1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 RackTop Systems.
26 * Copyright 2016 Nexenta Systems, Inc.
27 */
28
29 /*
30 * Pool import support functions.
31 *
32 * To import a pool, we rely on reading the configuration information from the
33 * ZFS label of each device. If we successfully read the label, then we
34 * organize the configuration information in the following hierarchy:
35 *
36 * pool guid -> toplevel vdev guid -> label txg
37 *
38 * Duplicate entries matching this same tuple will be discarded. Once we have
39 * examined every device, we pick the best label txg config for each toplevel
40 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
41 * update any paths that have changed. Finally, we attempt to import the pool
42 * using our derived config, and record the results.
43 */
44
45 #include <ctype.h>
46 #include <devid.h>
47 #include <dirent.h>
48 #include <errno.h>
49 #include <libintl.h>
50 #include <stddef.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <sys/stat.h>
54 #include <unistd.h>
55 #include <fcntl.h>
56 #include <thread_pool.h>
57 #ifdef __FreeBSD__
58 #include <libgeom.h>
59 #endif
60 #ifdef __NetBSD__
61 #include <util.h>
62 static int native_ioctl(int fd, unsigned long cmd, void *arg);
63 #endif
64
65 #include <sys/vdev_impl.h>
66
67 #include "libzfs.h"
68 #include "libzfs_impl.h"
69
70 /*
71 * Intermediate structures used to gather configuration information.
72 */
73 typedef struct config_entry {
74 uint64_t ce_txg;
75 nvlist_t *ce_config;
76 struct config_entry *ce_next;
77 } config_entry_t;
78
79 typedef struct vdev_entry {
80 uint64_t ve_guid;
81 config_entry_t *ve_configs;
82 struct vdev_entry *ve_next;
83 } vdev_entry_t;
84
85 typedef struct pool_entry {
86 uint64_t pe_guid;
87 vdev_entry_t *pe_vdevs;
88 struct pool_entry *pe_next;
89 } pool_entry_t;
90
91 typedef struct name_entry {
92 char *ne_name;
93 uint64_t ne_guid;
94 struct name_entry *ne_next;
95 } name_entry_t;
96
97 typedef struct pool_list {
98 pool_entry_t *pools;
99 name_entry_t *names;
100 } pool_list_t;
101
102 static char *
get_devid(const char * path)103 get_devid(const char *path)
104 {
105 #ifdef have_devid
106 int fd;
107 ddi_devid_t devid;
108 char *minor, *ret;
109
110 if ((fd = open(path, O_RDONLY)) < 0)
111 return (NULL);
112
113 minor = NULL;
114 ret = NULL;
115 if (devid_get(fd, &devid) == 0) {
116 if (devid_get_minor_name(fd, &minor) == 0)
117 ret = devid_str_encode(devid, minor);
118 if (minor != NULL)
119 devid_str_free(minor);
120 devid_free(devid);
121 }
122 (void) close(fd);
123
124 return (ret);
125 #else
126 return (NULL);
127 #endif
128 }
129
130
131 /*
132 * Go through and fix up any path and/or devid information for the given vdev
133 * configuration.
134 */
135 static int
fix_paths(nvlist_t * nv,name_entry_t * names)136 fix_paths(nvlist_t *nv, name_entry_t *names)
137 {
138 nvlist_t **child;
139 uint_t c, children;
140 uint64_t guid;
141 name_entry_t *ne, *best;
142 char *path, *devid;
143 int matched;
144
145 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
146 &child, &children) == 0) {
147 for (c = 0; c < children; c++)
148 if (fix_paths(child[c], names) != 0)
149 return (-1);
150 return (0);
151 }
152
153 /*
154 * This is a leaf (file or disk) vdev. In either case, go through
155 * the name list and see if we find a matching guid. If so, replace
156 * the path and see if we can calculate a new devid.
157 *
158 * There may be multiple names associated with a particular guid, in
159 * which case we have overlapping slices or multiple paths to the same
160 * disk. If this is the case, then we want to pick the path that is
161 * the most similar to the original, where "most similar" is the number
162 * of matching characters starting from the end of the path. This will
163 * preserve slice numbers even if the disks have been reorganized, and
164 * will also catch preferred disk names if multiple paths exist.
165 */
166 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
167 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
168 path = NULL;
169
170 matched = 0;
171 best = NULL;
172 for (ne = names; ne != NULL; ne = ne->ne_next) {
173 if (ne->ne_guid == guid) {
174 const char *src, *dst;
175 int count;
176
177 if (path == NULL) {
178 best = ne;
179 break;
180 }
181
182 src = ne->ne_name + strlen(ne->ne_name) - 1;
183 dst = path + strlen(path) - 1;
184 for (count = 0; src >= ne->ne_name && dst >= path;
185 src--, dst--, count++)
186 if (*src != *dst)
187 break;
188
189 /*
190 * At this point, 'count' is the number of characters
191 * matched from the end.
192 */
193 if (count > matched || best == NULL) {
194 best = ne;
195 matched = count;
196 }
197 }
198 }
199
200 if (best == NULL)
201 return (0);
202
203 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
204 return (-1);
205
206 if ((devid = get_devid(best->ne_name)) == NULL) {
207 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
208 } else {
209 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
210 devid_str_free(devid);
211 return (-1);
212 }
213 devid_str_free(devid);
214 }
215
216 return (0);
217 }
218
219 /*
220 * Add the given configuration to the list of known devices.
221 */
222 static int
add_config(libzfs_handle_t * hdl,pool_list_t * pl,const char * path,nvlist_t * config)223 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
224 nvlist_t *config)
225 {
226 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
227 pool_entry_t *pe;
228 vdev_entry_t *ve;
229 config_entry_t *ce;
230 name_entry_t *ne;
231
232 /*
233 * If this is a hot spare not currently in use or level 2 cache
234 * device, add it to the list of names to translate, but don't do
235 * anything else.
236 */
237 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
238 &state) == 0 &&
239 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
240 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
241 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
242 return (-1);
243
244 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
245 free(ne);
246 return (-1);
247 }
248 ne->ne_guid = vdev_guid;
249 ne->ne_next = pl->names;
250 pl->names = ne;
251 return (0);
252 }
253
254 /*
255 * If we have a valid config but cannot read any of these fields, then
256 * it means we have a half-initialized label. In vdev_label_init()
257 * we write a label with txg == 0 so that we can identify the device
258 * in case the user refers to the same disk later on. If we fail to
259 * create the pool, we'll be left with a label in this state
260 * which should not be considered part of a valid pool.
261 */
262 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
263 &pool_guid) != 0 ||
264 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
265 &vdev_guid) != 0 ||
266 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
267 &top_guid) != 0 ||
268 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
269 &txg) != 0 || txg == 0) {
270 nvlist_free(config);
271 return (0);
272 }
273
274 /*
275 * First, see if we know about this pool. If not, then add it to the
276 * list of known pools.
277 */
278 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
279 if (pe->pe_guid == pool_guid)
280 break;
281 }
282
283 if (pe == NULL) {
284 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
285 nvlist_free(config);
286 return (-1);
287 }
288 pe->pe_guid = pool_guid;
289 pe->pe_next = pl->pools;
290 pl->pools = pe;
291 }
292
293 /*
294 * Second, see if we know about this toplevel vdev. Add it if its
295 * missing.
296 */
297 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
298 if (ve->ve_guid == top_guid)
299 break;
300 }
301
302 if (ve == NULL) {
303 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
304 nvlist_free(config);
305 return (-1);
306 }
307 ve->ve_guid = top_guid;
308 ve->ve_next = pe->pe_vdevs;
309 pe->pe_vdevs = ve;
310 }
311
312 /*
313 * Third, see if we have a config with a matching transaction group. If
314 * so, then we do nothing. Otherwise, add it to the list of known
315 * configs.
316 */
317 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
318 if (ce->ce_txg == txg)
319 break;
320 }
321
322 if (ce == NULL) {
323 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
324 nvlist_free(config);
325 return (-1);
326 }
327 ce->ce_txg = txg;
328 ce->ce_config = config;
329 ce->ce_next = ve->ve_configs;
330 ve->ve_configs = ce;
331 } else {
332 nvlist_free(config);
333 }
334
335 /*
336 * At this point we've successfully added our config to the list of
337 * known configs. The last thing to do is add the vdev guid -> path
338 * mappings so that we can fix up the configuration as necessary before
339 * doing the import.
340 */
341 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
342 return (-1);
343
344 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
345 free(ne);
346 return (-1);
347 }
348
349 ne->ne_guid = vdev_guid;
350 ne->ne_next = pl->names;
351 pl->names = ne;
352
353 return (0);
354 }
355
356 /*
357 * Returns true if the named pool matches the given GUID.
358 */
359 static int
pool_active(libzfs_handle_t * hdl,const char * name,uint64_t guid,boolean_t * isactive)360 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
361 boolean_t *isactive)
362 {
363 zpool_handle_t *zhp;
364 uint64_t theguid;
365
366 if (zpool_open_silent(hdl, name, &zhp) != 0)
367 return (-1);
368
369 if (zhp == NULL) {
370 *isactive = B_FALSE;
371 return (0);
372 }
373
374 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
375 &theguid) == 0);
376
377 zpool_close(zhp);
378
379 *isactive = (theguid == guid);
380 return (0);
381 }
382
383 static nvlist_t *
refresh_config(libzfs_handle_t * hdl,nvlist_t * config)384 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
385 {
386 nvlist_t *nvl;
387 zfs_cmd_t zc = { 0 };
388 int err;
389
390 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
391 return (NULL);
392
393 if (zcmd_alloc_dst_nvlist(hdl, &zc,
394 zc.zc_nvlist_conf_size * 2) != 0) {
395 zcmd_free_nvlists(&zc);
396 return (NULL);
397 }
398
399 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
400 &zc)) != 0 && errno == ENOMEM) {
401 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
402 zcmd_free_nvlists(&zc);
403 return (NULL);
404 }
405 }
406
407 if (err) {
408 zcmd_free_nvlists(&zc);
409 return (NULL);
410 }
411
412 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
413 zcmd_free_nvlists(&zc);
414 return (NULL);
415 }
416
417 zcmd_free_nvlists(&zc);
418 return (nvl);
419 }
420
421 /*
422 * Determine if the vdev id is a hole in the namespace.
423 */
424 boolean_t
vdev_is_hole(uint64_t * hole_array,uint_t holes,uint_t id)425 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
426 {
427 for (int c = 0; c < holes; c++) {
428
429 /* Top-level is a hole */
430 if (hole_array[c] == id)
431 return (B_TRUE);
432 }
433 return (B_FALSE);
434 }
435
436 /*
437 * Convert our list of pools into the definitive set of configurations. We
438 * start by picking the best config for each toplevel vdev. Once that's done,
439 * we assemble the toplevel vdevs into a full config for the pool. We make a
440 * pass to fix up any incorrect paths, and then add it to the main list to
441 * return to the user.
442 */
443 static nvlist_t *
get_configs(libzfs_handle_t * hdl,pool_list_t * pl,boolean_t active_ok)444 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
445 {
446 pool_entry_t *pe;
447 vdev_entry_t *ve;
448 config_entry_t *ce;
449 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
450 nvlist_t **spares, **l2cache;
451 uint_t i, nspares, nl2cache;
452 boolean_t config_seen;
453 uint64_t best_txg;
454 char *name, *hostname = NULL;
455 uint64_t guid;
456 uint_t children = 0;
457 nvlist_t **child = NULL;
458 uint_t holes;
459 uint64_t *hole_array, max_id;
460 uint_t c;
461 boolean_t isactive;
462 uint64_t hostid;
463 nvlist_t *nvl;
464 boolean_t found_one = B_FALSE;
465 boolean_t valid_top_config = B_FALSE;
466
467 if (nvlist_alloc(&ret, 0, 0) != 0)
468 goto nomem;
469
470 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
471 uint64_t id, max_txg = 0;
472
473 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
474 goto nomem;
475 config_seen = B_FALSE;
476
477 /*
478 * Iterate over all toplevel vdevs. Grab the pool configuration
479 * from the first one we find, and then go through the rest and
480 * add them as necessary to the 'vdevs' member of the config.
481 */
482 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
483
484 /*
485 * Determine the best configuration for this vdev by
486 * selecting the config with the latest transaction
487 * group.
488 */
489 best_txg = 0;
490 for (ce = ve->ve_configs; ce != NULL;
491 ce = ce->ce_next) {
492
493 if (ce->ce_txg > best_txg) {
494 tmp = ce->ce_config;
495 best_txg = ce->ce_txg;
496 }
497 }
498
499 /*
500 * We rely on the fact that the max txg for the
501 * pool will contain the most up-to-date information
502 * about the valid top-levels in the vdev namespace.
503 */
504 if (best_txg > max_txg) {
505 (void) nvlist_remove(config,
506 ZPOOL_CONFIG_VDEV_CHILDREN,
507 DATA_TYPE_UINT64);
508 (void) nvlist_remove(config,
509 ZPOOL_CONFIG_HOLE_ARRAY,
510 DATA_TYPE_UINT64_ARRAY);
511
512 max_txg = best_txg;
513 hole_array = NULL;
514 holes = 0;
515 max_id = 0;
516 valid_top_config = B_FALSE;
517
518 if (nvlist_lookup_uint64(tmp,
519 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
520 verify(nvlist_add_uint64(config,
521 ZPOOL_CONFIG_VDEV_CHILDREN,
522 max_id) == 0);
523 valid_top_config = B_TRUE;
524 }
525
526 if (nvlist_lookup_uint64_array(tmp,
527 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
528 &holes) == 0) {
529 verify(nvlist_add_uint64_array(config,
530 ZPOOL_CONFIG_HOLE_ARRAY,
531 hole_array, holes) == 0);
532 }
533 }
534
535 if (!config_seen) {
536 /*
537 * Copy the relevant pieces of data to the pool
538 * configuration:
539 *
540 * version
541 * pool guid
542 * name
543 * comment (if available)
544 * pool state
545 * hostid (if available)
546 * hostname (if available)
547 */
548 uint64_t state, version;
549 char *comment = NULL;
550
551 version = fnvlist_lookup_uint64(tmp,
552 ZPOOL_CONFIG_VERSION);
553 fnvlist_add_uint64(config,
554 ZPOOL_CONFIG_VERSION, version);
555 guid = fnvlist_lookup_uint64(tmp,
556 ZPOOL_CONFIG_POOL_GUID);
557 fnvlist_add_uint64(config,
558 ZPOOL_CONFIG_POOL_GUID, guid);
559 name = fnvlist_lookup_string(tmp,
560 ZPOOL_CONFIG_POOL_NAME);
561 fnvlist_add_string(config,
562 ZPOOL_CONFIG_POOL_NAME, name);
563
564 if (nvlist_lookup_string(tmp,
565 ZPOOL_CONFIG_COMMENT, &comment) == 0)
566 fnvlist_add_string(config,
567 ZPOOL_CONFIG_COMMENT, comment);
568
569 state = fnvlist_lookup_uint64(tmp,
570 ZPOOL_CONFIG_POOL_STATE);
571 fnvlist_add_uint64(config,
572 ZPOOL_CONFIG_POOL_STATE, state);
573
574 hostid = 0;
575 if (nvlist_lookup_uint64(tmp,
576 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
577 fnvlist_add_uint64(config,
578 ZPOOL_CONFIG_HOSTID, hostid);
579 hostname = fnvlist_lookup_string(tmp,
580 ZPOOL_CONFIG_HOSTNAME);
581 fnvlist_add_string(config,
582 ZPOOL_CONFIG_HOSTNAME, hostname);
583 }
584
585 config_seen = B_TRUE;
586 }
587
588 /*
589 * Add this top-level vdev to the child array.
590 */
591 verify(nvlist_lookup_nvlist(tmp,
592 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
593 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
594 &id) == 0);
595
596 if (id >= children) {
597 nvlist_t **newchild;
598
599 newchild = zfs_alloc(hdl, (id + 1) *
600 sizeof (nvlist_t *));
601 if (newchild == NULL)
602 goto nomem;
603
604 for (c = 0; c < children; c++)
605 newchild[c] = child[c];
606
607 free(child);
608 child = newchild;
609 children = id + 1;
610 }
611 if (nvlist_dup(nvtop, &child[id], 0) != 0)
612 goto nomem;
613
614 }
615
616 /*
617 * If we have information about all the top-levels then
618 * clean up the nvlist which we've constructed. This
619 * means removing any extraneous devices that are
620 * beyond the valid range or adding devices to the end
621 * of our array which appear to be missing.
622 */
623 if (valid_top_config) {
624 if (max_id < children) {
625 for (c = max_id; c < children; c++)
626 nvlist_free(child[c]);
627 children = max_id;
628 } else if (max_id > children) {
629 nvlist_t **newchild;
630
631 newchild = zfs_alloc(hdl, (max_id) *
632 sizeof (nvlist_t *));
633 if (newchild == NULL)
634 goto nomem;
635
636 for (c = 0; c < children; c++)
637 newchild[c] = child[c];
638
639 free(child);
640 child = newchild;
641 children = max_id;
642 }
643 }
644
645 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
646 &guid) == 0);
647
648 /*
649 * The vdev namespace may contain holes as a result of
650 * device removal. We must add them back into the vdev
651 * tree before we process any missing devices.
652 */
653 if (holes > 0) {
654 ASSERT(valid_top_config);
655
656 for (c = 0; c < children; c++) {
657 nvlist_t *holey;
658
659 if (child[c] != NULL ||
660 !vdev_is_hole(hole_array, holes, c))
661 continue;
662
663 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
664 0) != 0)
665 goto nomem;
666
667 /*
668 * Holes in the namespace are treated as
669 * "hole" top-level vdevs and have a
670 * special flag set on them.
671 */
672 if (nvlist_add_string(holey,
673 ZPOOL_CONFIG_TYPE,
674 VDEV_TYPE_HOLE) != 0 ||
675 nvlist_add_uint64(holey,
676 ZPOOL_CONFIG_ID, c) != 0 ||
677 nvlist_add_uint64(holey,
678 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
679 nvlist_free(holey);
680 goto nomem;
681 }
682 child[c] = holey;
683 }
684 }
685
686 /*
687 * Look for any missing top-level vdevs. If this is the case,
688 * create a faked up 'missing' vdev as a placeholder. We cannot
689 * simply compress the child array, because the kernel performs
690 * certain checks to make sure the vdev IDs match their location
691 * in the configuration.
692 */
693 for (c = 0; c < children; c++) {
694 if (child[c] == NULL) {
695 nvlist_t *missing;
696 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
697 0) != 0)
698 goto nomem;
699 if (nvlist_add_string(missing,
700 ZPOOL_CONFIG_TYPE,
701 VDEV_TYPE_MISSING) != 0 ||
702 nvlist_add_uint64(missing,
703 ZPOOL_CONFIG_ID, c) != 0 ||
704 nvlist_add_uint64(missing,
705 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
706 nvlist_free(missing);
707 goto nomem;
708 }
709 child[c] = missing;
710 }
711 }
712
713 /*
714 * Put all of this pool's top-level vdevs into a root vdev.
715 */
716 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
717 goto nomem;
718 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
719 VDEV_TYPE_ROOT) != 0 ||
720 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
721 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
722 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
723 child, children) != 0) {
724 nvlist_free(nvroot);
725 goto nomem;
726 }
727
728 for (c = 0; c < children; c++)
729 nvlist_free(child[c]);
730 free(child);
731 children = 0;
732 child = NULL;
733
734 /*
735 * Go through and fix up any paths and/or devids based on our
736 * known list of vdev GUID -> path mappings.
737 */
738 if (fix_paths(nvroot, pl->names) != 0) {
739 nvlist_free(nvroot);
740 goto nomem;
741 }
742
743 /*
744 * Add the root vdev to this pool's configuration.
745 */
746 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
747 nvroot) != 0) {
748 nvlist_free(nvroot);
749 goto nomem;
750 }
751 nvlist_free(nvroot);
752
753 /*
754 * zdb uses this path to report on active pools that were
755 * imported or created using -R.
756 */
757 if (active_ok)
758 goto add_pool;
759
760 /*
761 * Determine if this pool is currently active, in which case we
762 * can't actually import it.
763 */
764 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
765 &name) == 0);
766 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
767 &guid) == 0);
768
769 if (pool_active(hdl, name, guid, &isactive) != 0)
770 goto error;
771
772 if (isactive) {
773 nvlist_free(config);
774 config = NULL;
775 continue;
776 }
777
778 if ((nvl = refresh_config(hdl, config)) == NULL) {
779 nvlist_free(config);
780 config = NULL;
781 continue;
782 }
783
784 nvlist_free(config);
785 config = nvl;
786
787 /*
788 * Go through and update the paths for spares, now that we have
789 * them.
790 */
791 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
792 &nvroot) == 0);
793 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
794 &spares, &nspares) == 0) {
795 for (i = 0; i < nspares; i++) {
796 if (fix_paths(spares[i], pl->names) != 0)
797 goto nomem;
798 }
799 }
800
801 /*
802 * Update the paths for l2cache devices.
803 */
804 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
805 &l2cache, &nl2cache) == 0) {
806 for (i = 0; i < nl2cache; i++) {
807 if (fix_paths(l2cache[i], pl->names) != 0)
808 goto nomem;
809 }
810 }
811
812 /*
813 * Restore the original information read from the actual label.
814 */
815 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
816 DATA_TYPE_UINT64);
817 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
818 DATA_TYPE_STRING);
819 if (hostid != 0) {
820 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
821 hostid) == 0);
822 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
823 hostname) == 0);
824 }
825
826 add_pool:
827 /*
828 * Add this pool to the list of configs.
829 */
830 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
831 &name) == 0);
832 if (nvlist_add_nvlist(ret, name, config) != 0)
833 goto nomem;
834
835 found_one = B_TRUE;
836 nvlist_free(config);
837 config = NULL;
838 }
839
840 if (!found_one) {
841 nvlist_free(ret);
842 ret = NULL;
843 }
844
845 return (ret);
846
847 nomem:
848 (void) no_memory(hdl);
849 error:
850 nvlist_free(config);
851 nvlist_free(ret);
852 for (c = 0; c < children; c++)
853 nvlist_free(child[c]);
854 free(child);
855
856 return (NULL);
857 }
858
859 /*
860 * Return the offset of the given label.
861 */
862 static uint64_t
label_offset(uint64_t size,int l)863 label_offset(uint64_t size, int l)
864 {
865 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
866 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
867 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
868 }
869
870 /*
871 * Given a file descriptor, read the label information and return an nvlist
872 * describing the configuration, if there is one.
873 */
874 int
zpool_read_label(int fd,nvlist_t ** config)875 zpool_read_label(int fd, nvlist_t **config)
876 {
877 struct stat64 statbuf;
878 int l;
879 vdev_label_t *label;
880 uint64_t state, txg, size;
881
882 *config = NULL;
883
884 if (fstat64(fd, &statbuf) == -1)
885 return (0);
886 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
887
888 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
889 return (-1);
890
891 for (l = 0; l < VDEV_LABELS; l++) {
892 if (pread64(fd, label, sizeof (vdev_label_t),
893 label_offset(size, l)) != sizeof (vdev_label_t))
894 continue;
895
896 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
897 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
898 continue;
899
900 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
901 &state) != 0 || state > POOL_STATE_L2CACHE) {
902 nvlist_free(*config);
903 continue;
904 }
905
906 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
907 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
908 &txg) != 0 || txg == 0)) {
909 nvlist_free(*config);
910 continue;
911 }
912
913 free(label);
914 return (0);
915 }
916
917 free(label);
918 *config = NULL;
919 return (0);
920 }
921
922 typedef struct rdsk_node {
923 char *rn_name;
924 int rn_dfd;
925 libzfs_handle_t *rn_hdl;
926 nvlist_t *rn_config;
927 avl_tree_t *rn_avl;
928 avl_node_t rn_node;
929 boolean_t rn_nozpool;
930 } rdsk_node_t;
931
932 static int
slice_cache_compare(const void * arg1,const void * arg2)933 slice_cache_compare(const void *arg1, const void *arg2)
934 {
935 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
936 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
937 char *nm1slice, *nm2slice;
938 int rv;
939
940 /*
941 * slices zero and two are the most likely to provide results,
942 * so put those first
943 */
944 nm1slice = strstr(nm1, "s0");
945 nm2slice = strstr(nm2, "s0");
946 if (nm1slice && !nm2slice) {
947 return (-1);
948 }
949 if (!nm1slice && nm2slice) {
950 return (1);
951 }
952 nm1slice = strstr(nm1, "s2");
953 nm2slice = strstr(nm2, "s2");
954 if (nm1slice && !nm2slice) {
955 return (-1);
956 }
957 if (!nm1slice && nm2slice) {
958 return (1);
959 }
960
961 rv = strcmp(nm1, nm2);
962 if (rv == 0)
963 return (0);
964 return (rv > 0 ? 1 : -1);
965 }
966
967 #ifdef illumos
968 static void
check_one_slice(avl_tree_t * r,char * diskname,uint_t partno,diskaddr_t size,uint_t blksz)969 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
970 diskaddr_t size, uint_t blksz)
971 {
972 rdsk_node_t tmpnode;
973 rdsk_node_t *node;
974 char sname[MAXNAMELEN];
975
976 tmpnode.rn_name = &sname[0];
977 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
978 diskname, partno);
979 /*
980 * protect against division by zero for disk labels that
981 * contain a bogus sector size
982 */
983 if (blksz == 0)
984 blksz = DEV_BSIZE;
985 /* too small to contain a zpool? */
986 if ((size < (SPA_MINDEVSIZE / blksz)) &&
987 (node = avl_find(r, &tmpnode, NULL)))
988 node->rn_nozpool = B_TRUE;
989 }
990 #endif /* illumos */
991
992 static void
nozpool_all_slices(avl_tree_t * r,const char * sname)993 nozpool_all_slices(avl_tree_t *r, const char *sname)
994 {
995 #ifdef illumos
996 char diskname[MAXNAMELEN];
997 char *ptr;
998 int i;
999
1000 (void) strncpy(diskname, sname, MAXNAMELEN);
1001 if (((ptr = strrchr(diskname, 's')) == NULL) &&
1002 ((ptr = strrchr(diskname, 'p')) == NULL))
1003 return;
1004 ptr[0] = 's';
1005 ptr[1] = '\0';
1006 for (i = 0; i < NDKMAP; i++)
1007 check_one_slice(r, diskname, i, 0, 1);
1008 ptr[0] = 'p';
1009 for (i = 0; i <= FD_NUMPART; i++)
1010 check_one_slice(r, diskname, i, 0, 1);
1011 #endif /* illumos */
1012 }
1013
1014 #ifdef illumos
1015 static void
check_slices(avl_tree_t * r,int fd,const char * sname)1016 check_slices(avl_tree_t *r, int fd, const char *sname)
1017 {
1018 struct extvtoc vtoc;
1019 struct dk_gpt *gpt;
1020 char diskname[MAXNAMELEN];
1021 char *ptr;
1022 int i;
1023
1024 (void) strncpy(diskname, sname, MAXNAMELEN);
1025 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1026 return;
1027 ptr[1] = '\0';
1028
1029 if (read_extvtoc(fd, &vtoc) >= 0) {
1030 for (i = 0; i < NDKMAP; i++)
1031 check_one_slice(r, diskname, i,
1032 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1033 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1034 /*
1035 * on x86 we'll still have leftover links that point
1036 * to slices s[9-15], so use NDKMAP instead
1037 */
1038 for (i = 0; i < NDKMAP; i++)
1039 check_one_slice(r, diskname, i,
1040 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1041 /* nodes p[1-4] are never used with EFI labels */
1042 ptr[0] = 'p';
1043 for (i = 1; i <= FD_NUMPART; i++)
1044 check_one_slice(r, diskname, i, 0, 1);
1045 efi_free(gpt);
1046 }
1047 }
1048 #endif /* illumos */
1049
1050 static void
zpool_open_func(void * arg)1051 zpool_open_func(void *arg)
1052 {
1053 rdsk_node_t *rn = arg;
1054 struct stat64 statbuf;
1055 nvlist_t *config;
1056 int fd;
1057
1058 if (rn->rn_nozpool)
1059 return;
1060 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1061 /* symlink to a device that's no longer there */
1062 if (errno == ENOENT)
1063 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1064 return;
1065 }
1066 /*
1067 * Ignore failed stats. We only want regular
1068 * files, character devs and block devs.
1069 */
1070 if (fstat64(fd, &statbuf) != 0 ||
1071 (!S_ISREG(statbuf.st_mode) &&
1072 !S_ISCHR(statbuf.st_mode) &&
1073 !S_ISBLK(statbuf.st_mode))) {
1074 (void) close(fd);
1075 return;
1076 }
1077 /* this file is too small to hold a zpool */
1078 #ifdef illumos
1079 if (S_ISREG(statbuf.st_mode) &&
1080 statbuf.st_size < SPA_MINDEVSIZE) {
1081 (void) close(fd);
1082 return;
1083 } else if (!S_ISREG(statbuf.st_mode)) {
1084 /*
1085 * Try to read the disk label first so we don't have to
1086 * open a bunch of minor nodes that can't have a zpool.
1087 */
1088 check_slices(rn->rn_avl, fd, rn->rn_name);
1089 }
1090 #endif /* illumos */
1091 #ifdef __FreeBSD__
1092 if (statbuf.st_size < SPA_MINDEVSIZE) {
1093 (void) close(fd);
1094 return;
1095 }
1096 #endif /* __FreeBSD__ */
1097 #ifdef __NetBSD__
1098 struct dkwedge_list dkwl;
1099 off_t size;
1100
1101 /* skip devices with wedges */
1102 memset(&dkwl, 0, sizeof(dkwl));
1103 if (native_ioctl(fd, DIOCLWEDGES, &dkwl) == 0 &&
1104 dkwl.dkwl_nwedges > 0) {
1105 (void) close(fd);
1106 return;
1107 }
1108
1109 if (native_ioctl(fd, DIOCGMEDIASIZE, &size) < 0 ||
1110 size < SPA_MINDEVSIZE) {
1111 (void) close(fd);
1112 return;
1113 }
1114 #endif
1115
1116 if ((zpool_read_label(fd, &config)) != 0) {
1117 (void) close(fd);
1118 (void) no_memory(rn->rn_hdl);
1119 return;
1120 }
1121 (void) close(fd);
1122
1123 rn->rn_config = config;
1124 }
1125
1126 /*
1127 * Given a file descriptor, clear (zero) the label information.
1128 */
1129 int
zpool_clear_label(int fd)1130 zpool_clear_label(int fd)
1131 {
1132 struct stat64 statbuf;
1133 int l;
1134 vdev_label_t *label;
1135 uint64_t size;
1136
1137 if (fstat64(fd, &statbuf) == -1)
1138 return (0);
1139 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1140
1141 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1142 return (-1);
1143
1144 for (l = 0; l < VDEV_LABELS; l++) {
1145 if (pwrite64(fd, label, sizeof (vdev_label_t),
1146 label_offset(size, l)) != sizeof (vdev_label_t)) {
1147 free(label);
1148 return (-1);
1149 }
1150 }
1151
1152 free(label);
1153 return (0);
1154 }
1155
1156 /*
1157 * Given a list of directories to search, find all pools stored on disk. This
1158 * includes partial pools which are not available to import. If no args are
1159 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1160 * poolname or guid (but not both) are provided by the caller when trying
1161 * to import a specific pool.
1162 */
1163 static nvlist_t *
zpool_find_import_impl(libzfs_handle_t * hdl,importargs_t * iarg)1164 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1165 {
1166 int i, dirs = iarg->paths;
1167 struct dirent64 *dp;
1168 char path[MAXPATHLEN];
1169 char *end, **dir = iarg->path;
1170 size_t pathleft;
1171 nvlist_t *ret = NULL;
1172 static char *default_dir = "/dev";
1173 pool_list_t pools = { 0 };
1174 pool_entry_t *pe, *penext;
1175 vdev_entry_t *ve, *venext;
1176 config_entry_t *ce, *cenext;
1177 name_entry_t *ne, *nenext;
1178 avl_tree_t slice_cache;
1179 rdsk_node_t *slice;
1180 void *cookie;
1181
1182 if (dirs == 0) {
1183 dirs = 1;
1184 dir = &default_dir;
1185 }
1186
1187 /*
1188 * Go through and read the label configuration information from every
1189 * possible device, organizing the information according to pool GUID
1190 * and toplevel GUID.
1191 */
1192 for (i = 0; i < dirs; i++) {
1193 tpool_t *t;
1194 char rdsk[MAXPATHLEN];
1195 int dfd;
1196 boolean_t config_failed = B_FALSE;
1197 DIR *dirp;
1198
1199 /* use realpath to normalize the path */
1200 if (realpath(dir[i], path) == 0) {
1201 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1202 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1203 goto error;
1204 }
1205 end = &path[strlen(path)];
1206 *end++ = '/';
1207 *end = 0;
1208 pathleft = &path[sizeof (path)] - end;
1209
1210 #ifdef illumos
1211 /*
1212 * Using raw devices instead of block devices when we're
1213 * reading the labels skips a bunch of slow operations during
1214 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1215 */
1216 if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1217 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1218 else
1219 #endif
1220 (void) strlcpy(rdsk, path, sizeof (rdsk));
1221
1222 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1223 (dirp = fdopendir(dfd)) == NULL) {
1224 if (dfd >= 0)
1225 (void) close(dfd);
1226 zfs_error_aux(hdl, strerror(errno));
1227 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1228 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1229 rdsk);
1230 goto error;
1231 }
1232
1233 avl_create(&slice_cache, slice_cache_compare,
1234 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1235
1236 #ifdef __FreeBSD__
1237 if (strcmp(rdsk, "/dev/") == 0) {
1238 struct gmesh mesh;
1239 struct gclass *mp;
1240 struct ggeom *gp;
1241 struct gprovider *pp;
1242
1243 errno = geom_gettree(&mesh);
1244 if (errno != 0) {
1245 zfs_error_aux(hdl, strerror(errno));
1246 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1247 dgettext(TEXT_DOMAIN, "cannot get GEOM tree"));
1248 goto error;
1249 }
1250
1251 LIST_FOREACH(mp, &mesh.lg_class, lg_class) {
1252 LIST_FOREACH(gp, &mp->lg_geom, lg_geom) {
1253 LIST_FOREACH(pp, &gp->lg_provider, lg_provider) {
1254 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1255 slice->rn_name = zfs_strdup(hdl, pp->lg_name);
1256 slice->rn_avl = &slice_cache;
1257 slice->rn_dfd = dfd;
1258 slice->rn_hdl = hdl;
1259 slice->rn_nozpool = B_FALSE;
1260 avl_add(&slice_cache, slice);
1261 }
1262 }
1263 }
1264
1265 geom_deletetree(&mesh);
1266 goto skipdir;
1267 }
1268 #endif
1269 #ifdef __NetBSD__
1270 if (strcmp(rdsk, "/dev/") == 0) {
1271 static const char mib_name[] = "hw.disknames";
1272 size_t len;
1273 char *disknames, *last, *name;
1274
1275 if (sysctlbyname(mib_name, NULL, &len, NULL, 0) == -1) {
1276 zfs_error_aux(hdl, strerror(errno));
1277 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1278 dgettext(TEXT_DOMAIN, "cannot get hw.disknames list"));
1279
1280 avl_destroy(&slice_cache);
1281 (void) closedir(dirp);
1282 goto error;
1283 }
1284 disknames = zfs_alloc(hdl, len + 2);
1285 (void)sysctlbyname(mib_name, disknames, &len, NULL, 0);
1286
1287 for ((name = strtok_r(disknames, " ", &last)); name;
1288 (name = strtok_r(NULL, " ", &last))) {
1289 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1290 slice->rn_name = zfs_strdup(hdl, name);
1291 slice->rn_avl = &slice_cache;
1292 slice->rn_dfd = dfd;
1293 slice->rn_hdl = hdl;
1294 slice->rn_nozpool = B_FALSE;
1295 avl_add(&slice_cache, slice);
1296 }
1297 free(disknames);
1298
1299 goto skipdir;
1300 }
1301 #endif
1302
1303 /*
1304 * This is not MT-safe, but we have no MT consumers of libzfs
1305 */
1306 while ((dp = readdir64(dirp)) != NULL) {
1307 const char *name = dp->d_name;
1308 if (name[0] == '.' &&
1309 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1310 continue;
1311
1312 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1313 slice->rn_name = zfs_strdup(hdl, name);
1314 slice->rn_avl = &slice_cache;
1315 slice->rn_dfd = dfd;
1316 slice->rn_hdl = hdl;
1317 slice->rn_nozpool = B_FALSE;
1318 avl_add(&slice_cache, slice);
1319 }
1320 skipdir:
1321 /*
1322 * create a thread pool to do all of this in parallel;
1323 * rn_nozpool is not protected, so this is racy in that
1324 * multiple tasks could decide that the same slice can
1325 * not hold a zpool, which is benign. Also choose
1326 * double the number of processors; we hold a lot of
1327 * locks in the kernel, so going beyond this doesn't
1328 * buy us much.
1329 */
1330 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1331 0, NULL);
1332 for (slice = avl_first(&slice_cache); slice;
1333 (slice = avl_walk(&slice_cache, slice,
1334 AVL_AFTER)))
1335 (void) tpool_dispatch(t, zpool_open_func, slice);
1336 tpool_wait(t);
1337 tpool_destroy(t);
1338
1339 cookie = NULL;
1340 while ((slice = avl_destroy_nodes(&slice_cache,
1341 &cookie)) != NULL) {
1342 if (slice->rn_config != NULL && !config_failed) {
1343 nvlist_t *config = slice->rn_config;
1344 boolean_t matched = B_TRUE;
1345
1346 if (iarg->poolname != NULL) {
1347 char *pname;
1348
1349 matched = nvlist_lookup_string(config,
1350 ZPOOL_CONFIG_POOL_NAME,
1351 &pname) == 0 &&
1352 strcmp(iarg->poolname, pname) == 0;
1353 } else if (iarg->guid != 0) {
1354 uint64_t this_guid;
1355
1356 matched = nvlist_lookup_uint64(config,
1357 ZPOOL_CONFIG_POOL_GUID,
1358 &this_guid) == 0 &&
1359 iarg->guid == this_guid;
1360 }
1361 if (!matched) {
1362 nvlist_free(config);
1363 } else {
1364 /*
1365 * use the non-raw path for the config
1366 */
1367 (void) strlcpy(end, slice->rn_name,
1368 pathleft);
1369 if (add_config(hdl, &pools, path,
1370 config) != 0)
1371 config_failed = B_TRUE;
1372 }
1373 }
1374 free(slice->rn_name);
1375 free(slice);
1376 }
1377 avl_destroy(&slice_cache);
1378
1379 (void) closedir(dirp);
1380
1381 if (config_failed)
1382 goto error;
1383 }
1384
1385 ret = get_configs(hdl, &pools, iarg->can_be_active);
1386
1387 error:
1388 for (pe = pools.pools; pe != NULL; pe = penext) {
1389 penext = pe->pe_next;
1390 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1391 venext = ve->ve_next;
1392 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1393 cenext = ce->ce_next;
1394 nvlist_free(ce->ce_config);
1395 free(ce);
1396 }
1397 free(ve);
1398 }
1399 free(pe);
1400 }
1401
1402 for (ne = pools.names; ne != NULL; ne = nenext) {
1403 nenext = ne->ne_next;
1404 free(ne->ne_name);
1405 free(ne);
1406 }
1407
1408 return (ret);
1409 }
1410
1411 nvlist_t *
zpool_find_import(libzfs_handle_t * hdl,int argc,char ** argv)1412 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1413 {
1414 importargs_t iarg = { 0 };
1415
1416 iarg.paths = argc;
1417 iarg.path = argv;
1418
1419 return (zpool_find_import_impl(hdl, &iarg));
1420 }
1421
1422 /*
1423 * Given a cache file, return the contents as a list of importable pools.
1424 * poolname or guid (but not both) are provided by the caller when trying
1425 * to import a specific pool.
1426 */
1427 nvlist_t *
zpool_find_import_cached(libzfs_handle_t * hdl,const char * cachefile,char * poolname,uint64_t guid)1428 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1429 char *poolname, uint64_t guid)
1430 {
1431 char *buf;
1432 int fd;
1433 struct stat64 statbuf;
1434 nvlist_t *raw, *src, *dst;
1435 nvlist_t *pools;
1436 nvpair_t *elem;
1437 char *name;
1438 uint64_t this_guid;
1439 boolean_t active;
1440
1441 verify(poolname == NULL || guid == 0);
1442
1443 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1444 zfs_error_aux(hdl, "%s", strerror(errno));
1445 (void) zfs_error(hdl, EZFS_BADCACHE,
1446 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1447 return (NULL);
1448 }
1449
1450 if (fstat64(fd, &statbuf) != 0) {
1451 zfs_error_aux(hdl, "%s", strerror(errno));
1452 (void) close(fd);
1453 (void) zfs_error(hdl, EZFS_BADCACHE,
1454 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1455 return (NULL);
1456 }
1457
1458 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1459 (void) close(fd);
1460 return (NULL);
1461 }
1462
1463 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1464 (void) close(fd);
1465 free(buf);
1466 (void) zfs_error(hdl, EZFS_BADCACHE,
1467 dgettext(TEXT_DOMAIN,
1468 "failed to read cache file contents"));
1469 return (NULL);
1470 }
1471
1472 (void) close(fd);
1473
1474 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1475 free(buf);
1476 (void) zfs_error(hdl, EZFS_BADCACHE,
1477 dgettext(TEXT_DOMAIN,
1478 "invalid or corrupt cache file contents"));
1479 return (NULL);
1480 }
1481
1482 free(buf);
1483
1484 /*
1485 * Go through and get the current state of the pools and refresh their
1486 * state.
1487 */
1488 if (nvlist_alloc(&pools, 0, 0) != 0) {
1489 (void) no_memory(hdl);
1490 nvlist_free(raw);
1491 return (NULL);
1492 }
1493
1494 elem = NULL;
1495 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1496 src = fnvpair_value_nvlist(elem);
1497
1498 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1499 if (poolname != NULL && strcmp(poolname, name) != 0)
1500 continue;
1501
1502 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1503 if (guid != 0 && guid != this_guid)
1504 continue;
1505
1506 if (pool_active(hdl, name, this_guid, &active) != 0) {
1507 nvlist_free(raw);
1508 nvlist_free(pools);
1509 return (NULL);
1510 }
1511
1512 if (active)
1513 continue;
1514
1515 if ((dst = refresh_config(hdl, src)) == NULL) {
1516 nvlist_free(raw);
1517 nvlist_free(pools);
1518 return (NULL);
1519 }
1520
1521 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1522 (void) no_memory(hdl);
1523 nvlist_free(dst);
1524 nvlist_free(raw);
1525 nvlist_free(pools);
1526 return (NULL);
1527 }
1528 nvlist_free(dst);
1529 }
1530
1531 nvlist_free(raw);
1532 return (pools);
1533 }
1534
1535 static int
name_or_guid_exists(zpool_handle_t * zhp,void * data)1536 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1537 {
1538 importargs_t *import = data;
1539 int found = 0;
1540
1541 if (import->poolname != NULL) {
1542 char *pool_name;
1543
1544 verify(nvlist_lookup_string(zhp->zpool_config,
1545 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1546 if (strcmp(pool_name, import->poolname) == 0)
1547 found = 1;
1548 } else {
1549 uint64_t pool_guid;
1550
1551 verify(nvlist_lookup_uint64(zhp->zpool_config,
1552 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1553 if (pool_guid == import->guid)
1554 found = 1;
1555 }
1556
1557 zpool_close(zhp);
1558 return (found);
1559 }
1560
1561 nvlist_t *
zpool_search_import(libzfs_handle_t * hdl,importargs_t * import)1562 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1563 {
1564 verify(import->poolname == NULL || import->guid == 0);
1565
1566 if (import->unique)
1567 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1568
1569 if (import->cachefile != NULL)
1570 return (zpool_find_import_cached(hdl, import->cachefile,
1571 import->poolname, import->guid));
1572
1573 return (zpool_find_import_impl(hdl, import));
1574 }
1575
1576 boolean_t
find_guid(nvlist_t * nv,uint64_t guid)1577 find_guid(nvlist_t *nv, uint64_t guid)
1578 {
1579 uint64_t tmp;
1580 nvlist_t **child;
1581 uint_t c, children;
1582
1583 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1584 if (tmp == guid)
1585 return (B_TRUE);
1586
1587 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1588 &child, &children) == 0) {
1589 for (c = 0; c < children; c++)
1590 if (find_guid(child[c], guid))
1591 return (B_TRUE);
1592 }
1593
1594 return (B_FALSE);
1595 }
1596
1597 typedef struct aux_cbdata {
1598 const char *cb_type;
1599 uint64_t cb_guid;
1600 zpool_handle_t *cb_zhp;
1601 } aux_cbdata_t;
1602
1603 static int
find_aux(zpool_handle_t * zhp,void * data)1604 find_aux(zpool_handle_t *zhp, void *data)
1605 {
1606 aux_cbdata_t *cbp = data;
1607 nvlist_t **list;
1608 uint_t i, count;
1609 uint64_t guid;
1610 nvlist_t *nvroot;
1611
1612 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1613 &nvroot) == 0);
1614
1615 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1616 &list, &count) == 0) {
1617 for (i = 0; i < count; i++) {
1618 verify(nvlist_lookup_uint64(list[i],
1619 ZPOOL_CONFIG_GUID, &guid) == 0);
1620 if (guid == cbp->cb_guid) {
1621 cbp->cb_zhp = zhp;
1622 return (1);
1623 }
1624 }
1625 }
1626
1627 zpool_close(zhp);
1628 return (0);
1629 }
1630
1631 /*
1632 * Determines if the pool is in use. If so, it returns true and the state of
1633 * the pool as well as the name of the pool. Both strings are allocated and
1634 * must be freed by the caller.
1635 */
1636 int
zpool_in_use(libzfs_handle_t * hdl,int fd,pool_state_t * state,char ** namestr,boolean_t * inuse)1637 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1638 boolean_t *inuse)
1639 {
1640 nvlist_t *config;
1641 char *name;
1642 boolean_t ret;
1643 uint64_t guid, vdev_guid;
1644 zpool_handle_t *zhp;
1645 nvlist_t *pool_config;
1646 uint64_t stateval, isspare;
1647 aux_cbdata_t cb = { 0 };
1648 boolean_t isactive;
1649
1650 *inuse = B_FALSE;
1651
1652 if (zpool_read_label(fd, &config) != 0) {
1653 (void) no_memory(hdl);
1654 return (-1);
1655 }
1656
1657 if (config == NULL)
1658 return (0);
1659
1660 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1661 &stateval) == 0);
1662 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1663 &vdev_guid) == 0);
1664
1665 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1666 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1667 &name) == 0);
1668 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1669 &guid) == 0);
1670 }
1671
1672 switch (stateval) {
1673 case POOL_STATE_EXPORTED:
1674 /*
1675 * A pool with an exported state may in fact be imported
1676 * read-only, so check the in-core state to see if it's
1677 * active and imported read-only. If it is, set
1678 * its state to active.
1679 */
1680 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1681 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1682 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1683 stateval = POOL_STATE_ACTIVE;
1684
1685 /*
1686 * All we needed the zpool handle for is the
1687 * readonly prop check.
1688 */
1689 zpool_close(zhp);
1690 }
1691
1692 ret = B_TRUE;
1693 break;
1694
1695 case POOL_STATE_ACTIVE:
1696 /*
1697 * For an active pool, we have to determine if it's really part
1698 * of a currently active pool (in which case the pool will exist
1699 * and the guid will be the same), or whether it's part of an
1700 * active pool that was disconnected without being explicitly
1701 * exported.
1702 */
1703 if (pool_active(hdl, name, guid, &isactive) != 0) {
1704 nvlist_free(config);
1705 return (-1);
1706 }
1707
1708 if (isactive) {
1709 /*
1710 * Because the device may have been removed while
1711 * offlined, we only report it as active if the vdev is
1712 * still present in the config. Otherwise, pretend like
1713 * it's not in use.
1714 */
1715 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1716 (pool_config = zpool_get_config(zhp, NULL))
1717 != NULL) {
1718 nvlist_t *nvroot;
1719
1720 verify(nvlist_lookup_nvlist(pool_config,
1721 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1722 ret = find_guid(nvroot, vdev_guid);
1723 } else {
1724 ret = B_FALSE;
1725 }
1726
1727 /*
1728 * If this is an active spare within another pool, we
1729 * treat it like an unused hot spare. This allows the
1730 * user to create a pool with a hot spare that currently
1731 * in use within another pool. Since we return B_TRUE,
1732 * libdiskmgt will continue to prevent generic consumers
1733 * from using the device.
1734 */
1735 if (ret && nvlist_lookup_uint64(config,
1736 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1737 stateval = POOL_STATE_SPARE;
1738
1739 if (zhp != NULL)
1740 zpool_close(zhp);
1741 } else {
1742 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1743 ret = B_TRUE;
1744 }
1745 break;
1746
1747 case POOL_STATE_SPARE:
1748 /*
1749 * For a hot spare, it can be either definitively in use, or
1750 * potentially active. To determine if it's in use, we iterate
1751 * over all pools in the system and search for one with a spare
1752 * with a matching guid.
1753 *
1754 * Due to the shared nature of spares, we don't actually report
1755 * the potentially active case as in use. This means the user
1756 * can freely create pools on the hot spares of exported pools,
1757 * but to do otherwise makes the resulting code complicated, and
1758 * we end up having to deal with this case anyway.
1759 */
1760 cb.cb_zhp = NULL;
1761 cb.cb_guid = vdev_guid;
1762 cb.cb_type = ZPOOL_CONFIG_SPARES;
1763 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1764 name = (char *)zpool_get_name(cb.cb_zhp);
1765 ret = B_TRUE;
1766 } else {
1767 ret = B_FALSE;
1768 }
1769 break;
1770
1771 case POOL_STATE_L2CACHE:
1772
1773 /*
1774 * Check if any pool is currently using this l2cache device.
1775 */
1776 cb.cb_zhp = NULL;
1777 cb.cb_guid = vdev_guid;
1778 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1779 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1780 name = (char *)zpool_get_name(cb.cb_zhp);
1781 ret = B_TRUE;
1782 } else {
1783 ret = B_FALSE;
1784 }
1785 break;
1786
1787 default:
1788 ret = B_FALSE;
1789 }
1790
1791
1792 if (ret) {
1793 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1794 if (cb.cb_zhp)
1795 zpool_close(cb.cb_zhp);
1796 nvlist_free(config);
1797 return (-1);
1798 }
1799 *state = (pool_state_t)stateval;
1800 }
1801
1802 if (cb.cb_zhp)
1803 zpool_close(cb.cb_zhp);
1804
1805 nvlist_free(config);
1806 *inuse = ret;
1807 return (0);
1808 }
1809
1810 #ifdef __NetBSD__
1811 /*
1812 * This needs to be at the end of the file so that we can #undef ioctl
1813 * without affecting anything else.
1814 */
1815 #undef ioctl
1816
1817 static int
native_ioctl(int fd,unsigned long cmd,void * arg)1818 native_ioctl(int fd, unsigned long cmd, void *arg)
1819 {
1820
1821 return ioctl(fd, cmd, arg);
1822 }
1823 #endif
1824