xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/AArch64/GISel/AArch64CallLowering.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 
47 #define DEBUG_TYPE "aarch64-call-lowering"
48 
49 using namespace llvm;
50 
AArch64CallLowering(const AArch64TargetLowering & TLI)51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
52   : CallLowering(&TLI) {}
53 
applyStackPassedSmallTypeDAGHack(EVT OrigVT,MVT & ValVT,MVT & LocVT)54 static void applyStackPassedSmallTypeDAGHack(EVT OrigVT, MVT &ValVT,
55                                              MVT &LocVT) {
56   // If ValVT is i1/i8/i16, we should set LocVT to i8/i8/i16. This is a legacy
57   // hack because the DAG calls the assignment function with pre-legalized
58   // register typed values, not the raw type.
59   //
60   // This hack is not applied to return values which are not passed on the
61   // stack.
62   if (OrigVT == MVT::i1 || OrigVT == MVT::i8)
63     ValVT = LocVT = MVT::i8;
64   else if (OrigVT == MVT::i16)
65     ValVT = LocVT = MVT::i16;
66 }
67 
68 // Account for i1/i8/i16 stack passed value hack
getStackValueStoreSizeHack(const CCValAssign & VA)69 static uint64_t getStackValueStoreSizeHack(const CCValAssign &VA) {
70   const MVT ValVT = VA.getValVT();
71   return (ValVT == MVT::i8 || ValVT == MVT::i16) ? ValVT.getStoreSize()
72                                                  : VA.getLocVT().getStoreSize();
73 }
74 
75 namespace {
76 
77 struct AArch64IncomingValueAssigner
78     : public CallLowering::IncomingValueAssigner {
AArch64IncomingValueAssigner__anonb07d12780111::AArch64IncomingValueAssigner79   AArch64IncomingValueAssigner(CCAssignFn *AssignFn_,
80                                CCAssignFn *AssignFnVarArg_)
81       : IncomingValueAssigner(AssignFn_, AssignFnVarArg_) {}
82 
assignArg__anonb07d12780111::AArch64IncomingValueAssigner83   bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
84                  CCValAssign::LocInfo LocInfo,
85                  const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
86                  CCState &State) override {
87     applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT);
88     return IncomingValueAssigner::assignArg(ValNo, OrigVT, ValVT, LocVT,
89                                             LocInfo, Info, Flags, State);
90   }
91 };
92 
93 struct AArch64OutgoingValueAssigner
94     : public CallLowering::OutgoingValueAssigner {
95   const AArch64Subtarget &Subtarget;
96 
97   /// Track if this is used for a return instead of function argument
98   /// passing. We apply a hack to i1/i8/i16 stack passed values, but do not use
99   /// stack passed returns for them and cannot apply the type adjustment.
100   bool IsReturn;
101 
AArch64OutgoingValueAssigner__anonb07d12780111::AArch64OutgoingValueAssigner102   AArch64OutgoingValueAssigner(CCAssignFn *AssignFn_,
103                                CCAssignFn *AssignFnVarArg_,
104                                const AArch64Subtarget &Subtarget_,
105                                bool IsReturn)
106       : OutgoingValueAssigner(AssignFn_, AssignFnVarArg_),
107         Subtarget(Subtarget_), IsReturn(IsReturn) {}
108 
assignArg__anonb07d12780111::AArch64OutgoingValueAssigner109   bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT,
110                  CCValAssign::LocInfo LocInfo,
111                  const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
112                  CCState &State) override {
113     bool IsCalleeWin = Subtarget.isCallingConvWin64(State.getCallingConv());
114     bool UseVarArgsCCForFixed = IsCalleeWin && State.isVarArg();
115 
116     if (!State.isVarArg() && !UseVarArgsCCForFixed && !IsReturn)
117       applyStackPassedSmallTypeDAGHack(OrigVT, ValVT, LocVT);
118 
119     bool Res;
120     if (Info.IsFixed && !UseVarArgsCCForFixed)
121       Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
122     else
123       Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
124 
125     StackOffset = State.getNextStackOffset();
126     return Res;
127   }
128 };
129 
130 struct IncomingArgHandler : public CallLowering::IncomingValueHandler {
IncomingArgHandler__anonb07d12780111::IncomingArgHandler131   IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
132       : IncomingValueHandler(MIRBuilder, MRI) {}
133 
getStackAddress__anonb07d12780111::IncomingArgHandler134   Register getStackAddress(uint64_t Size, int64_t Offset,
135                            MachinePointerInfo &MPO,
136                            ISD::ArgFlagsTy Flags) override {
137     auto &MFI = MIRBuilder.getMF().getFrameInfo();
138 
139     // Byval is assumed to be writable memory, but other stack passed arguments
140     // are not.
141     const bool IsImmutable = !Flags.isByVal();
142 
143     int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
144     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
145     auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI);
146     return AddrReg.getReg(0);
147   }
148 
getStackValueStoreSize__anonb07d12780111::IncomingArgHandler149   uint64_t getStackValueStoreSize(const DataLayout &,
150                                   const CCValAssign &VA) const override {
151     return getStackValueStoreSizeHack(VA);
152   }
153 
assignValueToReg__anonb07d12780111::IncomingArgHandler154   void assignValueToReg(Register ValVReg, Register PhysReg,
155                         CCValAssign &VA) override {
156     markPhysRegUsed(PhysReg);
157     IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
158   }
159 
assignValueToAddress__anonb07d12780111::IncomingArgHandler160   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
161                             MachinePointerInfo &MPO, CCValAssign &VA) override {
162     MachineFunction &MF = MIRBuilder.getMF();
163 
164     // The reported memory location may be wider than the value.
165     const LLT RealRegTy = MRI.getType(ValVReg);
166     LLT ValTy(VA.getValVT());
167     LLT LocTy(VA.getLocVT());
168 
169     // Fixup the types for the DAG compatibility hack.
170     if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16)
171       std::swap(ValTy, LocTy);
172 
173     MemSize = LocTy.getSizeInBytes();
174 
175     auto MMO = MF.getMachineMemOperand(
176         MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
177         MemSize, inferAlignFromPtrInfo(MF, MPO));
178 
179     if (RealRegTy.getSizeInBits() == ValTy.getSizeInBits()) {
180       // No extension information, or no extension necessary. Load into the
181       // incoming parameter type directly.
182       MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
183     } else {
184       auto Tmp = MIRBuilder.buildLoad(LocTy, Addr, *MMO);
185       MIRBuilder.buildTrunc(ValVReg, Tmp);
186     }
187   }
188 
189   /// How the physical register gets marked varies between formal
190   /// parameters (it's a basic-block live-in), and a call instruction
191   /// (it's an implicit-def of the BL).
192   virtual void markPhysRegUsed(MCRegister PhysReg) = 0;
193 };
194 
195 struct FormalArgHandler : public IncomingArgHandler {
FormalArgHandler__anonb07d12780111::FormalArgHandler196   FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI)
197       : IncomingArgHandler(MIRBuilder, MRI) {}
198 
markPhysRegUsed__anonb07d12780111::FormalArgHandler199   void markPhysRegUsed(MCRegister PhysReg) override {
200     MIRBuilder.getMRI()->addLiveIn(PhysReg);
201     MIRBuilder.getMBB().addLiveIn(PhysReg);
202   }
203 };
204 
205 struct CallReturnHandler : public IncomingArgHandler {
CallReturnHandler__anonb07d12780111::CallReturnHandler206   CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
207                     MachineInstrBuilder MIB)
208       : IncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
209 
markPhysRegUsed__anonb07d12780111::CallReturnHandler210   void markPhysRegUsed(MCRegister PhysReg) override {
211     MIB.addDef(PhysReg, RegState::Implicit);
212   }
213 
214   MachineInstrBuilder MIB;
215 };
216 
217 /// A special return arg handler for "returned" attribute arg calls.
218 struct ReturnedArgCallReturnHandler : public CallReturnHandler {
ReturnedArgCallReturnHandler__anonb07d12780111::ReturnedArgCallReturnHandler219   ReturnedArgCallReturnHandler(MachineIRBuilder &MIRBuilder,
220                                MachineRegisterInfo &MRI,
221                                MachineInstrBuilder MIB)
222       : CallReturnHandler(MIRBuilder, MRI, MIB) {}
223 
markPhysRegUsed__anonb07d12780111::ReturnedArgCallReturnHandler224   void markPhysRegUsed(MCRegister PhysReg) override {}
225 };
226 
227 struct OutgoingArgHandler : public CallLowering::OutgoingValueHandler {
OutgoingArgHandler__anonb07d12780111::OutgoingArgHandler228   OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
229                      MachineInstrBuilder MIB, bool IsTailCall = false,
230                      int FPDiff = 0)
231       : OutgoingValueHandler(MIRBuilder, MRI), MIB(MIB), IsTailCall(IsTailCall),
232         FPDiff(FPDiff),
233         Subtarget(MIRBuilder.getMF().getSubtarget<AArch64Subtarget>()) {}
234 
getStackAddress__anonb07d12780111::OutgoingArgHandler235   Register getStackAddress(uint64_t Size, int64_t Offset,
236                            MachinePointerInfo &MPO,
237                            ISD::ArgFlagsTy Flags) override {
238     MachineFunction &MF = MIRBuilder.getMF();
239     LLT p0 = LLT::pointer(0, 64);
240     LLT s64 = LLT::scalar(64);
241 
242     if (IsTailCall) {
243       assert(!Flags.isByVal() && "byval unhandled with tail calls");
244 
245       Offset += FPDiff;
246       int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
247       auto FIReg = MIRBuilder.buildFrameIndex(p0, FI);
248       MPO = MachinePointerInfo::getFixedStack(MF, FI);
249       return FIReg.getReg(0);
250     }
251 
252     if (!SPReg)
253       SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0);
254 
255     auto OffsetReg = MIRBuilder.buildConstant(s64, Offset);
256 
257     auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
258 
259     MPO = MachinePointerInfo::getStack(MF, Offset);
260     return AddrReg.getReg(0);
261   }
262 
263   /// We need to fixup the reported store size for certain value types because
264   /// we invert the interpretation of ValVT and LocVT in certain cases. This is
265   /// for compatability with the DAG call lowering implementation, which we're
266   /// currently building on top of.
getStackValueStoreSize__anonb07d12780111::OutgoingArgHandler267   uint64_t getStackValueStoreSize(const DataLayout &,
268                                   const CCValAssign &VA) const override {
269     return getStackValueStoreSizeHack(VA);
270   }
271 
assignValueToReg__anonb07d12780111::OutgoingArgHandler272   void assignValueToReg(Register ValVReg, Register PhysReg,
273                         CCValAssign &VA) override {
274     MIB.addUse(PhysReg, RegState::Implicit);
275     Register ExtReg = extendRegister(ValVReg, VA);
276     MIRBuilder.buildCopy(PhysReg, ExtReg);
277   }
278 
assignValueToAddress__anonb07d12780111::OutgoingArgHandler279   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
280                             MachinePointerInfo &MPO, CCValAssign &VA) override {
281     MachineFunction &MF = MIRBuilder.getMF();
282     auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, Size,
283                                        inferAlignFromPtrInfo(MF, MPO));
284     MIRBuilder.buildStore(ValVReg, Addr, *MMO);
285   }
286 
assignValueToAddress__anonb07d12780111::OutgoingArgHandler287   void assignValueToAddress(const CallLowering::ArgInfo &Arg, unsigned RegIndex,
288                             Register Addr, uint64_t MemSize,
289                             MachinePointerInfo &MPO, CCValAssign &VA) override {
290     unsigned MaxSize = MemSize * 8;
291     // For varargs, we always want to extend them to 8 bytes, in which case
292     // we disable setting a max.
293     if (!Arg.IsFixed)
294       MaxSize = 0;
295 
296     Register ValVReg = Arg.Regs[RegIndex];
297     if (VA.getLocInfo() != CCValAssign::LocInfo::FPExt) {
298       MVT LocVT = VA.getLocVT();
299       MVT ValVT = VA.getValVT();
300 
301       if (VA.getValVT() == MVT::i8 || VA.getValVT() == MVT::i16) {
302         std::swap(ValVT, LocVT);
303         MemSize = VA.getValVT().getStoreSize();
304       }
305 
306       ValVReg = extendRegister(ValVReg, VA, MaxSize);
307       const LLT RegTy = MRI.getType(ValVReg);
308 
309       if (RegTy.getSizeInBits() < LocVT.getSizeInBits())
310         ValVReg = MIRBuilder.buildTrunc(RegTy, ValVReg).getReg(0);
311     } else {
312       // The store does not cover the full allocated stack slot.
313       MemSize = VA.getValVT().getStoreSize();
314     }
315 
316     assignValueToAddress(ValVReg, Addr, MemSize, MPO, VA);
317   }
318 
319   MachineInstrBuilder MIB;
320 
321   bool IsTailCall;
322 
323   /// For tail calls, the byte offset of the call's argument area from the
324   /// callee's. Unused elsewhere.
325   int FPDiff;
326 
327   // Cache the SP register vreg if we need it more than once in this call site.
328   Register SPReg;
329 
330   const AArch64Subtarget &Subtarget;
331 };
332 } // namespace
333 
doesCalleeRestoreStack(CallingConv::ID CallConv,bool TailCallOpt)334 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
335   return (CallConv == CallingConv::Fast && TailCallOpt) ||
336          CallConv == CallingConv::Tail || CallConv == CallingConv::SwiftTail;
337 }
338 
lowerReturn(MachineIRBuilder & MIRBuilder,const Value * Val,ArrayRef<Register> VRegs,FunctionLoweringInfo & FLI,Register SwiftErrorVReg) const339 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
340                                       const Value *Val,
341                                       ArrayRef<Register> VRegs,
342                                       FunctionLoweringInfo &FLI,
343                                       Register SwiftErrorVReg) const {
344   auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
345   assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
346          "Return value without a vreg");
347 
348   bool Success = true;
349   if (!VRegs.empty()) {
350     MachineFunction &MF = MIRBuilder.getMF();
351     const Function &F = MF.getFunction();
352     const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
353 
354     MachineRegisterInfo &MRI = MF.getRegInfo();
355     const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
356     CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
357     auto &DL = F.getParent()->getDataLayout();
358     LLVMContext &Ctx = Val->getType()->getContext();
359 
360     SmallVector<EVT, 4> SplitEVTs;
361     ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
362     assert(VRegs.size() == SplitEVTs.size() &&
363            "For each split Type there should be exactly one VReg.");
364 
365     SmallVector<ArgInfo, 8> SplitArgs;
366     CallingConv::ID CC = F.getCallingConv();
367 
368     for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
369       if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
370         LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
371         return false;
372       }
373 
374       Register CurVReg = VRegs[i];
375       ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
376       setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
377 
378       // i1 is a special case because SDAG i1 true is naturally zero extended
379       // when widened using ANYEXT. We need to do it explicitly here.
380       if (MRI.getType(CurVReg).getSizeInBits() == 1) {
381         CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
382       } else {
383         // Some types will need extending as specified by the CC.
384         MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
385         if (EVT(NewVT) != SplitEVTs[i]) {
386           unsigned ExtendOp = TargetOpcode::G_ANYEXT;
387           if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
388                                              Attribute::SExt))
389             ExtendOp = TargetOpcode::G_SEXT;
390           else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
391                                                   Attribute::ZExt))
392             ExtendOp = TargetOpcode::G_ZEXT;
393 
394           LLT NewLLT(NewVT);
395           LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
396           CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
397           // Instead of an extend, we might have a vector type which needs
398           // padding with more elements, e.g. <2 x half> -> <4 x half>.
399           if (NewVT.isVector()) {
400             if (OldLLT.isVector()) {
401               if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
402                 // We don't handle VA types which are not exactly twice the
403                 // size, but can easily be done in future.
404                 if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
405                   LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
406                   return false;
407                 }
408                 auto Undef = MIRBuilder.buildUndef({OldLLT});
409                 CurVReg =
410                     MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef}).getReg(0);
411               } else {
412                 // Just do a vector extend.
413                 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
414                               .getReg(0);
415               }
416             } else if (NewLLT.getNumElements() == 2) {
417               // We need to pad a <1 x S> type to <2 x S>. Since we don't have
418               // <1 x S> vector types in GISel we use a build_vector instead
419               // of a vector merge/concat.
420               auto Undef = MIRBuilder.buildUndef({OldLLT});
421               CurVReg =
422                   MIRBuilder
423                       .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
424                       .getReg(0);
425             } else {
426               LLVM_DEBUG(dbgs() << "Could not handle ret ty\n");
427               return false;
428             }
429           } else {
430             // If the split EVT was a <1 x T> vector, and NewVT is T, then we
431             // don't have to do anything since we don't distinguish between the
432             // two.
433             if (NewLLT != MRI.getType(CurVReg)) {
434               // A scalar extend.
435               CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
436                             .getReg(0);
437             }
438           }
439         }
440       }
441       if (CurVReg != CurArgInfo.Regs[0]) {
442         CurArgInfo.Regs[0] = CurVReg;
443         // Reset the arg flags after modifying CurVReg.
444         setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
445       }
446       splitToValueTypes(CurArgInfo, SplitArgs, DL, CC);
447     }
448 
449     AArch64OutgoingValueAssigner Assigner(AssignFn, AssignFn, Subtarget,
450                                           /*IsReturn*/ true);
451     OutgoingArgHandler Handler(MIRBuilder, MRI, MIB);
452     Success = determineAndHandleAssignments(Handler, Assigner, SplitArgs,
453                                             MIRBuilder, CC, F.isVarArg());
454   }
455 
456   if (SwiftErrorVReg) {
457     MIB.addUse(AArch64::X21, RegState::Implicit);
458     MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
459   }
460 
461   MIRBuilder.insertInstr(MIB);
462   return Success;
463 }
464 
465 /// Helper function to compute forwarded registers for musttail calls. Computes
466 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that
467 /// can be used to save + restore registers later.
handleMustTailForwardedRegisters(MachineIRBuilder & MIRBuilder,CCAssignFn * AssignFn)468 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
469                                              CCAssignFn *AssignFn) {
470   MachineBasicBlock &MBB = MIRBuilder.getMBB();
471   MachineFunction &MF = MIRBuilder.getMF();
472   MachineFrameInfo &MFI = MF.getFrameInfo();
473 
474   if (!MFI.hasMustTailInVarArgFunc())
475     return;
476 
477   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
478   const Function &F = MF.getFunction();
479   assert(F.isVarArg() && "Expected F to be vararg?");
480 
481   // Compute the set of forwarded registers. The rest are scratch.
482   SmallVector<CCValAssign, 16> ArgLocs;
483   CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
484                  F.getContext());
485   SmallVector<MVT, 2> RegParmTypes;
486   RegParmTypes.push_back(MVT::i64);
487   RegParmTypes.push_back(MVT::f128);
488 
489   // Later on, we can use this vector to restore the registers if necessary.
490   SmallVectorImpl<ForwardedRegister> &Forwards =
491       FuncInfo->getForwardedMustTailRegParms();
492   CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
493 
494   // Conservatively forward X8, since it might be used for an aggregate
495   // return.
496   if (!CCInfo.isAllocated(AArch64::X8)) {
497     Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
498     Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
499   }
500 
501   // Add the forwards to the MachineBasicBlock and MachineFunction.
502   for (const auto &F : Forwards) {
503     MBB.addLiveIn(F.PReg);
504     MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
505   }
506 }
507 
fallBackToDAGISel(const MachineFunction & MF) const508 bool AArch64CallLowering::fallBackToDAGISel(const MachineFunction &MF) const {
509   auto &F = MF.getFunction();
510   if (isa<ScalableVectorType>(F.getReturnType()))
511     return true;
512   if (llvm::any_of(F.args(), [](const Argument &A) {
513         return isa<ScalableVectorType>(A.getType());
514       }))
515     return true;
516   const auto &ST = MF.getSubtarget<AArch64Subtarget>();
517   if (!ST.hasNEON() || !ST.hasFPARMv8()) {
518     LLVM_DEBUG(dbgs() << "Falling back to SDAG because we don't support no-NEON\n");
519     return true;
520   }
521   return false;
522 }
523 
lowerFormalArguments(MachineIRBuilder & MIRBuilder,const Function & F,ArrayRef<ArrayRef<Register>> VRegs,FunctionLoweringInfo & FLI) const524 bool AArch64CallLowering::lowerFormalArguments(
525     MachineIRBuilder &MIRBuilder, const Function &F,
526     ArrayRef<ArrayRef<Register>> VRegs, FunctionLoweringInfo &FLI) const {
527   MachineFunction &MF = MIRBuilder.getMF();
528   MachineBasicBlock &MBB = MIRBuilder.getMBB();
529   MachineRegisterInfo &MRI = MF.getRegInfo();
530   auto &DL = F.getParent()->getDataLayout();
531 
532   SmallVector<ArgInfo, 8> SplitArgs;
533   unsigned i = 0;
534   for (auto &Arg : F.args()) {
535     if (DL.getTypeStoreSize(Arg.getType()).isZero())
536       continue;
537 
538     ArgInfo OrigArg{VRegs[i], Arg};
539     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
540 
541     if (Arg.hasAttribute(Attribute::SwiftAsync))
542       MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
543 
544     splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv());
545     ++i;
546   }
547 
548   if (!MBB.empty())
549     MIRBuilder.setInstr(*MBB.begin());
550 
551   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
552   CCAssignFn *AssignFn =
553       TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
554 
555   AArch64IncomingValueAssigner Assigner(AssignFn, AssignFn);
556   FormalArgHandler Handler(MIRBuilder, MRI);
557   if (!determineAndHandleAssignments(Handler, Assigner, SplitArgs, MIRBuilder,
558                                      F.getCallingConv(), F.isVarArg()))
559     return false;
560 
561   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
562   uint64_t StackOffset = Assigner.StackOffset;
563   if (F.isVarArg()) {
564     auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
565     if (!Subtarget.isTargetDarwin()) {
566         // FIXME: we need to reimplement saveVarArgsRegisters from
567       // AArch64ISelLowering.
568       return false;
569     }
570 
571     // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
572     StackOffset =
573         alignTo(Assigner.StackOffset, Subtarget.isTargetILP32() ? 4 : 8);
574 
575     auto &MFI = MIRBuilder.getMF().getFrameInfo();
576     FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
577   }
578 
579   if (doesCalleeRestoreStack(F.getCallingConv(),
580                              MF.getTarget().Options.GuaranteedTailCallOpt)) {
581     // We have a non-standard ABI, so why not make full use of the stack that
582     // we're going to pop? It must be aligned to 16 B in any case.
583     StackOffset = alignTo(StackOffset, 16);
584 
585     // If we're expected to restore the stack (e.g. fastcc), then we'll be
586     // adding a multiple of 16.
587     FuncInfo->setArgumentStackToRestore(StackOffset);
588 
589     // Our own callers will guarantee that the space is free by giving an
590     // aligned value to CALLSEQ_START.
591   }
592 
593   // When we tail call, we need to check if the callee's arguments
594   // will fit on the caller's stack. So, whenever we lower formal arguments,
595   // we should keep track of this information, since we might lower a tail call
596   // in this function later.
597   FuncInfo->setBytesInStackArgArea(StackOffset);
598 
599   auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
600   if (Subtarget.hasCustomCallingConv())
601     Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
602 
603   handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
604 
605   // Move back to the end of the basic block.
606   MIRBuilder.setMBB(MBB);
607 
608   return true;
609 }
610 
611 /// Return true if the calling convention is one that we can guarantee TCO for.
canGuaranteeTCO(CallingConv::ID CC,bool GuaranteeTailCalls)612 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
613   return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
614          CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
615 }
616 
617 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)618 static bool mayTailCallThisCC(CallingConv::ID CC) {
619   switch (CC) {
620   case CallingConv::C:
621   case CallingConv::PreserveMost:
622   case CallingConv::Swift:
623   case CallingConv::SwiftTail:
624   case CallingConv::Tail:
625   case CallingConv::Fast:
626     return true;
627   default:
628     return false;
629   }
630 }
631 
632 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
633 /// CC.
634 static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC,const AArch64TargetLowering & TLI)635 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
636   return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
637 }
638 
doCallerAndCalleePassArgsTheSameWay(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs) const639 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
640     CallLoweringInfo &Info, MachineFunction &MF,
641     SmallVectorImpl<ArgInfo> &InArgs) const {
642   const Function &CallerF = MF.getFunction();
643   CallingConv::ID CalleeCC = Info.CallConv;
644   CallingConv::ID CallerCC = CallerF.getCallingConv();
645 
646   // If the calling conventions match, then everything must be the same.
647   if (CalleeCC == CallerCC)
648     return true;
649 
650   // Check if the caller and callee will handle arguments in the same way.
651   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
652   CCAssignFn *CalleeAssignFnFixed;
653   CCAssignFn *CalleeAssignFnVarArg;
654   std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
655       getAssignFnsForCC(CalleeCC, TLI);
656 
657   CCAssignFn *CallerAssignFnFixed;
658   CCAssignFn *CallerAssignFnVarArg;
659   std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
660       getAssignFnsForCC(CallerCC, TLI);
661 
662   AArch64IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
663                                               CalleeAssignFnVarArg);
664   AArch64IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
665                                               CallerAssignFnVarArg);
666 
667   if (!resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner))
668     return false;
669 
670   // Make sure that the caller and callee preserve all of the same registers.
671   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
672   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
673   const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
674   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
675     TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
676     TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
677   }
678 
679   return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
680 }
681 
areCalleeOutgoingArgsTailCallable(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & OutArgs) const682 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
683     CallLoweringInfo &Info, MachineFunction &MF,
684     SmallVectorImpl<ArgInfo> &OutArgs) const {
685   // If there are no outgoing arguments, then we are done.
686   if (OutArgs.empty())
687     return true;
688 
689   const Function &CallerF = MF.getFunction();
690   LLVMContext &Ctx = CallerF.getContext();
691   CallingConv::ID CalleeCC = Info.CallConv;
692   CallingConv::ID CallerCC = CallerF.getCallingConv();
693   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
694   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
695 
696   CCAssignFn *AssignFnFixed;
697   CCAssignFn *AssignFnVarArg;
698   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
699 
700   // We have outgoing arguments. Make sure that we can tail call with them.
701   SmallVector<CCValAssign, 16> OutLocs;
702   CCState OutInfo(CalleeCC, false, MF, OutLocs, Ctx);
703 
704   AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg,
705                                               Subtarget, /*IsReturn*/ false);
706   if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) {
707     LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
708     return false;
709   }
710 
711   // Make sure that they can fit on the caller's stack.
712   const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
713   if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
714     LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
715     return false;
716   }
717 
718   // Verify that the parameters in callee-saved registers match.
719   // TODO: Port this over to CallLowering as general code once swiftself is
720   // supported.
721   auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
722   const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
723   MachineRegisterInfo &MRI = MF.getRegInfo();
724 
725   if (Info.IsVarArg) {
726     // Be conservative and disallow variadic memory operands to match SDAG's
727     // behaviour.
728     // FIXME: If the caller's calling convention is C, then we can
729     // potentially use its argument area. However, for cases like fastcc,
730     // we can't do anything.
731     for (unsigned i = 0; i < OutLocs.size(); ++i) {
732       auto &ArgLoc = OutLocs[i];
733       if (ArgLoc.isRegLoc())
734         continue;
735 
736       LLVM_DEBUG(
737           dbgs()
738           << "... Cannot tail call vararg function with stack arguments\n");
739       return false;
740     }
741   }
742 
743   return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
744 }
745 
isEligibleForTailCallOptimization(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info,SmallVectorImpl<ArgInfo> & InArgs,SmallVectorImpl<ArgInfo> & OutArgs) const746 bool AArch64CallLowering::isEligibleForTailCallOptimization(
747     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
748     SmallVectorImpl<ArgInfo> &InArgs,
749     SmallVectorImpl<ArgInfo> &OutArgs) const {
750 
751   // Must pass all target-independent checks in order to tail call optimize.
752   if (!Info.IsTailCall)
753     return false;
754 
755   CallingConv::ID CalleeCC = Info.CallConv;
756   MachineFunction &MF = MIRBuilder.getMF();
757   const Function &CallerF = MF.getFunction();
758 
759   LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
760 
761   if (Info.SwiftErrorVReg) {
762     // TODO: We should handle this.
763     // Note that this is also handled by the check for no outgoing arguments.
764     // Proactively disabling this though, because the swifterror handling in
765     // lowerCall inserts a COPY *after* the location of the call.
766     LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
767     return false;
768   }
769 
770   if (!mayTailCallThisCC(CalleeCC)) {
771     LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
772     return false;
773   }
774 
775   // Byval parameters hand the function a pointer directly into the stack area
776   // we want to reuse during a tail call. Working around this *is* possible (see
777   // X86).
778   //
779   // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
780   // it?
781   //
782   // On Windows, "inreg" attributes signify non-aggregate indirect returns.
783   // In this case, it is necessary to save/restore X0 in the callee. Tail
784   // call opt interferes with this. So we disable tail call opt when the
785   // caller has an argument with "inreg" attribute.
786   //
787   // FIXME: Check whether the callee also has an "inreg" argument.
788   //
789   // When the caller has a swifterror argument, we don't want to tail call
790   // because would have to move into the swifterror register before the
791   // tail call.
792   if (any_of(CallerF.args(), [](const Argument &A) {
793         return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
794       })) {
795     LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
796                          "inreg, or swifterror arguments\n");
797     return false;
798   }
799 
800   // Externally-defined functions with weak linkage should not be
801   // tail-called on AArch64 when the OS does not support dynamic
802   // pre-emption of symbols, as the AAELF spec requires normal calls
803   // to undefined weak functions to be replaced with a NOP or jump to the
804   // next instruction. The behaviour of branch instructions in this
805   // situation (as used for tail calls) is implementation-defined, so we
806   // cannot rely on the linker replacing the tail call with a return.
807   if (Info.Callee.isGlobal()) {
808     const GlobalValue *GV = Info.Callee.getGlobal();
809     const Triple &TT = MF.getTarget().getTargetTriple();
810     if (GV->hasExternalWeakLinkage() &&
811         (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
812          TT.isOSBinFormatMachO())) {
813       LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
814                            "with weak linkage for this OS.\n");
815       return false;
816     }
817   }
818 
819   // If we have -tailcallopt, then we're done.
820   if (canGuaranteeTCO(CalleeCC, MF.getTarget().Options.GuaranteedTailCallOpt))
821     return CalleeCC == CallerF.getCallingConv();
822 
823   // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
824   // Try to find cases where we can do that.
825 
826   // I want anyone implementing a new calling convention to think long and hard
827   // about this assert.
828   assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
829          "Unexpected variadic calling convention");
830 
831   // Verify that the incoming and outgoing arguments from the callee are
832   // safe to tail call.
833   if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
834     LLVM_DEBUG(
835         dbgs()
836         << "... Caller and callee have incompatible calling conventions.\n");
837     return false;
838   }
839 
840   if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
841     return false;
842 
843   LLVM_DEBUG(
844       dbgs() << "... Call is eligible for tail call optimization.\n");
845   return true;
846 }
847 
getCallOpcode(const MachineFunction & CallerF,bool IsIndirect,bool IsTailCall)848 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
849                               bool IsTailCall) {
850   if (!IsTailCall)
851     return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL;
852 
853   if (!IsIndirect)
854     return AArch64::TCRETURNdi;
855 
856   // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
857   // x16 or x17.
858   if (CallerF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
859     return AArch64::TCRETURNriBTI;
860 
861   return AArch64::TCRETURNri;
862 }
863 
864 static const uint32_t *
getMaskForArgs(SmallVectorImpl<AArch64CallLowering::ArgInfo> & OutArgs,AArch64CallLowering::CallLoweringInfo & Info,const AArch64RegisterInfo & TRI,MachineFunction & MF)865 getMaskForArgs(SmallVectorImpl<AArch64CallLowering::ArgInfo> &OutArgs,
866                AArch64CallLowering::CallLoweringInfo &Info,
867                const AArch64RegisterInfo &TRI, MachineFunction &MF) {
868   const uint32_t *Mask;
869   if (!OutArgs.empty() && OutArgs[0].Flags[0].isReturned()) {
870     // For 'this' returns, use the X0-preserving mask if applicable
871     Mask = TRI.getThisReturnPreservedMask(MF, Info.CallConv);
872     if (!Mask) {
873       OutArgs[0].Flags[0].setReturned(false);
874       Mask = TRI.getCallPreservedMask(MF, Info.CallConv);
875     }
876   } else {
877     Mask = TRI.getCallPreservedMask(MF, Info.CallConv);
878   }
879   return Mask;
880 }
881 
lowerTailCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info,SmallVectorImpl<ArgInfo> & OutArgs) const882 bool AArch64CallLowering::lowerTailCall(
883     MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
884     SmallVectorImpl<ArgInfo> &OutArgs) const {
885   MachineFunction &MF = MIRBuilder.getMF();
886   const Function &F = MF.getFunction();
887   MachineRegisterInfo &MRI = MF.getRegInfo();
888   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
889   AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
890 
891   // True when we're tail calling, but without -tailcallopt.
892   bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt &&
893                    Info.CallConv != CallingConv::Tail &&
894                    Info.CallConv != CallingConv::SwiftTail;
895 
896   // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
897   // register class. Until we can do that, we should fall back here.
898   if (MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) {
899     LLVM_DEBUG(
900         dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
901     return false;
902   }
903 
904   // Find out which ABI gets to decide where things go.
905   CallingConv::ID CalleeCC = Info.CallConv;
906   CCAssignFn *AssignFnFixed;
907   CCAssignFn *AssignFnVarArg;
908   std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
909 
910   MachineInstrBuilder CallSeqStart;
911   if (!IsSibCall)
912     CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
913 
914   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
915   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
916   MIB.add(Info.Callee);
917 
918   // Byte offset for the tail call. When we are sibcalling, this will always
919   // be 0.
920   MIB.addImm(0);
921 
922   // Tell the call which registers are clobbered.
923   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
924   auto TRI = Subtarget.getRegisterInfo();
925   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
926   if (Subtarget.hasCustomCallingConv())
927     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
928   MIB.addRegMask(Mask);
929 
930   if (TRI->isAnyArgRegReserved(MF))
931     TRI->emitReservedArgRegCallError(MF);
932 
933   // FPDiff is the byte offset of the call's argument area from the callee's.
934   // Stores to callee stack arguments will be placed in FixedStackSlots offset
935   // by this amount for a tail call. In a sibling call it must be 0 because the
936   // caller will deallocate the entire stack and the callee still expects its
937   // arguments to begin at SP+0.
938   int FPDiff = 0;
939 
940   // This will be 0 for sibcalls, potentially nonzero for tail calls produced
941   // by -tailcallopt. For sibcalls, the memory operands for the call are
942   // already available in the caller's incoming argument space.
943   unsigned NumBytes = 0;
944   if (!IsSibCall) {
945     // We aren't sibcalling, so we need to compute FPDiff. We need to do this
946     // before handling assignments, because FPDiff must be known for memory
947     // arguments.
948     unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
949     SmallVector<CCValAssign, 16> OutLocs;
950     CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
951 
952     AArch64OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg,
953                                                 Subtarget, /*IsReturn*/ false);
954     if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
955       return false;
956 
957     // The callee will pop the argument stack as a tail call. Thus, we must
958     // keep it 16-byte aligned.
959     NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
960 
961     // FPDiff will be negative if this tail call requires more space than we
962     // would automatically have in our incoming argument space. Positive if we
963     // actually shrink the stack.
964     FPDiff = NumReusableBytes - NumBytes;
965 
966     // Update the required reserved area if this is the tail call requiring the
967     // most argument stack space.
968     if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff)
969       FuncInfo->setTailCallReservedStack(-FPDiff);
970 
971     // The stack pointer must be 16-byte aligned at all times it's used for a
972     // memory operation, which in practice means at *all* times and in
973     // particular across call boundaries. Therefore our own arguments started at
974     // a 16-byte aligned SP and the delta applied for the tail call should
975     // satisfy the same constraint.
976     assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
977   }
978 
979   const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
980 
981   AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg,
982                                         Subtarget, /*IsReturn*/ false);
983 
984   // Do the actual argument marshalling.
985   OutgoingArgHandler Handler(MIRBuilder, MRI, MIB,
986                              /*IsTailCall*/ true, FPDiff);
987   if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder,
988                                      CalleeCC, Info.IsVarArg))
989     return false;
990 
991   Mask = getMaskForArgs(OutArgs, Info, *TRI, MF);
992 
993   if (Info.IsVarArg && Info.IsMustTailCall) {
994     // Now we know what's being passed to the function. Add uses to the call for
995     // the forwarded registers that we *aren't* passing as parameters. This will
996     // preserve the copies we build earlier.
997     for (const auto &F : Forwards) {
998       Register ForwardedReg = F.PReg;
999       // If the register is already passed, or aliases a register which is
1000       // already being passed, then skip it.
1001       if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
1002             if (!Use.isReg())
1003               return false;
1004             return TRI->regsOverlap(Use.getReg(), ForwardedReg);
1005           }))
1006         continue;
1007 
1008       // We aren't passing it already, so we should add it to the call.
1009       MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
1010       MIB.addReg(ForwardedReg, RegState::Implicit);
1011     }
1012   }
1013 
1014   // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1015   // sequence start and end here.
1016   if (!IsSibCall) {
1017     MIB->getOperand(1).setImm(FPDiff);
1018     CallSeqStart.addImm(0).addImm(0);
1019     // End the call sequence *before* emitting the call. Normally, we would
1020     // tidy the frame up after the call. However, here, we've laid out the
1021     // parameters so that when SP is reset, they will be in the correct
1022     // location.
1023     MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(0).addImm(0);
1024   }
1025 
1026   // Now we can add the actual call instruction to the correct basic block.
1027   MIRBuilder.insertInstr(MIB);
1028 
1029   // If Callee is a reg, since it is used by a target specific instruction,
1030   // it must have a register class matching the constraint of that instruction.
1031   if (Info.Callee.isReg())
1032     constrainOperandRegClass(MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
1033                              *MF.getSubtarget().getRegBankInfo(), *MIB,
1034                              MIB->getDesc(), Info.Callee, 0);
1035 
1036   MF.getFrameInfo().setHasTailCall();
1037   Info.LoweredTailCall = true;
1038   return true;
1039 }
1040 
lowerCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info) const1041 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1042                                     CallLoweringInfo &Info) const {
1043   MachineFunction &MF = MIRBuilder.getMF();
1044   const Function &F = MF.getFunction();
1045   MachineRegisterInfo &MRI = MF.getRegInfo();
1046   auto &DL = F.getParent()->getDataLayout();
1047   const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
1048 
1049   SmallVector<ArgInfo, 8> OutArgs;
1050   for (auto &OrigArg : Info.OrigArgs) {
1051     splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1052     // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
1053     if (OrigArg.Ty->isIntegerTy(1))
1054       OutArgs.back().Flags[0].setZExt();
1055   }
1056 
1057   SmallVector<ArgInfo, 8> InArgs;
1058   if (!Info.OrigRet.Ty->isVoidTy())
1059     splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1060 
1061   // If we can lower as a tail call, do that instead.
1062   bool CanTailCallOpt =
1063       isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1064 
1065   // We must emit a tail call if we have musttail.
1066   if (Info.IsMustTailCall && !CanTailCallOpt) {
1067     // There are types of incoming/outgoing arguments we can't handle yet, so
1068     // it doesn't make sense to actually die here like in ISelLowering. Instead,
1069     // fall back to SelectionDAG and let it try to handle this.
1070     LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
1071     return false;
1072   }
1073 
1074   if (CanTailCallOpt)
1075     return lowerTailCall(MIRBuilder, Info, OutArgs);
1076 
1077   // Find out which ABI gets to decide where things go.
1078   CCAssignFn *AssignFnFixed;
1079   CCAssignFn *AssignFnVarArg;
1080   std::tie(AssignFnFixed, AssignFnVarArg) =
1081       getAssignFnsForCC(Info.CallConv, TLI);
1082 
1083   MachineInstrBuilder CallSeqStart;
1084   CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
1085 
1086   // Create a temporarily-floating call instruction so we can add the implicit
1087   // uses of arg registers.
1088   unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
1089 
1090   auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1091   MIB.add(Info.Callee);
1092 
1093   // Tell the call which registers are clobbered.
1094   const uint32_t *Mask;
1095   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1096   const auto *TRI = Subtarget.getRegisterInfo();
1097 
1098   AArch64OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg,
1099                                         Subtarget, /*IsReturn*/ false);
1100   // Do the actual argument marshalling.
1101   OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, /*IsReturn*/ false);
1102   if (!determineAndHandleAssignments(Handler, Assigner, OutArgs, MIRBuilder,
1103                                      Info.CallConv, Info.IsVarArg))
1104     return false;
1105 
1106   Mask = getMaskForArgs(OutArgs, Info, *TRI, MF);
1107 
1108   if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
1109     TRI->UpdateCustomCallPreservedMask(MF, &Mask);
1110   MIB.addRegMask(Mask);
1111 
1112   if (TRI->isAnyArgRegReserved(MF))
1113     TRI->emitReservedArgRegCallError(MF);
1114 
1115   // Now we can add the actual call instruction to the correct basic block.
1116   MIRBuilder.insertInstr(MIB);
1117 
1118   // If Callee is a reg, since it is used by a target specific
1119   // instruction, it must have a register class matching the
1120   // constraint of that instruction.
1121   if (Info.Callee.isReg())
1122     constrainOperandRegClass(MF, *TRI, MRI, *Subtarget.getInstrInfo(),
1123                              *Subtarget.getRegBankInfo(), *MIB, MIB->getDesc(),
1124                              Info.Callee, 0);
1125 
1126   // Finally we can copy the returned value back into its virtual-register. In
1127   // symmetry with the arguments, the physical register must be an
1128   // implicit-define of the call instruction.
1129   if (!Info.OrigRet.Ty->isVoidTy()) {
1130     CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
1131     CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1132     bool UsingReturnedArg =
1133         !OutArgs.empty() && OutArgs[0].Flags[0].isReturned();
1134 
1135     AArch64OutgoingValueAssigner Assigner(RetAssignFn, RetAssignFn, Subtarget,
1136                                           /*IsReturn*/ false);
1137     ReturnedArgCallReturnHandler ReturnedArgHandler(MIRBuilder, MRI, MIB);
1138     if (!determineAndHandleAssignments(
1139             UsingReturnedArg ? ReturnedArgHandler : Handler, Assigner, InArgs,
1140             MIRBuilder, Info.CallConv, Info.IsVarArg,
1141             UsingReturnedArg ? OutArgs[0].Regs[0] : Register()))
1142       return false;
1143   }
1144 
1145   if (Info.SwiftErrorVReg) {
1146     MIB.addDef(AArch64::X21, RegState::Implicit);
1147     MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
1148   }
1149 
1150   uint64_t CalleePopBytes =
1151       doesCalleeRestoreStack(Info.CallConv,
1152                              MF.getTarget().Options.GuaranteedTailCallOpt)
1153           ? alignTo(Assigner.StackOffset, 16)
1154           : 0;
1155 
1156   CallSeqStart.addImm(Assigner.StackOffset).addImm(0);
1157   MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
1158       .addImm(Assigner.StackOffset)
1159       .addImm(CalleePopBytes);
1160 
1161   return true;
1162 }
1163 
isTypeIsValidForThisReturn(EVT Ty) const1164 bool AArch64CallLowering::isTypeIsValidForThisReturn(EVT Ty) const {
1165   return Ty.getSizeInBits() == 64;
1166 }
1167