp] = 10030 :: >>initial value<< 185 // sp = 10020 :: stp fp, lr, [sp, #-16]! 186 // fp = sp == 10020 :: mov fp, sp 187 // [sp] == 10020 :: stp x28, x27, [sp, #-16]! 188 // sp == 10010 :: >>final value<< 189 // 190 // The frame pointer (w29) points to address 10020. If we use an offset of 191 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 192 // for w27, and -32 for w28: 193 // 194 // Ltmp1: 195 // .cfi_def_cfa w29, 16 196 // Ltmp2: 197 // .cfi_offset w30, -8 198 // Ltmp3: 199 // .cfi_offset w29, -16 200 // Ltmp4: 201 // .cfi_offset w27, -24 202 // Ltmp5: 203 // .cfi_offset w28, -32 204 // 205 //===----------------------------------------------------------------------===// 206 207 #include "AArch64FrameLowering.h" 208 #include "AArch64InstrInfo.h" 209 #include "AArch64MachineFunctionInfo.h" 210 #include "AArch64RegisterInfo.h" 211 #include "AArch64Subtarget.h" 212 #include "MCTargetDesc/AArch64AddressingModes.h" 213 #include "MCTargetDesc/AArch64MCTargetDesc.h" 214 #include "Utils/AArch64SMEAttributes.h" 215 #include "llvm/ADT/ScopeExit.h" 216 #include "llvm/ADT/SmallVector.h" 217 #include "llvm/ADT/Statistic.h" 218 #include "llvm/Analysis/ValueTracking.h" 219 #include "llvm/CodeGen/LivePhysRegs.h" 220 #include "llvm/CodeGen/MachineBasicBlock.h" 221 #include "llvm/CodeGen/MachineFrameInfo.h" 222 #include "llvm/CodeGen/MachineFunction.h" 223 #include "llvm/CodeGen/MachineInstr.h" 224 #include "llvm/CodeGen/MachineInstrBuilder.h" 225 #include "llvm/CodeGen/MachineMemOperand.h" 226 #include "llvm/CodeGen/MachineModuleInfo.h" 227 #include "llvm/CodeGen/MachineOperand.h" 228 #include "llvm/CodeGen/MachineRegisterInfo.h" 229 #include "llvm/CodeGen/RegisterScavenging.h" 230 #include "llvm/CodeGen/TargetInstrInfo.h" 231 #include "llvm/CodeGen/TargetRegisterInfo.h" 232 #include "llvm/CodeGen/TargetSubtargetInfo.h" 233 #include "llvm/CodeGen/WinEHFuncInfo.h" 234 #include "llvm/IR/Attributes.h" 235 #include "llvm/IR/CallingConv.h" 236 #include "llvm/IR/DataLayout.h" 237 #include "llvm/IR/DebugLoc.h" 238 #include "llvm/IR/Function.h" 239 #include "llvm/MC/MCAsmInfo.h" 240 #include "llvm/MC/MCDwarf.h" 241 #include "llvm/Support/CommandLine.h" 242 #include "llvm/Support/Debug.h" 243 #include "llvm/Support/ErrorHandling.h" 244 #include "llvm/Support/FormatVariadic.h" 245 #include "llvm/Support/MathExtras.h" 246 #include "llvm/Support/raw_ostream.h" 247 #include "llvm/Target/TargetMachine.h" 248 #include "llvm/Target/TargetOptions.h" 249 #include <cassert> 250 #include <cstdint> 251 #include <iterator> 252 #include <optional> 253 #include <vector> 254 255 using namespace llvm; 256 257 #define DEBUG_TYPE "frame-info" 258 259 static cl::opt<bool> EnableRedZone("aarch64-redzone", 260 cl::desc("enable use of redzone on AArch64"), 261 cl::init(false), cl::Hidden); 262 263 static cl::opt<bool> StackTaggingMergeSetTag( 264 "stack-tagging-merge-settag", 265 cl::desc("merge settag instruction in function epilog"), cl::init(true), 266 cl::Hidden); 267 268 static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects", 269 cl::desc("sort stack allocations"), 270 cl::init(true), cl::Hidden); 271 272 cl::opt<bool> EnableHomogeneousPrologEpilog( 273 "homogeneous-prolog-epilog", cl::Hidden, 274 cl::desc("Emit homogeneous prologue and epilogue for the size " 275 "optimization (default = off)")); 276 277 // Stack hazard size for analysis remarks. StackHazardSize takes precedence. 278 static cl::opt<unsigned> 279 StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0), 280 cl::Hidden); 281 // Whether to insert padding into non-streaming functions (for testing). 282 static cl::opt<bool> 283 StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming", 284 cl::init(false), cl::Hidden); 285 286 static cl::opt<bool> DisableMultiVectorSpillFill( 287 "aarch64-disable-multivector-spill-fill", 288 cl::desc("Disable use of LD/ST pairs for SME2 or SVE2p1"), cl::init(false), 289 cl::Hidden); 290 291 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); 292 293 /// Returns how much of the incoming argument stack area (in bytes) we should 294 /// clean up in an epilogue. For the C calling convention this will be 0, for 295 /// guaranteed tail call conventions it can be positive (a normal return or a 296 /// tail call to a function that uses less stack space for arguments) or 297 /// negative (for a tail call to a function that needs more stack space than us 298 /// for arguments). 299 static int64_t getArgumentStackToRestore(MachineFunction &MF, 300 MachineBasicBlock &MBB) { 301 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 302 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 303 bool IsTailCallReturn = (MBB.end() != MBBI) 304 ? AArch64InstrInfo::isTailCallReturnInst(*MBBI) 305 : false; 306 307 int64_t ArgumentPopSize = 0; 308 if (IsTailCallReturn) { 309 MachineOperand &StackAdjust = MBBI->getOperand(1); 310 311 // For a tail-call in a callee-pops-arguments environment, some or all of 312 // the stack may actually be in use for the call's arguments, this is 313 // calculated during LowerCall and consumed here... 314 ArgumentPopSize = StackAdjust.getImm(); 315 } else { 316 // ... otherwise the amount to pop is *all* of the argument space, 317 // conveniently stored in the MachineFunctionInfo by 318 // LowerFormalArguments. This will, of course, be zero for the C calling 319 // convention. 320 ArgumentPopSize = AFI->getArgumentStackToRestore(); 321 } 322 323 return ArgumentPopSize; 324 } 325 326 static bool produceCompactUnwindFrame(MachineFunction &MF); 327 static bool needsWinCFI(const MachineFunction &MF); 328 static StackOffset getSVEStackSize(const MachineFunction &MF); 329 static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB); 330 331 /// Returns true if a homogeneous prolog or epilog code can be emitted 332 /// for the size optimization. If possible, a frame helper call is injected. 333 /// When Exit block is given, this check is for epilog. 334 bool AArch64FrameLowering::homogeneousPrologEpilog( 335 MachineFunction &MF, MachineBasicBlock *Exit) const { 336 if (!MF.getFunction().hasMinSize()) 337 return false; 338 if (!EnableHomogeneousPrologEpilog) 339 return false; 340 if (EnableRedZone) 341 return false; 342 343 // TODO: Window is supported yet. 344 if (needsWinCFI(MF)) 345 return false; 346 // TODO: SVE is not supported yet. 347 if (getSVEStackSize(MF)) 348 return false; 349 350 // Bail on stack adjustment needed on return for simplicity. 351 const MachineFrameInfo &MFI = MF.getFrameInfo(); 352 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 353 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)) 354 return false; 355 if (Exit && getArgumentStackToRestore(MF, *Exit)) 356 return false; 357 358 auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 359 if (AFI->hasSwiftAsyncContext() || AFI->hasStreamingModeChanges()) 360 return false; 361 362 // If there are an odd number of GPRs before LR and FP in the CSRs list, 363 // they will not be paired into one RegPairInfo, which is incompatible with 364 // the assumption made by the homogeneous prolog epilog pass. 365 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 366 unsigned NumGPRs = 0; 367 for (unsigned I = 0; CSRegs[I]; ++I) { 368 Register Reg = CSRegs[I]; 369 if (Reg == AArch64::LR) { 370 assert(CSRegs[I + 1] == AArch64::FP); 371 if (NumGPRs % 2 != 0) 372 return false; 373 break; 374 } 375 if (AArch64::GPR64RegClass.contains(Reg)) 376 ++NumGPRs; 377 } 378 379 return true; 380 } 381 382 /// Returns true if CSRs should be paired. 383 bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const { 384 return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF); 385 } 386 387 /// This is the biggest offset to the stack pointer we can encode in aarch64 388 /// instructions (without using a separate calculation and a temp register). 389 /// Note that the exception here are vector stores/loads which cannot encode any 390 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). 391 static const unsigned DefaultSafeSPDisplacement = 255; 392 393 /// Look at each instruction that references stack frames and return the stack 394 /// size limit beyond which some of these instructions will require a scratch 395 /// register during their expansion later. 396 static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { 397 // FIXME: For now, just conservatively guestimate based on unscaled indexing 398 // range. We'll end up allocating an unnecessary spill slot a lot, but 399 // realistically that's not a big deal at this stage of the game. 400 for (MachineBasicBlock &MBB : MF) { 401 for (MachineInstr &MI : MBB) { 402 if (MI.isDebugInstr() || MI.isPseudo() || 403 MI.getOpcode() == AArch64::ADDXri || 404 MI.getOpcode() == AArch64::ADDSXri) 405 continue; 406 407 for (const MachineOperand &MO : MI.operands()) { 408 if (!MO.isFI()) 409 continue; 410 411 StackOffset Offset; 412 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == 413 AArch64FrameOffsetCannotUpdate) 414 return 0; 415 } 416 } 417 } 418 return DefaultSafeSPDisplacement; 419 } 420 421 TargetStackID::Value 422 AArch64FrameLowering::getStackIDForScalableVectors() const { 423 return TargetStackID::ScalableVector; 424 } 425 426 /// Returns the size of the fixed object area (allocated next to sp on entry) 427 /// On Win64 this may include a var args area and an UnwindHelp object for EH. 428 static unsigned getFixedObjectSize(const MachineFunction &MF, 429 const AArch64FunctionInfo *AFI, bool IsWin64, 430 bool IsFunclet) { 431 if (!IsWin64 || IsFunclet) { 432 return AFI->getTailCallReservedStack(); 433 } else { 434 if (AFI->getTailCallReservedStack() != 0 && 435 !MF.getFunction().getAttributes().hasAttrSomewhere( 436 Attribute::SwiftAsync)) 437 report_fatal_error("cannot generate ABI-changing tail call for Win64"); 438 // Var args are stored here in the primary function. 439 const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); 440 // To support EH funclets we allocate an UnwindHelp object 441 const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); 442 return AFI->getTailCallReservedStack() + 443 alignTo(VarArgsArea + UnwindHelpObject, 16); 444 } 445 } 446 447 /// Returns the size of the entire SVE stackframe (calleesaves + spills). 448 static StackOffset getSVEStackSize(const MachineFunction &MF) { 449 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 450 return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE()); 451 } 452 453 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { 454 if (!EnableRedZone) 455 return false; 456 457 // Don't use the red zone if the function explicitly asks us not to. 458 // This is typically used for kernel code. 459 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 460 const unsigned RedZoneSize = 461 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); 462 if (!RedZoneSize) 463 return false; 464 465 const MachineFrameInfo &MFI = MF.getFrameInfo(); 466 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 467 uint64_t NumBytes = AFI->getLocalStackSize(); 468 469 // If neither NEON or SVE are available, a COPY from one Q-reg to 470 // another requires a spill -> reload sequence. We can do that 471 // using a pre-decrementing store/post-decrementing load, but 472 // if we do so, we can't use the Red Zone. 473 bool LowerQRegCopyThroughMem = Subtarget.hasFPARMv8() && 474 !Subtarget.isNeonAvailable() && 475 !Subtarget.hasSVE(); 476 477 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize || 478 getSVEStackSize(MF) || LowerQRegCopyThroughMem); 479 } 480 481 /// hasFPImpl - Return true if the specified function should have a dedicated 482 /// frame pointer register. 483 bool AArch64FrameLowering::hasFPImpl(const MachineFunction &MF) const { 484 const MachineFrameInfo &MFI = MF.getFrameInfo(); 485 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 486 487 // Win64 EH requires a frame pointer if funclets are present, as the locals 488 // are accessed off the frame pointer in both the parent function and the 489 // funclets. 490 if (MF.hasEHFunclets()) 491 return true; 492 // Retain behavior of always omitting the FP for leaf functions when possible. 493 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 494 return true; 495 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || 496 MFI.hasStackMap() || MFI.hasPatchPoint() || 497 RegInfo->hasStackRealignment(MF)) 498 return true; 499 // With large callframes around we may need to use FP to access the scavenging 500 // emergency spillslot. 501 // 502 // Unfortunately some calls to hasFP() like machine verifier -> 503 // getReservedReg() -> hasFP in the middle of global isel are too early 504 // to know the max call frame size. Hopefully conservatively returning "true" 505 // in those cases is fine. 506 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. 507 if (!MFI.isMaxCallFrameSizeComputed() || 508 MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) 509 return true; 510 511 return false; 512 } 513 514 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 515 /// not required, we reserve argument space for call sites in the function 516 /// immediately on entry to the current function. This eliminates the need for 517 /// add/sub sp brackets around call sites. Returns true if the call frame is 518 /// included as part of the stack frame. 519 bool AArch64FrameLowering::hasReservedCallFrame( 520 const MachineFunction &MF) const { 521 // The stack probing code for the dynamically allocated outgoing arguments 522 // area assumes that the stack is probed at the top - either by the prologue 523 // code, which issues a probe if `hasVarSizedObjects` return true, or by the 524 // most recent variable-sized object allocation. Changing the condition here 525 // may need to be followed up by changes to the probe issuing logic. 526 return !MF.getFrameInfo().hasVarSizedObjects(); 527 } 528 529 MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( 530 MachineFunction &MF, MachineBasicBlock &MBB, 531 MachineBasicBlock::iterator I) const { 532 const AArch64InstrInfo *TII = 533 static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo()); 534 const AArch64TargetLowering *TLI = 535 MF.getSubtarget<AArch64Subtarget>().getTargetLowering(); 536 [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo(); 537 DebugLoc DL = I->getDebugLoc(); 538 unsigned Opc = I->getOpcode(); 539 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); 540 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 541 542 if (!hasReservedCallFrame(MF)) { 543 int64_t Amount = I->getOperand(0).getImm(); 544 Amount = alignTo(Amount, getStackAlign()); 545 if (!IsDestroy) 546 Amount = -Amount; 547 548 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it 549 // doesn't have to pop anything), then the first operand will be zero too so 550 // this adjustment is a no-op. 551 if (CalleePopAmount == 0) { 552 // FIXME: in-function stack adjustment for calls is limited to 24-bits 553 // because there's no guaranteed temporary register available. 554 // 555 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. 556 // 1) For offset <= 12-bit, we use LSL #0 557 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses 558 // LSL #0, and the other uses LSL #12. 559 // 560 // Most call frames will be allocated at the start of a function so 561 // this is OK, but it is a limitation that needs dealing with. 562 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); 563 564 if (TLI->hasInlineStackProbe(MF) && 565 -Amount >= AArch64::StackProbeMaxUnprobedStack) { 566 // When stack probing is enabled, the decrement of SP may need to be 567 // probed. We only need to do this if the call site needs 1024 bytes of 568 // space or more, because a region smaller than that is allowed to be 569 // unprobed at an ABI boundary. We rely on the fact that SP has been 570 // probed exactly at this point, either by the prologue or most recent 571 // dynamic allocation. 572 assert(MFI.hasVarSizedObjects() && 573 "non-reserved call frame without var sized objects?"); 574 Register ScratchReg = 575 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass); 576 inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0)); 577 } else { 578 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 579 StackOffset::getFixed(Amount), TII); 580 } 581 } 582 } else if (CalleePopAmount != 0) { 583 // If the calling convention demands that the callee pops arguments from the 584 // stack, we want to add it back if we have a reserved call frame. 585 assert(CalleePopAmount < 0xffffff && "call frame too large"); 586 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, 587 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII); 588 } 589 return MBB.erase(I); 590 } 591 592 void AArch64FrameLowering::emitCalleeSavedGPRLocations( 593 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 594 MachineFunction &MF = *MBB.getParent(); 595 MachineFrameInfo &MFI = MF.getFrameInfo(); 596 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 597 SMEAttrs Attrs(MF.getFunction()); 598 bool LocallyStreaming = 599 Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface(); 600 601 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 602 if (CSI.empty()) 603 return; 604 605 const TargetSubtargetInfo &STI = MF.getSubtarget(); 606 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 607 const TargetInstrInfo &TII = *STI.getInstrInfo(); 608 DebugLoc DL = MBB.findDebugLoc(MBBI); 609 610 for (const auto &Info : CSI) { 611 unsigned FrameIdx = Info.getFrameIdx(); 612 if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) 613 continue; 614 615 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented"); 616 int64_t DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true); 617 int64_t Offset = MFI.getObjectOffset(FrameIdx) - getOffsetOfLocalArea(); 618 619 // The location of VG will be emitted before each streaming-mode change in 620 // the function. Only locally-streaming functions require emitting the 621 // non-streaming VG location here. 622 if ((LocallyStreaming && FrameIdx == AFI->getStreamingVGIdx()) || 623 (!LocallyStreaming && 624 DwarfReg == TRI.getDwarfRegNum(AArch64::VG, true))) 625 continue; 626 627 unsigned CFIIndex = MF.addFrameInst( 628 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 629 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 630 .addCFIIndex(CFIIndex) 631 .setMIFlags(MachineInstr::FrameSetup); 632 } 633 } 634 635 void AArch64FrameLowering::emitCalleeSavedSVELocations( 636 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 637 MachineFunction &MF = *MBB.getParent(); 638 MachineFrameInfo &MFI = MF.getFrameInfo(); 639 640 // Add callee saved registers to move list. 641 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 642 if (CSI.empty()) 643 return; 644 645 const TargetSubtargetInfo &STI = MF.getSubtarget(); 646 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 647 const TargetInstrInfo &TII = *STI.getInstrInfo(); 648 DebugLoc DL = MBB.findDebugLoc(MBBI); 649 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 650 651 for (const auto &Info : CSI) { 652 if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)) 653 continue; 654 655 // Not all unwinders may know about SVE registers, so assume the lowest 656 // common demoninator. 657 assert(!Info.isSpilledToReg() && "Spilling to registers not implemented"); 658 unsigned Reg = Info.getReg(); 659 if (!static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg)) 660 continue; 661 662 StackOffset Offset = 663 StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) - 664 StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI)); 665 666 unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset)); 667 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 668 .addCFIIndex(CFIIndex) 669 .setMIFlags(MachineInstr::FrameSetup); 670 } 671 } 672 673 static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF, 674 MachineBasicBlock &MBB, 675 MachineBasicBlock::iterator InsertPt, 676 unsigned DwarfReg) { 677 unsigned CFIIndex = 678 MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg)); 679 BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex); 680 } 681 682 void AArch64FrameLowering::resetCFIToInitialState( 683 MachineBasicBlock &MBB) const { 684 685 MachineFunction &MF = *MBB.getParent(); 686 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 687 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 688 const auto &TRI = 689 static_cast<const AArch64RegisterInfo &>(*Subtarget.getRegisterInfo()); 690 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>(); 691 692 const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION); 693 DebugLoc DL; 694 695 // Reset the CFA to `SP + 0`. 696 MachineBasicBlock::iterator InsertPt = MBB.begin(); 697 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 698 nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0)); 699 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex); 700 701 // Flip the RA sign state. 702 if (MFI.shouldSignReturnAddress(MF)) { 703 auto CFIInst = MFI.branchProtectionPAuthLR() 704 ? MCCFIInstruction::createNegateRAStateWithPC(nullptr) 705 : MCCFIInstruction::createNegateRAState(nullptr); 706 CFIIndex = MF.addFrameInst(CFIInst); 707 BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex); 708 } 709 710 // Shadow call stack uses X18, reset it. 711 if (MFI.needsShadowCallStackPrologueEpilogue(MF)) 712 insertCFISameValue(CFIDesc, MF, MBB, InsertPt, 713 TRI.getDwarfRegNum(AArch64::X18, true)); 714 715 // Emit .cfi_same_value for callee-saved registers. 716 const std::vector<CalleeSavedInfo> &CSI = 717 MF.getFrameInfo().getCalleeSavedInfo(); 718 for (const auto &Info : CSI) { 719 unsigned Reg = Info.getReg(); 720 if (!TRI.regNeedsCFI(Reg, Reg)) 721 continue; 722 insertCFISameValue(CFIDesc, MF, MBB, InsertPt, 723 TRI.getDwarfRegNum(Reg, true)); 724 } 725 } 726 727 static void emitCalleeSavedRestores(MachineBasicBlock &MBB, 728 MachineBasicBlock::iterator MBBI, 729 bool SVE) { 730 MachineFunction &MF = *MBB.getParent(); 731 MachineFrameInfo &MFI = MF.getFrameInfo(); 732 733 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 734 if (CSI.empty()) 735 return; 736 737 const TargetSubtargetInfo &STI = MF.getSubtarget(); 738 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 739 const TargetInstrInfo &TII = *STI.getInstrInfo(); 740 DebugLoc DL = MBB.findDebugLoc(MBBI); 741 742 for (const auto &Info : CSI) { 743 if (SVE != 744 (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)) 745 continue; 746 747 unsigned Reg = Info.getReg(); 748 if (SVE && 749 !static_cast<const AArch64RegisterInfo &>(TRI).regNeedsCFI(Reg, Reg)) 750 continue; 751 752 if (!Info.isRestored()) 753 continue; 754 755 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore( 756 nullptr, TRI.getDwarfRegNum(Info.getReg(), true))); 757 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 758 .addCFIIndex(CFIIndex) 759 .setMIFlags(MachineInstr::FrameDestroy); 760 } 761 } 762 763 void AArch64FrameLowering::emitCalleeSavedGPRRestores( 764 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 765 emitCalleeSavedRestores(MBB, MBBI, false); 766 } 767 768 void AArch64FrameLowering::emitCalleeSavedSVERestores( 769 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { 770 emitCalleeSavedRestores(MBB, MBBI, true); 771 } 772 773 // Return the maximum possible number of bytes for `Size` due to the 774 // architectural limit on the size of a SVE register. 775 static int64_t upperBound(StackOffset Size) { 776 static const int64_t MAX_BYTES_PER_SCALABLE_BYTE = 16; 777 return Size.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE + Size.getFixed(); 778 } 779 780 void AArch64FrameLowering::allocateStackSpace( 781 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 782 int64_t RealignmentPadding, StackOffset AllocSize, bool NeedsWinCFI, 783 bool *HasWinCFI, bool EmitCFI, StackOffset InitialOffset, 784 bool FollowupAllocs) const { 785 786 if (!AllocSize) 787 return; 788 789 DebugLoc DL; 790 MachineFunction &MF = *MBB.getParent(); 791 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 792 const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); 793 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 794 const MachineFrameInfo &MFI = MF.getFrameInfo(); 795 796 const int64_t MaxAlign = MFI.getMaxAlign().value(); 797 const uint64_t AndMask = ~(MaxAlign - 1); 798 799 if (!Subtarget.getTargetLowering()->hasInlineStackProbe(MF)) { 800 Register TargetReg = RealignmentPadding 801 ? findScratchNonCalleeSaveRegister(&MBB) 802 : AArch64::SP; 803 // SUB Xd/SP, SP, AllocSize 804 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII, 805 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 806 EmitCFI, InitialOffset); 807 808 if (RealignmentPadding) { 809 // AND SP, X9, 0b11111...0000 810 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP) 811 .addReg(TargetReg, RegState::Kill) 812 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 813 .setMIFlags(MachineInstr::FrameSetup); 814 AFI.setStackRealigned(true); 815 816 // No need for SEH instructions here; if we're realigning the stack, 817 // we've set a frame pointer and already finished the SEH prologue. 818 assert(!NeedsWinCFI); 819 } 820 return; 821 } 822 823 // 824 // Stack probing allocation. 825 // 826 827 // Fixed length allocation. If we don't need to re-align the stack and don't 828 // have SVE objects, we can use a more efficient sequence for stack probing. 829 if (AllocSize.getScalable() == 0 && RealignmentPadding == 0) { 830 Register ScratchReg = findScratchNonCalleeSaveRegister(&MBB); 831 assert(ScratchReg != AArch64::NoRegister); 832 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC)) 833 .addDef(ScratchReg) 834 .addImm(AllocSize.getFixed()) 835 .addImm(InitialOffset.getFixed()) 836 .addImm(InitialOffset.getScalable()); 837 // The fixed allocation may leave unprobed bytes at the top of the 838 // stack. If we have subsequent alocation (e.g. if we have variable-sized 839 // objects), we need to issue an extra probe, so these allocations start in 840 // a known state. 841 if (FollowupAllocs) { 842 // STR XZR, [SP] 843 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui)) 844 .addReg(AArch64::XZR) 845 .addReg(AArch64::SP) 846 .addImm(0) 847 .setMIFlags(MachineInstr::FrameSetup); 848 } 849 850 return; 851 } 852 853 // Variable length allocation. 854 855 // If the (unknown) allocation size cannot exceed the probe size, decrement 856 // the stack pointer right away. 857 int64_t ProbeSize = AFI.getStackProbeSize(); 858 if (upperBound(AllocSize) + RealignmentPadding <= ProbeSize) { 859 Register ScratchReg = RealignmentPadding 860 ? findScratchNonCalleeSaveRegister(&MBB) 861 : AArch64::SP; 862 assert(ScratchReg != AArch64::NoRegister); 863 // SUB Xd, SP, AllocSize 864 emitFrameOffset(MBB, MBBI, DL, ScratchReg, AArch64::SP, -AllocSize, &TII, 865 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 866 EmitCFI, InitialOffset); 867 if (RealignmentPadding) { 868 // AND SP, Xn, 0b11111...0000 869 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP) 870 .addReg(ScratchReg, RegState::Kill) 871 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 872 .setMIFlags(MachineInstr::FrameSetup); 873 AFI.setStackRealigned(true); 874 } 875 if (FollowupAllocs || upperBound(AllocSize) + RealignmentPadding > 876 AArch64::StackProbeMaxUnprobedStack) { 877 // STR XZR, [SP] 878 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui)) 879 .addReg(AArch64::XZR) 880 .addReg(AArch64::SP) 881 .addImm(0) 882 .setMIFlags(MachineInstr::FrameSetup); 883 } 884 return; 885 } 886 887 // Emit a variable-length allocation probing loop. 888 // TODO: As an optimisation, the loop can be "unrolled" into a few parts, 889 // each of them guaranteed to adjust the stack by less than the probe size. 890 Register TargetReg = findScratchNonCalleeSaveRegister(&MBB); 891 assert(TargetReg != AArch64::NoRegister); 892 // SUB Xd, SP, AllocSize 893 emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII, 894 MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, 895 EmitCFI, InitialOffset); 896 if (RealignmentPadding) { 897 // AND Xn, Xn, 0b11111...0000 898 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), TargetReg) 899 .addReg(TargetReg, RegState::Kill) 900 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) 901 .setMIFlags(MachineInstr::FrameSetup); 902 } 903 904 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC_VAR)) 905 .addReg(TargetReg); 906 if (EmitCFI) { 907 // Set the CFA register back to SP. 908 unsigned Reg = 909 Subtarget.getRegisterInfo()->getDwarfRegNum(AArch64::SP, true); 910 unsigned CFIIndex = 911 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 912 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 913 .addCFIIndex(CFIIndex) 914 .setMIFlags(MachineInstr::FrameSetup); 915 } 916 if (RealignmentPadding) 917 AFI.setStackRealigned(true); 918 } 919 920 static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) { 921 switch (Reg.id()) { 922 default: 923 // The called routine is expected to preserve r19-r28 924 // r29 and r30 are used as frame pointer and link register resp. 925 return 0; 926 927 // GPRs 928 #define CASE(n) \ 929 case AArch64::W##n: \ 930 case AArch64::X##n: \ 931 return AArch64::X##n 932 CASE(0); 933 CASE(1); 934 CASE(2); 935 CASE(3); 936 CASE(4); 937 CASE(5); 938 CASE(6); 939 CASE(7); 940 CASE(8); 941 CASE(9); 942 CASE(10); 943 CASE(11); 944 CASE(12); 945 CASE(13); 946 CASE(14); 947 CASE(15); 948 CASE(16); 949 CASE(17); 950 CASE(18); 951 #undef CASE 952 953 // FPRs 954 #define CASE(n) \ 955 case AArch64::B##n: \ 956 case AArch64::H##n: \ 957 case AArch64::S##n: \ 958 case AArch64::D##n: \ 959 case AArch64::Q##n: \ 960 return HasSVE ? AArch64::Z##n : AArch64::Q##n 961 CASE(0); 962 CASE(1); 963 CASE(2); 964 CASE(3); 965 CASE(4); 966 CASE(5); 967 CASE(6); 968 CASE(7); 969 CASE(8); 970 CASE(9); 971 CASE(10); 972 CASE(11); 973 CASE(12); 974 CASE(13); 975 CASE(14); 976 CASE(15); 977 CASE(16); 978 CASE(17); 979 CASE(18); 980 CASE(19); 981 CASE(20); 982 CASE(21); 983 CASE(22); 984 CASE(23); 985 CASE(24); 986 CASE(25); 987 CASE(26); 988 CASE(27); 989 CASE(28); 990 CASE(29); 991 CASE(30); 992 CASE(31); 993 #undef CASE 994 } 995 } 996 997 void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, 998 MachineBasicBlock &MBB) const { 999 // Insertion point. 1000 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1001 1002 // Fake a debug loc. 1003 DebugLoc DL; 1004 if (MBBI != MBB.end()) 1005 DL = MBBI->getDebugLoc(); 1006 1007 const MachineFunction &MF = *MBB.getParent(); 1008 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 1009 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo(); 1010 1011 BitVector GPRsToZero(TRI.getNumRegs()); 1012 BitVector FPRsToZero(TRI.getNumRegs()); 1013 bool HasSVE = STI.isSVEorStreamingSVEAvailable(); 1014 for (MCRegister Reg : RegsToZero.set_bits()) { 1015 if (TRI.isGeneralPurposeRegister(MF, Reg)) { 1016 // For GPRs, we only care to clear out the 64-bit register. 1017 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE)) 1018 GPRsToZero.set(XReg); 1019 } else if (AArch64InstrInfo::isFpOrNEON(Reg)) { 1020 // For FPRs, 1021 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE)) 1022 FPRsToZero.set(XReg); 1023 } 1024 } 1025 1026 const AArch64InstrInfo &TII = *STI.getInstrInfo(); 1027 1028 // Zero out GPRs. 1029 for (MCRegister Reg : GPRsToZero.set_bits()) 1030 TII.buildClearRegister(Reg, MBB, MBBI, DL); 1031 1032 // Zero out FP/vector registers. 1033 for (MCRegister Reg : FPRsToZero.set_bits()) 1034 TII.buildClearRegister(Reg, MBB, MBBI, DL); 1035 1036 if (HasSVE) { 1037 for (MCRegister PReg : 1038 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4, 1039 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9, 1040 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14, 1041 AArch64::P15}) { 1042 if (RegsToZero[PReg]) 1043 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg); 1044 } 1045 } 1046 } 1047 1048 static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs, 1049 const MachineBasicBlock &MBB) { 1050 const MachineFunction *MF = MBB.getParent(); 1051 LiveRegs.addLiveIns(MBB); 1052 // Mark callee saved registers as used so we will not choose them. 1053 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); 1054 for (unsigned i = 0; CSRegs[i]; ++i) 1055 LiveRegs.addReg(CSRegs[i]); 1056 } 1057 1058 // Find a scratch register that we can use at the start of the prologue to 1059 // re-align the stack pointer. We avoid using callee-save registers since they 1060 // may appear to be free when this is called from canUseAsPrologue (during 1061 // shrink wrapping), but then no longer be free when this is called from 1062 // emitPrologue. 1063 // 1064 // FIXME: This is a bit conservative, since in the above case we could use one 1065 // of the callee-save registers as a scratch temp to re-align the stack pointer, 1066 // but we would then have to make sure that we were in fact saving at least one 1067 // callee-save register in the prologue, which is additional complexity that 1068 // doesn't seem worth the benefit. 1069 static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { 1070 MachineFunction *MF = MBB->getParent(); 1071 1072 // If MBB is an entry block, use X9 as the scratch register 1073 // preserve_none functions may be using X9 to pass arguments, 1074 // so prefer to pick an available register below. 1075 if (&MF->front() == MBB && 1076 MF->getFunction().getCallingConv() != CallingConv::PreserveNone) 1077 return AArch64::X9; 1078 1079 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 1080 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 1081 LivePhysRegs LiveRegs(TRI); 1082 getLiveRegsForEntryMBB(LiveRegs, *MBB); 1083 1084 // Prefer X9 since it was historically used for the prologue scratch reg. 1085 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1086 if (LiveRegs.available(MRI, AArch64::X9)) 1087 return AArch64::X9; 1088 1089 for (unsigned Reg : AArch64::GPR64RegClass) { 1090 if (LiveRegs.available(MRI, Reg)) 1091 return Reg; 1092 } 1093 return AArch64::NoRegister; 1094 } 1095 1096 bool AArch64FrameLowering::canUseAsPrologue( 1097 const MachineBasicBlock &MBB) const { 1098 const MachineFunction *MF = MBB.getParent(); 1099 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB); 1100 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>(); 1101 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1102 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering(); 1103 const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>(); 1104 1105 if (AFI->hasSwiftAsyncContext()) { 1106 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); 1107 const MachineRegisterInfo &MRI = MF->getRegInfo(); 1108 LivePhysRegs LiveRegs(TRI); 1109 getLiveRegsForEntryMBB(LiveRegs, MBB); 1110 // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are 1111 // available. 1112 if (!LiveRegs.available(MRI, AArch64::X16) || 1113 !LiveRegs.available(MRI, AArch64::X17)) 1114 return false; 1115 } 1116 1117 // Certain stack probing sequences might clobber flags, then we can't use 1118 // the block as a prologue if the flags register is a live-in. 1119 if (MF->getInfo<AArch64FunctionInfo>()->hasStackProbing() && 1120 MBB.isLiveIn(AArch64::NZCV)) 1121 return false; 1122 1123 // Don't need a scratch register if we're not going to re-align the stack or 1124 // emit stack probes. 1125 if (!RegInfo->hasStackRealignment(*MF) && !TLI->hasInlineStackProbe(*MF)) 1126 return true; 1127 // Otherwise, we can use any block as long as it has a scratch register 1128 // available. 1129 return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; 1130 } 1131 1132 static bool windowsRequiresStackProbe(MachineFunction &MF, 1133 uint64_t StackSizeInBytes) { 1134 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1135 const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>(); 1136 // TODO: When implementing stack protectors, take that into account 1137 // for the probe threshold. 1138 return Subtarget.isTargetWindows() && MFI.hasStackProbing() && 1139 StackSizeInBytes >= uint64_t(MFI.getStackProbeSize()); 1140 } 1141 1142 static bool needsWinCFI(const MachineFunction &MF) { 1143 const Function &F = MF.getFunction(); 1144 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 1145 F.needsUnwindTableEntry(); 1146 } 1147 1148 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( 1149 MachineFunction &MF, uint64_t StackBumpBytes) const { 1150 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1151 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1152 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1153 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1154 if (homogeneousPrologEpilog(MF)) 1155 return false; 1156 1157 if (AFI->getLocalStackSize() == 0) 1158 return false; 1159 1160 // For WinCFI, if optimizing for size, prefer to not combine the stack bump 1161 // (to force a stp with predecrement) to match the packed unwind format, 1162 // provided that there actually are any callee saved registers to merge the 1163 // decrement with. 1164 // This is potentially marginally slower, but allows using the packed 1165 // unwind format for functions that both have a local area and callee saved 1166 // registers. Using the packed unwind format notably reduces the size of 1167 // the unwind info. 1168 if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 && 1169 MF.getFunction().hasOptSize()) 1170 return false; 1171 1172 // 512 is the maximum immediate for stp/ldp that will be used for 1173 // callee-save save/restores 1174 if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) 1175 return false; 1176 1177 if (MFI.hasVarSizedObjects()) 1178 return false; 1179 1180 if (RegInfo->hasStackRealignment(MF)) 1181 return false; 1182 1183 // This isn't strictly necessary, but it simplifies things a bit since the 1184 // current RedZone handling code assumes the SP is adjusted by the 1185 // callee-save save/restore code. 1186 if (canUseRedZone(MF)) 1187 return false; 1188 1189 // When there is an SVE area on the stack, always allocate the 1190 // callee-saves and spills/locals separately. 1191 if (getSVEStackSize(MF)) 1192 return false; 1193 1194 return true; 1195 } 1196 1197 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( 1198 MachineBasicBlock &MBB, uint64_t StackBumpBytes) const { 1199 if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) 1200 return false; 1201 if (MBB.empty()) 1202 return true; 1203 1204 // Disable combined SP bump if the last instruction is an MTE tag store. It 1205 // is almost always better to merge SP adjustment into those instructions. 1206 MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); 1207 MachineBasicBlock::iterator Begin = MBB.begin(); 1208 while (LastI != Begin) { 1209 --LastI; 1210 if (LastI->isTransient()) 1211 continue; 1212 if (!LastI->getFlag(MachineInstr::FrameDestroy)) 1213 break; 1214 } 1215 switch (LastI->getOpcode()) { 1216 case AArch64::STGloop: 1217 case AArch64::STZGloop: 1218 case AArch64::STGi: 1219 case AArch64::STZGi: 1220 case AArch64::ST2Gi: 1221 case AArch64::STZ2Gi: 1222 return false; 1223 default: 1224 return true; 1225 } 1226 llvm_unreachable("unreachable"); 1227 } 1228 1229 // Given a load or a store instruction, generate an appropriate unwinding SEH 1230 // code on Windows. 1231 static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, 1232 const TargetInstrInfo &TII, 1233 MachineInstr::MIFlag Flag) { 1234 unsigned Opc = MBBI->getOpcode(); 1235 MachineBasicBlock *MBB = MBBI->getParent(); 1236 MachineFunction &MF = *MBB->getParent(); 1237 DebugLoc DL = MBBI->getDebugLoc(); 1238 unsigned ImmIdx = MBBI->getNumOperands() - 1; 1239 int Imm = MBBI->getOperand(ImmIdx).getImm(); 1240 MachineInstrBuilder MIB; 1241 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1242 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1243 1244 switch (Opc) { 1245 default: 1246 llvm_unreachable("No SEH Opcode for this instruction"); 1247 case AArch64::LDPDpost: 1248 Imm = -Imm; 1249 [[fallthrough]]; 1250 case AArch64::STPDpre: { 1251 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1252 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 1253 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) 1254 .addImm(Reg0) 1255 .addImm(Reg1) 1256 .addImm(Imm * 8) 1257 .setMIFlag(Flag); 1258 break; 1259 } 1260 case AArch64::LDPXpost: 1261 Imm = -Imm; 1262 [[fallthrough]]; 1263 case AArch64::STPXpre: { 1264 Register Reg0 = MBBI->getOperand(1).getReg(); 1265 Register Reg1 = MBBI->getOperand(2).getReg(); 1266 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 1267 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) 1268 .addImm(Imm * 8) 1269 .setMIFlag(Flag); 1270 else 1271 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) 1272 .addImm(RegInfo->getSEHRegNum(Reg0)) 1273 .addImm(RegInfo->getSEHRegNum(Reg1)) 1274 .addImm(Imm * 8) 1275 .setMIFlag(Flag); 1276 break; 1277 } 1278 case AArch64::LDRDpost: 1279 Imm = -Imm; 1280 [[fallthrough]]; 1281 case AArch64::STRDpre: { 1282 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1283 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) 1284 .addImm(Reg) 1285 .addImm(Imm) 1286 .setMIFlag(Flag); 1287 break; 1288 } 1289 case AArch64::LDRXpost: 1290 Imm = -Imm; 1291 [[fallthrough]]; 1292 case AArch64::STRXpre: { 1293 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1294 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) 1295 .addImm(Reg) 1296 .addImm(Imm) 1297 .setMIFlag(Flag); 1298 break; 1299 } 1300 case AArch64::STPDi: 1301 case AArch64::LDPDi: { 1302 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1303 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1304 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) 1305 .addImm(Reg0) 1306 .addImm(Reg1) 1307 .addImm(Imm * 8) 1308 .setMIFlag(Flag); 1309 break; 1310 } 1311 case AArch64::STPXi: 1312 case AArch64::LDPXi: { 1313 Register Reg0 = MBBI->getOperand(0).getReg(); 1314 Register Reg1 = MBBI->getOperand(1).getReg(); 1315 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) 1316 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) 1317 .addImm(Imm * 8) 1318 .setMIFlag(Flag); 1319 else 1320 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) 1321 .addImm(RegInfo->getSEHRegNum(Reg0)) 1322 .addImm(RegInfo->getSEHRegNum(Reg1)) 1323 .addImm(Imm * 8) 1324 .setMIFlag(Flag); 1325 break; 1326 } 1327 case AArch64::STRXui: 1328 case AArch64::LDRXui: { 1329 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1330 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) 1331 .addImm(Reg) 1332 .addImm(Imm * 8) 1333 .setMIFlag(Flag); 1334 break; 1335 } 1336 case AArch64::STRDui: 1337 case AArch64::LDRDui: { 1338 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1339 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) 1340 .addImm(Reg) 1341 .addImm(Imm * 8) 1342 .setMIFlag(Flag); 1343 break; 1344 } 1345 case AArch64::STPQi: 1346 case AArch64::LDPQi: { 1347 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 1348 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1349 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP)) 1350 .addImm(Reg0) 1351 .addImm(Reg1) 1352 .addImm(Imm * 16) 1353 .setMIFlag(Flag); 1354 break; 1355 } 1356 case AArch64::LDPQpost: 1357 Imm = -Imm; 1358 [[fallthrough]]; 1359 case AArch64::STPQpre: { 1360 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 1361 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); 1362 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX)) 1363 .addImm(Reg0) 1364 .addImm(Reg1) 1365 .addImm(Imm * 16) 1366 .setMIFlag(Flag); 1367 break; 1368 } 1369 } 1370 auto I = MBB->insertAfter(MBBI, MIB); 1371 return I; 1372 } 1373 1374 // Fix up the SEH opcode associated with the save/restore instruction. 1375 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, 1376 unsigned LocalStackSize) { 1377 MachineOperand *ImmOpnd = nullptr; 1378 unsigned ImmIdx = MBBI->getNumOperands() - 1; 1379 switch (MBBI->getOpcode()) { 1380 default: 1381 llvm_unreachable("Fix the offset in the SEH instruction"); 1382 case AArch64::SEH_SaveFPLR: 1383 case AArch64::SEH_SaveRegP: 1384 case AArch64::SEH_SaveReg: 1385 case AArch64::SEH_SaveFRegP: 1386 case AArch64::SEH_SaveFReg: 1387 case AArch64::SEH_SaveAnyRegQP: 1388 case AArch64::SEH_SaveAnyRegQPX: 1389 ImmOpnd = &MBBI->getOperand(ImmIdx); 1390 break; 1391 } 1392 if (ImmOpnd) 1393 ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); 1394 } 1395 1396 bool requiresGetVGCall(MachineFunction &MF) { 1397 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1398 return AFI->hasStreamingModeChanges() && 1399 !MF.getSubtarget<AArch64Subtarget>().hasSVE(); 1400 } 1401 1402 static bool requiresSaveVG(MachineFunction &MF) { 1403 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1404 // For Darwin platforms we don't save VG for non-SVE functions, even if SME 1405 // is enabled with streaming mode changes. 1406 if (!AFI->hasStreamingModeChanges()) 1407 return false; 1408 auto &ST = MF.getSubtarget<AArch64Subtarget>(); 1409 if (ST.isTargetDarwin()) 1410 return ST.hasSVE(); 1411 return true; 1412 } 1413 1414 bool isVGInstruction(MachineBasicBlock::iterator MBBI) { 1415 unsigned Opc = MBBI->getOpcode(); 1416 if (Opc == AArch64::CNTD_XPiI || Opc == AArch64::RDSVLI_XI || 1417 Opc == AArch64::UBFMXri) 1418 return true; 1419 1420 if (requiresGetVGCall(*MBBI->getMF())) { 1421 if (Opc == AArch64::ORRXrr) 1422 return true; 1423 1424 if (Opc == AArch64::BL) { 1425 auto Op1 = MBBI->getOperand(0); 1426 return Op1.isSymbol() && 1427 (StringRef(Op1.getSymbolName()) == "__arm_get_current_vg"); 1428 } 1429 } 1430 1431 return false; 1432 } 1433 1434 // Convert callee-save register save/restore instruction to do stack pointer 1435 // decrement/increment to allocate/deallocate the callee-save stack area by 1436 // converting store/load to use pre/post increment version. 1437 static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( 1438 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 1439 const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, 1440 bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI, 1441 MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup, 1442 int CFAOffset = 0) { 1443 unsigned NewOpc; 1444 1445 // If the function contains streaming mode changes, we expect instructions 1446 // to calculate the value of VG before spilling. For locally-streaming 1447 // functions, we need to do this for both the streaming and non-streaming 1448 // vector length. Move past these instructions if necessary. 1449 MachineFunction &MF = *MBB.getParent(); 1450 if (requiresSaveVG(MF)) 1451 while (isVGInstruction(MBBI)) 1452 ++MBBI; 1453 1454 switch (MBBI->getOpcode()) { 1455 default: 1456 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 1457 case AArch64::STPXi: 1458 NewOpc = AArch64::STPXpre; 1459 break; 1460 case AArch64::STPDi: 1461 NewOpc = AArch64::STPDpre; 1462 break; 1463 case AArch64::STPQi: 1464 NewOpc = AArch64::STPQpre; 1465 break; 1466 case AArch64::STRXui: 1467 NewOpc = AArch64::STRXpre; 1468 break; 1469 case AArch64::STRDui: 1470 NewOpc = AArch64::STRDpre; 1471 break; 1472 case AArch64::STRQui: 1473 NewOpc = AArch64::STRQpre; 1474 break; 1475 case AArch64::LDPXi: 1476 NewOpc = AArch64::LDPXpost; 1477 break; 1478 case AArch64::LDPDi: 1479 NewOpc = AArch64::LDPDpost; 1480 break; 1481 case AArch64::LDPQi: 1482 NewOpc = AArch64::LDPQpost; 1483 break; 1484 case AArch64::LDRXui: 1485 NewOpc = AArch64::LDRXpost; 1486 break; 1487 case AArch64::LDRDui: 1488 NewOpc = AArch64::LDRDpost; 1489 break; 1490 case AArch64::LDRQui: 1491 NewOpc = AArch64::LDRQpost; 1492 break; 1493 } 1494 TypeSize Scale = TypeSize::getFixed(1), Width = TypeSize::getFixed(0); 1495 int64_t MinOffset, MaxOffset; 1496 bool Success = static_cast<const AArch64InstrInfo *>(TII)->getMemOpInfo( 1497 NewOpc, Scale, Width, MinOffset, MaxOffset); 1498 (void)Success; 1499 assert(Success && "unknown load/store opcode"); 1500 1501 // If the first store isn't right where we want SP then we can't fold the 1502 // update in so create a normal arithmetic instruction instead. 1503 if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 || 1504 CSStackSizeInc < MinOffset * (int64_t)Scale.getFixedValue() || 1505 CSStackSizeInc > MaxOffset * (int64_t)Scale.getFixedValue()) { 1506 // If we are destroying the frame, make sure we add the increment after the 1507 // last frame operation. 1508 if (FrameFlag == MachineInstr::FrameDestroy) { 1509 ++MBBI; 1510 // Also skip the SEH instruction, if needed 1511 if (NeedsWinCFI && AArch64InstrInfo::isSEHInstruction(*MBBI)) 1512 ++MBBI; 1513 } 1514 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1515 StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag, 1516 false, NeedsWinCFI, HasWinCFI, EmitCFI, 1517 StackOffset::getFixed(CFAOffset)); 1518 1519 return std::prev(MBBI); 1520 } 1521 1522 // Get rid of the SEH code associated with the old instruction. 1523 if (NeedsWinCFI) { 1524 auto SEH = std::next(MBBI); 1525 if (AArch64InstrInfo::isSEHInstruction(*SEH)) 1526 SEH->eraseFromParent(); 1527 } 1528 1529 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 1530 MIB.addReg(AArch64::SP, RegState::Define); 1531 1532 // Copy all operands other than the immediate offset. 1533 unsigned OpndIdx = 0; 1534 for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; 1535 ++OpndIdx) 1536 MIB.add(MBBI->getOperand(OpndIdx)); 1537 1538 assert(MBBI->getOperand(OpndIdx).getImm() == 0 && 1539 "Unexpected immediate offset in first/last callee-save save/restore " 1540 "instruction!"); 1541 assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && 1542 "Unexpected base register in callee-save save/restore instruction!"); 1543 assert(CSStackSizeInc % Scale == 0); 1544 MIB.addImm(CSStackSizeInc / (int)Scale); 1545 1546 MIB.setMIFlags(MBBI->getFlags()); 1547 MIB.setMemRefs(MBBI->memoperands()); 1548 1549 // Generate a new SEH code that corresponds to the new instruction. 1550 if (NeedsWinCFI) { 1551 *HasWinCFI = true; 1552 InsertSEH(*MIB, *TII, FrameFlag); 1553 } 1554 1555 if (EmitCFI) { 1556 unsigned CFIIndex = MF.addFrameInst( 1557 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc)); 1558 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1559 .addCFIIndex(CFIIndex) 1560 .setMIFlags(FrameFlag); 1561 } 1562 1563 return std::prev(MBB.erase(MBBI)); 1564 } 1565 1566 // Fixup callee-save register save/restore instructions to take into account 1567 // combined SP bump by adding the local stack size to the stack offsets. 1568 static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, 1569 uint64_t LocalStackSize, 1570 bool NeedsWinCFI, 1571 bool *HasWinCFI) { 1572 if (AArch64InstrInfo::isSEHInstruction(MI)) 1573 return; 1574 1575 unsigned Opc = MI.getOpcode(); 1576 unsigned Scale; 1577 switch (Opc) { 1578 case AArch64::STPXi: 1579 case AArch64::STRXui: 1580 case AArch64::STPDi: 1581 case AArch64::STRDui: 1582 case AArch64::LDPXi: 1583 case AArch64::LDRXui: 1584 case AArch64::LDPDi: 1585 case AArch64::LDRDui: 1586 Scale = 8; 1587 break; 1588 case AArch64::STPQi: 1589 case AArch64::STRQui: 1590 case AArch64::LDPQi: 1591 case AArch64::LDRQui: 1592 Scale = 16; 1593 break; 1594 default: 1595 llvm_unreachable("Unexpected callee-save save/restore opcode!"); 1596 } 1597 1598 unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; 1599 assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && 1600 "Unexpected base register in callee-save save/restore instruction!"); 1601 // Last operand is immediate offset that needs fixing. 1602 MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); 1603 // All generated opcodes have scaled offsets. 1604 assert(LocalStackSize % Scale == 0); 1605 OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); 1606 1607 if (NeedsWinCFI) { 1608 *HasWinCFI = true; 1609 auto MBBI = std::next(MachineBasicBlock::iterator(MI)); 1610 assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); 1611 assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && 1612 "Expecting a SEH instruction"); 1613 fixupSEHOpcode(MBBI, LocalStackSize); 1614 } 1615 } 1616 1617 static bool isTargetWindows(const MachineFunction &MF) { 1618 return MF.getSubtarget<AArch64Subtarget>().isTargetWindows(); 1619 } 1620 1621 static unsigned getStackHazardSize(const MachineFunction &MF) { 1622 return MF.getSubtarget<AArch64Subtarget>().getStreamingHazardSize(); 1623 } 1624 1625 // Convenience function to determine whether I is an SVE callee save. 1626 static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { 1627 switch (I->getOpcode()) { 1628 default: 1629 return false; 1630 case AArch64::PTRUE_C_B: 1631 case AArch64::LD1B_2Z_IMM: 1632 case AArch64::ST1B_2Z_IMM: 1633 case AArch64::STR_ZXI: 1634 case AArch64::STR_PXI: 1635 case AArch64::LDR_ZXI: 1636 case AArch64::LDR_PXI: 1637 return I->getFlag(MachineInstr::FrameSetup) || 1638 I->getFlag(MachineInstr::FrameDestroy); 1639 } 1640 } 1641 1642 static void emitShadowCallStackPrologue(const TargetInstrInfo &TII, 1643 MachineFunction &MF, 1644 MachineBasicBlock &MBB, 1645 MachineBasicBlock::iterator MBBI, 1646 const DebugLoc &DL, bool NeedsWinCFI, 1647 bool NeedsUnwindInfo) { 1648 // Shadow call stack prolog: str x30, [x18], #8 1649 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost)) 1650 .addReg(AArch64::X18, RegState::Define) 1651 .addReg(AArch64::LR) 1652 .addReg(AArch64::X18) 1653 .addImm(8) 1654 .setMIFlag(MachineInstr::FrameSetup); 1655 1656 // This instruction also makes x18 live-in to the entry block. 1657 MBB.addLiveIn(AArch64::X18); 1658 1659 if (NeedsWinCFI) 1660 BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop)) 1661 .setMIFlag(MachineInstr::FrameSetup); 1662 1663 if (NeedsUnwindInfo) { 1664 // Emit a CFI instruction that causes 8 to be subtracted from the value of 1665 // x18 when unwinding past this frame. 1666 static const char CFIInst[] = { 1667 dwarf::DW_CFA_val_expression, 1668 18, // register 1669 2, // length 1670 static_cast<char>(unsigned(dwarf::DW_OP_breg18)), 1671 static_cast<char>(-8) & 0x7f, // addend (sleb128) 1672 }; 1673 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( 1674 nullptr, StringRef(CFIInst, sizeof(CFIInst)))); 1675 BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION)) 1676 .addCFIIndex(CFIIndex) 1677 .setMIFlag(MachineInstr::FrameSetup); 1678 } 1679 } 1680 1681 static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII, 1682 MachineFunction &MF, 1683 MachineBasicBlock &MBB, 1684 MachineBasicBlock::iterator MBBI, 1685 const DebugLoc &DL) { 1686 // Shadow call stack epilog: ldr x30, [x18, #-8]! 1687 BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre)) 1688 .addReg(AArch64::X18, RegState::Define) 1689 .addReg(AArch64::LR, RegState::Define) 1690 .addReg(AArch64::X18) 1691 .addImm(-8) 1692 .setMIFlag(MachineInstr::FrameDestroy); 1693 1694 if (MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF)) { 1695 unsigned CFIIndex = 1696 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18)); 1697 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1698 .addCFIIndex(CFIIndex) 1699 .setMIFlags(MachineInstr::FrameDestroy); 1700 } 1701 } 1702 1703 // Define the current CFA rule to use the provided FP. 1704 static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB, 1705 MachineBasicBlock::iterator MBBI, 1706 const DebugLoc &DL, unsigned FixedObject) { 1707 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 1708 const AArch64RegisterInfo *TRI = STI.getRegisterInfo(); 1709 const TargetInstrInfo *TII = STI.getInstrInfo(); 1710 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1711 1712 const int OffsetToFirstCalleeSaveFromFP = 1713 AFI->getCalleeSaveBaseToFrameRecordOffset() - 1714 AFI->getCalleeSavedStackSize(); 1715 Register FramePtr = TRI->getFrameRegister(MF); 1716 unsigned Reg = TRI->getDwarfRegNum(FramePtr, true); 1717 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1718 nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP)); 1719 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1720 .addCFIIndex(CFIIndex) 1721 .setMIFlags(MachineInstr::FrameSetup); 1722 } 1723 1724 #ifndef NDEBUG 1725 /// Collect live registers from the end of \p MI's parent up to (including) \p 1726 /// MI in \p LiveRegs. 1727 static void getLivePhysRegsUpTo(MachineInstr &MI, const TargetRegisterInfo &TRI, 1728 LivePhysRegs &LiveRegs) { 1729 1730 MachineBasicBlock &MBB = *MI.getParent(); 1731 LiveRegs.addLiveOuts(MBB); 1732 for (const MachineInstr &MI : 1733 reverse(make_range(MI.getIterator(), MBB.instr_end()))) 1734 LiveRegs.stepBackward(MI); 1735 } 1736 #endif 1737 1738 void AArch64FrameLowering::emitPrologue(MachineFunction &MF, 1739 MachineBasicBlock &MBB) const { 1740 MachineBasicBlock::iterator MBBI = MBB.begin(); 1741 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1742 const Function &F = MF.getFunction(); 1743 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 1744 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 1745 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 1746 1747 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 1748 bool EmitCFI = AFI->needsDwarfUnwindInfo(MF); 1749 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 1750 bool HasFP = hasFP(MF); 1751 bool NeedsWinCFI = needsWinCFI(MF); 1752 bool HasWinCFI = false; 1753 auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); 1754 1755 MachineBasicBlock::iterator End = MBB.end(); 1756 #ifndef NDEBUG 1757 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1758 // Collect live register from the end of MBB up to the start of the existing 1759 // frame setup instructions. 1760 MachineBasicBlock::iterator NonFrameStart = MBB.begin(); 1761 while (NonFrameStart != End && 1762 NonFrameStart->getFlag(MachineInstr::FrameSetup)) 1763 ++NonFrameStart; 1764 1765 LivePhysRegs LiveRegs(*TRI); 1766 if (NonFrameStart != MBB.end()) { 1767 getLivePhysRegsUpTo(*NonFrameStart, *TRI, LiveRegs); 1768 // Ignore registers used for stack management for now. 1769 LiveRegs.removeReg(AArch64::SP); 1770 LiveRegs.removeReg(AArch64::X19); 1771 LiveRegs.removeReg(AArch64::FP); 1772 LiveRegs.removeReg(AArch64::LR); 1773 1774 // X0 will be clobbered by a call to __arm_get_current_vg in the prologue. 1775 // This is necessary to spill VG if required where SVE is unavailable, but 1776 // X0 is preserved around this call. 1777 if (requiresGetVGCall(MF)) 1778 LiveRegs.removeReg(AArch64::X0); 1779 } 1780 1781 auto VerifyClobberOnExit = make_scope_exit([&]() { 1782 if (NonFrameStart == MBB.end()) 1783 return; 1784 // Check if any of the newly instructions clobber any of the live registers. 1785 for (MachineInstr &MI : 1786 make_range(MBB.instr_begin(), NonFrameStart->getIterator())) { 1787 for (auto &Op : MI.operands()) 1788 if (Op.isReg() && Op.isDef()) 1789 assert(!LiveRegs.contains(Op.getReg()) && 1790 "live register clobbered by inserted prologue instructions"); 1791 } 1792 }); 1793 #endif 1794 1795 bool IsFunclet = MBB.isEHFuncletEntry(); 1796 1797 // At this point, we're going to decide whether or not the function uses a 1798 // redzone. In most cases, the function doesn't have a redzone so let's 1799 // assume that's false and set it to true in the case that there's a redzone. 1800 AFI->setHasRedZone(false); 1801 1802 // Debug location must be unknown since the first debug location is used 1803 // to determine the end of the prologue. 1804 DebugLoc DL; 1805 1806 const auto &MFnI = *MF.getInfo<AArch64FunctionInfo>(); 1807 if (MFnI.needsShadowCallStackPrologueEpilogue(MF)) 1808 emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI, 1809 MFnI.needsDwarfUnwindInfo(MF)); 1810 1811 if (MFnI.shouldSignReturnAddress(MF)) { 1812 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE)) 1813 .setMIFlag(MachineInstr::FrameSetup); 1814 if (NeedsWinCFI) 1815 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR 1816 } 1817 1818 if (EmitCFI && MFnI.isMTETagged()) { 1819 BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED)) 1820 .setMIFlag(MachineInstr::FrameSetup); 1821 } 1822 1823 // We signal the presence of a Swift extended frame to external tools by 1824 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple 1825 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI 1826 // bits so that is still true. 1827 if (HasFP && AFI->hasSwiftAsyncContext()) { 1828 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 1829 case SwiftAsyncFramePointerMode::DeploymentBased: 1830 if (Subtarget.swiftAsyncContextIsDynamicallySet()) { 1831 // The special symbol below is absolute and has a *value* that can be 1832 // combined with the frame pointer to signal an extended frame. 1833 BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16) 1834 .addExternalSymbol("swift_async_extendedFramePointerFlags", 1835 AArch64II::MO_GOT); 1836 if (NeedsWinCFI) { 1837 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1838 .setMIFlags(MachineInstr::FrameSetup); 1839 HasWinCFI = true; 1840 } 1841 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP) 1842 .addUse(AArch64::FP) 1843 .addUse(AArch64::X16) 1844 .addImm(Subtarget.isTargetILP32() ? 32 : 0); 1845 if (NeedsWinCFI) { 1846 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1847 .setMIFlags(MachineInstr::FrameSetup); 1848 HasWinCFI = true; 1849 } 1850 break; 1851 } 1852 [[fallthrough]]; 1853 1854 case SwiftAsyncFramePointerMode::Always: 1855 // ORR x29, x29, #0x1000_0000_0000_0000 1856 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP) 1857 .addUse(AArch64::FP) 1858 .addImm(0x1100) 1859 .setMIFlag(MachineInstr::FrameSetup); 1860 if (NeedsWinCFI) { 1861 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1862 .setMIFlags(MachineInstr::FrameSetup); 1863 HasWinCFI = true; 1864 } 1865 break; 1866 1867 case SwiftAsyncFramePointerMode::Never: 1868 break; 1869 } 1870 } 1871 1872 // All calls are tail calls in GHC calling conv, and functions have no 1873 // prologue/epilogue. 1874 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1875 return; 1876 1877 // Set tagged base pointer to the requested stack slot. 1878 // Ideally it should match SP value after prologue. 1879 std::optional<int> TBPI = AFI->getTaggedBasePointerIndex(); 1880 if (TBPI) 1881 AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI)); 1882 else 1883 AFI->setTaggedBasePointerOffset(MFI.getStackSize()); 1884 1885 const StackOffset &SVEStackSize = getSVEStackSize(MF); 1886 1887 // getStackSize() includes all the locals in its size calculation. We don't 1888 // include these locals when computing the stack size of a funclet, as they 1889 // are allocated in the parent's stack frame and accessed via the frame 1890 // pointer from the funclet. We only save the callee saved registers in the 1891 // funclet, which are really the callee saved registers of the parent 1892 // function, including the funclet. 1893 int64_t NumBytes = 1894 IsFunclet ? getWinEHFuncletFrameSize(MF) : MFI.getStackSize(); 1895 if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { 1896 assert(!HasFP && "unexpected function without stack frame but with FP"); 1897 assert(!SVEStackSize && 1898 "unexpected function without stack frame but with SVE objects"); 1899 // All of the stack allocation is for locals. 1900 AFI->setLocalStackSize(NumBytes); 1901 if (!NumBytes) 1902 return; 1903 // REDZONE: If the stack size is less than 128 bytes, we don't need 1904 // to actually allocate. 1905 if (canUseRedZone(MF)) { 1906 AFI->setHasRedZone(true); 1907 ++NumRedZoneFunctions; 1908 } else { 1909 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1910 StackOffset::getFixed(-NumBytes), TII, 1911 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 1912 if (EmitCFI) { 1913 // Label used to tie together the PROLOG_LABEL and the MachineMoves. 1914 MCSymbol *FrameLabel = MF.getContext().createTempSymbol(); 1915 // Encode the stack size of the leaf function. 1916 unsigned CFIIndex = MF.addFrameInst( 1917 MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); 1918 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 1919 .addCFIIndex(CFIIndex) 1920 .setMIFlags(MachineInstr::FrameSetup); 1921 } 1922 } 1923 1924 if (NeedsWinCFI) { 1925 HasWinCFI = true; 1926 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 1927 .setMIFlag(MachineInstr::FrameSetup); 1928 } 1929 1930 return; 1931 } 1932 1933 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg()); 1934 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 1935 1936 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 1937 // All of the remaining stack allocations are for locals. 1938 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 1939 bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); 1940 bool HomPrologEpilog = homogeneousPrologEpilog(MF); 1941 if (CombineSPBump) { 1942 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 1943 emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, 1944 StackOffset::getFixed(-NumBytes), TII, 1945 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI, 1946 EmitAsyncCFI); 1947 NumBytes = 0; 1948 } else if (HomPrologEpilog) { 1949 // Stack has been already adjusted. 1950 NumBytes -= PrologueSaveSize; 1951 } else if (PrologueSaveSize != 0) { 1952 MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( 1953 MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI, 1954 EmitAsyncCFI); 1955 NumBytes -= PrologueSaveSize; 1956 } 1957 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 1958 1959 // Move past the saves of the callee-saved registers, fixing up the offsets 1960 // and pre-inc if we decided to combine the callee-save and local stack 1961 // pointer bump above. 1962 while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && 1963 !IsSVECalleeSave(MBBI)) { 1964 if (CombineSPBump && 1965 // Only fix-up frame-setup load/store instructions. 1966 (!requiresSaveVG(MF) || !isVGInstruction(MBBI))) 1967 fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), 1968 NeedsWinCFI, &HasWinCFI); 1969 ++MBBI; 1970 } 1971 1972 // For funclets the FP belongs to the containing function. 1973 if (!IsFunclet && HasFP) { 1974 // Only set up FP if we actually need to. 1975 int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset(); 1976 1977 if (CombineSPBump) 1978 FPOffset += AFI->getLocalStackSize(); 1979 1980 if (AFI->hasSwiftAsyncContext()) { 1981 // Before we update the live FP we have to ensure there's a valid (or 1982 // null) asynchronous context in its slot just before FP in the frame 1983 // record, so store it now. 1984 const auto &Attrs = MF.getFunction().getAttributes(); 1985 bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync); 1986 if (HaveInitialContext) 1987 MBB.addLiveIn(AArch64::X22); 1988 Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR; 1989 BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext)) 1990 .addUse(Reg) 1991 .addUse(AArch64::SP) 1992 .addImm(FPOffset - 8) 1993 .setMIFlags(MachineInstr::FrameSetup); 1994 if (NeedsWinCFI) { 1995 // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded 1996 // to multiple instructions, should be mutually-exclusive. 1997 assert(Subtarget.getTargetTriple().getArchName() != "arm64e"); 1998 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 1999 .setMIFlags(MachineInstr::FrameSetup); 2000 HasWinCFI = true; 2001 } 2002 } 2003 2004 if (HomPrologEpilog) { 2005 auto Prolog = MBBI; 2006 --Prolog; 2007 assert(Prolog->getOpcode() == AArch64::HOM_Prolog); 2008 Prolog->addOperand(MachineOperand::CreateImm(FPOffset)); 2009 } else { 2010 // Issue sub fp, sp, FPOffset or 2011 // mov fp,sp when FPOffset is zero. 2012 // Note: All stores of callee-saved registers are marked as "FrameSetup". 2013 // This code marks the instruction(s) that set the FP also. 2014 emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, 2015 StackOffset::getFixed(FPOffset), TII, 2016 MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); 2017 if (NeedsWinCFI && HasWinCFI) { 2018 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 2019 .setMIFlag(MachineInstr::FrameSetup); 2020 // After setting up the FP, the rest of the prolog doesn't need to be 2021 // included in the SEH unwind info. 2022 NeedsWinCFI = false; 2023 } 2024 } 2025 if (EmitAsyncCFI) 2026 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject); 2027 } 2028 2029 // Now emit the moves for whatever callee saved regs we have (including FP, 2030 // LR if those are saved). Frame instructions for SVE register are emitted 2031 // later, after the instruction which actually save SVE regs. 2032 if (EmitAsyncCFI) 2033 emitCalleeSavedGPRLocations(MBB, MBBI); 2034 2035 // Alignment is required for the parent frame, not the funclet 2036 const bool NeedsRealignment = 2037 NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF); 2038 const int64_t RealignmentPadding = 2039 (NeedsRealignment && MFI.getMaxAlign() > Align(16)) 2040 ? MFI.getMaxAlign().value() - 16 2041 : 0; 2042 2043 if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) { 2044 uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4; 2045 if (NeedsWinCFI) { 2046 HasWinCFI = true; 2047 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't 2048 // exceed this amount. We need to move at most 2^24 - 1 into x15. 2049 // This is at most two instructions, MOVZ follwed by MOVK. 2050 // TODO: Fix to use multiple stack alloc unwind codes for stacks 2051 // exceeding 256MB in size. 2052 if (NumBytes >= (1 << 28)) 2053 report_fatal_error("Stack size cannot exceed 256MB for stack " 2054 "unwinding purposes"); 2055 2056 uint32_t LowNumWords = NumWords & 0xFFFF; 2057 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) 2058 .addImm(LowNumWords) 2059 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) 2060 .setMIFlag(MachineInstr::FrameSetup); 2061 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2062 .setMIFlag(MachineInstr::FrameSetup); 2063 if ((NumWords & 0xFFFF0000) != 0) { 2064 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) 2065 .addReg(AArch64::X15) 2066 .addImm((NumWords & 0xFFFF0000) >> 16) // High half 2067 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) 2068 .setMIFlag(MachineInstr::FrameSetup); 2069 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2070 .setMIFlag(MachineInstr::FrameSetup); 2071 } 2072 } else { 2073 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) 2074 .addImm(NumWords) 2075 .setMIFlags(MachineInstr::FrameSetup); 2076 } 2077 2078 const char *ChkStk = Subtarget.getChkStkName(); 2079 switch (MF.getTarget().getCodeModel()) { 2080 case CodeModel::Tiny: 2081 case CodeModel::Small: 2082 case CodeModel::Medium: 2083 case CodeModel::Kernel: 2084 BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) 2085 .addExternalSymbol(ChkStk) 2086 .addReg(AArch64::X15, RegState::Implicit) 2087 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 2088 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 2089 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 2090 .setMIFlags(MachineInstr::FrameSetup); 2091 if (NeedsWinCFI) { 2092 HasWinCFI = true; 2093 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2094 .setMIFlag(MachineInstr::FrameSetup); 2095 } 2096 break; 2097 case CodeModel::Large: 2098 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) 2099 .addReg(AArch64::X16, RegState::Define) 2100 .addExternalSymbol(ChkStk) 2101 .addExternalSymbol(ChkStk) 2102 .setMIFlags(MachineInstr::FrameSetup); 2103 if (NeedsWinCFI) { 2104 HasWinCFI = true; 2105 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2106 .setMIFlag(MachineInstr::FrameSetup); 2107 } 2108 2109 BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF))) 2110 .addReg(AArch64::X16, RegState::Kill) 2111 .addReg(AArch64::X15, RegState::Implicit | RegState::Define) 2112 .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) 2113 .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) 2114 .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) 2115 .setMIFlags(MachineInstr::FrameSetup); 2116 if (NeedsWinCFI) { 2117 HasWinCFI = true; 2118 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2119 .setMIFlag(MachineInstr::FrameSetup); 2120 } 2121 break; 2122 } 2123 2124 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) 2125 .addReg(AArch64::SP, RegState::Kill) 2126 .addReg(AArch64::X15, RegState::Kill) 2127 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) 2128 .setMIFlags(MachineInstr::FrameSetup); 2129 if (NeedsWinCFI) { 2130 HasWinCFI = true; 2131 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) 2132 .addImm(NumBytes) 2133 .setMIFlag(MachineInstr::FrameSetup); 2134 } 2135 NumBytes = 0; 2136 2137 if (RealignmentPadding > 0) { 2138 if (RealignmentPadding >= 4096) { 2139 BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm)) 2140 .addReg(AArch64::X16, RegState::Define) 2141 .addImm(RealignmentPadding) 2142 .setMIFlags(MachineInstr::FrameSetup); 2143 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15) 2144 .addReg(AArch64::SP) 2145 .addReg(AArch64::X16, RegState::Kill) 2146 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0)) 2147 .setMIFlag(MachineInstr::FrameSetup); 2148 } else { 2149 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15) 2150 .addReg(AArch64::SP) 2151 .addImm(RealignmentPadding) 2152 .addImm(0) 2153 .setMIFlag(MachineInstr::FrameSetup); 2154 } 2155 2156 uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1); 2157 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) 2158 .addReg(AArch64::X15, RegState::Kill) 2159 .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)); 2160 AFI->setStackRealigned(true); 2161 2162 // No need for SEH instructions here; if we're realigning the stack, 2163 // we've set a frame pointer and already finished the SEH prologue. 2164 assert(!NeedsWinCFI); 2165 } 2166 } 2167 2168 StackOffset SVECalleeSavesSize = {}, SVELocalsSize = SVEStackSize; 2169 MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; 2170 2171 // Process the SVE callee-saves to determine what space needs to be 2172 // allocated. 2173 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2174 LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize 2175 << "\n"); 2176 // Find callee save instructions in frame. 2177 CalleeSavesBegin = MBBI; 2178 assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); 2179 while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) 2180 ++MBBI; 2181 CalleeSavesEnd = MBBI; 2182 2183 SVECalleeSavesSize = StackOffset::getScalable(CalleeSavedSize); 2184 SVELocalsSize = SVEStackSize - SVECalleeSavesSize; 2185 } 2186 2187 // Allocate space for the callee saves (if any). 2188 StackOffset CFAOffset = 2189 StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes); 2190 StackOffset LocalsSize = SVELocalsSize + StackOffset::getFixed(NumBytes); 2191 allocateStackSpace(MBB, CalleeSavesBegin, 0, SVECalleeSavesSize, false, 2192 nullptr, EmitAsyncCFI && !HasFP, CFAOffset, 2193 MFI.hasVarSizedObjects() || LocalsSize); 2194 CFAOffset += SVECalleeSavesSize; 2195 2196 if (EmitAsyncCFI) 2197 emitCalleeSavedSVELocations(MBB, CalleeSavesEnd); 2198 2199 // Allocate space for the rest of the frame including SVE locals. Align the 2200 // stack as necessary. 2201 assert(!(canUseRedZone(MF) && NeedsRealignment) && 2202 "Cannot use redzone with stack realignment"); 2203 if (!canUseRedZone(MF)) { 2204 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have 2205 // the correct value here, as NumBytes also includes padding bytes, 2206 // which shouldn't be counted here. 2207 allocateStackSpace(MBB, CalleeSavesEnd, RealignmentPadding, 2208 SVELocalsSize + StackOffset::getFixed(NumBytes), 2209 NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP, 2210 CFAOffset, MFI.hasVarSizedObjects()); 2211 } 2212 2213 // If we need a base pointer, set it up here. It's whatever the value of the 2214 // stack pointer is at this point. Any variable size objects will be allocated 2215 // after this, so we can still use the base pointer to reference locals. 2216 // 2217 // FIXME: Clarify FrameSetup flags here. 2218 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is 2219 // needed. 2220 // For funclets the BP belongs to the containing function. 2221 if (!IsFunclet && RegInfo->hasBasePointer(MF)) { 2222 TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, 2223 false); 2224 if (NeedsWinCFI) { 2225 HasWinCFI = true; 2226 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2227 .setMIFlag(MachineInstr::FrameSetup); 2228 } 2229 } 2230 2231 // The very last FrameSetup instruction indicates the end of prologue. Emit a 2232 // SEH opcode indicating the prologue end. 2233 if (NeedsWinCFI && HasWinCFI) { 2234 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) 2235 .setMIFlag(MachineInstr::FrameSetup); 2236 } 2237 2238 // SEH funclets are passed the frame pointer in X1. If the parent 2239 // function uses the base register, then the base register is used 2240 // directly, and is not retrieved from X1. 2241 if (IsFunclet && F.hasPersonalityFn()) { 2242 EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); 2243 if (isAsynchronousEHPersonality(Per)) { 2244 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) 2245 .addReg(AArch64::X1) 2246 .setMIFlag(MachineInstr::FrameSetup); 2247 MBB.addLiveIn(AArch64::X1); 2248 } 2249 } 2250 2251 if (EmitCFI && !EmitAsyncCFI) { 2252 if (HasFP) { 2253 emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject); 2254 } else { 2255 StackOffset TotalSize = 2256 SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize()); 2257 unsigned CFIIndex = MF.addFrameInst(createDefCFA( 2258 *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize, 2259 /*LastAdjustmentWasScalable=*/false)); 2260 BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2261 .addCFIIndex(CFIIndex) 2262 .setMIFlags(MachineInstr::FrameSetup); 2263 } 2264 emitCalleeSavedGPRLocations(MBB, MBBI); 2265 emitCalleeSavedSVELocations(MBB, MBBI); 2266 } 2267 } 2268 2269 static bool isFuncletReturnInstr(const MachineInstr &MI) { 2270 switch (MI.getOpcode()) { 2271 default: 2272 return false; 2273 case AArch64::CATCHRET: 2274 case AArch64::CLEANUPRET: 2275 return true; 2276 } 2277 } 2278 2279 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, 2280 MachineBasicBlock &MBB) const { 2281 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 2282 MachineFrameInfo &MFI = MF.getFrameInfo(); 2283 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2284 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2285 const TargetInstrInfo *TII = Subtarget.getInstrInfo(); 2286 DebugLoc DL; 2287 bool NeedsWinCFI = needsWinCFI(MF); 2288 bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 2289 bool HasWinCFI = false; 2290 bool IsFunclet = false; 2291 2292 if (MBB.end() != MBBI) { 2293 DL = MBBI->getDebugLoc(); 2294 IsFunclet = isFuncletReturnInstr(*MBBI); 2295 } 2296 2297 MachineBasicBlock::iterator EpilogStartI = MBB.end(); 2298 2299 auto FinishingTouches = make_scope_exit([&]() { 2300 if (AFI->shouldSignReturnAddress(MF)) { 2301 BuildMI(MBB, MBB.getFirstTerminator(), DL, 2302 TII->get(AArch64::PAUTH_EPILOGUE)) 2303 .setMIFlag(MachineInstr::FrameDestroy); 2304 if (NeedsWinCFI) 2305 HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR 2306 } 2307 if (AFI->needsShadowCallStackPrologueEpilogue(MF)) 2308 emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL); 2309 if (EmitCFI) 2310 emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator()); 2311 if (HasWinCFI) { 2312 BuildMI(MBB, MBB.getFirstTerminator(), DL, 2313 TII->get(AArch64::SEH_EpilogEnd)) 2314 .setMIFlag(MachineInstr::FrameDestroy); 2315 if (!MF.hasWinCFI()) 2316 MF.setHasWinCFI(true); 2317 } 2318 if (NeedsWinCFI) { 2319 assert(EpilogStartI != MBB.end()); 2320 if (!HasWinCFI) 2321 MBB.erase(EpilogStartI); 2322 } 2323 }); 2324 2325 int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) 2326 : MFI.getStackSize(); 2327 2328 // All calls are tail calls in GHC calling conv, and functions have no 2329 // prologue/epilogue. 2330 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 2331 return; 2332 2333 // How much of the stack used by incoming arguments this function is expected 2334 // to restore in this particular epilogue. 2335 int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB); 2336 bool IsWin64 = Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(), 2337 MF.getFunction().isVarArg()); 2338 unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); 2339 2340 int64_t AfterCSRPopSize = ArgumentStackToRestore; 2341 auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; 2342 // We cannot rely on the local stack size set in emitPrologue if the function 2343 // has funclets, as funclets have different local stack size requirements, and 2344 // the current value set in emitPrologue may be that of the containing 2345 // function. 2346 if (MF.hasEHFunclets()) 2347 AFI->setLocalStackSize(NumBytes - PrologueSaveSize); 2348 if (homogeneousPrologEpilog(MF, &MBB)) { 2349 assert(!NeedsWinCFI); 2350 auto LastPopI = MBB.getFirstTerminator(); 2351 if (LastPopI != MBB.begin()) { 2352 auto HomogeneousEpilog = std::prev(LastPopI); 2353 if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog) 2354 LastPopI = HomogeneousEpilog; 2355 } 2356 2357 // Adjust local stack 2358 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2359 StackOffset::getFixed(AFI->getLocalStackSize()), TII, 2360 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2361 2362 // SP has been already adjusted while restoring callee save regs. 2363 // We've bailed-out the case with adjusting SP for arguments. 2364 assert(AfterCSRPopSize == 0); 2365 return; 2366 } 2367 bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); 2368 // Assume we can't combine the last pop with the sp restore. 2369 bool CombineAfterCSRBump = false; 2370 if (!CombineSPBump && PrologueSaveSize != 0) { 2371 MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); 2372 while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION || 2373 AArch64InstrInfo::isSEHInstruction(*Pop)) 2374 Pop = std::prev(Pop); 2375 // Converting the last ldp to a post-index ldp is valid only if the last 2376 // ldp's offset is 0. 2377 const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); 2378 // If the offset is 0 and the AfterCSR pop is not actually trying to 2379 // allocate more stack for arguments (in space that an untimely interrupt 2380 // may clobber), convert it to a post-index ldp. 2381 if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) { 2382 convertCalleeSaveRestoreToSPPrePostIncDec( 2383 MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI, 2384 MachineInstr::FrameDestroy, PrologueSaveSize); 2385 } else { 2386 // If not, make sure to emit an add after the last ldp. 2387 // We're doing this by transfering the size to be restored from the 2388 // adjustment *before* the CSR pops to the adjustment *after* the CSR 2389 // pops. 2390 AfterCSRPopSize += PrologueSaveSize; 2391 CombineAfterCSRBump = true; 2392 } 2393 } 2394 2395 // Move past the restores of the callee-saved registers. 2396 // If we plan on combining the sp bump of the local stack size and the callee 2397 // save stack size, we might need to adjust the CSR save and restore offsets. 2398 MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); 2399 MachineBasicBlock::iterator Begin = MBB.begin(); 2400 while (LastPopI != Begin) { 2401 --LastPopI; 2402 if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || 2403 IsSVECalleeSave(LastPopI)) { 2404 ++LastPopI; 2405 break; 2406 } else if (CombineSPBump) 2407 fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), 2408 NeedsWinCFI, &HasWinCFI); 2409 } 2410 2411 if (NeedsWinCFI) { 2412 // Note that there are cases where we insert SEH opcodes in the 2413 // epilogue when we had no SEH opcodes in the prologue. For 2414 // example, when there is no stack frame but there are stack 2415 // arguments. Insert the SEH_EpilogStart and remove it later if it 2416 // we didn't emit any SEH opcodes to avoid generating WinCFI for 2417 // functions that don't need it. 2418 BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) 2419 .setMIFlag(MachineInstr::FrameDestroy); 2420 EpilogStartI = LastPopI; 2421 --EpilogStartI; 2422 } 2423 2424 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) { 2425 switch (MF.getTarget().Options.SwiftAsyncFramePointer) { 2426 case SwiftAsyncFramePointerMode::DeploymentBased: 2427 // Avoid the reload as it is GOT relative, and instead fall back to the 2428 // hardcoded value below. This allows a mismatch between the OS and 2429 // application without immediately terminating on the difference. 2430 [[fallthrough]]; 2431 case SwiftAsyncFramePointerMode::Always: 2432 // We need to reset FP to its untagged state on return. Bit 60 is 2433 // currently used to show the presence of an extended frame. 2434 2435 // BIC x29, x29, #0x1000_0000_0000_0000 2436 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri), 2437 AArch64::FP) 2438 .addUse(AArch64::FP) 2439 .addImm(0x10fe) 2440 .setMIFlag(MachineInstr::FrameDestroy); 2441 if (NeedsWinCFI) { 2442 BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) 2443 .setMIFlags(MachineInstr::FrameDestroy); 2444 HasWinCFI = true; 2445 } 2446 break; 2447 2448 case SwiftAsyncFramePointerMode::Never: 2449 break; 2450 } 2451 } 2452 2453 const StackOffset &SVEStackSize = getSVEStackSize(MF); 2454 2455 // If there is a single SP update, insert it before the ret and we're done. 2456 if (CombineSPBump) { 2457 assert(!SVEStackSize && "Cannot combine SP bump with SVE"); 2458 2459 // When we are about to restore the CSRs, the CFA register is SP again. 2460 if (EmitCFI && hasFP(MF)) { 2461 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo(); 2462 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 2463 unsigned CFIIndex = 2464 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes)); 2465 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2466 .addCFIIndex(CFIIndex) 2467 .setMIFlags(MachineInstr::FrameDestroy); 2468 } 2469 2470 emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 2471 StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize), 2472 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, 2473 &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes)); 2474 return; 2475 } 2476 2477 NumBytes -= PrologueSaveSize; 2478 assert(NumBytes >= 0 && "Negative stack allocation size!?"); 2479 2480 // Process the SVE callee-saves to determine what space needs to be 2481 // deallocated. 2482 StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; 2483 MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; 2484 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2485 RestoreBegin = std::prev(RestoreEnd); 2486 while (RestoreBegin != MBB.begin() && 2487 IsSVECalleeSave(std::prev(RestoreBegin))) 2488 --RestoreBegin; 2489 2490 assert(IsSVECalleeSave(RestoreBegin) && 2491 IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); 2492 2493 StackOffset CalleeSavedSizeAsOffset = 2494 StackOffset::getScalable(CalleeSavedSize); 2495 DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset; 2496 DeallocateAfter = CalleeSavedSizeAsOffset; 2497 } 2498 2499 // Deallocate the SVE area. 2500 if (SVEStackSize) { 2501 // If we have stack realignment or variable sized objects on the stack, 2502 // restore the stack pointer from the frame pointer prior to SVE CSR 2503 // restoration. 2504 if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) { 2505 if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { 2506 // Set SP to start of SVE callee-save area from which they can 2507 // be reloaded. The code below will deallocate the stack space 2508 // space by moving FP -> SP. 2509 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, 2510 StackOffset::getScalable(-CalleeSavedSize), TII, 2511 MachineInstr::FrameDestroy); 2512 } 2513 } else { 2514 if (AFI->getSVECalleeSavedStackSize()) { 2515 // Deallocate the non-SVE locals first before we can deallocate (and 2516 // restore callee saves) from the SVE area. 2517 emitFrameOffset( 2518 MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 2519 StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy, 2520 false, false, nullptr, EmitCFI && !hasFP(MF), 2521 SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2522 NumBytes = 0; 2523 } 2524 2525 emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, 2526 DeallocateBefore, TII, MachineInstr::FrameDestroy, false, 2527 false, nullptr, EmitCFI && !hasFP(MF), 2528 SVEStackSize + 2529 StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2530 2531 emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, 2532 DeallocateAfter, TII, MachineInstr::FrameDestroy, false, 2533 false, nullptr, EmitCFI && !hasFP(MF), 2534 DeallocateAfter + 2535 StackOffset::getFixed(NumBytes + PrologueSaveSize)); 2536 } 2537 if (EmitCFI) 2538 emitCalleeSavedSVERestores(MBB, RestoreEnd); 2539 } 2540 2541 if (!hasFP(MF)) { 2542 bool RedZone = canUseRedZone(MF); 2543 // If this was a redzone leaf function, we don't need to restore the 2544 // stack pointer (but we may need to pop stack args for fastcc). 2545 if (RedZone && AfterCSRPopSize == 0) 2546 return; 2547 2548 // Pop the local variables off the stack. If there are no callee-saved 2549 // registers, it means we are actually positioned at the terminator and can 2550 // combine stack increment for the locals and the stack increment for 2551 // callee-popped arguments into (possibly) a single instruction and be done. 2552 bool NoCalleeSaveRestore = PrologueSaveSize == 0; 2553 int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; 2554 if (NoCalleeSaveRestore) 2555 StackRestoreBytes += AfterCSRPopSize; 2556 2557 emitFrameOffset( 2558 MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2559 StackOffset::getFixed(StackRestoreBytes), TII, 2560 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI, 2561 StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize)); 2562 2563 // If we were able to combine the local stack pop with the argument pop, 2564 // then we're done. 2565 if (NoCalleeSaveRestore || AfterCSRPopSize == 0) { 2566 return; 2567 } 2568 2569 NumBytes = 0; 2570 } 2571 2572 // Restore the original stack pointer. 2573 // FIXME: Rather than doing the math here, we should instead just use 2574 // non-post-indexed loads for the restores if we aren't actually going to 2575 // be able to save any instructions. 2576 if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { 2577 emitFrameOffset( 2578 MBB, LastPopI, DL, AArch64::SP, AArch64::FP, 2579 StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()), 2580 TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2581 } else if (NumBytes) 2582 emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, 2583 StackOffset::getFixed(NumBytes), TII, 2584 MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); 2585 2586 // When we are about to restore the CSRs, the CFA register is SP again. 2587 if (EmitCFI && hasFP(MF)) { 2588 const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo(); 2589 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 2590 unsigned CFIIndex = MF.addFrameInst( 2591 MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize)); 2592 BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 2593 .addCFIIndex(CFIIndex) 2594 .setMIFlags(MachineInstr::FrameDestroy); 2595 } 2596 2597 // This must be placed after the callee-save restore code because that code 2598 // assumes the SP is at the same location as it was after the callee-save save 2599 // code in the prologue. 2600 if (AfterCSRPopSize) { 2601 assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an " 2602 "interrupt may have clobbered"); 2603 2604 emitFrameOffset( 2605 MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, 2606 StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy, 2607 false, NeedsWinCFI, &HasWinCFI, EmitCFI, 2608 StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0)); 2609 } 2610 } 2611 2612 bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const { 2613 return TargetFrameLowering::enableCFIFixup(MF) && 2614 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF); 2615 } 2616 2617 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 2618 /// debug info. It's the same as what we use for resolving the code-gen 2619 /// references for now. FIXME: This can go wrong when references are 2620 /// SP-relative and simple call frames aren't used. 2621 StackOffset 2622 AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 2623 Register &FrameReg) const { 2624 return resolveFrameIndexReference( 2625 MF, FI, FrameReg, 2626 /*PreferFP=*/ 2627 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress) || 2628 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemTag), 2629 /*ForSimm=*/false); 2630 } 2631 2632 StackOffset 2633 AArch64FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, 2634 int FI) const { 2635 // This function serves to provide a comparable offset from a single reference 2636 // point (the value of SP at function entry) that can be used for analysis, 2637 // e.g. the stack-frame-layout analysis pass. It is not guaranteed to be 2638 // correct for all objects in the presence of VLA-area objects or dynamic 2639 // stack re-alignment. 2640 2641 const auto &MFI = MF.getFrameInfo(); 2642 2643 int64_t ObjectOffset = MFI.getObjectOffset(FI); 2644 StackOffset SVEStackSize = getSVEStackSize(MF); 2645 2646 // For VLA-area objects, just emit an offset at the end of the stack frame. 2647 // Whilst not quite correct, these objects do live at the end of the frame and 2648 // so it is more useful for analysis for the offset to reflect this. 2649 if (MFI.isVariableSizedObjectIndex(FI)) { 2650 return StackOffset::getFixed(-((int64_t)MFI.getStackSize())) - SVEStackSize; 2651 } 2652 2653 // This is correct in the absence of any SVE stack objects. 2654 if (!SVEStackSize) 2655 return StackOffset::getFixed(ObjectOffset - getOffsetOfLocalArea()); 2656 2657 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2658 if (MFI.getStackID(FI) == TargetStackID::ScalableVector) { 2659 return StackOffset::get(-((int64_t)AFI->getCalleeSavedStackSize()), 2660 ObjectOffset); 2661 } 2662 2663 bool IsFixed = MFI.isFixedObjectIndex(FI); 2664 bool IsCSR = 2665 !IsFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 2666 2667 StackOffset ScalableOffset = {}; 2668 if (!IsFixed && !IsCSR) 2669 ScalableOffset = -SVEStackSize; 2670 2671 return StackOffset::getFixed(ObjectOffset) + ScalableOffset; 2672 } 2673 2674 StackOffset 2675 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF, 2676 int FI) const { 2677 return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI)); 2678 } 2679 2680 static StackOffset getFPOffset(const MachineFunction &MF, 2681 int64_t ObjectOffset) { 2682 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2683 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2684 const Function &F = MF.getFunction(); 2685 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg()); 2686 unsigned FixedObject = 2687 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); 2688 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo()); 2689 int64_t FPAdjust = 2690 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset(); 2691 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust); 2692 } 2693 2694 static StackOffset getStackOffset(const MachineFunction &MF, 2695 int64_t ObjectOffset) { 2696 const auto &MFI = MF.getFrameInfo(); 2697 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize()); 2698 } 2699 2700 // TODO: This function currently does not work for scalable vectors. 2701 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, 2702 int FI) const { 2703 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 2704 MF.getSubtarget().getRegisterInfo()); 2705 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); 2706 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP 2707 ? getFPOffset(MF, ObjectOffset).getFixed() 2708 : getStackOffset(MF, ObjectOffset).getFixed(); 2709 } 2710 2711 StackOffset AArch64FrameLowering::resolveFrameIndexReference( 2712 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, 2713 bool ForSimm) const { 2714 const auto &MFI = MF.getFrameInfo(); 2715 int64_t ObjectOffset = MFI.getObjectOffset(FI); 2716 bool isFixed = MFI.isFixedObjectIndex(FI); 2717 bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector; 2718 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, 2719 PreferFP, ForSimm); 2720 } 2721 2722 StackOffset AArch64FrameLowering::resolveFrameOffsetReference( 2723 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, 2724 Register &FrameReg, bool PreferFP, bool ForSimm) const { 2725 const auto &MFI = MF.getFrameInfo(); 2726 const auto *RegInfo = static_cast<const AArch64RegisterInfo *>( 2727 MF.getSubtarget().getRegisterInfo()); 2728 const auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 2729 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2730 2731 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed(); 2732 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed(); 2733 bool isCSR = 2734 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); 2735 2736 const StackOffset &SVEStackSize = getSVEStackSize(MF); 2737 2738 // Use frame pointer to reference fixed objects. Use it for locals if 2739 // there are VLAs or a dynamically realigned SP (and thus the SP isn't 2740 // reliable as a base). Make sure useFPForScavengingIndex() does the 2741 // right thing for the emergency spill slot. 2742 bool UseFP = false; 2743 if (AFI->hasStackFrame() && !isSVE) { 2744 // We shouldn't prefer using the FP to access fixed-sized stack objects when 2745 // there are scalable (SVE) objects in between the FP and the fixed-sized 2746 // objects. 2747 PreferFP &= !SVEStackSize; 2748 2749 // Note: Keeping the following as multiple 'if' statements rather than 2750 // merging to a single expression for readability. 2751 // 2752 // Argument access should always use the FP. 2753 if (isFixed) { 2754 UseFP = hasFP(MF); 2755 } else if (isCSR && RegInfo->hasStackRealignment(MF)) { 2756 // References to the CSR area must use FP if we're re-aligning the stack 2757 // since the dynamically-sized alignment padding is between the SP/BP and 2758 // the CSR area. 2759 assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); 2760 UseFP = true; 2761 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) { 2762 // If the FPOffset is negative and we're producing a signed immediate, we 2763 // have to keep in mind that the available offset range for negative 2764 // offsets is smaller than for positive ones. If an offset is available 2765 // via the FP and the SP, use whichever is closest. 2766 bool FPOffsetFits = !ForSimm || FPOffset >= -256; 2767 PreferFP |= Offset > -FPOffset && !SVEStackSize; 2768 2769 if (FPOffset >= 0) { 2770 // If the FPOffset is positive, that'll always be best, as the SP/BP 2771 // will be even further away. 2772 UseFP = true; 2773 } else if (MFI.hasVarSizedObjects()) { 2774 // If we have variable sized objects, we can use either FP or BP, as the 2775 // SP offset is unknown. We can use the base pointer if we have one and 2776 // FP is not preferred. If not, we're stuck with using FP. 2777 bool CanUseBP = RegInfo->hasBasePointer(MF); 2778 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. 2779 UseFP = PreferFP; 2780 else if (!CanUseBP) // Can't use BP. Forced to use FP. 2781 UseFP = true; 2782 // else we can use BP and FP, but the offset from FP won't fit. 2783 // That will make us scavenge registers which we can probably avoid by 2784 // using BP. If it won't fit for BP either, we'll scavenge anyway. 2785 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { 2786 // Funclets access the locals contained in the parent's stack frame 2787 // via the frame pointer, so we have to use the FP in the parent 2788 // function. 2789 (void) Subtarget; 2790 assert(Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(), 2791 MF.getFunction().isVarArg()) && 2792 "Funclets should only be present on Win64"); 2793 UseFP = true; 2794 } else { 2795 // We have the choice between FP and (SP or BP). 2796 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. 2797 UseFP = true; 2798 } 2799 } 2800 } 2801 2802 assert( 2803 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) && 2804 "In the presence of dynamic stack pointer realignment, " 2805 "non-argument/CSR objects cannot be accessed through the frame pointer"); 2806 2807 if (isSVE) { 2808 StackOffset FPOffset = 2809 StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset); 2810 StackOffset SPOffset = 2811 SVEStackSize + 2812 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(), 2813 ObjectOffset); 2814 // Always use the FP for SVE spills if available and beneficial. 2815 if (hasFP(MF) && (SPOffset.getFixed() || 2816 FPOffset.getScalable() < SPOffset.getScalable() || 2817 RegInfo->hasStackRealignment(MF))) { 2818 FrameReg = RegInfo->getFrameRegister(MF); 2819 return FPOffset; 2820 } 2821 2822 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() 2823 : (unsigned)AArch64::SP; 2824 return SPOffset; 2825 } 2826 2827 StackOffset ScalableOffset = {}; 2828 if (UseFP && !(isFixed || isCSR)) 2829 ScalableOffset = -SVEStackSize; 2830 if (!UseFP && (isFixed || isCSR)) 2831 ScalableOffset = SVEStackSize; 2832 2833 if (UseFP) { 2834 FrameReg = RegInfo->getFrameRegister(MF); 2835 return StackOffset::getFixed(FPOffset) + ScalableOffset; 2836 } 2837 2838 // Use the base pointer if we have one. 2839 if (RegInfo->hasBasePointer(MF)) 2840 FrameReg = RegInfo->getBaseRegister(); 2841 else { 2842 assert(!MFI.hasVarSizedObjects() && 2843 "Can't use SP when we have var sized objects."); 2844 FrameReg = AArch64::SP; 2845 // If we're using the red zone for this function, the SP won't actually 2846 // be adjusted, so the offsets will be negative. They're also all 2847 // within range of the signed 9-bit immediate instructions. 2848 if (canUseRedZone(MF)) 2849 Offset -= AFI->getLocalStackSize(); 2850 } 2851 2852 return StackOffset::getFixed(Offset) + ScalableOffset; 2853 } 2854 2855 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { 2856 // Do not set a kill flag on values that are also marked as live-in. This 2857 // happens with the @llvm-returnaddress intrinsic and with arguments passed in 2858 // callee saved registers. 2859 // Omitting the kill flags is conservatively correct even if the live-in 2860 // is not used after all. 2861 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); 2862 return getKillRegState(!IsLiveIn); 2863 } 2864 2865 static bool produceCompactUnwindFrame(MachineFunction &MF) { 2866 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 2867 AttributeList Attrs = MF.getFunction().getAttributes(); 2868 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2869 return Subtarget.isTargetMachO() && 2870 !(Subtarget.getTargetLowering()->supportSwiftError() && 2871 Attrs.hasAttrSomewhere(Attribute::SwiftError)) && 2872 MF.getFunction().getCallingConv() != CallingConv::SwiftTail && 2873 !requiresSaveVG(MF) && AFI->getSVECalleeSavedStackSize() == 0; 2874 } 2875 2876 static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, 2877 bool NeedsWinCFI, bool IsFirst, 2878 const TargetRegisterInfo *TRI) { 2879 // If we are generating register pairs for a Windows function that requires 2880 // EH support, then pair consecutive registers only. There are no unwind 2881 // opcodes for saves/restores of non-consectuve register pairs. 2882 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x, 2883 // save_lrpair. 2884 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling 2885 2886 if (Reg2 == AArch64::FP) 2887 return true; 2888 if (!NeedsWinCFI) 2889 return false; 2890 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1) 2891 return false; 2892 // If pairing a GPR with LR, the pair can be described by the save_lrpair 2893 // opcode. If this is the first register pair, it would end up with a 2894 // predecrement, but there's no save_lrpair_x opcode, so we can only do this 2895 // if LR is paired with something else than the first register. 2896 // The save_lrpair opcode requires the first register to be an odd one. 2897 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 && 2898 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst) 2899 return false; 2900 return true; 2901 } 2902 2903 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. 2904 /// WindowsCFI requires that only consecutive registers can be paired. 2905 /// LR and FP need to be allocated together when the frame needs to save 2906 /// the frame-record. This means any other register pairing with LR is invalid. 2907 static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, 2908 bool UsesWinAAPCS, bool NeedsWinCFI, 2909 bool NeedsFrameRecord, bool IsFirst, 2910 const TargetRegisterInfo *TRI) { 2911 if (UsesWinAAPCS) 2912 return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst, 2913 TRI); 2914 2915 // If we need to store the frame record, don't pair any register 2916 // with LR other than FP. 2917 if (NeedsFrameRecord) 2918 return Reg2 == AArch64::LR; 2919 2920 return false; 2921 } 2922 2923 namespace { 2924 2925 struct RegPairInfo { 2926 unsigned Reg1 = AArch64::NoRegister; 2927 unsigned Reg2 = AArch64::NoRegister; 2928 int FrameIdx; 2929 int Offset; 2930 enum RegType { GPR, FPR64, FPR128, PPR, ZPR, VG } Type; 2931 const TargetRegisterClass *RC; 2932 2933 RegPairInfo() = default; 2934 2935 bool isPaired() const { return Reg2 != AArch64::NoRegister; } 2936 2937 bool isScalable() const { return Type == PPR || Type == ZPR; } 2938 }; 2939 2940 } // end anonymous namespace 2941 2942 unsigned findFreePredicateReg(BitVector &SavedRegs) { 2943 for (unsigned PReg = AArch64::P8; PReg <= AArch64::P15; ++PReg) { 2944 if (SavedRegs.test(PReg)) { 2945 unsigned PNReg = PReg - AArch64::P0 + AArch64::PN0; 2946 return PNReg; 2947 } 2948 } 2949 return AArch64::NoRegister; 2950 } 2951 2952 // The multivector LD/ST are available only for SME or SVE2p1 targets 2953 bool enableMultiVectorSpillFill(const AArch64Subtarget &Subtarget, 2954 MachineFunction &MF) { 2955 if (DisableMultiVectorSpillFill) 2956 return false; 2957 2958 SMEAttrs FuncAttrs(MF.getFunction()); 2959 bool IsLocallyStreaming = 2960 FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface(); 2961 2962 // Only when in streaming mode SME2 instructions can be safely used. 2963 // It is not safe to use SME2 instructions when in streaming compatible or 2964 // locally streaming mode. 2965 return Subtarget.hasSVE2p1() || 2966 (Subtarget.hasSME2() && 2967 (!IsLocallyStreaming && Subtarget.isStreaming())); 2968 } 2969 2970 static void computeCalleeSaveRegisterPairs( 2971 MachineFunction &MF, ArrayRef<CalleeSavedInfo> CSI, 2972 const TargetRegisterInfo *TRI, SmallVectorImpl<RegPairInfo> &RegPairs, 2973 bool NeedsFrameRecord) { 2974 2975 if (CSI.empty()) 2976 return; 2977 2978 bool IsWindows = isTargetWindows(MF); 2979 bool NeedsWinCFI = needsWinCFI(MF); 2980 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 2981 unsigned StackHazardSize = getStackHazardSize(MF); 2982 MachineFrameInfo &MFI = MF.getFrameInfo(); 2983 CallingConv::ID CC = MF.getFunction().getCallingConv(); 2984 unsigned Count = CSI.size(); 2985 (void)CC; 2986 // MachO's compact unwind format relies on all registers being stored in 2987 // pairs. 2988 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost || 2989 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS || 2990 CC == CallingConv::Win64 || (Count & 1) == 0) && 2991 "Odd number of callee-saved regs to spill!"); 2992 int ByteOffset = AFI->getCalleeSavedStackSize(); 2993 int StackFillDir = -1; 2994 int RegInc = 1; 2995 unsigned FirstReg = 0; 2996 if (NeedsWinCFI) { 2997 // For WinCFI, fill the stack from the bottom up. 2998 ByteOffset = 0; 2999 StackFillDir = 1; 3000 // As the CSI array is reversed to match PrologEpilogInserter, iterate 3001 // backwards, to pair up registers starting from lower numbered registers. 3002 RegInc = -1; 3003 FirstReg = Count - 1; 3004 } 3005 int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); 3006 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace(); 3007 Register LastReg = 0; 3008 3009 // When iterating backwards, the loop condition relies on unsigned wraparound. 3010 for (unsigned i = FirstReg; i < Count; i += RegInc) { 3011 RegPairInfo RPI; 3012 RPI.Reg1 = CSI[i].getReg(); 3013 3014 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) { 3015 RPI.Type = RegPairInfo::GPR; 3016 RPI.RC = &AArch64::GPR64RegClass; 3017 } else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) { 3018 RPI.Type = RegPairInfo::FPR64; 3019 RPI.RC = &AArch64::FPR64RegClass; 3020 } else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) { 3021 RPI.Type = RegPairInfo::FPR128; 3022 RPI.RC = &AArch64::FPR128RegClass; 3023 } else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) { 3024 RPI.Type = RegPairInfo::ZPR; 3025 RPI.RC = &AArch64::ZPRRegClass; 3026 } else if (AArch64::PPRRegClass.contains(RPI.Reg1)) { 3027 RPI.Type = RegPairInfo::PPR; 3028 RPI.RC = &AArch64::PPRRegClass; 3029 } else if (RPI.Reg1 == AArch64::VG) { 3030 RPI.Type = RegPairInfo::VG; 3031 RPI.RC = &AArch64::FIXED_REGSRegClass; 3032 } else { 3033 llvm_unreachable("Unsupported register class."); 3034 } 3035 3036 // Add the stack hazard size as we transition from GPR->FPR CSRs. 3037 if (AFI->hasStackHazardSlotIndex() && 3038 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) && 3039 AArch64InstrInfo::isFpOrNEON(RPI.Reg1)) 3040 ByteOffset += StackFillDir * StackHazardSize; 3041 LastReg = RPI.Reg1; 3042 3043 int Scale = TRI->getSpillSize(*RPI.RC); 3044 // Add the next reg to the pair if it is in the same register class. 3045 if (unsigned(i + RegInc) < Count && !AFI->hasStackHazardSlotIndex()) { 3046 Register NextReg = CSI[i + RegInc].getReg(); 3047 bool IsFirst = i == FirstReg; 3048 switch (RPI.Type) { 3049 case RegPairInfo::GPR: 3050 if (AArch64::GPR64RegClass.contains(NextReg) && 3051 !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, 3052 NeedsWinCFI, NeedsFrameRecord, IsFirst, 3053 TRI)) 3054 RPI.Reg2 = NextReg; 3055 break; 3056 case RegPairInfo::FPR64: 3057 if (AArch64::FPR64RegClass.contains(NextReg) && 3058 !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI, 3059 IsFirst, TRI)) 3060 RPI.Reg2 = NextReg; 3061 break; 3062 case RegPairInfo::FPR128: 3063 if (AArch64::FPR128RegClass.contains(NextReg)) 3064 RPI.Reg2 = NextReg; 3065 break; 3066 case RegPairInfo::PPR: 3067 break; 3068 case RegPairInfo::ZPR: 3069 if (AFI->getPredicateRegForFillSpill() != 0 && 3070 ((RPI.Reg1 - AArch64::Z0) & 1) == 0 && (NextReg == RPI.Reg1 + 1)) { 3071 // Calculate offset of register pair to see if pair instruction can be 3072 // used. 3073 int Offset = (ScalableByteOffset + StackFillDir * 2 * Scale) / Scale; 3074 if ((-16 <= Offset && Offset <= 14) && (Offset % 2 == 0)) 3075 RPI.Reg2 = NextReg; 3076 } 3077 break; 3078 case RegPairInfo::VG: 3079 break; 3080 } 3081 } 3082 3083 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI 3084 // list to come in sorted by frame index so that we can issue the store 3085 // pair instructions directly. Assert if we see anything otherwise. 3086 // 3087 // The order of the registers in the list is controlled by 3088 // getCalleeSavedRegs(), so they will always be in-order, as well. 3089 assert((!RPI.isPaired() || 3090 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) && 3091 "Out of order callee saved regs!"); 3092 3093 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || 3094 RPI.Reg1 == AArch64::LR) && 3095 "FrameRecord must be allocated together with LR"); 3096 3097 // Windows AAPCS has FP and LR reversed. 3098 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || 3099 RPI.Reg2 == AArch64::LR) && 3100 "FrameRecord must be allocated together with LR"); 3101 3102 // MachO's compact unwind format relies on all registers being stored in 3103 // adjacent register pairs. 3104 assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost || 3105 CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS || 3106 CC == CallingConv::Win64 || 3107 (RPI.isPaired() && 3108 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || 3109 RPI.Reg1 + 1 == RPI.Reg2))) && 3110 "Callee-save registers not saved as adjacent register pair!"); 3111 3112 RPI.FrameIdx = CSI[i].getFrameIdx(); 3113 if (NeedsWinCFI && 3114 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair 3115 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx(); 3116 3117 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 3118 assert(OffsetPre % Scale == 0); 3119 3120 if (RPI.isScalable()) 3121 ScalableByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); 3122 else 3123 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); 3124 3125 // Swift's async context is directly before FP, so allocate an extra 3126 // 8 bytes for it. 3127 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && 3128 ((!IsWindows && RPI.Reg2 == AArch64::FP) || 3129 (IsWindows && RPI.Reg2 == AArch64::LR))) 3130 ByteOffset += StackFillDir * 8; 3131 3132 // Round up size of non-pair to pair size if we need to pad the 3133 // callee-save area to ensure 16-byte alignment. 3134 if (NeedGapToAlignStack && !NeedsWinCFI && !RPI.isScalable() && 3135 RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired() && 3136 ByteOffset % 16 != 0) { 3137 ByteOffset += 8 * StackFillDir; 3138 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); 3139 // A stack frame with a gap looks like this, bottom up: 3140 // d9, d8. x21, gap, x20, x19. 3141 // Set extra alignment on the x21 object to create the gap above it. 3142 MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); 3143 NeedGapToAlignStack = false; 3144 } 3145 3146 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset; 3147 assert(OffsetPost % Scale == 0); 3148 // If filling top down (default), we want the offset after incrementing it. 3149 // If filling bottom up (WinCFI) we need the original offset. 3150 int Offset = NeedsWinCFI ? OffsetPre : OffsetPost; 3151 3152 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the 3153 // Swift context can directly precede FP. 3154 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && 3155 ((!IsWindows && RPI.Reg2 == AArch64::FP) || 3156 (IsWindows && RPI.Reg2 == AArch64::LR))) 3157 Offset += 8; 3158 RPI.Offset = Offset / Scale; 3159 3160 assert((!RPI.isPaired() || 3161 (!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || 3162 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && 3163 "Offset out of bounds for LDP/STP immediate"); 3164 3165 auto isFrameRecord = [&] { 3166 if (RPI.isPaired()) 3167 return IsWindows ? RPI.Reg1 == AArch64::FP && RPI.Reg2 == AArch64::LR 3168 : RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP; 3169 // Otherwise, look for the frame record as two unpaired registers. This is 3170 // needed for -aarch64-stack-hazard-size=<val>, which disables register 3171 // pairing (as the padding may be too large for the LDP/STP offset). Note: 3172 // On Windows, this check works out as current reg == FP, next reg == LR, 3173 // and on other platforms current reg == FP, previous reg == LR. This 3174 // works out as the correct pre-increment or post-increment offsets 3175 // respectively. 3176 return i > 0 && RPI.Reg1 == AArch64::FP && 3177 CSI[i - 1].getReg() == AArch64::LR; 3178 }; 3179 3180 // Save the offset to frame record so that the FP register can point to the 3181 // innermost frame record (spilled FP and LR registers). 3182 if (NeedsFrameRecord && isFrameRecord()) 3183 AFI->setCalleeSaveBaseToFrameRecordOffset(Offset); 3184 3185 RegPairs.push_back(RPI); 3186 if (RPI.isPaired()) 3187 i += RegInc; 3188 } 3189 if (NeedsWinCFI) { 3190 // If we need an alignment gap in the stack, align the topmost stack 3191 // object. A stack frame with a gap looks like this, bottom up: 3192 // x19, d8. d9, gap. 3193 // Set extra alignment on the topmost stack object (the first element in 3194 // CSI, which goes top down), to create the gap above it. 3195 if (AFI->hasCalleeSaveStackFreeSpace()) 3196 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16)); 3197 // We iterated bottom up over the registers; flip RegPairs back to top 3198 // down order. 3199 std::reverse(RegPairs.begin(), RegPairs.end()); 3200 } 3201 } 3202 3203 bool AArch64FrameLowering::spillCalleeSavedRegisters( 3204 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 3205 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 3206 MachineFunction &MF = *MBB.getParent(); 3207 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3208 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3209 bool NeedsWinCFI = needsWinCFI(MF); 3210 DebugLoc DL; 3211 SmallVector<RegPairInfo, 8> RegPairs; 3212 3213 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF)); 3214 3215 MachineRegisterInfo &MRI = MF.getRegInfo(); 3216 // Refresh the reserved regs in case there are any potential changes since the 3217 // last freeze. 3218 MRI.freezeReservedRegs(); 3219 3220 if (homogeneousPrologEpilog(MF)) { 3221 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog)) 3222 .setMIFlag(MachineInstr::FrameSetup); 3223 3224 for (auto &RPI : RegPairs) { 3225 MIB.addReg(RPI.Reg1); 3226 MIB.addReg(RPI.Reg2); 3227 3228 // Update register live in. 3229 if (!MRI.isReserved(RPI.Reg1)) 3230 MBB.addLiveIn(RPI.Reg1); 3231 if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2)) 3232 MBB.addLiveIn(RPI.Reg2); 3233 } 3234 return true; 3235 } 3236 bool PTrueCreated = false; 3237 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) { 3238 unsigned Reg1 = RPI.Reg1; 3239 unsigned Reg2 = RPI.Reg2; 3240 unsigned StrOpc; 3241 3242 // Issue sequence of spills for cs regs. The first spill may be converted 3243 // to a pre-decrement store later by emitPrologue if the callee-save stack 3244 // area allocation can't be combined with the local stack area allocation. 3245 // For example: 3246 // stp x22, x21, [sp, #0] // addImm(+0) 3247 // stp x20, x19, [sp, #16] // addImm(+2) 3248 // stp fp, lr, [sp, #32] // addImm(+4) 3249 // Rationale: This sequence saves uop updates compared to a sequence of 3250 // pre-increment spills like stp xi,xj,[sp,#-16]! 3251 // Note: Similar rationale and sequence for restores in epilog. 3252 unsigned Size = TRI->getSpillSize(*RPI.RC); 3253 Align Alignment = TRI->getSpillAlign(*RPI.RC); 3254 switch (RPI.Type) { 3255 case RegPairInfo::GPR: 3256 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; 3257 break; 3258 case RegPairInfo::FPR64: 3259 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; 3260 break; 3261 case RegPairInfo::FPR128: 3262 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; 3263 break; 3264 case RegPairInfo::ZPR: 3265 StrOpc = RPI.isPaired() ? AArch64::ST1B_2Z_IMM : AArch64::STR_ZXI; 3266 break; 3267 case RegPairInfo::PPR: 3268 StrOpc = AArch64::STR_PXI; 3269 break; 3270 case RegPairInfo::VG: 3271 StrOpc = AArch64::STRXui; 3272 break; 3273 } 3274 3275 unsigned X0Scratch = AArch64::NoRegister; 3276 if (Reg1 == AArch64::VG) { 3277 // Find an available register to store value of VG to. 3278 Reg1 = findScratchNonCalleeSaveRegister(&MBB); 3279 assert(Reg1 != AArch64::NoRegister); 3280 SMEAttrs Attrs(MF.getFunction()); 3281 3282 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface() && 3283 AFI->getStreamingVGIdx() == std::numeric_limits<int>::max()) { 3284 // For locally-streaming functions, we need to store both the streaming 3285 // & non-streaming VG. Spill the streaming value first. 3286 BuildMI(MBB, MI, DL, TII.get(AArch64::RDSVLI_XI), Reg1) 3287 .addImm(1) 3288 .setMIFlag(MachineInstr::FrameSetup); 3289 BuildMI(MBB, MI, DL, TII.get(AArch64::UBFMXri), Reg1) 3290 .addReg(Reg1) 3291 .addImm(3) 3292 .addImm(63) 3293 .setMIFlag(MachineInstr::FrameSetup); 3294 3295 AFI->setStreamingVGIdx(RPI.FrameIdx); 3296 } else if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) { 3297 BuildMI(MBB, MI, DL, TII.get(AArch64::CNTD_XPiI), Reg1) 3298 .addImm(31) 3299 .addImm(1) 3300 .setMIFlag(MachineInstr::FrameSetup); 3301 AFI->setVGIdx(RPI.FrameIdx); 3302 } else { 3303 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>(); 3304 if (llvm::any_of( 3305 MBB.liveins(), 3306 [&STI](const MachineBasicBlock::RegisterMaskPair &LiveIn) { 3307 return STI.getRegisterInfo()->isSuperOrSubRegisterEq( 3308 AArch64::X0, LiveIn.PhysReg); 3309 })) 3310 X0Scratch = Reg1; 3311 3312 if (X0Scratch != AArch64::NoRegister) 3313 BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), Reg1) 3314 .addReg(AArch64::XZR) 3315 .addReg(AArch64::X0, RegState::Undef) 3316 .addReg(AArch64::X0, RegState::Implicit) 3317 .setMIFlag(MachineInstr::FrameSetup); 3318 3319 const uint32_t *RegMask = TRI->getCallPreservedMask( 3320 MF, 3321 CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1); 3322 BuildMI(MBB, MI, DL, TII.get(AArch64::BL)) 3323 .addExternalSymbol("__arm_get_current_vg") 3324 .addRegMask(RegMask) 3325 .addReg(AArch64::X0, RegState::ImplicitDefine) 3326 .setMIFlag(MachineInstr::FrameSetup); 3327 Reg1 = AArch64::X0; 3328 AFI->setVGIdx(RPI.FrameIdx); 3329 } 3330 } 3331 3332 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); 3333 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 3334 dbgs() << ") -> fi#(" << RPI.FrameIdx; 3335 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 3336 dbgs() << ")\n"); 3337 3338 assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && 3339 "Windows unwdinding requires a consecutive (FP,LR) pair"); 3340 // Windows unwind codes require consecutive registers if registers are 3341 // paired. Make the switch here, so that the code below will save (x,x+1) 3342 // and not (x+1,x). 3343 unsigned FrameIdxReg1 = RPI.FrameIdx; 3344 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 3345 if (NeedsWinCFI && RPI.isPaired()) { 3346 std::swap(Reg1, Reg2); 3347 std::swap(FrameIdxReg1, FrameIdxReg2); 3348 } 3349 3350 if (RPI.isPaired() && RPI.isScalable()) { 3351 [[maybe_unused]] const AArch64Subtarget &Subtarget = 3352 MF.getSubtarget<AArch64Subtarget>(); 3353 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3354 unsigned PnReg = AFI->getPredicateRegForFillSpill(); 3355 assert((PnReg != 0 && enableMultiVectorSpillFill(Subtarget, MF)) && 3356 "Expects SVE2.1 or SME2 target and a predicate register"); 3357 #ifdef EXPENSIVE_CHECKS 3358 auto IsPPR = [](const RegPairInfo &c) { 3359 return c.Reg1 == RegPairInfo::PPR; 3360 }; 3361 auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR); 3362 auto IsZPR = [](const RegPairInfo &c) { 3363 return c.Type == RegPairInfo::ZPR; 3364 }; 3365 auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR); 3366 assert(!(PPRBegin < ZPRBegin) && 3367 "Expected callee save predicate to be handled first"); 3368 #endif 3369 if (!PTrueCreated) { 3370 PTrueCreated = true; 3371 BuildMI(MBB, MI, DL, TII.get(AArch64::PTRUE_C_B), PnReg) 3372 .setMIFlags(MachineInstr::FrameSetup); 3373 } 3374 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 3375 if (!MRI.isReserved(Reg1)) 3376 MBB.addLiveIn(Reg1); 3377 if (!MRI.isReserved(Reg2)) 3378 MBB.addLiveIn(Reg2); 3379 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0)); 3380 MIB.addMemOperand(MF.getMachineMemOperand( 3381 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3382 MachineMemOperand::MOStore, Size, Alignment)); 3383 MIB.addReg(PnReg); 3384 MIB.addReg(AArch64::SP) 3385 .addImm(RPI.Offset / 2) // [sp, #imm*2*vscale], 3386 // where 2*vscale is implicit 3387 .setMIFlag(MachineInstr::FrameSetup); 3388 MIB.addMemOperand(MF.getMachineMemOperand( 3389 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3390 MachineMemOperand::MOStore, Size, Alignment)); 3391 if (NeedsWinCFI) 3392 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 3393 } else { // The code when the pair of ZReg is not present 3394 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); 3395 if (!MRI.isReserved(Reg1)) 3396 MBB.addLiveIn(Reg1); 3397 if (RPI.isPaired()) { 3398 if (!MRI.isReserved(Reg2)) 3399 MBB.addLiveIn(Reg2); 3400 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); 3401 MIB.addMemOperand(MF.getMachineMemOperand( 3402 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3403 MachineMemOperand::MOStore, Size, Alignment)); 3404 } 3405 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) 3406 .addReg(AArch64::SP) 3407 .addImm(RPI.Offset) // [sp, #offset*vscale], 3408 // where factor*vscale is implicit 3409 .setMIFlag(MachineInstr::FrameSetup); 3410 MIB.addMemOperand(MF.getMachineMemOperand( 3411 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3412 MachineMemOperand::MOStore, Size, Alignment)); 3413 if (NeedsWinCFI) 3414 InsertSEH(MIB, TII, MachineInstr::FrameSetup); 3415 } 3416 // Update the StackIDs of the SVE stack slots. 3417 MachineFrameInfo &MFI = MF.getFrameInfo(); 3418 if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) { 3419 MFI.setStackID(FrameIdxReg1, TargetStackID::ScalableVector); 3420 if (RPI.isPaired()) 3421 MFI.setStackID(FrameIdxReg2, TargetStackID::ScalableVector); 3422 } 3423 3424 if (X0Scratch != AArch64::NoRegister) 3425 BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), AArch64::X0) 3426 .addReg(AArch64::XZR) 3427 .addReg(X0Scratch, RegState::Undef) 3428 .addReg(X0Scratch, RegState::Implicit) 3429 .setMIFlag(MachineInstr::FrameSetup); 3430 } 3431 return true; 3432 } 3433 3434 bool AArch64FrameLowering::restoreCalleeSavedRegisters( 3435 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, 3436 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 3437 MachineFunction &MF = *MBB.getParent(); 3438 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 3439 DebugLoc DL; 3440 SmallVector<RegPairInfo, 8> RegPairs; 3441 bool NeedsWinCFI = needsWinCFI(MF); 3442 3443 if (MBBI != MBB.end()) 3444 DL = MBBI->getDebugLoc(); 3445 3446 computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF)); 3447 if (homogeneousPrologEpilog(MF, &MBB)) { 3448 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog)) 3449 .setMIFlag(MachineInstr::FrameDestroy); 3450 for (auto &RPI : RegPairs) { 3451 MIB.addReg(RPI.Reg1, RegState::Define); 3452 MIB.addReg(RPI.Reg2, RegState::Define); 3453 } 3454 return true; 3455 } 3456 3457 // For performance reasons restore SVE register in increasing order 3458 auto IsPPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::PPR; }; 3459 auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR); 3460 auto PPREnd = std::find_if_not(PPRBegin, RegPairs.end(), IsPPR); 3461 std::reverse(PPRBegin, PPREnd); 3462 auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; }; 3463 auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR); 3464 auto ZPREnd = std::find_if_not(ZPRBegin, RegPairs.end(), IsZPR); 3465 std::reverse(ZPRBegin, ZPREnd); 3466 3467 bool PTrueCreated = false; 3468 for (const RegPairInfo &RPI : RegPairs) { 3469 unsigned Reg1 = RPI.Reg1; 3470 unsigned Reg2 = RPI.Reg2; 3471 3472 // Issue sequence of restores for cs regs. The last restore may be converted 3473 // to a post-increment load later by emitEpilogue if the callee-save stack 3474 // area allocation can't be combined with the local stack area allocation. 3475 // For example: 3476 // ldp fp, lr, [sp, #32] // addImm(+4) 3477 // ldp x20, x19, [sp, #16] // addImm(+2) 3478 // ldp x22, x21, [sp, #0] // addImm(+0) 3479 // Note: see comment in spillCalleeSavedRegisters() 3480 unsigned LdrOpc; 3481 unsigned Size = TRI->getSpillSize(*RPI.RC); 3482 Align Alignment = TRI->getSpillAlign(*RPI.RC); 3483 switch (RPI.Type) { 3484 case RegPairInfo::GPR: 3485 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; 3486 break; 3487 case RegPairInfo::FPR64: 3488 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; 3489 break; 3490 case RegPairInfo::FPR128: 3491 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; 3492 break; 3493 case RegPairInfo::ZPR: 3494 LdrOpc = RPI.isPaired() ? AArch64::LD1B_2Z_IMM : AArch64::LDR_ZXI; 3495 break; 3496 case RegPairInfo::PPR: 3497 LdrOpc = AArch64::LDR_PXI; 3498 break; 3499 case RegPairInfo::VG: 3500 continue; 3501 } 3502 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); 3503 if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); 3504 dbgs() << ") -> fi#(" << RPI.FrameIdx; 3505 if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; 3506 dbgs() << ")\n"); 3507 3508 // Windows unwind codes require consecutive registers if registers are 3509 // paired. Make the switch here, so that the code below will save (x,x+1) 3510 // and not (x+1,x). 3511 unsigned FrameIdxReg1 = RPI.FrameIdx; 3512 unsigned FrameIdxReg2 = RPI.FrameIdx + 1; 3513 if (NeedsWinCFI && RPI.isPaired()) { 3514 std::swap(Reg1, Reg2); 3515 std::swap(FrameIdxReg1, FrameIdxReg2); 3516 } 3517 3518 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3519 if (RPI.isPaired() && RPI.isScalable()) { 3520 [[maybe_unused]] const AArch64Subtarget &Subtarget = 3521 MF.getSubtarget<AArch64Subtarget>(); 3522 unsigned PnReg = AFI->getPredicateRegForFillSpill(); 3523 assert((PnReg != 0 && enableMultiVectorSpillFill(Subtarget, MF)) && 3524 "Expects SVE2.1 or SME2 target and a predicate register"); 3525 #ifdef EXPENSIVE_CHECKS 3526 assert(!(PPRBegin < ZPRBegin) && 3527 "Expected callee save predicate to be handled first"); 3528 #endif 3529 if (!PTrueCreated) { 3530 PTrueCreated = true; 3531 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PTRUE_C_B), PnReg) 3532 .setMIFlags(MachineInstr::FrameDestroy); 3533 } 3534 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc)); 3535 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0), 3536 getDefRegState(true)); 3537 MIB.addMemOperand(MF.getMachineMemOperand( 3538 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3539 MachineMemOperand::MOLoad, Size, Alignment)); 3540 MIB.addReg(PnReg); 3541 MIB.addReg(AArch64::SP) 3542 .addImm(RPI.Offset / 2) // [sp, #imm*2*vscale] 3543 // where 2*vscale is implicit 3544 .setMIFlag(MachineInstr::FrameDestroy); 3545 MIB.addMemOperand(MF.getMachineMemOperand( 3546 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3547 MachineMemOperand::MOLoad, Size, Alignment)); 3548 if (NeedsWinCFI) 3549 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 3550 } else { 3551 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc)); 3552 if (RPI.isPaired()) { 3553 MIB.addReg(Reg2, getDefRegState(true)); 3554 MIB.addMemOperand(MF.getMachineMemOperand( 3555 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), 3556 MachineMemOperand::MOLoad, Size, Alignment)); 3557 } 3558 MIB.addReg(Reg1, getDefRegState(true)); 3559 MIB.addReg(AArch64::SP) 3560 .addImm(RPI.Offset) // [sp, #offset*vscale] 3561 // where factor*vscale is implicit 3562 .setMIFlag(MachineInstr::FrameDestroy); 3563 MIB.addMemOperand(MF.getMachineMemOperand( 3564 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), 3565 MachineMemOperand::MOLoad, Size, Alignment)); 3566 if (NeedsWinCFI) 3567 InsertSEH(MIB, TII, MachineInstr::FrameDestroy); 3568 } 3569 } 3570 return true; 3571 } 3572 3573 // Return the FrameID for a MMO. 3574 static std::optional<int> getMMOFrameID(MachineMemOperand *MMO, 3575 const MachineFrameInfo &MFI) { 3576 auto *PSV = 3577 dyn_cast_or_null<FixedStackPseudoSourceValue>(MMO->getPseudoValue()); 3578 if (PSV) 3579 return std::optional<int>(PSV->getFrameIndex()); 3580 3581 if (MMO->getValue()) { 3582 if (auto *Al = dyn_cast<AllocaInst>(getUnderlyingObject(MMO->getValue()))) { 3583 for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd(); 3584 FI++) 3585 if (MFI.getObjectAllocation(FI) == Al) 3586 return FI; 3587 } 3588 } 3589 3590 return std::nullopt; 3591 } 3592 3593 // Return the FrameID for a Load/Store instruction by looking at the first MMO. 3594 static std::optional<int> getLdStFrameID(const MachineInstr &MI, 3595 const MachineFrameInfo &MFI) { 3596 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1) 3597 return std::nullopt; 3598 3599 return getMMOFrameID(*MI.memoperands_begin(), MFI); 3600 } 3601 3602 // Check if a Hazard slot is needed for the current function, and if so create 3603 // one for it. The index is stored in AArch64FunctionInfo->StackHazardSlotIndex, 3604 // which can be used to determine if any hazard padding is needed. 3605 void AArch64FrameLowering::determineStackHazardSlot( 3606 MachineFunction &MF, BitVector &SavedRegs) const { 3607 unsigned StackHazardSize = getStackHazardSize(MF); 3608 if (StackHazardSize == 0 || StackHazardSize % 16 != 0 || 3609 MF.getInfo<AArch64FunctionInfo>()->hasStackHazardSlotIndex()) 3610 return; 3611 3612 // Stack hazards are only needed in streaming functions. 3613 SMEAttrs Attrs(MF.getFunction()); 3614 if (!StackHazardInNonStreaming && Attrs.hasNonStreamingInterfaceAndBody()) 3615 return; 3616 3617 MachineFrameInfo &MFI = MF.getFrameInfo(); 3618 3619 // Add a hazard slot if there are any CSR FPR registers, or are any fp-only 3620 // stack objects. 3621 bool HasFPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) { 3622 return AArch64::FPR64RegClass.contains(Reg) || 3623 AArch64::FPR128RegClass.contains(Reg) || 3624 AArch64::ZPRRegClass.contains(Reg) || 3625 AArch64::PPRRegClass.contains(Reg); 3626 }); 3627 bool HasFPRStackObjects = false; 3628 if (!HasFPRCSRs) { 3629 std::vector<unsigned> FrameObjects(MFI.getObjectIndexEnd()); 3630 for (auto &MBB : MF) { 3631 for (auto &MI : MBB) { 3632 std::optional<int> FI = getLdStFrameID(MI, MFI); 3633 if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) { 3634 if (MFI.getStackID(*FI) == TargetStackID::ScalableVector || 3635 AArch64InstrInfo::isFpOrNEON(MI)) 3636 FrameObjects[*FI] |= 2; 3637 else 3638 FrameObjects[*FI] |= 1; 3639 } 3640 } 3641 } 3642 HasFPRStackObjects = 3643 any_of(FrameObjects, [](unsigned B) { return (B & 3) == 2; }); 3644 } 3645 3646 if (HasFPRCSRs || HasFPRStackObjects) { 3647 int ID = MFI.CreateStackObject(StackHazardSize, Align(16), false); 3648 LLVM_DEBUG(dbgs() << "Created Hazard slot at " << ID << " size " 3649 << StackHazardSize << "\n"); 3650 MF.getInfo<AArch64FunctionInfo>()->setStackHazardSlotIndex(ID); 3651 } 3652 } 3653 3654 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, 3655 BitVector &SavedRegs, 3656 RegScavenger *RS) const { 3657 // All calls are tail calls in GHC calling conv, and functions have no 3658 // prologue/epilogue. 3659 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 3660 return; 3661 3662 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 3663 const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>( 3664 MF.getSubtarget().getRegisterInfo()); 3665 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>(); 3666 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3667 unsigned UnspilledCSGPR = AArch64::NoRegister; 3668 unsigned UnspilledCSGPRPaired = AArch64::NoRegister; 3669 3670 MachineFrameInfo &MFI = MF.getFrameInfo(); 3671 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); 3672 3673 unsigned BasePointerReg = RegInfo->hasBasePointer(MF) 3674 ? RegInfo->getBaseRegister() 3675 : (unsigned)AArch64::NoRegister; 3676 3677 unsigned ExtraCSSpill = 0; 3678 bool HasUnpairedGPR64 = false; 3679 bool HasPairZReg = false; 3680 // Figure out which callee-saved registers to save/restore. 3681 for (unsigned i = 0; CSRegs[i]; ++i) { 3682 const unsigned Reg = CSRegs[i]; 3683 3684 // Add the base pointer register to SavedRegs if it is callee-save. 3685 if (Reg == BasePointerReg) 3686 SavedRegs.set(Reg); 3687 3688 bool RegUsed = SavedRegs.test(Reg); 3689 unsigned PairedReg = AArch64::NoRegister; 3690 const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg); 3691 if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) || 3692 AArch64::FPR128RegClass.contains(Reg)) { 3693 // Compensate for odd numbers of GP CSRs. 3694 // For now, all the known cases of odd number of CSRs are of GPRs. 3695 if (HasUnpairedGPR64) 3696 PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1]; 3697 else 3698 PairedReg = CSRegs[i ^ 1]; 3699 } 3700 3701 // If the function requires all the GP registers to save (SavedRegs), 3702 // and there are an odd number of GP CSRs at the same time (CSRegs), 3703 // PairedReg could be in a different register class from Reg, which would 3704 // lead to a FPR (usually D8) accidentally being marked saved. 3705 if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) { 3706 PairedReg = AArch64::NoRegister; 3707 HasUnpairedGPR64 = true; 3708 } 3709 assert(PairedReg == AArch64::NoRegister || 3710 AArch64::GPR64RegClass.contains(Reg, PairedReg) || 3711 AArch64::FPR64RegClass.contains(Reg, PairedReg) || 3712 AArch64::FPR128RegClass.contains(Reg, PairedReg)); 3713 3714 if (!RegUsed) { 3715 if (AArch64::GPR64RegClass.contains(Reg) && 3716 !RegInfo->isReservedReg(MF, Reg)) { 3717 UnspilledCSGPR = Reg; 3718 UnspilledCSGPRPaired = PairedReg; 3719 } 3720 continue; 3721 } 3722 3723 // MachO's compact unwind format relies on all registers being stored in 3724 // pairs. 3725 // FIXME: the usual format is actually better if unwinding isn't needed. 3726 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister && 3727 !SavedRegs.test(PairedReg)) { 3728 SavedRegs.set(PairedReg); 3729 if (AArch64::GPR64RegClass.contains(PairedReg) && 3730 !RegInfo->isReservedReg(MF, PairedReg)) 3731 ExtraCSSpill = PairedReg; 3732 } 3733 // Check if there is a pair of ZRegs, so it can select PReg for spill/fill 3734 HasPairZReg |= (AArch64::ZPRRegClass.contains(Reg, CSRegs[i ^ 1]) && 3735 SavedRegs.test(CSRegs[i ^ 1])); 3736 } 3737 3738 if (HasPairZReg && enableMultiVectorSpillFill(Subtarget, MF)) { 3739 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 3740 // Find a suitable predicate register for the multi-vector spill/fill 3741 // instructions. 3742 unsigned PnReg = findFreePredicateReg(SavedRegs); 3743 if (PnReg != AArch64::NoRegister) 3744 AFI->setPredicateRegForFillSpill(PnReg); 3745 // If no free callee-save has been found assign one. 3746 if (!AFI->getPredicateRegForFillSpill() && 3747 MF.getFunction().getCallingConv() == 3748 CallingConv::AArch64_SVE_VectorCall) { 3749 SavedRegs.set(AArch64::P8); 3750 AFI->setPredicateRegForFillSpill(AArch64::PN8); 3751 } 3752 3753 assert(!RegInfo->isReservedReg(MF, AFI->getPredicateRegForFillSpill()) && 3754 "Predicate cannot be a reserved register"); 3755 } 3756 3757 if (MF.getFunction().getCallingConv() == CallingConv::Win64 && 3758 !Subtarget.isTargetWindows()) { 3759 // For Windows calling convention on a non-windows OS, where X18 is treated 3760 // as reserved, back up X18 when entering non-windows code (marked with the 3761 // Windows calling convention) and restore when returning regardless of 3762 // whether the individual function uses it - it might call other functions 3763 // that clobber it. 3764 SavedRegs.set(AArch64::X18); 3765 } 3766 3767 // Calculates the callee saved stack size. 3768 unsigned CSStackSize = 0; 3769 unsigned SVECSStackSize = 0; 3770 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3771 for (unsigned Reg : SavedRegs.set_bits()) { 3772 auto *RC = TRI->getMinimalPhysRegClass(Reg); 3773 assert(RC && "expected register class!"); 3774 auto SpillSize = TRI->getSpillSize(*RC); 3775 if (AArch64::PPRRegClass.contains(Reg) || 3776 AArch64::ZPRRegClass.contains(Reg)) 3777 SVECSStackSize += SpillSize; 3778 else 3779 CSStackSize += SpillSize; 3780 } 3781 3782 // Increase the callee-saved stack size if the function has streaming mode 3783 // changes, as we will need to spill the value of the VG register. 3784 // For locally streaming functions, we spill both the streaming and 3785 // non-streaming VG value. 3786 const Function &F = MF.getFunction(); 3787 SMEAttrs Attrs(F); 3788 if (requiresSaveVG(MF)) { 3789 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface()) 3790 CSStackSize += 16; 3791 else 3792 CSStackSize += 8; 3793 } 3794 3795 // Determine if a Hazard slot should be used, and increase the CSStackSize by 3796 // StackHazardSize if so. 3797 determineStackHazardSlot(MF, SavedRegs); 3798 if (AFI->hasStackHazardSlotIndex()) 3799 CSStackSize += getStackHazardSize(MF); 3800 3801 // Save number of saved regs, so we can easily update CSStackSize later. 3802 unsigned NumSavedRegs = SavedRegs.count(); 3803 3804 // The frame record needs to be created by saving the appropriate registers 3805 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); 3806 if (hasFP(MF) || 3807 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { 3808 SavedRegs.set(AArch64::FP); 3809 SavedRegs.set(AArch64::LR); 3810 } 3811 3812 LLVM_DEBUG({ 3813 dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; 3814 for (unsigned Reg : SavedRegs.set_bits()) 3815 dbgs() << ' ' << printReg(Reg, RegInfo); 3816 dbgs() << "\n"; 3817 }); 3818 3819 // If any callee-saved registers are used, the frame cannot be eliminated. 3820 int64_t SVEStackSize = 3821 alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); 3822 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; 3823 3824 // The CSR spill slots have not been allocated yet, so estimateStackSize 3825 // won't include them. 3826 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); 3827 3828 // We may address some of the stack above the canonical frame address, either 3829 // for our own arguments or during a call. Include that in calculating whether 3830 // we have complicated addressing concerns. 3831 int64_t CalleeStackUsed = 0; 3832 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) { 3833 int64_t FixedOff = MFI.getObjectOffset(I); 3834 if (FixedOff > CalleeStackUsed) 3835 CalleeStackUsed = FixedOff; 3836 } 3837 3838 // Conservatively always assume BigStack when there are SVE spills. 3839 bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize + 3840 CalleeStackUsed) > EstimatedStackSizeLimit; 3841 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) 3842 AFI->setHasStackFrame(true); 3843 3844 // Estimate if we might need to scavenge a register at some point in order 3845 // to materialize a stack offset. If so, either spill one additional 3846 // callee-saved register or reserve a special spill slot to facilitate 3847 // register scavenging. If we already spilled an extra callee-saved register 3848 // above to keep the number of spills even, we don't need to do anything else 3849 // here. 3850 if (BigStack) { 3851 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { 3852 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) 3853 << " to get a scratch register.\n"); 3854 SavedRegs.set(UnspilledCSGPR); 3855 ExtraCSSpill = UnspilledCSGPR; 3856 3857 // MachO's compact unwind format relies on all registers being stored in 3858 // pairs, so if we need to spill one extra for BigStack, then we need to 3859 // store the pair. 3860 if (producePairRegisters(MF)) { 3861 if (UnspilledCSGPRPaired == AArch64::NoRegister) { 3862 // Failed to make a pair for compact unwind format, revert spilling. 3863 if (produceCompactUnwindFrame(MF)) { 3864 SavedRegs.reset(UnspilledCSGPR); 3865 ExtraCSSpill = AArch64::NoRegister; 3866 } 3867 } else 3868 SavedRegs.set(UnspilledCSGPRPaired); 3869 } 3870 } 3871 3872 // If we didn't find an extra callee-saved register to spill, create 3873 // an emergency spill slot. 3874 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { 3875 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3876 const TargetRegisterClass &RC = AArch64::GPR64RegClass; 3877 unsigned Size = TRI->getSpillSize(RC); 3878 Align Alignment = TRI->getSpillAlign(RC); 3879 int FI = MFI.CreateSpillStackObject(Size, Alignment); 3880 RS->addScavengingFrameIndex(FI); 3881 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI 3882 << " as the emergency spill slot.\n"); 3883 } 3884 } 3885 3886 // Adding the size of additional 64bit GPR saves. 3887 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); 3888 3889 // A Swift asynchronous context extends the frame record with a pointer 3890 // directly before FP. 3891 if (hasFP(MF) && AFI->hasSwiftAsyncContext()) 3892 CSStackSize += 8; 3893 3894 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); 3895 LLVM_DEBUG(dbgs() << "Estimated stack frame size: " 3896 << EstimatedStackSize + AlignedCSStackSize << " bytes.\n"); 3897 3898 assert((!MFI.isCalleeSavedInfoValid() || 3899 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && 3900 "Should not invalidate callee saved info"); 3901 3902 // Round up to register pair alignment to avoid additional SP adjustment 3903 // instructions. 3904 AFI->setCalleeSavedStackSize(AlignedCSStackSize); 3905 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); 3906 AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); 3907 } 3908 3909 bool AArch64FrameLowering::assignCalleeSavedSpillSlots( 3910 MachineFunction &MF, const TargetRegisterInfo *RegInfo, 3911 std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex, 3912 unsigned &MaxCSFrameIndex) const { 3913 bool NeedsWinCFI = needsWinCFI(MF); 3914 unsigned StackHazardSize = getStackHazardSize(MF); 3915 // To match the canonical windows frame layout, reverse the list of 3916 // callee saved registers to get them laid out by PrologEpilogInserter 3917 // in the right order. (PrologEpilogInserter allocates stack objects top 3918 // down. Windows canonical prologs store higher numbered registers at 3919 // the top, thus have the CSI array start from the highest registers.) 3920 if (NeedsWinCFI) 3921 std::reverse(CSI.begin(), CSI.end()); 3922 3923 if (CSI.empty()) 3924 return true; // Early exit if no callee saved registers are modified! 3925 3926 // Now that we know which registers need to be saved and restored, allocate 3927 // stack slots for them. 3928 MachineFrameInfo &MFI = MF.getFrameInfo(); 3929 auto *AFI = MF.getInfo<AArch64FunctionInfo>(); 3930 3931 bool UsesWinAAPCS = isTargetWindows(MF); 3932 if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) { 3933 int FrameIdx = MFI.CreateStackObject(8, Align(16), true); 3934 AFI->setSwiftAsyncContextFrameIdx(FrameIdx); 3935 if ((unsigned)FrameIdx < MinCSFrameIndex) 3936 MinCSFrameIndex = FrameIdx; 3937 if ((unsigned)FrameIdx > MaxCSFrameIndex) 3938 MaxCSFrameIndex = FrameIdx; 3939 } 3940 3941 // Insert VG into the list of CSRs, immediately before LR if saved. 3942 if (requiresSaveVG(MF)) { 3943 std::vector<CalleeSavedInfo> VGSaves; 3944 SMEAttrs Attrs(MF.getFunction()); 3945 3946 auto VGInfo = CalleeSavedInfo(AArch64::VG); 3947 VGInfo.setRestored(false); 3948 VGSaves.push_back(VGInfo); 3949 3950 // Add VG again if the function is locally-streaming, as we will spill two 3951 // values. 3952 if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface()) 3953 VGSaves.push_back(VGInfo); 3954 3955 bool InsertBeforeLR = false; 3956 3957 for (unsigned I = 0; I < CSI.size(); I++) 3958 if (CSI[I].getReg() == AArch64::LR) { 3959 InsertBeforeLR = true; 3960 CSI.insert(CSI.begin() + I, VGSaves.begin(), VGSaves.end()); 3961 break; 3962 } 3963 3964 if (!InsertBeforeLR) 3965 CSI.insert(CSI.end(), VGSaves.begin(), VGSaves.end()); 3966 } 3967 3968 Register LastReg = 0; 3969 int HazardSlotIndex = std::numeric_limits<int>::max(); 3970 for (auto &CS : CSI) { 3971 Register Reg = CS.getReg(); 3972 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); 3973 3974 // Create a hazard slot as we switch between GPR and FPR CSRs. 3975 if (AFI->hasStackHazardSlotIndex() && 3976 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) && 3977 AArch64InstrInfo::isFpOrNEON(Reg)) { 3978 assert(HazardSlotIndex == std::numeric_limits<int>::max() && 3979 "Unexpected register order for hazard slot"); 3980 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true); 3981 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex 3982 << "\n"); 3983 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex); 3984 if ((unsigned)HazardSlotIndex < MinCSFrameIndex) 3985 MinCSFrameIndex = HazardSlotIndex; 3986 if ((unsigned)HazardSlotIndex > MaxCSFrameIndex) 3987 MaxCSFrameIndex = HazardSlotIndex; 3988 } 3989 3990 unsigned Size = RegInfo->getSpillSize(*RC); 3991 Align Alignment(RegInfo->getSpillAlign(*RC)); 3992 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true); 3993 CS.setFrameIdx(FrameIdx); 3994 3995 if ((unsigned)FrameIdx < MinCSFrameIndex) 3996 MinCSFrameIndex = FrameIdx; 3997 if ((unsigned)FrameIdx > MaxCSFrameIndex) 3998 MaxCSFrameIndex = FrameIdx; 3999 4000 // Grab 8 bytes below FP for the extended asynchronous frame info. 4001 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS && 4002 Reg == AArch64::FP) { 4003 FrameIdx = MFI.CreateStackObject(8, Alignment, true); 4004 AFI->setSwiftAsyncContextFrameIdx(FrameIdx); 4005 if ((unsigned)FrameIdx < MinCSFrameIndex) 4006 MinCSFrameIndex = FrameIdx; 4007 if ((unsigned)FrameIdx > MaxCSFrameIndex) 4008 MaxCSFrameIndex = FrameIdx; 4009 } 4010 LastReg = Reg; 4011 } 4012 4013 // Add hazard slot in the case where no FPR CSRs are present. 4014 if (AFI->hasStackHazardSlotIndex() && 4015 HazardSlotIndex == std::numeric_limits<int>::max()) { 4016 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true); 4017 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex 4018 << "\n"); 4019 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex); 4020 if ((unsigned)HazardSlotIndex < MinCSFrameIndex) 4021 MinCSFrameIndex = HazardSlotIndex; 4022 if ((unsigned)HazardSlotIndex > MaxCSFrameIndex) 4023 MaxCSFrameIndex = HazardSlotIndex; 4024 } 4025 4026 return true; 4027 } 4028 4029 bool AArch64FrameLowering::enableStackSlotScavenging( 4030 const MachineFunction &MF) const { 4031 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 4032 // If the function has streaming-mode changes, don't scavenge a 4033 // spillslot in the callee-save area, as that might require an 4034 // 'addvl' in the streaming-mode-changing call-sequence when the 4035 // function doesn't use a FP. 4036 if (AFI->hasStreamingModeChanges() && !hasFP(MF)) 4037 return false; 4038 // Don't allow register salvaging with hazard slots, in case it moves objects 4039 // into the wrong place. 4040 if (AFI->hasStackHazardSlotIndex()) 4041 return false; 4042 return AFI->hasCalleeSaveStackFreeSpace(); 4043 } 4044 4045 /// returns true if there are any SVE callee saves. 4046 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, 4047 int &Min, int &Max) { 4048 Min = std::numeric_limits<int>::max(); 4049 Max = std::numeric_limits<int>::min(); 4050 4051 if (!MFI.isCalleeSavedInfoValid()) 4052 return false; 4053 4054 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 4055 for (auto &CS : CSI) { 4056 if (AArch64::ZPRRegClass.contains(CS.getReg()) || 4057 AArch64::PPRRegClass.contains(CS.getReg())) { 4058 assert((Max == std::numeric_limits<int>::min() || 4059 Max + 1 == CS.getFrameIdx()) && 4060 "SVE CalleeSaves are not consecutive"); 4061 4062 Min = std::min(Min, CS.getFrameIdx()); 4063 Max = std::max(Max, CS.getFrameIdx()); 4064 } 4065 } 4066 return Min != std::numeric_limits<int>::max(); 4067 } 4068 4069 // Process all the SVE stack objects and determine offsets for each 4070 // object. If AssignOffsets is true, the offsets get assigned. 4071 // Fills in the first and last callee-saved frame indices into 4072 // Min/MaxCSFrameIndex, respectively. 4073 // Returns the size of the stack. 4074 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, 4075 int &MinCSFrameIndex, 4076 int &MaxCSFrameIndex, 4077 bool AssignOffsets) { 4078 #ifndef NDEBUG 4079 // First process all fixed stack objects. 4080 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) 4081 assert(MFI.getStackID(I) != TargetStackID::ScalableVector && 4082 "SVE vectors should never be passed on the stack by value, only by " 4083 "reference."); 4084 #endif 4085 4086 auto Assign = [&MFI](int FI, int64_t Offset) { 4087 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); 4088 MFI.setObjectOffset(FI, Offset); 4089 }; 4090 4091 int64_t Offset = 0; 4092 4093 // Then process all callee saved slots. 4094 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { 4095 // Assign offsets to the callee save slots. 4096 for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { 4097 Offset += MFI.getObjectSize(I); 4098 Offset = alignTo(Offset, MFI.getObjectAlign(I)); 4099 if (AssignOffsets) 4100 Assign(I, -Offset); 4101 } 4102 } 4103 4104 // Ensure that the Callee-save area is aligned to 16bytes. 4105 Offset = alignTo(Offset, Align(16U)); 4106 4107 // Create a buffer of SVE objects to allocate and sort it. 4108 SmallVector<int, 8> ObjectsToAllocate; 4109 // If we have a stack protector, and we've previously decided that we have SVE 4110 // objects on the stack and thus need it to go in the SVE stack area, then it 4111 // needs to go first. 4112 int StackProtectorFI = -1; 4113 if (MFI.hasStackProtectorIndex()) { 4114 StackProtectorFI = MFI.getStackProtectorIndex(); 4115 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector) 4116 ObjectsToAllocate.push_back(StackProtectorFI); 4117 } 4118 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 4119 unsigned StackID = MFI.getStackID(I); 4120 if (StackID != TargetStackID::ScalableVector) 4121 continue; 4122 if (I == StackProtectorFI) 4123 continue; 4124 if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) 4125 continue; 4126 if (MFI.isDeadObjectIndex(I)) 4127 continue; 4128 4129 ObjectsToAllocate.push_back(I); 4130 } 4131 4132 // Allocate all SVE locals and spills 4133 for (unsigned FI : ObjectsToAllocate) { 4134 Align Alignment = MFI.getObjectAlign(FI); 4135 // FIXME: Given that the length of SVE vectors is not necessarily a power of 4136 // two, we'd need to align every object dynamically at runtime if the 4137 // alignment is larger than 16. This is not yet supported. 4138 if (Alignment > Align(16)) 4139 report_fatal_error( 4140 "Alignment of scalable vectors > 16 bytes is not yet supported"); 4141 4142 Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); 4143 if (AssignOffsets) 4144 Assign(FI, -Offset); 4145 } 4146 4147 return Offset; 4148 } 4149 4150 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( 4151 MachineFrameInfo &MFI) const { 4152 int MinCSFrameIndex, MaxCSFrameIndex; 4153 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); 4154 } 4155 4156 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( 4157 MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { 4158 return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, 4159 true); 4160 } 4161 4162 void AArch64FrameLowering::processFunctionBeforeFrameFinalized( 4163 MachineFunction &MF, RegScavenger *RS) const { 4164 MachineFrameInfo &MFI = MF.getFrameInfo(); 4165 4166 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && 4167 "Upwards growing stack unsupported"); 4168 4169 int MinCSFrameIndex, MaxCSFrameIndex; 4170 int64_t SVEStackSize = 4171 assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); 4172 4173 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 4174 AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); 4175 AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); 4176 4177 // If this function isn't doing Win64-style C++ EH, we don't need to do 4178 // anything. 4179 if (!MF.hasEHFunclets()) 4180 return; 4181 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 4182 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); 4183 4184 MachineBasicBlock &MBB = MF.front(); 4185 auto MBBI = MBB.begin(); 4186 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) 4187 ++MBBI; 4188 4189 // Create an UnwindHelp object. 4190 // The UnwindHelp object is allocated at the start of the fixed object area 4191 int64_t FixedObject = 4192 getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); 4193 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, 4194 /*SPOffset*/ -FixedObject, 4195 /*IsImmutable=*/false); 4196 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; 4197 4198 // We need to store -2 into the UnwindHelp object at the start of the 4199 // function. 4200 DebugLoc DL; 4201 RS->enterBasicBlockEnd(MBB); 4202 RS->backward(MBBI); 4203 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); 4204 assert(DstReg && "There must be a free register after frame setup"); 4205 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); 4206 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) 4207 .addReg(DstReg, getKillRegState(true)) 4208 .addFrameIndex(UnwindHelpFI) 4209 .addImm(0); 4210 } 4211 4212 namespace { 4213 struct TagStoreInstr { 4214 MachineInstr *MI; 4215 int64_t Offset, Size; 4216 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) 4217 : MI(MI), Offset(Offset), Size(Size) {} 4218 }; 4219 4220 class TagStoreEdit { 4221 MachineFunction *MF; 4222 MachineBasicBlock *MBB; 4223 MachineRegisterInfo *MRI; 4224 // Tag store instructions that are being replaced. 4225 SmallVector<TagStoreInstr, 8> TagStores; 4226 // Combined memref arguments of the above instructions. 4227 SmallVector<MachineMemOperand *, 8> CombinedMemRefs; 4228 4229 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + 4230 // FrameRegOffset + Size) with the address tag of SP. 4231 Register FrameReg; 4232 StackOffset FrameRegOffset; 4233 int64_t Size; 4234 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the 4235 // end. 4236 std::optional<int64_t> FrameRegUpdate; 4237 // MIFlags for any FrameReg updating instructions. 4238 unsigned FrameRegUpdateFlags; 4239 4240 // Use zeroing instruction variants. 4241 bool ZeroData; 4242 DebugLoc DL; 4243 4244 void emitUnrolled(MachineBasicBlock::iterator InsertI); 4245 void emitLoop(MachineBasicBlock::iterator InsertI); 4246 4247 public: 4248 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) 4249 : MBB(MBB), ZeroData(ZeroData) { 4250 MF = MBB->getParent(); 4251 MRI = &MF->getRegInfo(); 4252 } 4253 // Add an instruction to be replaced. Instructions must be added in the 4254 // ascending order of Offset, and have to be adjacent. 4255 void addInstruction(TagStoreInstr I) { 4256 assert((TagStores.empty() || 4257 TagStores.back().Offset + TagStores.back().Size == I.Offset) && 4258 "Non-adjacent tag store instructions."); 4259 TagStores.push_back(I); 4260 } 4261 void clear() { TagStores.clear(); } 4262 // Emit equivalent code at the given location, and erase the current set of 4263 // instructions. May skip if the replacement is not profitable. May invalidate 4264 // the input iterator and replace it with a valid one. 4265 void emitCode(MachineBasicBlock::iterator &InsertI, 4266 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate); 4267 }; 4268 4269 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { 4270 const AArch64InstrInfo *TII = 4271 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 4272 4273 const int64_t kMinOffset = -256 * 16; 4274 const int64_t kMaxOffset = 255 * 16; 4275 4276 Register BaseReg = FrameReg; 4277 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed(); 4278 if (BaseRegOffsetBytes < kMinOffset || 4279 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset || 4280 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In 4281 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which 4282 // is required for the offset of ST2G. 4283 BaseRegOffsetBytes % 16 != 0) { 4284 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 4285 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, 4286 StackOffset::getFixed(BaseRegOffsetBytes), TII); 4287 BaseReg = ScratchReg; 4288 BaseRegOffsetBytes = 0; 4289 } 4290 4291 MachineInstr *LastI = nullptr; 4292 while (Size) { 4293 int64_t InstrSize = (Size > 16) ? 32 : 16; 4294 unsigned Opcode = 4295 InstrSize == 16 4296 ? (ZeroData ? AArch64::STZGi : AArch64::STGi) 4297 : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi); 4298 assert(BaseRegOffsetBytes % 16 == 0); 4299 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) 4300 .addReg(AArch64::SP) 4301 .addReg(BaseReg) 4302 .addImm(BaseRegOffsetBytes / 16) 4303 .setMemRefs(CombinedMemRefs); 4304 // A store to [BaseReg, #0] should go last for an opportunity to fold the 4305 // final SP adjustment in the epilogue. 4306 if (BaseRegOffsetBytes == 0) 4307 LastI = I; 4308 BaseRegOffsetBytes += InstrSize; 4309 Size -= InstrSize; 4310 } 4311 4312 if (LastI) 4313 MBB->splice(InsertI, MBB, LastI); 4314 } 4315 4316 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { 4317 const AArch64InstrInfo *TII = 4318 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 4319 4320 Register BaseReg = FrameRegUpdate 4321 ? FrameReg 4322 : MRI->createVirtualRegister(&AArch64::GPR64RegClass); 4323 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); 4324 4325 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); 4326 4327 int64_t LoopSize = Size; 4328 // If the loop size is not a multiple of 32, split off one 16-byte store at 4329 // the end to fold BaseReg update into. 4330 if (FrameRegUpdate && *FrameRegUpdate) 4331 LoopSize -= LoopSize % 32; 4332 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, 4333 TII->get(ZeroData ? AArch64::STZGloop_wback 4334 : AArch64::STGloop_wback)) 4335 .addDef(SizeReg) 4336 .addDef(BaseReg) 4337 .addImm(LoopSize) 4338 .addReg(BaseReg) 4339 .setMemRefs(CombinedMemRefs); 4340 if (FrameRegUpdate) 4341 LoopI->setFlags(FrameRegUpdateFlags); 4342 4343 int64_t ExtraBaseRegUpdate = 4344 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0; 4345 LLVM_DEBUG(dbgs() << "TagStoreEdit::emitLoop: LoopSize=" << LoopSize 4346 << ", Size=" << Size 4347 << ", ExtraBaseRegUpdate=" << ExtraBaseRegUpdate 4348 << ", FrameRegUpdate=" << FrameRegUpdate 4349 << ", FrameRegOffset.getFixed()=" 4350 << FrameRegOffset.getFixed() << "\n"); 4351 if (LoopSize < Size) { 4352 assert(FrameRegUpdate); 4353 assert(Size - LoopSize == 16); 4354 // Tag 16 more bytes at BaseReg and update BaseReg. 4355 int64_t STGOffset = ExtraBaseRegUpdate + 16; 4356 assert(STGOffset % 16 == 0 && STGOffset >= -4096 && STGOffset <= 4080 && 4357 "STG immediate out of range"); 4358 BuildMI(*MBB, InsertI, DL, 4359 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) 4360 .addDef(BaseReg) 4361 .addReg(BaseReg) 4362 .addReg(BaseReg) 4363 .addImm(STGOffset / 16) 4364 .setMemRefs(CombinedMemRefs) 4365 .setMIFlags(FrameRegUpdateFlags); 4366 } else if (ExtraBaseRegUpdate) { 4367 // Update BaseReg. 4368 int64_t AddSubOffset = std::abs(ExtraBaseRegUpdate); 4369 assert(AddSubOffset <= 4095 && "ADD/SUB immediate out of range"); 4370 BuildMI( 4371 *MBB, InsertI, DL, 4372 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) 4373 .addDef(BaseReg) 4374 .addReg(BaseReg) 4375 .addImm(AddSubOffset) 4376 .addImm(0) 4377 .setMIFlags(FrameRegUpdateFlags); 4378 } 4379 } 4380 4381 // Check if *II is a register update that can be merged into STGloop that ends 4382 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the 4383 // end of the loop. 4384 bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, 4385 int64_t Size, int64_t *TotalOffset) { 4386 MachineInstr &MI = *II; 4387 if ((MI.getOpcode() == AArch64::ADDXri || 4388 MI.getOpcode() == AArch64::SUBXri) && 4389 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { 4390 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); 4391 int64_t Offset = MI.getOperand(2).getImm() << Shift; 4392 if (MI.getOpcode() == AArch64::SUBXri) 4393 Offset = -Offset; 4394 int64_t PostOffset = Offset - Size; 4395 // TagStoreEdit::emitLoop might emit either an ADD/SUB after the loop, or 4396 // an STGPostIndex which does the last 16 bytes of tag write. Which one is 4397 // chosen depends on the alignment of the loop size, but the difference 4398 // between the valid ranges for the two instructions is small, so we 4399 // conservatively assume that it could be either case here. 4400 // 4401 // Max offset of STGPostIndex, minus the 16 byte tag write folded into that 4402 // instruction. 4403 const int64_t kMaxOffset = 4080 - 16; 4404 // Max offset of SUBXri. 4405 const int64_t kMinOffset = -4095; 4406 if (PostOffset <= kMaxOffset && PostOffset >= kMinOffset && 4407 PostOffset % 16 == 0) { 4408 *TotalOffset = Offset; 4409 return true; 4410 } 4411 } 4412 return false; 4413 } 4414 4415 void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE, 4416 SmallVectorImpl<MachineMemOperand *> &MemRefs) { 4417 MemRefs.clear(); 4418 for (auto &TS : TSE) { 4419 MachineInstr *MI = TS.MI; 4420 // An instruction without memory operands may access anything. Be 4421 // conservative and return an empty list. 4422 if (MI->memoperands_empty()) { 4423 MemRefs.clear(); 4424 return; 4425 } 4426 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); 4427 } 4428 } 4429 4430 void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, 4431 const AArch64FrameLowering *TFI, 4432 bool TryMergeSPUpdate) { 4433 if (TagStores.empty()) 4434 return; 4435 TagStoreInstr &FirstTagStore = TagStores[0]; 4436 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; 4437 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; 4438 DL = TagStores[0].MI->getDebugLoc(); 4439 4440 Register Reg; 4441 FrameRegOffset = TFI->resolveFrameOffsetReference( 4442 *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, 4443 /*PreferFP=*/false, /*ForSimm=*/true); 4444 FrameReg = Reg; 4445 FrameRegUpdate = std::nullopt; 4446 4447 mergeMemRefs(TagStores, CombinedMemRefs); 4448 4449 LLVM_DEBUG({ 4450 dbgs() << "Replacing adjacent STG instructions:\n"; 4451 for (const auto &Instr : TagStores) { 4452 dbgs() << " " << *Instr.MI; 4453 } 4454 }); 4455 4456 // Size threshold where a loop becomes shorter than a linear sequence of 4457 // tagging instructions. 4458 const int kSetTagLoopThreshold = 176; 4459 if (Size < kSetTagLoopThreshold) { 4460 if (TagStores.size() < 2) 4461 return; 4462 emitUnrolled(InsertI); 4463 } else { 4464 MachineInstr *UpdateInstr = nullptr; 4465 int64_t TotalOffset = 0; 4466 if (TryMergeSPUpdate) { 4467 // See if we can merge base register update into the STGloop. 4468 // This is done in AArch64LoadStoreOptimizer for "normal" stores, 4469 // but STGloop is way too unusual for that, and also it only 4470 // realistically happens in function epilogue. Also, STGloop is expanded 4471 // before that pass. 4472 if (InsertI != MBB->end() && 4473 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size, 4474 &TotalOffset)) { 4475 UpdateInstr = &*InsertI++; 4476 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " 4477 << *UpdateInstr); 4478 } 4479 } 4480 4481 if (!UpdateInstr && TagStores.size() < 2) 4482 return; 4483 4484 if (UpdateInstr) { 4485 FrameRegUpdate = TotalOffset; 4486 FrameRegUpdateFlags = UpdateInstr->getFlags(); 4487 } 4488 emitLoop(InsertI); 4489 if (UpdateInstr) 4490 UpdateInstr->eraseFromParent(); 4491 } 4492 4493 for (auto &TS : TagStores) 4494 TS.MI->eraseFromParent(); 4495 } 4496 4497 bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, 4498 int64_t &Size, bool &ZeroData) { 4499 MachineFunction &MF = *MI.getParent()->getParent(); 4500 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4501 4502 unsigned Opcode = MI.getOpcode(); 4503 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi || 4504 Opcode == AArch64::STZ2Gi); 4505 4506 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { 4507 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) 4508 return false; 4509 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) 4510 return false; 4511 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); 4512 Size = MI.getOperand(2).getImm(); 4513 return true; 4514 } 4515 4516 if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi) 4517 Size = 16; 4518 else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi) 4519 Size = 32; 4520 else 4521 return false; 4522 4523 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) 4524 return false; 4525 4526 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 4527 16 * MI.getOperand(2).getImm(); 4528 return true; 4529 } 4530 4531 // Detect a run of memory tagging instructions for adjacent stack frame slots, 4532 // and replace them with a shorter instruction sequence: 4533 // * replace STG + STG with ST2G 4534 // * replace STGloop + STGloop with STGloop 4535 // This code needs to run when stack slot offsets are already known, but before 4536 // FrameIndex operands in STG instructions are eliminated. 4537 MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, 4538 const AArch64FrameLowering *TFI, 4539 RegScavenger *RS) { 4540 bool FirstZeroData; 4541 int64_t Size, Offset; 4542 MachineInstr &MI = *II; 4543 MachineBasicBlock *MBB = MI.getParent(); 4544 MachineBasicBlock::iterator NextI = ++II; 4545 if (&MI == &MBB->instr_back()) 4546 return II; 4547 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) 4548 return II; 4549 4550 SmallVector<TagStoreInstr, 4> Instrs; 4551 Instrs.emplace_back(&MI, Offset, Size); 4552 4553 constexpr int kScanLimit = 10; 4554 int Count = 0; 4555 for (MachineBasicBlock::iterator E = MBB->end(); 4556 NextI != E && Count < kScanLimit; ++NextI) { 4557 MachineInstr &MI = *NextI; 4558 bool ZeroData; 4559 int64_t Size, Offset; 4560 // Collect instructions that update memory tags with a FrameIndex operand 4561 // and (when applicable) constant size, and whose output registers are dead 4562 // (the latter is almost always the case in practice). Since these 4563 // instructions effectively have no inputs or outputs, we are free to skip 4564 // any non-aliasing instructions in between without tracking used registers. 4565 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { 4566 if (ZeroData != FirstZeroData) 4567 break; 4568 Instrs.emplace_back(&MI, Offset, Size); 4569 continue; 4570 } 4571 4572 // Only count non-transient, non-tagging instructions toward the scan 4573 // limit. 4574 if (!MI.isTransient()) 4575 ++Count; 4576 4577 // Just in case, stop before the epilogue code starts. 4578 if (MI.getFlag(MachineInstr::FrameSetup) || 4579 MI.getFlag(MachineInstr::FrameDestroy)) 4580 break; 4581 4582 // Reject anything that may alias the collected instructions. 4583 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects() || MI.isCall()) 4584 break; 4585 } 4586 4587 // New code will be inserted after the last tagging instruction we've found. 4588 MachineBasicBlock::iterator InsertI = Instrs.back().MI; 4589 4590 // All the gathered stack tag instructions are merged and placed after 4591 // last tag store in the list. The check should be made if the nzcv 4592 // flag is live at the point where we are trying to insert. Otherwise 4593 // the nzcv flag might get clobbered if any stg loops are present. 4594 4595 // FIXME : This approach of bailing out from merge is conservative in 4596 // some ways like even if stg loops are not present after merge the 4597 // insert list, this liveness check is done (which is not needed). 4598 LivePhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().getRegisterInfo())); 4599 LiveRegs.addLiveOuts(*MBB); 4600 for (auto I = MBB->rbegin();; ++I) { 4601 MachineInstr &MI = *I; 4602 if (MI == InsertI) 4603 break; 4604 LiveRegs.stepBackward(*I); 4605 } 4606 InsertI++; 4607 if (LiveRegs.contains(AArch64::NZCV)) 4608 return InsertI; 4609 4610 llvm::stable_sort(Instrs, 4611 [](const TagStoreInstr &Left, const TagStoreInstr &Right) { 4612 return Left.Offset < Right.Offset; 4613 }); 4614 4615 // Make sure that we don't have any overlapping stores. 4616 int64_t CurOffset = Instrs[0].Offset; 4617 for (auto &Instr : Instrs) { 4618 if (CurOffset > Instr.Offset) 4619 return NextI; 4620 CurOffset = Instr.Offset + Instr.Size; 4621 } 4622 4623 // Find contiguous runs of tagged memory and emit shorter instruction 4624 // sequencies for them when possible. 4625 TagStoreEdit TSE(MBB, FirstZeroData); 4626 std::optional<int64_t> EndOffset; 4627 for (auto &Instr : Instrs) { 4628 if (EndOffset && *EndOffset != Instr.Offset) { 4629 // Found a gap. 4630 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false); 4631 TSE.clear(); 4632 } 4633 4634 TSE.addInstruction(Instr); 4635 EndOffset = Instr.Offset + Instr.Size; 4636 } 4637 4638 const MachineFunction *MF = MBB->getParent(); 4639 // Multiple FP/SP updates in a loop cannot be described by CFI instructions. 4640 TSE.emitCode( 4641 InsertI, TFI, /*TryMergeSPUpdate = */ 4642 !MF->getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(*MF)); 4643 4644 return InsertI; 4645 } 4646 } // namespace 4647 4648 MachineBasicBlock::iterator emitVGSaveRestore(MachineBasicBlock::iterator II, 4649 const AArch64FrameLowering *TFI) { 4650 MachineInstr &MI = *II; 4651 MachineBasicBlock *MBB = MI.getParent(); 4652 MachineFunction *MF = MBB->getParent(); 4653 4654 if (MI.getOpcode() != AArch64::VGSavePseudo && 4655 MI.getOpcode() != AArch64::VGRestorePseudo) 4656 return II; 4657 4658 SMEAttrs FuncAttrs(MF->getFunction()); 4659 bool LocallyStreaming = 4660 FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface(); 4661 const AArch64FunctionInfo *AFI = MF->getInfo<AArch64FunctionInfo>(); 4662 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 4663 const AArch64InstrInfo *TII = 4664 MF->getSubtarget<AArch64Subtarget>().getInstrInfo(); 4665 4666 int64_t VGFrameIdx = 4667 LocallyStreaming ? AFI->getStreamingVGIdx() : AFI->getVGIdx(); 4668 assert(VGFrameIdx != std::numeric_limits<int>::max() && 4669 "Expected FrameIdx for VG"); 4670 4671 unsigned CFIIndex; 4672 if (MI.getOpcode() == AArch64::VGSavePseudo) { 4673 const MachineFrameInfo &MFI = MF->getFrameInfo(); 4674 int64_t Offset = 4675 MFI.getObjectOffset(VGFrameIdx) - TFI->getOffsetOfLocalArea(); 4676 CFIIndex = MF->addFrameInst(MCCFIInstruction::createOffset( 4677 nullptr, TRI->getDwarfRegNum(AArch64::VG, true), Offset)); 4678 } else 4679 CFIIndex = MF->addFrameInst(MCCFIInstruction::createRestore( 4680 nullptr, TRI->getDwarfRegNum(AArch64::VG, true))); 4681 4682 MachineInstr *UnwindInst = BuildMI(*MBB, II, II->getDebugLoc(), 4683 TII->get(TargetOpcode::CFI_INSTRUCTION)) 4684 .addCFIIndex(CFIIndex); 4685 4686 MI.eraseFromParent(); 4687 return UnwindInst->getIterator(); 4688 } 4689 4690 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( 4691 MachineFunction &MF, RegScavenger *RS = nullptr) const { 4692 for (auto &BB : MF) 4693 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) { 4694 if (requiresSaveVG(MF)) 4695 II = emitVGSaveRestore(II, this); 4696 if (StackTaggingMergeSetTag) 4697 II = tryMergeAdjacentSTG(II, this, RS); 4698 } 4699 } 4700 4701 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP 4702 /// before the update. This is easily retrieved as it is exactly the offset 4703 /// that is set in processFunctionBeforeFrameFinalized. 4704 StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP( 4705 const MachineFunction &MF, int FI, Register &FrameReg, 4706 bool IgnoreSPUpdates) const { 4707 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4708 if (IgnoreSPUpdates) { 4709 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " 4710 << MFI.getObjectOffset(FI) << "\n"); 4711 FrameReg = AArch64::SP; 4712 return StackOffset::getFixed(MFI.getObjectOffset(FI)); 4713 } 4714 4715 // Go to common code if we cannot provide sp + offset. 4716 if (MFI.hasVarSizedObjects() || 4717 MF.getInfo<AArch64FunctionInfo>()->getStackSizeSVE() || 4718 MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF)) 4719 return getFrameIndexReference(MF, FI, FrameReg); 4720 4721 FrameReg = AArch64::SP; 4722 return getStackOffset(MF, MFI.getObjectOffset(FI)); 4723 } 4724 4725 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve 4726 /// the parent's frame pointer 4727 unsigned AArch64FrameLowering::getWinEHParentFrameOffset( 4728 const MachineFunction &MF) const { 4729 return 0; 4730 } 4731 4732 /// Funclets only need to account for space for the callee saved registers, 4733 /// as the locals are accounted for in the parent's stack frame. 4734 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( 4735 const MachineFunction &MF) const { 4736 // This is the size of the pushed CSRs. 4737 unsigned CSSize = 4738 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize(); 4739 // This is the amount of stack a funclet needs to allocate. 4740 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), 4741 getStackAlign()); 4742 } 4743 4744 namespace { 4745 struct FrameObject { 4746 bool IsValid = false; 4747 // Index of the object in MFI. 4748 int ObjectIndex = 0; 4749 // Group ID this object belongs to. 4750 int GroupIndex = -1; 4751 // This object should be placed first (closest to SP). 4752 bool ObjectFirst = false; 4753 // This object's group (which always contains the object with 4754 // ObjectFirst==true) should be placed first. 4755 bool GroupFirst = false; 4756 4757 // Used to distinguish between FP and GPR accesses. The values are decided so 4758 // that they sort FPR < Hazard < GPR and they can be or'd together. 4759 unsigned Accesses = 0; 4760 enum { AccessFPR = 1, AccessHazard = 2, AccessGPR = 4 }; 4761 }; 4762 4763 class GroupBuilder { 4764 SmallVector<int, 8> CurrentMembers; 4765 int NextGroupIndex = 0; 4766 std::vector<FrameObject> &Objects; 4767 4768 public: 4769 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {} 4770 void AddMember(int Index) { CurrentMembers.push_back(Index); } 4771 void EndCurrentGroup() { 4772 if (CurrentMembers.size() > 1) { 4773 // Create a new group with the current member list. This might remove them 4774 // from their pre-existing groups. That's OK, dealing with overlapping 4775 // groups is too hard and unlikely to make a difference. 4776 LLVM_DEBUG(dbgs() << "group:"); 4777 for (int Index : CurrentMembers) { 4778 Objects[Index].GroupIndex = NextGroupIndex; 4779 LLVM_DEBUG(dbgs() << " " << Index); 4780 } 4781 LLVM_DEBUG(dbgs() << "\n"); 4782 NextGroupIndex++; 4783 } 4784 CurrentMembers.clear(); 4785 } 4786 }; 4787 4788 bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) { 4789 // Objects at a lower index are closer to FP; objects at a higher index are 4790 // closer to SP. 4791 // 4792 // For consistency in our comparison, all invalid objects are placed 4793 // at the end. This also allows us to stop walking when we hit the 4794 // first invalid item after it's all sorted. 4795 // 4796 // If we want to include a stack hazard region, order FPR accesses < the 4797 // hazard object < GPRs accesses in order to create a separation between the 4798 // two. For the Accesses field 1 = FPR, 2 = Hazard Object, 4 = GPR. 4799 // 4800 // Otherwise the "first" object goes first (closest to SP), followed by the 4801 // members of the "first" group. 4802 // 4803 // The rest are sorted by the group index to keep the groups together. 4804 // Higher numbered groups are more likely to be around longer (i.e. untagged 4805 // in the function epilogue and not at some earlier point). Place them closer 4806 // to SP. 4807 // 4808 // If all else equal, sort by the object index to keep the objects in the 4809 // original order. 4810 return std::make_tuple(!A.IsValid, A.Accesses, A.ObjectFirst, A.GroupFirst, 4811 A.GroupIndex, A.ObjectIndex) < 4812 std::make_tuple(!B.IsValid, B.Accesses, B.ObjectFirst, B.GroupFirst, 4813 B.GroupIndex, B.ObjectIndex); 4814 } 4815 } // namespace 4816 4817 void AArch64FrameLowering::orderFrameObjects( 4818 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const { 4819 if (!OrderFrameObjects || ObjectsToAllocate.empty()) 4820 return; 4821 4822 const AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>(); 4823 const MachineFrameInfo &MFI = MF.getFrameInfo(); 4824 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd()); 4825 for (auto &Obj : ObjectsToAllocate) { 4826 FrameObjects[Obj].IsValid = true; 4827 FrameObjects[Obj].ObjectIndex = Obj; 4828 } 4829 4830 // Identify FPR vs GPR slots for hazards, and stack slots that are tagged at 4831 // the same time. 4832 GroupBuilder GB(FrameObjects); 4833 for (auto &MBB : MF) { 4834 for (auto &MI : MBB) { 4835 if (MI.isDebugInstr()) 4836 continue; 4837 4838 if (AFI.hasStackHazardSlotIndex()) { 4839 std::optional<int> FI = getLdStFrameID(MI, MFI); 4840 if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) { 4841 if (MFI.getStackID(*FI) == TargetStackID::ScalableVector || 4842 AArch64InstrInfo::isFpOrNEON(MI)) 4843 FrameObjects[*FI].Accesses |= FrameObject::AccessFPR; 4844 else 4845 FrameObjects[*FI].Accesses |= FrameObject::AccessGPR; 4846 } 4847 } 4848 4849 int OpIndex; 4850 switch (MI.getOpcode()) { 4851 case AArch64::STGloop: 4852 case AArch64::STZGloop: 4853 OpIndex = 3; 4854 break; 4855 case AArch64::STGi: 4856 case AArch64::STZGi: 4857 case AArch64::ST2Gi: 4858 case AArch64::STZ2Gi: 4859 OpIndex = 1; 4860 break; 4861 default: 4862 OpIndex = -1; 4863 } 4864 4865 int TaggedFI = -1; 4866 if (OpIndex >= 0) { 4867 const MachineOperand &MO = MI.getOperand(OpIndex); 4868 if (MO.isFI()) { 4869 int FI = MO.getIndex(); 4870 if (FI >= 0 && FI < MFI.getObjectIndexEnd() && 4871 FrameObjects[FI].IsValid) 4872 TaggedFI = FI; 4873 } 4874 } 4875 4876 // If this is a stack tagging instruction for a slot that is not part of a 4877 // group yet, either start a new group or add it to the current one. 4878 if (TaggedFI >= 0) 4879 GB.AddMember(TaggedFI); 4880 else 4881 GB.EndCurrentGroup(); 4882 } 4883 // Groups should never span multiple basic blocks. 4884 GB.EndCurrentGroup(); 4885 } 4886 4887 if (AFI.hasStackHazardSlotIndex()) { 4888 FrameObjects[AFI.getStackHazardSlotIndex()].Accesses = 4889 FrameObject::AccessHazard; 4890 // If a stack object is unknown or both GPR and FPR, sort it into GPR. 4891 for (auto &Obj : FrameObjects) 4892 if (!Obj.Accesses || 4893 Obj.Accesses == (FrameObject::AccessGPR | FrameObject::AccessFPR)) 4894 Obj.Accesses = FrameObject::AccessGPR; 4895 } 4896 4897 // If the function's tagged base pointer is pinned to a stack slot, we want to 4898 // put that slot first when possible. This will likely place it at SP + 0, 4899 // and save one instruction when generating the base pointer because IRG does 4900 // not allow an immediate offset. 4901 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex(); 4902 if (TBPI) { 4903 FrameObjects[*TBPI].ObjectFirst = true; 4904 FrameObjects[*TBPI].GroupFirst = true; 4905 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex; 4906 if (FirstGroupIndex >= 0) 4907 for (FrameObject &Object : FrameObjects) 4908 if (Object.GroupIndex == FirstGroupIndex) 4909 Object.GroupFirst = true; 4910 } 4911 4912 llvm::stable_sort(FrameObjects, FrameObjectCompare); 4913 4914 int i = 0; 4915 for (auto &Obj : FrameObjects) { 4916 // All invalid items are sorted at the end, so it's safe to stop. 4917 if (!Obj.IsValid) 4918 break; 4919 ObjectsToAllocate[i++] = Obj.ObjectIndex; 4920 } 4921 4922 LLVM_DEBUG({ 4923 dbgs() << "Final frame order:\n"; 4924 for (auto &Obj : FrameObjects) { 4925 if (!Obj.IsValid) 4926 break; 4927 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex; 4928 if (Obj.ObjectFirst) 4929 dbgs() << ", first"; 4930 if (Obj.GroupFirst) 4931 dbgs() << ", group-first"; 4932 dbgs() << "\n"; 4933 } 4934 }); 4935 } 4936 4937 /// Emit a loop to decrement SP until it is equal to TargetReg, with probes at 4938 /// least every ProbeSize bytes. Returns an iterator of the first instruction 4939 /// after the loop. The difference between SP and TargetReg must be an exact 4940 /// multiple of ProbeSize. 4941 MachineBasicBlock::iterator 4942 AArch64FrameLowering::inlineStackProbeLoopExactMultiple( 4943 MachineBasicBlock::iterator MBBI, int64_t ProbeSize, 4944 Register TargetReg) const { 4945 MachineBasicBlock &MBB = *MBBI->getParent(); 4946 MachineFunction &MF = *MBB.getParent(); 4947 const AArch64InstrInfo *TII = 4948 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 4949 DebugLoc DL = MBB.findDebugLoc(MBBI); 4950 4951 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); 4952 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 4953 MF.insert(MBBInsertPoint, LoopMBB); 4954 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); 4955 MF.insert(MBBInsertPoint, ExitMBB); 4956 4957 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable 4958 // in SUB). 4959 emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP, 4960 StackOffset::getFixed(-ProbeSize), TII, 4961 MachineInstr::FrameSetup); 4962 // STR XZR, [SP] 4963 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui)) 4964 .addReg(AArch64::XZR) 4965 .addReg(AArch64::SP) 4966 .addImm(0) 4967 .setMIFlags(MachineInstr::FrameSetup); 4968 // CMP SP, TargetReg 4969 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64), 4970 AArch64::XZR) 4971 .addReg(AArch64::SP) 4972 .addReg(TargetReg) 4973 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0)) 4974 .setMIFlags(MachineInstr::FrameSetup); 4975 // B.CC Loop 4976 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc)) 4977 .addImm(AArch64CC::NE) 4978 .addMBB(LoopMBB) 4979 .setMIFlags(MachineInstr::FrameSetup); 4980 4981 LoopMBB->addSuccessor(ExitMBB); 4982 LoopMBB->addSuccessor(LoopMBB); 4983 // Synthesize the exit MBB. 4984 ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end()); 4985 ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); 4986 MBB.addSuccessor(LoopMBB); 4987 // Update liveins. 4988 fullyRecomputeLiveIns({ExitMBB, LoopMBB}); 4989 4990 return ExitMBB->begin(); 4991 } 4992 4993 void AArch64FrameLowering::inlineStackProbeFixed( 4994 MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize, 4995 StackOffset CFAOffset) const { 4996 MachineBasicBlock *MBB = MBBI->getParent(); 4997 MachineFunction &MF = *MBB->getParent(); 4998 const AArch64InstrInfo *TII = 4999 MF.getSubtarget<AArch64Subtarget>().getInstrInfo(); 5000 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 5001 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF); 5002 bool HasFP = hasFP(MF); 5003 5004 DebugLoc DL; 5005 int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize(); 5006 int64_t NumBlocks = FrameSize / ProbeSize; 5007 int64_t ResidualSize = FrameSize % ProbeSize; 5008 5009 LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, " 5010 << NumBlocks << " blocks of " << ProbeSize 5011 << " bytes, plus " << ResidualSize << " bytes\n"); 5012 5013 // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or 5014 // ordinary loop. 5015 if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) { 5016 for (int i = 0; i < NumBlocks; ++i) { 5017 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not 5018 // encodable in a SUB). 5019 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP, 5020 StackOffset::getFixed(-ProbeSize), TII, 5021 MachineInstr::FrameSetup, false, false, nullptr, 5022 EmitAsyncCFI && !HasFP, CFAOffset); 5023 CFAOffset += StackOffset::getFixed(ProbeSize); 5024 // STR XZR, [SP] 5025 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui)) 5026 .addReg(AArch64::XZR) 5027 .addReg(AArch64::SP) 5028 .addImm(0) 5029 .setMIFlags(MachineInstr::FrameSetup); 5030 } 5031 } else if (NumBlocks != 0) { 5032 // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not 5033 // encodable in ADD). ScrathReg may temporarily become the CFA register. 5034 emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP, 5035 StackOffset::getFixed(-ProbeSize * NumBlocks), TII, 5036 MachineInstr::FrameSetup, false, false, nullptr, 5037 EmitAsyncCFI && !HasFP, CFAOffset); 5038 CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks); 5039 MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg); 5040 MBB = MBBI->getParent(); 5041 if (EmitAsyncCFI && !HasFP) { 5042 // Set the CFA register back to SP. 5043 const AArch64RegisterInfo &RegInfo = 5044 *MF.getSubtarget<AArch64Subtarget>().getRegisterInfo(); 5045 unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); 5046 unsigned CFIIndex = 5047 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 5048 BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) 5049 .addCFIIndex(CFIIndex) 5050 .setMIFlags(MachineInstr::FrameSetup); 5051 } 5052 } 5053 5054 if (ResidualSize != 0) { 5055 // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable 5056 // in SUB). 5057 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP, 5058 StackOffset::getFixed(-ResidualSize), TII, 5059 MachineInstr::FrameSetup, false, false, nullptr, 5060 EmitAsyncCFI && !HasFP, CFAOffset); 5061 if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) { 5062 // STR XZR, [SP] 5063 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui)) 5064 .addReg(AArch64::XZR) 5065 .addReg(AArch64::SP) 5066 .addImm(0) 5067 .setMIFlags(MachineInstr::FrameSetup); 5068 } 5069 } 5070 } 5071 5072 void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF, 5073 MachineBasicBlock &MBB) const { 5074 // Get the instructions that need to be replaced. We emit at most two of 5075 // these. Remember them in order to avoid complications coming from the need 5076 // to traverse the block while potentially creating more blocks. 5077 SmallVector<MachineInstr *, 4> ToReplace; 5078 for (MachineInstr &MI : MBB) 5079 if (MI.getOpcode() == AArch64::PROBED_STACKALLOC || 5080 MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR) 5081 ToReplace.push_back(&MI); 5082 5083 for (MachineInstr *MI : ToReplace) { 5084 if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) { 5085 Register ScratchReg = MI->getOperand(0).getReg(); 5086 int64_t FrameSize = MI->getOperand(1).getImm(); 5087 StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(), 5088 MI->getOperand(3).getImm()); 5089 inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize, 5090 CFAOffset); 5091 } else { 5092 assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR && 5093 "Stack probe pseudo-instruction expected"); 5094 const AArch64InstrInfo *TII = 5095 MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo(); 5096 Register TargetReg = MI->getOperand(0).getReg(); 5097 (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true); 5098 } 5099 MI->eraseFromParent(); 5100 } 5101 } 5102 5103 struct StackAccess { 5104 enum AccessType { 5105 NotAccessed = 0, // Stack object not accessed by load/store instructions. 5106 GPR = 1 << 0, // A general purpose register. 5107 PPR = 1 << 1, // A predicate register. 5108 FPR = 1 << 2, // A floating point/Neon/SVE register. 5109 }; 5110 5111 int Idx; 5112 StackOffset Offset; 5113 int64_t Size; 5114 unsigned AccessTypes; 5115 5116 StackAccess() : Idx(0), Offset(), Size(0), AccessTypes(NotAccessed) {} 5117 5118 bool operator<(const StackAccess &Rhs) const { 5119 return std::make_tuple(start(), Idx) < 5120 std::make_tuple(Rhs.start(), Rhs.Idx); 5121 } 5122 5123 bool isCPU() const { 5124 // Predicate register load and store instructions execute on the CPU. 5125 return AccessTypes & (AccessType::GPR | AccessType::PPR); 5126 } 5127 bool isSME() const { return AccessTypes & AccessType::FPR; } 5128 bool isMixed() const { return isCPU() && isSME(); } 5129 5130 int64_t start() const { return Offset.getFixed() + Offset.getScalable(); } 5131 int64_t end() const { return start() + Size; } 5132 5133 std::string getTypeString() const { 5134 switch (AccessTypes) { 5135 case AccessType::FPR: 5136 return "FPR"; 5137 case AccessType::PPR: 5138 return "PPR"; 5139 case AccessType::GPR: 5140 return "GPR"; 5141 case AccessType::NotAccessed: 5142 return "NA"; 5143 default: 5144 return "Mixed"; 5145 } 5146 } 5147 5148 void print(raw_ostream &OS) const { 5149 OS << getTypeString() << " stack object at [SP" 5150 << (Offset.getFixed() < 0 ? "" : "+") << Offset.getFixed(); 5151 if (Offset.getScalable()) 5152 OS << (Offset.getScalable() < 0 ? "" : "+") << Offset.getScalable() 5153 << " * vscale"; 5154 OS << "]"; 5155 } 5156 }; 5157 5158 static inline raw_ostream &operator<<(raw_ostream &OS, const StackAccess &SA) { 5159 SA.print(OS); 5160 return OS; 5161 } 5162 5163 void AArch64FrameLowering::emitRemarks( 5164 const MachineFunction &MF, MachineOptimizationRemarkEmitter *ORE) const { 5165 5166 SMEAttrs Attrs(MF.getFunction()); 5167 if (Attrs.hasNonStreamingInterfaceAndBody()) 5168 return; 5169 5170 unsigned StackHazardSize = getStackHazardSize(MF); 5171 const uint64_t HazardSize = 5172 (StackHazardSize) ? StackHazardSize : StackHazardRemarkSize; 5173 5174 if (HazardSize == 0) 5175 return; 5176 5177 const MachineFrameInfo &MFI = MF.getFrameInfo(); 5178 // Bail if function has no stack objects. 5179 if (!MFI.hasStackObjects()) 5180 return; 5181 5182 std::vector<StackAccess> StackAccesses(MFI.getNumObjects()); 5183 5184 size_t NumFPLdSt = 0; 5185 size_t NumNonFPLdSt = 0; 5186 5187 // Collect stack accesses via Load/Store instructions. 5188 for (const MachineBasicBlock &MBB : MF) { 5189 for (const MachineInstr &MI : MBB) { 5190 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1) 5191 continue; 5192 for (MachineMemOperand *MMO : MI.memoperands()) { 5193 std::optional<int> FI = getMMOFrameID(MMO, MFI); 5194 if (FI && !MFI.isDeadObjectIndex(*FI)) { 5195 int FrameIdx = *FI; 5196 5197 size_t ArrIdx = FrameIdx + MFI.getNumFixedObjects(); 5198 if (StackAccesses[ArrIdx].AccessTypes == StackAccess::NotAccessed) { 5199 StackAccesses[ArrIdx].Idx = FrameIdx; 5200 StackAccesses[ArrIdx].Offset = 5201 getFrameIndexReferenceFromSP(MF, FrameIdx); 5202 StackAccesses[ArrIdx].Size = MFI.getObjectSize(FrameIdx); 5203 } 5204 5205 unsigned RegTy = StackAccess::AccessType::GPR; 5206 if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) { 5207 if (AArch64::PPRRegClass.contains(MI.getOperand(0).getReg())) 5208 RegTy = StackAccess::PPR; 5209 else 5210 RegTy = StackAccess::FPR; 5211 } else if (AArch64InstrInfo::isFpOrNEON(MI)) { 5212 RegTy = StackAccess::FPR; 5213 } 5214 5215 StackAccesses[ArrIdx].AccessTypes |= RegTy; 5216 5217 if (RegTy == StackAccess::FPR) 5218 ++NumFPLdSt; 5219 else 5220 ++NumNonFPLdSt; 5221 } 5222 } 5223 } 5224 } 5225 5226 if (NumFPLdSt == 0 || NumNonFPLdSt == 0) 5227 return; 5228 5229 llvm::sort(StackAccesses); 5230 StackAccesses.erase(llvm::remove_if(StackAccesses, 5231 [](const StackAccess &S) { 5232 return S.AccessTypes == 5233 StackAccess::NotAccessed; 5234 }), 5235 StackAccesses.end()); 5236 5237 SmallVector<const StackAccess *> MixedObjects; 5238 SmallVector<std::pair<const StackAccess *, const StackAccess *>> HazardPairs; 5239 5240 if (StackAccesses.front().isMixed()) 5241 MixedObjects.push_back(&StackAccesses.front()); 5242 5243 for (auto It = StackAccesses.begin(), End = std::prev(StackAccesses.end()); 5244 It != End; ++It) { 5245 const auto &First = *It; 5246 const auto &Second = *(It + 1); 5247 5248 if (Second.isMixed()) 5249 MixedObjects.push_back(&Second); 5250 5251 if ((First.isSME() && Second.isCPU()) || 5252 (First.isCPU() && Second.isSME())) { 5253 uint64_t Distance = static_cast<uint64_t>(Second.start() - First.end()); 5254 if (Distance < HazardSize) 5255 HazardPairs.emplace_back(&First, &Second); 5256 } 5257 } 5258 5259 auto EmitRemark = [&](llvm::StringRef Str) { 5260 ORE->emit([&]() { 5261 auto R = MachineOptimizationRemarkAnalysis( 5262 "sme", "StackHazard", MF.getFunction().getSubprogram(), &MF.front()); 5263 return R << formatv("stack hazard in '{0}': ", MF.getName()).str() << Str; 5264 }); 5265 }; 5266 5267 for (const auto &P : HazardPairs) 5268 EmitRemark(formatv("{0} is too close to {1}", *P.first, *P.second).str()); 5269 5270 for (const auto *Obj : MixedObjects) 5271 EmitRemark( 5272 formatv("{0} accessed by both GP and FP instructions", *Obj).str()); 5273 } 5274