1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/time.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/resource.h>
33 #include <sys/vfs.h>
34 #include <sys/vnode.h>
35 #include <sys/file.h>
36 #include <sys/stat.h>
37 #include <sys/kmem.h>
38 #include <sys/cmn_err.h>
39 #include <sys/errno.h>
40 #include <sys/unistd.h>
41 #include <sys/sdt.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/policy.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/zfs_fuid.h>
46 #include <sys/zfs_acl.h>
47 #include <sys/zfs_dir.h>
48 #include <sys/zfs_vfsops.h>
49 #include <sys/dmu.h>
50 #include <sys/dnode.h>
51 #include <sys/zap.h>
52 #include <sys/sa.h>
53 #include <acl/acl_common.h>
54
55 #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
56 #define DENY ACE_ACCESS_DENIED_ACE_TYPE
57 #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
58 #define MIN_ACE_TYPE ALLOW
59
60 #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
61 #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
62 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
63 #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
64 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
65 #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
66 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
67
68 #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
69 ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
70 ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
71 ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
72
73 #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
74 #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
75 ACE_DELETE|ACE_DELETE_CHILD)
76 #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
77
78 #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
79 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
80
81 #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
82 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
83
84 #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
85 ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
86
87 #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
88
89 #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
90 ZFS_ACL_PROTECTED)
91
92 #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
93 ZFS_ACL_OBJ_ACE)
94
95 #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
96
97 static uint16_t
zfs_ace_v0_get_type(void * acep)98 zfs_ace_v0_get_type(void *acep)
99 {
100 return (((zfs_oldace_t *)acep)->z_type);
101 }
102
103 static uint16_t
zfs_ace_v0_get_flags(void * acep)104 zfs_ace_v0_get_flags(void *acep)
105 {
106 return (((zfs_oldace_t *)acep)->z_flags);
107 }
108
109 static uint32_t
zfs_ace_v0_get_mask(void * acep)110 zfs_ace_v0_get_mask(void *acep)
111 {
112 return (((zfs_oldace_t *)acep)->z_access_mask);
113 }
114
115 static uint64_t
zfs_ace_v0_get_who(void * acep)116 zfs_ace_v0_get_who(void *acep)
117 {
118 return (((zfs_oldace_t *)acep)->z_fuid);
119 }
120
121 static void
zfs_ace_v0_set_type(void * acep,uint16_t type)122 zfs_ace_v0_set_type(void *acep, uint16_t type)
123 {
124 ((zfs_oldace_t *)acep)->z_type = type;
125 }
126
127 static void
zfs_ace_v0_set_flags(void * acep,uint16_t flags)128 zfs_ace_v0_set_flags(void *acep, uint16_t flags)
129 {
130 ((zfs_oldace_t *)acep)->z_flags = flags;
131 }
132
133 static void
zfs_ace_v0_set_mask(void * acep,uint32_t mask)134 zfs_ace_v0_set_mask(void *acep, uint32_t mask)
135 {
136 ((zfs_oldace_t *)acep)->z_access_mask = mask;
137 }
138
139 static void
zfs_ace_v0_set_who(void * acep,uint64_t who)140 zfs_ace_v0_set_who(void *acep, uint64_t who)
141 {
142 ((zfs_oldace_t *)acep)->z_fuid = who;
143 }
144
145 /*ARGSUSED*/
146 static size_t
zfs_ace_v0_size(void * acep)147 zfs_ace_v0_size(void *acep)
148 {
149 return (sizeof (zfs_oldace_t));
150 }
151
152 static size_t
zfs_ace_v0_abstract_size(void)153 zfs_ace_v0_abstract_size(void)
154 {
155 return (sizeof (zfs_oldace_t));
156 }
157
158 static int
zfs_ace_v0_mask_off(void)159 zfs_ace_v0_mask_off(void)
160 {
161 return (offsetof(zfs_oldace_t, z_access_mask));
162 }
163
164 /*ARGSUSED*/
165 static int
zfs_ace_v0_data(void * acep,void ** datap)166 zfs_ace_v0_data(void *acep, void **datap)
167 {
168 *datap = NULL;
169 return (0);
170 }
171
172 static acl_ops_t zfs_acl_v0_ops = {
173 zfs_ace_v0_get_mask,
174 zfs_ace_v0_set_mask,
175 zfs_ace_v0_get_flags,
176 zfs_ace_v0_set_flags,
177 zfs_ace_v0_get_type,
178 zfs_ace_v0_set_type,
179 zfs_ace_v0_get_who,
180 zfs_ace_v0_set_who,
181 zfs_ace_v0_size,
182 zfs_ace_v0_abstract_size,
183 zfs_ace_v0_mask_off,
184 zfs_ace_v0_data
185 };
186
187 static uint16_t
zfs_ace_fuid_get_type(void * acep)188 zfs_ace_fuid_get_type(void *acep)
189 {
190 return (((zfs_ace_hdr_t *)acep)->z_type);
191 }
192
193 static uint16_t
zfs_ace_fuid_get_flags(void * acep)194 zfs_ace_fuid_get_flags(void *acep)
195 {
196 return (((zfs_ace_hdr_t *)acep)->z_flags);
197 }
198
199 static uint32_t
zfs_ace_fuid_get_mask(void * acep)200 zfs_ace_fuid_get_mask(void *acep)
201 {
202 return (((zfs_ace_hdr_t *)acep)->z_access_mask);
203 }
204
205 static uint64_t
zfs_ace_fuid_get_who(void * args)206 zfs_ace_fuid_get_who(void *args)
207 {
208 uint16_t entry_type;
209 zfs_ace_t *acep = args;
210
211 entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
212
213 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
214 entry_type == ACE_EVERYONE)
215 return (-1);
216 return (((zfs_ace_t *)acep)->z_fuid);
217 }
218
219 static void
zfs_ace_fuid_set_type(void * acep,uint16_t type)220 zfs_ace_fuid_set_type(void *acep, uint16_t type)
221 {
222 ((zfs_ace_hdr_t *)acep)->z_type = type;
223 }
224
225 static void
zfs_ace_fuid_set_flags(void * acep,uint16_t flags)226 zfs_ace_fuid_set_flags(void *acep, uint16_t flags)
227 {
228 ((zfs_ace_hdr_t *)acep)->z_flags = flags;
229 }
230
231 static void
zfs_ace_fuid_set_mask(void * acep,uint32_t mask)232 zfs_ace_fuid_set_mask(void *acep, uint32_t mask)
233 {
234 ((zfs_ace_hdr_t *)acep)->z_access_mask = mask;
235 }
236
237 static void
zfs_ace_fuid_set_who(void * arg,uint64_t who)238 zfs_ace_fuid_set_who(void *arg, uint64_t who)
239 {
240 zfs_ace_t *acep = arg;
241
242 uint16_t entry_type = acep->z_hdr.z_flags & ACE_TYPE_FLAGS;
243
244 if (entry_type == ACE_OWNER || entry_type == OWNING_GROUP ||
245 entry_type == ACE_EVERYONE)
246 return;
247 acep->z_fuid = who;
248 }
249
250 static size_t
zfs_ace_fuid_size(void * acep)251 zfs_ace_fuid_size(void *acep)
252 {
253 zfs_ace_hdr_t *zacep = acep;
254 uint16_t entry_type;
255
256 switch (zacep->z_type) {
257 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
258 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
259 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
260 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
261 return (sizeof (zfs_object_ace_t));
262 case ALLOW:
263 case DENY:
264 entry_type =
265 (((zfs_ace_hdr_t *)acep)->z_flags & ACE_TYPE_FLAGS);
266 if (entry_type == ACE_OWNER ||
267 entry_type == OWNING_GROUP ||
268 entry_type == ACE_EVERYONE)
269 return (sizeof (zfs_ace_hdr_t));
270 /*FALLTHROUGH*/
271 default:
272 return (sizeof (zfs_ace_t));
273 }
274 }
275
276 static size_t
zfs_ace_fuid_abstract_size(void)277 zfs_ace_fuid_abstract_size(void)
278 {
279 return (sizeof (zfs_ace_hdr_t));
280 }
281
282 static int
zfs_ace_fuid_mask_off(void)283 zfs_ace_fuid_mask_off(void)
284 {
285 return (offsetof(zfs_ace_hdr_t, z_access_mask));
286 }
287
288 static int
zfs_ace_fuid_data(void * acep,void ** datap)289 zfs_ace_fuid_data(void *acep, void **datap)
290 {
291 zfs_ace_t *zacep = acep;
292 zfs_object_ace_t *zobjp;
293
294 switch (zacep->z_hdr.z_type) {
295 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
296 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
297 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
298 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
299 zobjp = acep;
300 *datap = (caddr_t)zobjp + sizeof (zfs_ace_t);
301 return (sizeof (zfs_object_ace_t) - sizeof (zfs_ace_t));
302 default:
303 *datap = NULL;
304 return (0);
305 }
306 }
307
308 static acl_ops_t zfs_acl_fuid_ops = {
309 zfs_ace_fuid_get_mask,
310 zfs_ace_fuid_set_mask,
311 zfs_ace_fuid_get_flags,
312 zfs_ace_fuid_set_flags,
313 zfs_ace_fuid_get_type,
314 zfs_ace_fuid_set_type,
315 zfs_ace_fuid_get_who,
316 zfs_ace_fuid_set_who,
317 zfs_ace_fuid_size,
318 zfs_ace_fuid_abstract_size,
319 zfs_ace_fuid_mask_off,
320 zfs_ace_fuid_data
321 };
322
323 /*
324 * The following three functions are provided for compatibility with
325 * older ZPL version in order to determine if the file use to have
326 * an external ACL and what version of ACL previously existed on the
327 * file. Would really be nice to not need this, sigh.
328 */
329 uint64_t
zfs_external_acl(znode_t * zp)330 zfs_external_acl(znode_t *zp)
331 {
332 zfs_acl_phys_t acl_phys;
333 int error;
334
335 if (zp->z_is_sa)
336 return (0);
337
338 /*
339 * Need to deal with a potential
340 * race where zfs_sa_upgrade could cause
341 * z_isa_sa to change.
342 *
343 * If the lookup fails then the state of z_is_sa should have
344 * changed.
345 */
346
347 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
348 &acl_phys, sizeof (acl_phys))) == 0)
349 return (acl_phys.z_acl_extern_obj);
350 else {
351 /*
352 * after upgrade the SA_ZPL_ZNODE_ACL should have been
353 * removed
354 */
355 VERIFY(zp->z_is_sa && error == ENOENT);
356 return (0);
357 }
358 }
359
360 /*
361 * Determine size of ACL in bytes
362 *
363 * This is more complicated than it should be since we have to deal
364 * with old external ACLs.
365 */
366 static int
zfs_acl_znode_info(znode_t * zp,int * aclsize,int * aclcount,zfs_acl_phys_t * aclphys)367 zfs_acl_znode_info(znode_t *zp, int *aclsize, int *aclcount,
368 zfs_acl_phys_t *aclphys)
369 {
370 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
371 uint64_t acl_count;
372 int size;
373 int error;
374
375 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
376 if (zp->z_is_sa) {
377 if ((error = sa_size(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zfsvfs),
378 &size)) != 0)
379 return (error);
380 *aclsize = size;
381 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_COUNT(zfsvfs),
382 &acl_count, sizeof (acl_count))) != 0)
383 return (error);
384 *aclcount = acl_count;
385 } else {
386 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
387 aclphys, sizeof (*aclphys))) != 0)
388 return (error);
389
390 if (aclphys->z_acl_version == ZFS_ACL_VERSION_INITIAL) {
391 *aclsize = ZFS_ACL_SIZE(aclphys->z_acl_size);
392 *aclcount = aclphys->z_acl_size;
393 } else {
394 *aclsize = aclphys->z_acl_size;
395 *aclcount = aclphys->z_acl_count;
396 }
397 }
398 return (0);
399 }
400
401 int
zfs_znode_acl_version(znode_t * zp)402 zfs_znode_acl_version(znode_t *zp)
403 {
404 zfs_acl_phys_t acl_phys;
405
406 if (zp->z_is_sa)
407 return (ZFS_ACL_VERSION_FUID);
408 else {
409 int error;
410
411 /*
412 * Need to deal with a potential
413 * race where zfs_sa_upgrade could cause
414 * z_isa_sa to change.
415 *
416 * If the lookup fails then the state of z_is_sa should have
417 * changed.
418 */
419 if ((error = sa_lookup(zp->z_sa_hdl,
420 SA_ZPL_ZNODE_ACL(zp->z_zfsvfs),
421 &acl_phys, sizeof (acl_phys))) == 0)
422 return (acl_phys.z_acl_version);
423 else {
424 /*
425 * After upgrade SA_ZPL_ZNODE_ACL should have
426 * been removed.
427 */
428 VERIFY(zp->z_is_sa && error == ENOENT);
429 return (ZFS_ACL_VERSION_FUID);
430 }
431 }
432 }
433
434 static int
zfs_acl_version(int version)435 zfs_acl_version(int version)
436 {
437 if (version < ZPL_VERSION_FUID)
438 return (ZFS_ACL_VERSION_INITIAL);
439 else
440 return (ZFS_ACL_VERSION_FUID);
441 }
442
443 static int
zfs_acl_version_zp(znode_t * zp)444 zfs_acl_version_zp(znode_t *zp)
445 {
446 return (zfs_acl_version(zp->z_zfsvfs->z_version));
447 }
448
449 zfs_acl_t *
zfs_acl_alloc(int vers)450 zfs_acl_alloc(int vers)
451 {
452 zfs_acl_t *aclp;
453
454 aclp = kmem_zalloc(sizeof (zfs_acl_t), KM_SLEEP);
455 list_create(&aclp->z_acl, sizeof (zfs_acl_node_t),
456 offsetof(zfs_acl_node_t, z_next));
457 aclp->z_version = vers;
458 if (vers == ZFS_ACL_VERSION_FUID)
459 aclp->z_ops = zfs_acl_fuid_ops;
460 else
461 aclp->z_ops = zfs_acl_v0_ops;
462 return (aclp);
463 }
464
465 zfs_acl_node_t *
zfs_acl_node_alloc(size_t bytes)466 zfs_acl_node_alloc(size_t bytes)
467 {
468 zfs_acl_node_t *aclnode;
469
470 aclnode = kmem_zalloc(sizeof (zfs_acl_node_t), KM_SLEEP);
471 if (bytes) {
472 aclnode->z_acldata = kmem_alloc(bytes, KM_SLEEP);
473 aclnode->z_allocdata = aclnode->z_acldata;
474 aclnode->z_allocsize = bytes;
475 aclnode->z_size = bytes;
476 }
477
478 return (aclnode);
479 }
480
481 static void
zfs_acl_node_free(zfs_acl_node_t * aclnode)482 zfs_acl_node_free(zfs_acl_node_t *aclnode)
483 {
484 if (aclnode->z_allocsize)
485 kmem_free(aclnode->z_allocdata, aclnode->z_allocsize);
486 kmem_free(aclnode, sizeof (zfs_acl_node_t));
487 }
488
489 static void
zfs_acl_release_nodes(zfs_acl_t * aclp)490 zfs_acl_release_nodes(zfs_acl_t *aclp)
491 {
492 zfs_acl_node_t *aclnode;
493
494 while (aclnode = list_head(&aclp->z_acl)) {
495 list_remove(&aclp->z_acl, aclnode);
496 zfs_acl_node_free(aclnode);
497 }
498 aclp->z_acl_count = 0;
499 aclp->z_acl_bytes = 0;
500 }
501
502 void
zfs_acl_free(zfs_acl_t * aclp)503 zfs_acl_free(zfs_acl_t *aclp)
504 {
505 zfs_acl_release_nodes(aclp);
506 list_destroy(&aclp->z_acl);
507 kmem_free(aclp, sizeof (zfs_acl_t));
508 }
509
510 static boolean_t
zfs_acl_valid_ace_type(uint_t type,uint_t flags)511 zfs_acl_valid_ace_type(uint_t type, uint_t flags)
512 {
513 uint16_t entry_type;
514
515 switch (type) {
516 case ALLOW:
517 case DENY:
518 case ACE_SYSTEM_AUDIT_ACE_TYPE:
519 case ACE_SYSTEM_ALARM_ACE_TYPE:
520 entry_type = flags & ACE_TYPE_FLAGS;
521 return (entry_type == ACE_OWNER ||
522 entry_type == OWNING_GROUP ||
523 entry_type == ACE_EVERYONE || entry_type == 0 ||
524 entry_type == ACE_IDENTIFIER_GROUP);
525 default:
526 if (type >= MIN_ACE_TYPE && type <= MAX_ACE_TYPE)
527 return (B_TRUE);
528 }
529 return (B_FALSE);
530 }
531
532 static boolean_t
zfs_ace_valid(vtype_t obj_type,zfs_acl_t * aclp,uint16_t type,uint16_t iflags)533 zfs_ace_valid(vtype_t obj_type, zfs_acl_t *aclp, uint16_t type, uint16_t iflags)
534 {
535 /*
536 * first check type of entry
537 */
538
539 if (!zfs_acl_valid_ace_type(type, iflags))
540 return (B_FALSE);
541
542 switch (type) {
543 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
544 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
545 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
546 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
547 if (aclp->z_version < ZFS_ACL_VERSION_FUID)
548 return (B_FALSE);
549 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
550 }
551
552 /*
553 * next check inheritance level flags
554 */
555
556 if (obj_type == VDIR &&
557 (iflags & (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
558 aclp->z_hints |= ZFS_INHERIT_ACE;
559
560 if (iflags & (ACE_INHERIT_ONLY_ACE|ACE_NO_PROPAGATE_INHERIT_ACE)) {
561 if ((iflags & (ACE_FILE_INHERIT_ACE|
562 ACE_DIRECTORY_INHERIT_ACE)) == 0) {
563 return (B_FALSE);
564 }
565 }
566
567 return (B_TRUE);
568 }
569
570 static void *
zfs_acl_next_ace(zfs_acl_t * aclp,void * start,uint64_t * who,uint32_t * access_mask,uint16_t * iflags,uint16_t * type)571 zfs_acl_next_ace(zfs_acl_t *aclp, void *start, uint64_t *who,
572 uint32_t *access_mask, uint16_t *iflags, uint16_t *type)
573 {
574 zfs_acl_node_t *aclnode;
575
576 ASSERT(aclp);
577
578 if (start == NULL) {
579 aclnode = list_head(&aclp->z_acl);
580 if (aclnode == NULL)
581 return (NULL);
582
583 aclp->z_next_ace = aclnode->z_acldata;
584 aclp->z_curr_node = aclnode;
585 aclnode->z_ace_idx = 0;
586 }
587
588 aclnode = aclp->z_curr_node;
589
590 if (aclnode == NULL)
591 return (NULL);
592
593 if (aclnode->z_ace_idx >= aclnode->z_ace_count) {
594 aclnode = list_next(&aclp->z_acl, aclnode);
595 if (aclnode == NULL)
596 return (NULL);
597 else {
598 aclp->z_curr_node = aclnode;
599 aclnode->z_ace_idx = 0;
600 aclp->z_next_ace = aclnode->z_acldata;
601 }
602 }
603
604 if (aclnode->z_ace_idx < aclnode->z_ace_count) {
605 void *acep = aclp->z_next_ace;
606 size_t ace_size;
607
608 /*
609 * Make sure we don't overstep our bounds
610 */
611 ace_size = aclp->z_ops.ace_size(acep);
612
613 if (((caddr_t)acep + ace_size) >
614 ((caddr_t)aclnode->z_acldata + aclnode->z_size)) {
615 return (NULL);
616 }
617
618 *iflags = aclp->z_ops.ace_flags_get(acep);
619 *type = aclp->z_ops.ace_type_get(acep);
620 *access_mask = aclp->z_ops.ace_mask_get(acep);
621 *who = aclp->z_ops.ace_who_get(acep);
622 aclp->z_next_ace = (caddr_t)aclp->z_next_ace + ace_size;
623 aclnode->z_ace_idx++;
624
625 return ((void *)acep);
626 }
627 return (NULL);
628 }
629
630 /*ARGSUSED*/
631 static uint64_t
zfs_ace_walk(void * datap,uint64_t cookie,int aclcnt,uint16_t * flags,uint16_t * type,uint32_t * mask)632 zfs_ace_walk(void *datap, uint64_t cookie, int aclcnt,
633 uint16_t *flags, uint16_t *type, uint32_t *mask)
634 {
635 zfs_acl_t *aclp = datap;
636 zfs_ace_hdr_t *acep = (zfs_ace_hdr_t *)(uintptr_t)cookie;
637 uint64_t who;
638
639 acep = zfs_acl_next_ace(aclp, acep, &who, mask,
640 flags, type);
641 return ((uint64_t)(uintptr_t)acep);
642 }
643
644 static zfs_acl_node_t *
zfs_acl_curr_node(zfs_acl_t * aclp)645 zfs_acl_curr_node(zfs_acl_t *aclp)
646 {
647 ASSERT(aclp->z_curr_node);
648 return (aclp->z_curr_node);
649 }
650
651 /*
652 * Copy ACE to internal ZFS format.
653 * While processing the ACL each ACE will be validated for correctness.
654 * ACE FUIDs will be created later.
655 */
656 int
zfs_copy_ace_2_fuid(zfsvfs_t * zfsvfs,vtype_t obj_type,zfs_acl_t * aclp,void * datap,zfs_ace_t * z_acl,uint64_t aclcnt,size_t * size,zfs_fuid_info_t ** fuidp,cred_t * cr)657 zfs_copy_ace_2_fuid(zfsvfs_t *zfsvfs, vtype_t obj_type, zfs_acl_t *aclp,
658 void *datap, zfs_ace_t *z_acl, uint64_t aclcnt, size_t *size,
659 zfs_fuid_info_t **fuidp, cred_t *cr)
660 {
661 int i;
662 uint16_t entry_type;
663 zfs_ace_t *aceptr = z_acl;
664 ace_t *acep = datap;
665 zfs_object_ace_t *zobjacep;
666 ace_object_t *aceobjp;
667
668 for (i = 0; i != aclcnt; i++) {
669 aceptr->z_hdr.z_access_mask = acep->a_access_mask;
670 aceptr->z_hdr.z_flags = acep->a_flags;
671 aceptr->z_hdr.z_type = acep->a_type;
672 entry_type = aceptr->z_hdr.z_flags & ACE_TYPE_FLAGS;
673 if (entry_type != ACE_OWNER && entry_type != OWNING_GROUP &&
674 entry_type != ACE_EVERYONE) {
675 aceptr->z_fuid = zfs_fuid_create(zfsvfs, acep->a_who,
676 cr, (entry_type == 0) ?
677 ZFS_ACE_USER : ZFS_ACE_GROUP, fuidp);
678 }
679
680 /*
681 * Make sure ACE is valid
682 */
683 if (zfs_ace_valid(obj_type, aclp, aceptr->z_hdr.z_type,
684 aceptr->z_hdr.z_flags) != B_TRUE)
685 return (SET_ERROR(EINVAL));
686
687 switch (acep->a_type) {
688 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
689 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
690 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
691 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
692 zobjacep = (zfs_object_ace_t *)aceptr;
693 aceobjp = (ace_object_t *)acep;
694
695 bcopy(aceobjp->a_obj_type, zobjacep->z_object_type,
696 sizeof (aceobjp->a_obj_type));
697 bcopy(aceobjp->a_inherit_obj_type,
698 zobjacep->z_inherit_type,
699 sizeof (aceobjp->a_inherit_obj_type));
700 acep = (ace_t *)((caddr_t)acep + sizeof (ace_object_t));
701 break;
702 default:
703 acep = (ace_t *)((caddr_t)acep + sizeof (ace_t));
704 }
705
706 aceptr = (zfs_ace_t *)((caddr_t)aceptr +
707 aclp->z_ops.ace_size(aceptr));
708 }
709
710 *size = (caddr_t)aceptr - (caddr_t)z_acl;
711
712 return (0);
713 }
714
715 /*
716 * Copy ZFS ACEs to fixed size ace_t layout
717 */
718 static void
zfs_copy_fuid_2_ace(zfsvfs_t * zfsvfs,zfs_acl_t * aclp,cred_t * cr,void * datap,int filter)719 zfs_copy_fuid_2_ace(zfsvfs_t *zfsvfs, zfs_acl_t *aclp, cred_t *cr,
720 void *datap, int filter)
721 {
722 uint64_t who;
723 uint32_t access_mask;
724 uint16_t iflags, type;
725 zfs_ace_hdr_t *zacep = NULL;
726 ace_t *acep = datap;
727 ace_object_t *objacep;
728 zfs_object_ace_t *zobjacep;
729 size_t ace_size;
730 uint16_t entry_type;
731
732 while (zacep = zfs_acl_next_ace(aclp, zacep,
733 &who, &access_mask, &iflags, &type)) {
734
735 switch (type) {
736 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
737 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
738 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
739 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
740 if (filter) {
741 continue;
742 }
743 zobjacep = (zfs_object_ace_t *)zacep;
744 objacep = (ace_object_t *)acep;
745 bcopy(zobjacep->z_object_type,
746 objacep->a_obj_type,
747 sizeof (zobjacep->z_object_type));
748 bcopy(zobjacep->z_inherit_type,
749 objacep->a_inherit_obj_type,
750 sizeof (zobjacep->z_inherit_type));
751 ace_size = sizeof (ace_object_t);
752 break;
753 default:
754 ace_size = sizeof (ace_t);
755 break;
756 }
757
758 entry_type = (iflags & ACE_TYPE_FLAGS);
759 if ((entry_type != ACE_OWNER &&
760 entry_type != OWNING_GROUP &&
761 entry_type != ACE_EVERYONE)) {
762 acep->a_who = zfs_fuid_map_id(zfsvfs, who,
763 cr, (entry_type & ACE_IDENTIFIER_GROUP) ?
764 ZFS_ACE_GROUP : ZFS_ACE_USER);
765 } else {
766 acep->a_who = (uid_t)(int64_t)who;
767 }
768 acep->a_access_mask = access_mask;
769 acep->a_flags = iflags;
770 acep->a_type = type;
771 acep = (ace_t *)((caddr_t)acep + ace_size);
772 }
773 }
774
775 static int
zfs_copy_ace_2_oldace(vtype_t obj_type,zfs_acl_t * aclp,ace_t * acep,zfs_oldace_t * z_acl,int aclcnt,size_t * size)776 zfs_copy_ace_2_oldace(vtype_t obj_type, zfs_acl_t *aclp, ace_t *acep,
777 zfs_oldace_t *z_acl, int aclcnt, size_t *size)
778 {
779 int i;
780 zfs_oldace_t *aceptr = z_acl;
781
782 for (i = 0; i != aclcnt; i++, aceptr++) {
783 aceptr->z_access_mask = acep[i].a_access_mask;
784 aceptr->z_type = acep[i].a_type;
785 aceptr->z_flags = acep[i].a_flags;
786 aceptr->z_fuid = acep[i].a_who;
787 /*
788 * Make sure ACE is valid
789 */
790 if (zfs_ace_valid(obj_type, aclp, aceptr->z_type,
791 aceptr->z_flags) != B_TRUE)
792 return (SET_ERROR(EINVAL));
793 }
794 *size = (caddr_t)aceptr - (caddr_t)z_acl;
795 return (0);
796 }
797
798 /*
799 * convert old ACL format to new
800 */
801 void
zfs_acl_xform(znode_t * zp,zfs_acl_t * aclp,cred_t * cr)802 zfs_acl_xform(znode_t *zp, zfs_acl_t *aclp, cred_t *cr)
803 {
804 zfs_oldace_t *oldaclp;
805 int i;
806 uint16_t type, iflags;
807 uint32_t access_mask;
808 uint64_t who;
809 void *cookie = NULL;
810 zfs_acl_node_t *newaclnode;
811
812 ASSERT(aclp->z_version == ZFS_ACL_VERSION_INITIAL);
813 /*
814 * First create the ACE in a contiguous piece of memory
815 * for zfs_copy_ace_2_fuid().
816 *
817 * We only convert an ACL once, so this won't happen
818 * everytime.
819 */
820 oldaclp = kmem_alloc(sizeof (zfs_oldace_t) * aclp->z_acl_count,
821 KM_SLEEP);
822 i = 0;
823 while (cookie = zfs_acl_next_ace(aclp, cookie, &who,
824 &access_mask, &iflags, &type)) {
825 oldaclp[i].z_flags = iflags;
826 oldaclp[i].z_type = type;
827 oldaclp[i].z_fuid = who;
828 oldaclp[i++].z_access_mask = access_mask;
829 }
830
831 newaclnode = zfs_acl_node_alloc(aclp->z_acl_count *
832 sizeof (zfs_object_ace_t));
833 aclp->z_ops = zfs_acl_fuid_ops;
834 VERIFY(zfs_copy_ace_2_fuid(zp->z_zfsvfs, ZTOV(zp)->v_type, aclp,
835 oldaclp, newaclnode->z_acldata, aclp->z_acl_count,
836 &newaclnode->z_size, NULL, cr) == 0);
837 newaclnode->z_ace_count = aclp->z_acl_count;
838 aclp->z_version = ZFS_ACL_VERSION;
839 kmem_free(oldaclp, aclp->z_acl_count * sizeof (zfs_oldace_t));
840
841 /*
842 * Release all previous ACL nodes
843 */
844
845 zfs_acl_release_nodes(aclp);
846
847 list_insert_head(&aclp->z_acl, newaclnode);
848
849 aclp->z_acl_bytes = newaclnode->z_size;
850 aclp->z_acl_count = newaclnode->z_ace_count;
851
852 }
853
854 /*
855 * Convert unix access mask to v4 access mask
856 */
857 static uint32_t
zfs_unix_to_v4(uint32_t access_mask)858 zfs_unix_to_v4(uint32_t access_mask)
859 {
860 uint32_t new_mask = 0;
861
862 if (access_mask & S_IXOTH)
863 new_mask |= ACE_EXECUTE;
864 if (access_mask & S_IWOTH)
865 new_mask |= ACE_WRITE_DATA;
866 if (access_mask & S_IROTH)
867 new_mask |= ACE_READ_DATA;
868 return (new_mask);
869 }
870
871 static void
zfs_set_ace(zfs_acl_t * aclp,void * acep,uint32_t access_mask,uint16_t access_type,uint64_t fuid,uint16_t entry_type)872 zfs_set_ace(zfs_acl_t *aclp, void *acep, uint32_t access_mask,
873 uint16_t access_type, uint64_t fuid, uint16_t entry_type)
874 {
875 uint16_t type = entry_type & ACE_TYPE_FLAGS;
876
877 aclp->z_ops.ace_mask_set(acep, access_mask);
878 aclp->z_ops.ace_type_set(acep, access_type);
879 aclp->z_ops.ace_flags_set(acep, entry_type);
880 if ((type != ACE_OWNER && type != OWNING_GROUP &&
881 type != ACE_EVERYONE))
882 aclp->z_ops.ace_who_set(acep, fuid);
883 }
884
885 /*
886 * Determine mode of file based on ACL.
887 */
888 uint64_t
zfs_mode_compute(uint64_t fmode,zfs_acl_t * aclp,uint64_t * pflags,uint64_t fuid,uint64_t fgid)889 zfs_mode_compute(uint64_t fmode, zfs_acl_t *aclp,
890 uint64_t *pflags, uint64_t fuid, uint64_t fgid)
891 {
892 int entry_type;
893 mode_t mode;
894 mode_t seen = 0;
895 zfs_ace_hdr_t *acep = NULL;
896 uint64_t who;
897 uint16_t iflags, type;
898 uint32_t access_mask;
899 boolean_t an_exec_denied = B_FALSE;
900
901 mode = (fmode & (S_IFMT | S_ISUID | S_ISGID | S_ISVTX));
902
903 while (acep = zfs_acl_next_ace(aclp, acep, &who,
904 &access_mask, &iflags, &type)) {
905
906 if (!zfs_acl_valid_ace_type(type, iflags))
907 continue;
908
909 entry_type = (iflags & ACE_TYPE_FLAGS);
910
911 /*
912 * Skip over any inherit_only ACEs
913 */
914 if (iflags & ACE_INHERIT_ONLY_ACE)
915 continue;
916
917 if (entry_type == ACE_OWNER || (entry_type == 0 &&
918 who == fuid)) {
919 if ((access_mask & ACE_READ_DATA) &&
920 (!(seen & S_IRUSR))) {
921 seen |= S_IRUSR;
922 if (type == ALLOW) {
923 mode |= S_IRUSR;
924 }
925 }
926 if ((access_mask & ACE_WRITE_DATA) &&
927 (!(seen & S_IWUSR))) {
928 seen |= S_IWUSR;
929 if (type == ALLOW) {
930 mode |= S_IWUSR;
931 }
932 }
933 if ((access_mask & ACE_EXECUTE) &&
934 (!(seen & S_IXUSR))) {
935 seen |= S_IXUSR;
936 if (type == ALLOW) {
937 mode |= S_IXUSR;
938 }
939 }
940 } else if (entry_type == OWNING_GROUP ||
941 (entry_type == ACE_IDENTIFIER_GROUP && who == fgid)) {
942 if ((access_mask & ACE_READ_DATA) &&
943 (!(seen & S_IRGRP))) {
944 seen |= S_IRGRP;
945 if (type == ALLOW) {
946 mode |= S_IRGRP;
947 }
948 }
949 if ((access_mask & ACE_WRITE_DATA) &&
950 (!(seen & S_IWGRP))) {
951 seen |= S_IWGRP;
952 if (type == ALLOW) {
953 mode |= S_IWGRP;
954 }
955 }
956 if ((access_mask & ACE_EXECUTE) &&
957 (!(seen & S_IXGRP))) {
958 seen |= S_IXGRP;
959 if (type == ALLOW) {
960 mode |= S_IXGRP;
961 }
962 }
963 } else if (entry_type == ACE_EVERYONE) {
964 if ((access_mask & ACE_READ_DATA)) {
965 if (!(seen & S_IRUSR)) {
966 seen |= S_IRUSR;
967 if (type == ALLOW) {
968 mode |= S_IRUSR;
969 }
970 }
971 if (!(seen & S_IRGRP)) {
972 seen |= S_IRGRP;
973 if (type == ALLOW) {
974 mode |= S_IRGRP;
975 }
976 }
977 if (!(seen & S_IROTH)) {
978 seen |= S_IROTH;
979 if (type == ALLOW) {
980 mode |= S_IROTH;
981 }
982 }
983 }
984 if ((access_mask & ACE_WRITE_DATA)) {
985 if (!(seen & S_IWUSR)) {
986 seen |= S_IWUSR;
987 if (type == ALLOW) {
988 mode |= S_IWUSR;
989 }
990 }
991 if (!(seen & S_IWGRP)) {
992 seen |= S_IWGRP;
993 if (type == ALLOW) {
994 mode |= S_IWGRP;
995 }
996 }
997 if (!(seen & S_IWOTH)) {
998 seen |= S_IWOTH;
999 if (type == ALLOW) {
1000 mode |= S_IWOTH;
1001 }
1002 }
1003 }
1004 if ((access_mask & ACE_EXECUTE)) {
1005 if (!(seen & S_IXUSR)) {
1006 seen |= S_IXUSR;
1007 if (type == ALLOW) {
1008 mode |= S_IXUSR;
1009 }
1010 }
1011 if (!(seen & S_IXGRP)) {
1012 seen |= S_IXGRP;
1013 if (type == ALLOW) {
1014 mode |= S_IXGRP;
1015 }
1016 }
1017 if (!(seen & S_IXOTH)) {
1018 seen |= S_IXOTH;
1019 if (type == ALLOW) {
1020 mode |= S_IXOTH;
1021 }
1022 }
1023 }
1024 } else {
1025 /*
1026 * Only care if this IDENTIFIER_GROUP or
1027 * USER ACE denies execute access to someone,
1028 * mode is not affected
1029 */
1030 if ((access_mask & ACE_EXECUTE) && type == DENY)
1031 an_exec_denied = B_TRUE;
1032 }
1033 }
1034
1035 /*
1036 * Failure to allow is effectively a deny, so execute permission
1037 * is denied if it was never mentioned or if we explicitly
1038 * weren't allowed it.
1039 */
1040 if (!an_exec_denied &&
1041 ((seen & ALL_MODE_EXECS) != ALL_MODE_EXECS ||
1042 (mode & ALL_MODE_EXECS) != ALL_MODE_EXECS))
1043 an_exec_denied = B_TRUE;
1044
1045 if (an_exec_denied)
1046 *pflags &= ~ZFS_NO_EXECS_DENIED;
1047 else
1048 *pflags |= ZFS_NO_EXECS_DENIED;
1049
1050 return (mode);
1051 }
1052
1053 /*
1054 * Read an external acl object. If the intent is to modify, always
1055 * create a new acl and leave any cached acl in place.
1056 */
1057 static int
zfs_acl_node_read(znode_t * zp,zfs_acl_t ** aclpp,boolean_t will_modify)1058 zfs_acl_node_read(znode_t *zp, zfs_acl_t **aclpp, boolean_t will_modify)
1059 {
1060 zfs_acl_t *aclp;
1061 int aclsize;
1062 int acl_count;
1063 zfs_acl_node_t *aclnode;
1064 zfs_acl_phys_t znode_acl;
1065 int version;
1066 int error;
1067
1068 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1069 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
1070
1071 if (zp->z_acl_cached && !will_modify) {
1072 *aclpp = zp->z_acl_cached;
1073 return (0);
1074 }
1075
1076 version = zfs_znode_acl_version(zp);
1077
1078 if ((error = zfs_acl_znode_info(zp, &aclsize,
1079 &acl_count, &znode_acl)) != 0) {
1080 goto done;
1081 }
1082
1083 aclp = zfs_acl_alloc(version);
1084
1085 aclp->z_acl_count = acl_count;
1086 aclp->z_acl_bytes = aclsize;
1087
1088 aclnode = zfs_acl_node_alloc(aclsize);
1089 aclnode->z_ace_count = aclp->z_acl_count;
1090 aclnode->z_size = aclsize;
1091
1092 if (!zp->z_is_sa) {
1093 if (znode_acl.z_acl_extern_obj) {
1094 error = dmu_read(zp->z_zfsvfs->z_os,
1095 znode_acl.z_acl_extern_obj, 0, aclnode->z_size,
1096 aclnode->z_acldata, DMU_READ_PREFETCH);
1097 } else {
1098 bcopy(znode_acl.z_ace_data, aclnode->z_acldata,
1099 aclnode->z_size);
1100 }
1101 } else {
1102 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_DACL_ACES(zp->z_zfsvfs),
1103 aclnode->z_acldata, aclnode->z_size);
1104 }
1105
1106 if (error != 0) {
1107 zfs_acl_free(aclp);
1108 zfs_acl_node_free(aclnode);
1109 /* convert checksum errors into IO errors */
1110 if (error == ECKSUM)
1111 error = SET_ERROR(EIO);
1112 goto done;
1113 }
1114
1115 list_insert_head(&aclp->z_acl, aclnode);
1116
1117 *aclpp = aclp;
1118 if (!will_modify)
1119 zp->z_acl_cached = aclp;
1120 done:
1121 return (error);
1122 }
1123
1124 /*ARGSUSED*/
1125 void
zfs_acl_data_locator(void ** dataptr,uint32_t * length,uint32_t buflen,boolean_t start,void * userdata)1126 zfs_acl_data_locator(void **dataptr, uint32_t *length, uint32_t buflen,
1127 boolean_t start, void *userdata)
1128 {
1129 zfs_acl_locator_cb_t *cb = (zfs_acl_locator_cb_t *)userdata;
1130
1131 if (start) {
1132 cb->cb_acl_node = list_head(&cb->cb_aclp->z_acl);
1133 } else {
1134 cb->cb_acl_node = list_next(&cb->cb_aclp->z_acl,
1135 cb->cb_acl_node);
1136 }
1137 *dataptr = cb->cb_acl_node->z_acldata;
1138 *length = cb->cb_acl_node->z_size;
1139 }
1140
1141 int
zfs_acl_chown_setattr(znode_t * zp)1142 zfs_acl_chown_setattr(znode_t *zp)
1143 {
1144 int error;
1145 zfs_acl_t *aclp;
1146
1147 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1148 ASSERT(MUTEX_HELD(&zp->z_acl_lock));
1149
1150 if ((error = zfs_acl_node_read(zp, &aclp, B_FALSE)) == 0)
1151 zp->z_mode = zfs_mode_compute(zp->z_mode, aclp,
1152 &zp->z_pflags, zp->z_uid, zp->z_gid);
1153 return (error);
1154 }
1155
1156 /*
1157 * common code for setting ACLs.
1158 *
1159 * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
1160 * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
1161 * already checked the acl and knows whether to inherit.
1162 */
1163 int
zfs_aclset_common(znode_t * zp,zfs_acl_t * aclp,cred_t * cr,dmu_tx_t * tx)1164 zfs_aclset_common(znode_t *zp, zfs_acl_t *aclp, cred_t *cr, dmu_tx_t *tx)
1165 {
1166 int error;
1167 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1168 dmu_object_type_t otype;
1169 zfs_acl_locator_cb_t locate = { 0 };
1170 uint64_t mode;
1171 sa_bulk_attr_t bulk[5];
1172 uint64_t ctime[2];
1173 int count = 0;
1174
1175 mode = zp->z_mode;
1176
1177 mode = zfs_mode_compute(mode, aclp, &zp->z_pflags,
1178 zp->z_uid, zp->z_gid);
1179
1180 zp->z_mode = mode;
1181 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1182 &mode, sizeof (mode));
1183 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1184 &zp->z_pflags, sizeof (zp->z_pflags));
1185 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
1186 &ctime, sizeof (ctime));
1187
1188 if (zp->z_acl_cached) {
1189 zfs_acl_free(zp->z_acl_cached);
1190 zp->z_acl_cached = NULL;
1191 }
1192
1193 /*
1194 * Upgrade needed?
1195 */
1196 if (!zfsvfs->z_use_fuids) {
1197 otype = DMU_OT_OLDACL;
1198 } else {
1199 if ((aclp->z_version == ZFS_ACL_VERSION_INITIAL) &&
1200 (zfsvfs->z_version >= ZPL_VERSION_FUID))
1201 zfs_acl_xform(zp, aclp, cr);
1202 ASSERT(aclp->z_version >= ZFS_ACL_VERSION_FUID);
1203 otype = DMU_OT_ACL;
1204 }
1205
1206 /*
1207 * Arrgh, we have to handle old on disk format
1208 * as well as newer (preferred) SA format.
1209 */
1210
1211 if (zp->z_is_sa) { /* the easy case, just update the ACL attribute */
1212 locate.cb_aclp = aclp;
1213 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_ACES(zfsvfs),
1214 zfs_acl_data_locator, &locate, aclp->z_acl_bytes);
1215 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_DACL_COUNT(zfsvfs),
1216 NULL, &aclp->z_acl_count, sizeof (uint64_t));
1217 } else { /* Painful legacy way */
1218 zfs_acl_node_t *aclnode;
1219 uint64_t off = 0;
1220 zfs_acl_phys_t acl_phys;
1221 uint64_t aoid;
1222
1223 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_ZNODE_ACL(zfsvfs),
1224 &acl_phys, sizeof (acl_phys))) != 0)
1225 return (error);
1226
1227 aoid = acl_phys.z_acl_extern_obj;
1228
1229 if (aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1230 /*
1231 * If ACL was previously external and we are now
1232 * converting to new ACL format then release old
1233 * ACL object and create a new one.
1234 */
1235 if (aoid &&
1236 aclp->z_version != acl_phys.z_acl_version) {
1237 error = dmu_object_free(zfsvfs->z_os, aoid, tx);
1238 if (error)
1239 return (error);
1240 aoid = 0;
1241 }
1242 if (aoid == 0) {
1243 aoid = dmu_object_alloc(zfsvfs->z_os,
1244 otype, aclp->z_acl_bytes,
1245 otype == DMU_OT_ACL ?
1246 DMU_OT_SYSACL : DMU_OT_NONE,
1247 otype == DMU_OT_ACL ?
1248 DN_MAX_BONUSLEN : 0, tx);
1249 } else {
1250 (void) dmu_object_set_blocksize(zfsvfs->z_os,
1251 aoid, aclp->z_acl_bytes, 0, tx);
1252 }
1253 acl_phys.z_acl_extern_obj = aoid;
1254 for (aclnode = list_head(&aclp->z_acl); aclnode;
1255 aclnode = list_next(&aclp->z_acl, aclnode)) {
1256 if (aclnode->z_ace_count == 0)
1257 continue;
1258 dmu_write(zfsvfs->z_os, aoid, off,
1259 aclnode->z_size, aclnode->z_acldata, tx);
1260 off += aclnode->z_size;
1261 }
1262 } else {
1263 void *start = acl_phys.z_ace_data;
1264 /*
1265 * Migrating back embedded?
1266 */
1267 if (acl_phys.z_acl_extern_obj) {
1268 error = dmu_object_free(zfsvfs->z_os,
1269 acl_phys.z_acl_extern_obj, tx);
1270 if (error)
1271 return (error);
1272 acl_phys.z_acl_extern_obj = 0;
1273 }
1274
1275 for (aclnode = list_head(&aclp->z_acl); aclnode;
1276 aclnode = list_next(&aclp->z_acl, aclnode)) {
1277 if (aclnode->z_ace_count == 0)
1278 continue;
1279 bcopy(aclnode->z_acldata, start,
1280 aclnode->z_size);
1281 start = (caddr_t)start + aclnode->z_size;
1282 }
1283 }
1284 /*
1285 * If Old version then swap count/bytes to match old
1286 * layout of znode_acl_phys_t.
1287 */
1288 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1289 acl_phys.z_acl_size = aclp->z_acl_count;
1290 acl_phys.z_acl_count = aclp->z_acl_bytes;
1291 } else {
1292 acl_phys.z_acl_size = aclp->z_acl_bytes;
1293 acl_phys.z_acl_count = aclp->z_acl_count;
1294 }
1295 acl_phys.z_acl_version = aclp->z_version;
1296
1297 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
1298 &acl_phys, sizeof (acl_phys));
1299 }
1300
1301 /*
1302 * Replace ACL wide bits, but first clear them.
1303 */
1304 zp->z_pflags &= ~ZFS_ACL_WIDE_FLAGS;
1305
1306 zp->z_pflags |= aclp->z_hints;
1307
1308 if (ace_trivial_common(aclp, 0, zfs_ace_walk) == 0)
1309 zp->z_pflags |= ZFS_ACL_TRIVIAL;
1310
1311 zfs_tstamp_update_setup(zp, STATE_CHANGED, NULL, ctime, B_TRUE);
1312 return (sa_bulk_update(zp->z_sa_hdl, bulk, count, tx));
1313 }
1314
1315 static void
zfs_acl_chmod(vtype_t vtype,uint64_t mode,boolean_t split,boolean_t trim,zfs_acl_t * aclp)1316 zfs_acl_chmod(vtype_t vtype, uint64_t mode, boolean_t split, boolean_t trim,
1317 zfs_acl_t *aclp)
1318 {
1319 void *acep = NULL;
1320 uint64_t who;
1321 int new_count, new_bytes;
1322 int ace_size;
1323 int entry_type;
1324 uint16_t iflags, type;
1325 uint32_t access_mask;
1326 zfs_acl_node_t *newnode;
1327 size_t abstract_size = aclp->z_ops.ace_abstract_size();
1328 void *zacep;
1329 boolean_t isdir;
1330 trivial_acl_t masks;
1331
1332 new_count = new_bytes = 0;
1333
1334 isdir = (vtype == VDIR);
1335
1336 acl_trivial_access_masks((mode_t)mode, isdir, &masks);
1337
1338 newnode = zfs_acl_node_alloc((abstract_size * 6) + aclp->z_acl_bytes);
1339
1340 zacep = newnode->z_acldata;
1341 if (masks.allow0) {
1342 zfs_set_ace(aclp, zacep, masks.allow0, ALLOW, -1, ACE_OWNER);
1343 zacep = (void *)((uintptr_t)zacep + abstract_size);
1344 new_count++;
1345 new_bytes += abstract_size;
1346 }
1347 if (masks.deny1) {
1348 zfs_set_ace(aclp, zacep, masks.deny1, DENY, -1, ACE_OWNER);
1349 zacep = (void *)((uintptr_t)zacep + abstract_size);
1350 new_count++;
1351 new_bytes += abstract_size;
1352 }
1353 if (masks.deny2) {
1354 zfs_set_ace(aclp, zacep, masks.deny2, DENY, -1, OWNING_GROUP);
1355 zacep = (void *)((uintptr_t)zacep + abstract_size);
1356 new_count++;
1357 new_bytes += abstract_size;
1358 }
1359
1360 while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
1361 &iflags, &type)) {
1362 entry_type = (iflags & ACE_TYPE_FLAGS);
1363 /*
1364 * ACEs used to represent the file mode may be divided
1365 * into an equivalent pair of inherit-only and regular
1366 * ACEs, if they are inheritable.
1367 * Skip regular ACEs, which are replaced by the new mode.
1368 */
1369 if (split && (entry_type == ACE_OWNER ||
1370 entry_type == OWNING_GROUP ||
1371 entry_type == ACE_EVERYONE)) {
1372 if (!isdir || !(iflags &
1373 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1374 continue;
1375 /*
1376 * We preserve owner@, group@, or @everyone
1377 * permissions, if they are inheritable, by
1378 * copying them to inherit_only ACEs. This
1379 * prevents inheritable permissions from being
1380 * altered along with the file mode.
1381 */
1382 iflags |= ACE_INHERIT_ONLY_ACE;
1383 }
1384
1385 /*
1386 * If this ACL has any inheritable ACEs, mark that in
1387 * the hints (which are later masked into the pflags)
1388 * so create knows to do inheritance.
1389 */
1390 if (isdir && (iflags &
1391 (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE)))
1392 aclp->z_hints |= ZFS_INHERIT_ACE;
1393
1394 if ((type != ALLOW && type != DENY) ||
1395 (iflags & ACE_INHERIT_ONLY_ACE)) {
1396 switch (type) {
1397 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1398 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1399 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1400 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1401 aclp->z_hints |= ZFS_ACL_OBJ_ACE;
1402 break;
1403 }
1404 } else {
1405 /*
1406 * Limit permissions granted by ACEs to be no greater
1407 * than permissions of the requested group mode.
1408 * Applies when the "aclmode" property is set to
1409 * "groupmask".
1410 */
1411 if ((type == ALLOW) && trim)
1412 access_mask &= masks.group;
1413 }
1414 zfs_set_ace(aclp, zacep, access_mask, type, who, iflags);
1415 ace_size = aclp->z_ops.ace_size(acep);
1416 zacep = (void *)((uintptr_t)zacep + ace_size);
1417 new_count++;
1418 new_bytes += ace_size;
1419 }
1420 zfs_set_ace(aclp, zacep, masks.owner, ALLOW, -1, ACE_OWNER);
1421 zacep = (void *)((uintptr_t)zacep + abstract_size);
1422 zfs_set_ace(aclp, zacep, masks.group, ALLOW, -1, OWNING_GROUP);
1423 zacep = (void *)((uintptr_t)zacep + abstract_size);
1424 zfs_set_ace(aclp, zacep, masks.everyone, ALLOW, -1, ACE_EVERYONE);
1425
1426 new_count += 3;
1427 new_bytes += abstract_size * 3;
1428 zfs_acl_release_nodes(aclp);
1429 aclp->z_acl_count = new_count;
1430 aclp->z_acl_bytes = new_bytes;
1431 newnode->z_ace_count = new_count;
1432 newnode->z_size = new_bytes;
1433 list_insert_tail(&aclp->z_acl, newnode);
1434 }
1435
1436 int
zfs_acl_chmod_setattr(znode_t * zp,zfs_acl_t ** aclp,uint64_t mode)1437 zfs_acl_chmod_setattr(znode_t *zp, zfs_acl_t **aclp, uint64_t mode)
1438 {
1439 int error = 0;
1440
1441 mutex_enter(&zp->z_acl_lock);
1442 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1443 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_DISCARD)
1444 *aclp = zfs_acl_alloc(zfs_acl_version_zp(zp));
1445 else
1446 error = zfs_acl_node_read(zp, aclp, B_TRUE);
1447
1448 if (error == 0) {
1449 (*aclp)->z_hints = zp->z_pflags & V4_ACL_WIDE_FLAGS;
1450 zfs_acl_chmod(ZTOV(zp)->v_type, mode, B_TRUE,
1451 (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK), *aclp);
1452 }
1453 mutex_exit(&zp->z_acl_lock);
1454
1455 return (error);
1456 }
1457
1458 /*
1459 * Should ACE be inherited?
1460 */
1461 static int
zfs_ace_can_use(vtype_t vtype,uint16_t acep_flags)1462 zfs_ace_can_use(vtype_t vtype, uint16_t acep_flags)
1463 {
1464 int iflags = (acep_flags & 0xf);
1465
1466 if ((vtype == VDIR) && (iflags & ACE_DIRECTORY_INHERIT_ACE))
1467 return (1);
1468 else if (iflags & ACE_FILE_INHERIT_ACE)
1469 return (!((vtype == VDIR) &&
1470 (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)));
1471 return (0);
1472 }
1473
1474 /*
1475 * inherit inheritable ACEs from parent
1476 */
1477 static zfs_acl_t *
zfs_acl_inherit(zfsvfs_t * zfsvfs,vtype_t vtype,zfs_acl_t * paclp,uint64_t mode)1478 zfs_acl_inherit(zfsvfs_t *zfsvfs, vtype_t vtype, zfs_acl_t *paclp,
1479 uint64_t mode)
1480 {
1481 void *pacep = NULL;
1482 void *acep;
1483 zfs_acl_node_t *aclnode;
1484 zfs_acl_t *aclp = NULL;
1485 uint64_t who;
1486 uint32_t access_mask;
1487 uint16_t iflags, newflags, type;
1488 size_t ace_size;
1489 void *data1, *data2;
1490 size_t data1sz, data2sz;
1491 uint_t aclinherit;
1492 boolean_t isdir = (vtype == VDIR);
1493
1494 aclp = zfs_acl_alloc(paclp->z_version);
1495 aclinherit = zfsvfs->z_acl_inherit;
1496 if (aclinherit == ZFS_ACL_DISCARD || vtype == VLNK)
1497 return (aclp);
1498
1499 while (pacep = zfs_acl_next_ace(paclp, pacep, &who,
1500 &access_mask, &iflags, &type)) {
1501
1502 /*
1503 * don't inherit bogus ACEs
1504 */
1505 if (!zfs_acl_valid_ace_type(type, iflags))
1506 continue;
1507
1508 /*
1509 * Check if ACE is inheritable by this vnode
1510 */
1511 if ((aclinherit == ZFS_ACL_NOALLOW && type == ALLOW) ||
1512 !zfs_ace_can_use(vtype, iflags))
1513 continue;
1514
1515 /*
1516 * Strip inherited execute permission from file if
1517 * not in mode
1518 */
1519 if (aclinherit == ZFS_ACL_PASSTHROUGH_X && type == ALLOW &&
1520 !isdir && ((mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)) {
1521 access_mask &= ~ACE_EXECUTE;
1522 }
1523
1524 /*
1525 * Strip write_acl and write_owner from permissions
1526 * when inheriting an ACE
1527 */
1528 if (aclinherit == ZFS_ACL_RESTRICTED && type == ALLOW) {
1529 access_mask &= ~RESTRICTED_CLEAR;
1530 }
1531
1532 ace_size = aclp->z_ops.ace_size(pacep);
1533 aclnode = zfs_acl_node_alloc(ace_size);
1534 list_insert_tail(&aclp->z_acl, aclnode);
1535 acep = aclnode->z_acldata;
1536
1537 zfs_set_ace(aclp, acep, access_mask, type,
1538 who, iflags|ACE_INHERITED_ACE);
1539
1540 /*
1541 * Copy special opaque data if any
1542 */
1543 if ((data1sz = paclp->z_ops.ace_data(pacep, &data1)) != 0) {
1544 VERIFY((data2sz = aclp->z_ops.ace_data(acep,
1545 &data2)) == data1sz);
1546 bcopy(data1, data2, data2sz);
1547 }
1548
1549 aclp->z_acl_count++;
1550 aclnode->z_ace_count++;
1551 aclp->z_acl_bytes += aclnode->z_size;
1552 newflags = aclp->z_ops.ace_flags_get(acep);
1553
1554 /*
1555 * If ACE is not to be inherited further, or if the vnode is
1556 * not a directory, remove all inheritance flags
1557 */
1558 if (!isdir || (iflags & ACE_NO_PROPAGATE_INHERIT_ACE)) {
1559 newflags &= ~ALL_INHERIT;
1560 aclp->z_ops.ace_flags_set(acep,
1561 newflags|ACE_INHERITED_ACE);
1562 continue;
1563 }
1564
1565 /*
1566 * This directory has an inheritable ACE
1567 */
1568 aclp->z_hints |= ZFS_INHERIT_ACE;
1569
1570 /*
1571 * If only FILE_INHERIT is set then turn on
1572 * inherit_only
1573 */
1574 if ((iflags & (ACE_FILE_INHERIT_ACE |
1575 ACE_DIRECTORY_INHERIT_ACE)) == ACE_FILE_INHERIT_ACE) {
1576 newflags |= ACE_INHERIT_ONLY_ACE;
1577 aclp->z_ops.ace_flags_set(acep,
1578 newflags|ACE_INHERITED_ACE);
1579 } else {
1580 newflags &= ~ACE_INHERIT_ONLY_ACE;
1581 aclp->z_ops.ace_flags_set(acep,
1582 newflags|ACE_INHERITED_ACE);
1583 }
1584 }
1585
1586 return (aclp);
1587 }
1588
1589 /*
1590 * Create file system object initial permissions
1591 * including inheritable ACEs.
1592 * Also, create FUIDs for owner and group.
1593 */
1594 int
zfs_acl_ids_create(znode_t * dzp,int flag,vattr_t * vap,cred_t * cr,vsecattr_t * vsecp,zfs_acl_ids_t * acl_ids)1595 zfs_acl_ids_create(znode_t *dzp, int flag, vattr_t *vap, cred_t *cr,
1596 vsecattr_t *vsecp, zfs_acl_ids_t *acl_ids)
1597 {
1598 int error;
1599 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1600 zfs_acl_t *paclp;
1601 gid_t gid = vap->va_gid;
1602 boolean_t trim = B_FALSE;
1603 boolean_t inherited = B_FALSE;
1604
1605 #ifndef __NetBSD__
1606 ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__);
1607 #endif
1608 bzero(acl_ids, sizeof (zfs_acl_ids_t));
1609 acl_ids->z_mode = MAKEIMODE(vap->va_type, vap->va_mode);
1610
1611 if (vsecp)
1612 if ((error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, cr,
1613 &acl_ids->z_fuidp, &acl_ids->z_aclp)) != 0)
1614 return (error);
1615 /*
1616 * Determine uid and gid.
1617 */
1618 if ((flag & IS_ROOT_NODE) || zfsvfs->z_replay ||
1619 ((flag & IS_XATTR) && (vap->va_type == VDIR))) {
1620 acl_ids->z_fuid = zfs_fuid_create(zfsvfs,
1621 (uint64_t)vap->va_uid, cr,
1622 ZFS_OWNER, &acl_ids->z_fuidp);
1623 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1624 (uint64_t)vap->va_gid, cr,
1625 ZFS_GROUP, &acl_ids->z_fuidp);
1626 gid = vap->va_gid;
1627 } else {
1628 acl_ids->z_fuid = zfs_fuid_create_cred(zfsvfs, ZFS_OWNER,
1629 cr, &acl_ids->z_fuidp);
1630 acl_ids->z_fgid = 0;
1631 if (vap->va_mask & AT_GID) {
1632 acl_ids->z_fgid = zfs_fuid_create(zfsvfs,
1633 (uint64_t)vap->va_gid,
1634 cr, ZFS_GROUP, &acl_ids->z_fuidp);
1635 gid = vap->va_gid;
1636 if (acl_ids->z_fgid != dzp->z_gid &&
1637 !groupmember(vap->va_gid, cr) &&
1638 secpolicy_vnode_create_gid(cr) != 0)
1639 acl_ids->z_fgid = 0;
1640 }
1641 if (acl_ids->z_fgid == 0) {
1642 if (dzp->z_mode & S_ISGID) {
1643 char *domain;
1644 uint32_t rid;
1645
1646 acl_ids->z_fgid = dzp->z_gid;
1647 gid = zfs_fuid_map_id(zfsvfs, acl_ids->z_fgid,
1648 cr, ZFS_GROUP);
1649
1650 if (zfsvfs->z_use_fuids &&
1651 IS_EPHEMERAL(acl_ids->z_fgid)) {
1652 domain = zfs_fuid_idx_domain(
1653 &zfsvfs->z_fuid_idx,
1654 FUID_INDEX(acl_ids->z_fgid));
1655 rid = FUID_RID(acl_ids->z_fgid);
1656 zfs_fuid_node_add(&acl_ids->z_fuidp,
1657 domain, rid,
1658 FUID_INDEX(acl_ids->z_fgid),
1659 acl_ids->z_fgid, ZFS_GROUP);
1660 }
1661 } else {
1662 acl_ids->z_fgid = zfs_fuid_create_cred(zfsvfs,
1663 ZFS_GROUP, cr, &acl_ids->z_fuidp);
1664 #if defined(__FreeBSD_kernel__) || defined(__NetBSD__)
1665 gid = acl_ids->z_fgid = dzp->z_gid;
1666 #else
1667 gid = crgetgid(cr);
1668 #endif
1669 }
1670 }
1671 }
1672
1673 /*
1674 * If we're creating a directory, and the parent directory has the
1675 * set-GID bit set, set in on the new directory.
1676 * Otherwise, if the user is neither privileged nor a member of the
1677 * file's new group, clear the file's set-GID bit.
1678 */
1679
1680 if (!(flag & IS_ROOT_NODE) && (dzp->z_mode & S_ISGID) &&
1681 (vap->va_type == VDIR)) {
1682 acl_ids->z_mode |= S_ISGID;
1683 } else {
1684 if ((acl_ids->z_mode & S_ISGID) &&
1685 secpolicy_vnode_setids_setgids(ZTOV(dzp), cr, gid) != 0)
1686 acl_ids->z_mode &= ~S_ISGID;
1687 }
1688
1689 if (acl_ids->z_aclp == NULL) {
1690 mutex_enter(&dzp->z_acl_lock);
1691 if (!(flag & IS_ROOT_NODE) &&
1692 (dzp->z_pflags & ZFS_INHERIT_ACE) &&
1693 !(dzp->z_pflags & ZFS_XATTR)) {
1694 VERIFY(0 == zfs_acl_node_read(dzp, &paclp, B_FALSE));
1695 acl_ids->z_aclp = zfs_acl_inherit(zfsvfs,
1696 vap->va_type, paclp, acl_ids->z_mode);
1697 inherited = B_TRUE;
1698 } else {
1699 acl_ids->z_aclp =
1700 zfs_acl_alloc(zfs_acl_version_zp(dzp));
1701 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1702 }
1703 mutex_exit(&dzp->z_acl_lock);
1704
1705 if (vap->va_type == VDIR)
1706 acl_ids->z_aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
1707
1708 if (zfsvfs->z_acl_mode == ZFS_ACL_GROUPMASK &&
1709 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH &&
1710 zfsvfs->z_acl_inherit != ZFS_ACL_PASSTHROUGH_X)
1711 trim = B_TRUE;
1712 zfs_acl_chmod(vap->va_type, acl_ids->z_mode, B_FALSE, trim,
1713 acl_ids->z_aclp);
1714 }
1715
1716 if (inherited || vsecp) {
1717 acl_ids->z_mode = zfs_mode_compute(acl_ids->z_mode,
1718 acl_ids->z_aclp, &acl_ids->z_aclp->z_hints,
1719 acl_ids->z_fuid, acl_ids->z_fgid);
1720 if (ace_trivial_common(acl_ids->z_aclp, 0, zfs_ace_walk) == 0)
1721 acl_ids->z_aclp->z_hints |= ZFS_ACL_TRIVIAL;
1722 }
1723
1724 return (0);
1725 }
1726
1727 /*
1728 * Free ACL and fuid_infop, but not the acl_ids structure
1729 */
1730 void
zfs_acl_ids_free(zfs_acl_ids_t * acl_ids)1731 zfs_acl_ids_free(zfs_acl_ids_t *acl_ids)
1732 {
1733 if (acl_ids->z_aclp)
1734 zfs_acl_free(acl_ids->z_aclp);
1735 if (acl_ids->z_fuidp)
1736 zfs_fuid_info_free(acl_ids->z_fuidp);
1737 acl_ids->z_aclp = NULL;
1738 acl_ids->z_fuidp = NULL;
1739 }
1740
1741 boolean_t
zfs_acl_ids_overquota(zfsvfs_t * zfsvfs,zfs_acl_ids_t * acl_ids)1742 zfs_acl_ids_overquota(zfsvfs_t *zfsvfs, zfs_acl_ids_t *acl_ids)
1743 {
1744 return (zfs_fuid_overquota(zfsvfs, B_FALSE, acl_ids->z_fuid) ||
1745 zfs_fuid_overquota(zfsvfs, B_TRUE, acl_ids->z_fgid));
1746 }
1747
1748 /*
1749 * Retrieve a file's ACL
1750 */
1751 int
zfs_getacl(znode_t * zp,vsecattr_t * vsecp,boolean_t skipaclchk,cred_t * cr)1752 zfs_getacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1753 {
1754 zfs_acl_t *aclp;
1755 ulong_t mask;
1756 int error;
1757 int count = 0;
1758 int largeace = 0;
1759
1760 mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT |
1761 VSA_ACE_ACLFLAGS | VSA_ACE_ALLTYPES);
1762
1763 if (mask == 0)
1764 return (SET_ERROR(ENOSYS));
1765
1766 if (error = zfs_zaccess(zp, ACE_READ_ACL, 0, skipaclchk, cr))
1767 return (error);
1768
1769 mutex_enter(&zp->z_acl_lock);
1770
1771 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
1772 error = zfs_acl_node_read(zp, &aclp, B_FALSE);
1773 if (error != 0) {
1774 mutex_exit(&zp->z_acl_lock);
1775 return (error);
1776 }
1777
1778 /*
1779 * Scan ACL to determine number of ACEs
1780 */
1781 if ((zp->z_pflags & ZFS_ACL_OBJ_ACE) && !(mask & VSA_ACE_ALLTYPES)) {
1782 void *zacep = NULL;
1783 uint64_t who;
1784 uint32_t access_mask;
1785 uint16_t type, iflags;
1786
1787 while (zacep = zfs_acl_next_ace(aclp, zacep,
1788 &who, &access_mask, &iflags, &type)) {
1789 switch (type) {
1790 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE:
1791 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE:
1792 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE:
1793 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE:
1794 largeace++;
1795 continue;
1796 default:
1797 count++;
1798 }
1799 }
1800 vsecp->vsa_aclcnt = count;
1801 } else
1802 count = (int)aclp->z_acl_count;
1803
1804 if (mask & VSA_ACECNT) {
1805 vsecp->vsa_aclcnt = count;
1806 }
1807
1808 if (mask & VSA_ACE) {
1809 size_t aclsz;
1810
1811 aclsz = count * sizeof (ace_t) +
1812 sizeof (ace_object_t) * largeace;
1813
1814 vsecp->vsa_aclentp = kmem_alloc(aclsz, KM_SLEEP);
1815 vsecp->vsa_aclentsz = aclsz;
1816
1817 if (aclp->z_version == ZFS_ACL_VERSION_FUID)
1818 zfs_copy_fuid_2_ace(zp->z_zfsvfs, aclp, cr,
1819 vsecp->vsa_aclentp, !(mask & VSA_ACE_ALLTYPES));
1820 else {
1821 zfs_acl_node_t *aclnode;
1822 void *start = vsecp->vsa_aclentp;
1823
1824 for (aclnode = list_head(&aclp->z_acl); aclnode;
1825 aclnode = list_next(&aclp->z_acl, aclnode)) {
1826 bcopy(aclnode->z_acldata, start,
1827 aclnode->z_size);
1828 start = (caddr_t)start + aclnode->z_size;
1829 }
1830 ASSERT((caddr_t)start - (caddr_t)vsecp->vsa_aclentp ==
1831 aclp->z_acl_bytes);
1832 }
1833 }
1834 if (mask & VSA_ACE_ACLFLAGS) {
1835 vsecp->vsa_aclflags = 0;
1836 if (zp->z_pflags & ZFS_ACL_DEFAULTED)
1837 vsecp->vsa_aclflags |= ACL_DEFAULTED;
1838 if (zp->z_pflags & ZFS_ACL_PROTECTED)
1839 vsecp->vsa_aclflags |= ACL_PROTECTED;
1840 if (zp->z_pflags & ZFS_ACL_AUTO_INHERIT)
1841 vsecp->vsa_aclflags |= ACL_AUTO_INHERIT;
1842 }
1843
1844 mutex_exit(&zp->z_acl_lock);
1845
1846 return (0);
1847 }
1848
1849 int
zfs_vsec_2_aclp(zfsvfs_t * zfsvfs,vtype_t obj_type,vsecattr_t * vsecp,cred_t * cr,zfs_fuid_info_t ** fuidp,zfs_acl_t ** zaclp)1850 zfs_vsec_2_aclp(zfsvfs_t *zfsvfs, vtype_t obj_type,
1851 vsecattr_t *vsecp, cred_t *cr, zfs_fuid_info_t **fuidp, zfs_acl_t **zaclp)
1852 {
1853 zfs_acl_t *aclp;
1854 zfs_acl_node_t *aclnode;
1855 int aclcnt = vsecp->vsa_aclcnt;
1856 int error;
1857
1858 if (vsecp->vsa_aclcnt > MAX_ACL_ENTRIES || vsecp->vsa_aclcnt <= 0)
1859 return (SET_ERROR(EINVAL));
1860
1861 aclp = zfs_acl_alloc(zfs_acl_version(zfsvfs->z_version));
1862
1863 aclp->z_hints = 0;
1864 aclnode = zfs_acl_node_alloc(aclcnt * sizeof (zfs_object_ace_t));
1865 if (aclp->z_version == ZFS_ACL_VERSION_INITIAL) {
1866 if ((error = zfs_copy_ace_2_oldace(obj_type, aclp,
1867 (ace_t *)vsecp->vsa_aclentp, aclnode->z_acldata,
1868 aclcnt, &aclnode->z_size)) != 0) {
1869 zfs_acl_free(aclp);
1870 zfs_acl_node_free(aclnode);
1871 return (error);
1872 }
1873 } else {
1874 if ((error = zfs_copy_ace_2_fuid(zfsvfs, obj_type, aclp,
1875 vsecp->vsa_aclentp, aclnode->z_acldata, aclcnt,
1876 &aclnode->z_size, fuidp, cr)) != 0) {
1877 zfs_acl_free(aclp);
1878 zfs_acl_node_free(aclnode);
1879 return (error);
1880 }
1881 }
1882 aclp->z_acl_bytes = aclnode->z_size;
1883 aclnode->z_ace_count = aclcnt;
1884 aclp->z_acl_count = aclcnt;
1885 list_insert_head(&aclp->z_acl, aclnode);
1886
1887 /*
1888 * If flags are being set then add them to z_hints
1889 */
1890 if (vsecp->vsa_mask & VSA_ACE_ACLFLAGS) {
1891 if (vsecp->vsa_aclflags & ACL_PROTECTED)
1892 aclp->z_hints |= ZFS_ACL_PROTECTED;
1893 if (vsecp->vsa_aclflags & ACL_DEFAULTED)
1894 aclp->z_hints |= ZFS_ACL_DEFAULTED;
1895 if (vsecp->vsa_aclflags & ACL_AUTO_INHERIT)
1896 aclp->z_hints |= ZFS_ACL_AUTO_INHERIT;
1897 }
1898
1899 *zaclp = aclp;
1900
1901 return (0);
1902 }
1903
1904 /*
1905 * Set a file's ACL
1906 */
1907 int
zfs_setacl(znode_t * zp,vsecattr_t * vsecp,boolean_t skipaclchk,cred_t * cr)1908 zfs_setacl(znode_t *zp, vsecattr_t *vsecp, boolean_t skipaclchk, cred_t *cr)
1909 {
1910 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1911 zilog_t *zilog = zfsvfs->z_log;
1912 ulong_t mask = vsecp->vsa_mask & (VSA_ACE | VSA_ACECNT);
1913 dmu_tx_t *tx;
1914 int error;
1915 zfs_acl_t *aclp;
1916 zfs_fuid_info_t *fuidp = NULL;
1917 boolean_t fuid_dirtied;
1918 uint64_t acl_obj;
1919
1920 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__);
1921 if (mask == 0)
1922 return (SET_ERROR(ENOSYS));
1923
1924 if (zp->z_pflags & ZFS_IMMUTABLE)
1925 return (SET_ERROR(EPERM));
1926
1927 if (error = zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr))
1928 return (error);
1929
1930 error = zfs_vsec_2_aclp(zfsvfs, ZTOV(zp)->v_type, vsecp, cr, &fuidp,
1931 &aclp);
1932 if (error)
1933 return (error);
1934
1935 /*
1936 * If ACL wide flags aren't being set then preserve any
1937 * existing flags.
1938 */
1939 if (!(vsecp->vsa_mask & VSA_ACE_ACLFLAGS)) {
1940 aclp->z_hints |=
1941 (zp->z_pflags & V4_ACL_WIDE_FLAGS);
1942 }
1943 top:
1944 mutex_enter(&zp->z_acl_lock);
1945
1946 tx = dmu_tx_create(zfsvfs->z_os);
1947
1948 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1949
1950 fuid_dirtied = zfsvfs->z_fuid_dirty;
1951 if (fuid_dirtied)
1952 zfs_fuid_txhold(zfsvfs, tx);
1953
1954 /*
1955 * If old version and ACL won't fit in bonus and we aren't
1956 * upgrading then take out necessary DMU holds
1957 */
1958
1959 if ((acl_obj = zfs_external_acl(zp)) != 0) {
1960 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
1961 zfs_znode_acl_version(zp) <= ZFS_ACL_VERSION_INITIAL) {
1962 dmu_tx_hold_free(tx, acl_obj, 0,
1963 DMU_OBJECT_END);
1964 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1965 aclp->z_acl_bytes);
1966 } else {
1967 dmu_tx_hold_write(tx, acl_obj, 0, aclp->z_acl_bytes);
1968 }
1969 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1970 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, aclp->z_acl_bytes);
1971 }
1972
1973 zfs_sa_upgrade_txholds(tx, zp);
1974 error = dmu_tx_assign(tx, TXG_NOWAIT);
1975 if (error) {
1976 mutex_exit(&zp->z_acl_lock);
1977
1978 if (error == ERESTART) {
1979 dmu_tx_wait(tx);
1980 dmu_tx_abort(tx);
1981 goto top;
1982 }
1983 dmu_tx_abort(tx);
1984 zfs_acl_free(aclp);
1985 return (error);
1986 }
1987
1988 error = zfs_aclset_common(zp, aclp, cr, tx);
1989 ASSERT(error == 0);
1990 ASSERT(zp->z_acl_cached == NULL);
1991 zp->z_acl_cached = aclp;
1992
1993 if (fuid_dirtied)
1994 zfs_fuid_sync(zfsvfs, tx);
1995
1996 zfs_log_acl(zilog, tx, zp, vsecp, fuidp);
1997
1998 if (fuidp)
1999 zfs_fuid_info_free(fuidp);
2000 dmu_tx_commit(tx);
2001 mutex_exit(&zp->z_acl_lock);
2002
2003 return (error);
2004 }
2005
2006 /*
2007 * Check accesses of interest (AoI) against attributes of the dataset
2008 * such as read-only. Returns zero if no AoI conflict with dataset
2009 * attributes, otherwise an appropriate errno is returned.
2010 */
2011 static int
zfs_zaccess_dataset_check(znode_t * zp,uint32_t v4_mode)2012 zfs_zaccess_dataset_check(znode_t *zp, uint32_t v4_mode)
2013 {
2014 if ((v4_mode & WRITE_MASK) &&
2015 (zp->z_zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
2016 (!IS_DEVVP(ZTOV(zp)) ||
2017 (IS_DEVVP(ZTOV(zp)) && (v4_mode & WRITE_MASK_ATTRS)))) {
2018 return (SET_ERROR(EROFS));
2019 }
2020
2021 /*
2022 * Only check for READONLY on non-directories.
2023 */
2024 if ((v4_mode & WRITE_MASK_DATA) &&
2025 (((ZTOV(zp)->v_type != VDIR) &&
2026 (zp->z_pflags & (ZFS_READONLY | ZFS_IMMUTABLE))) ||
2027 (ZTOV(zp)->v_type == VDIR &&
2028 (zp->z_pflags & ZFS_IMMUTABLE)))) {
2029 return (SET_ERROR(EPERM));
2030 }
2031
2032 #ifdef illumos
2033 if ((v4_mode & (ACE_DELETE | ACE_DELETE_CHILD)) &&
2034 (zp->z_pflags & ZFS_NOUNLINK)) {
2035 return (SET_ERROR(EPERM));
2036 }
2037 #else
2038 /*
2039 * In FreeBSD we allow to modify directory's content is ZFS_NOUNLINK
2040 * (sunlnk) is set. We just don't allow directory removal, which is
2041 * handled in zfs_zaccess_delete().
2042 */
2043 if ((v4_mode & ACE_DELETE) &&
2044 (zp->z_pflags & ZFS_NOUNLINK)) {
2045 return (EPERM);
2046 }
2047 #endif
2048
2049 if (((v4_mode & (ACE_READ_DATA|ACE_EXECUTE)) &&
2050 (zp->z_pflags & ZFS_AV_QUARANTINED))) {
2051 return (SET_ERROR(EACCES));
2052 }
2053
2054 return (0);
2055 }
2056
2057 /*
2058 * The primary usage of this function is to loop through all of the
2059 * ACEs in the znode, determining what accesses of interest (AoI) to
2060 * the caller are allowed or denied. The AoI are expressed as bits in
2061 * the working_mode parameter. As each ACE is processed, bits covered
2062 * by that ACE are removed from the working_mode. This removal
2063 * facilitates two things. The first is that when the working mode is
2064 * empty (= 0), we know we've looked at all the AoI. The second is
2065 * that the ACE interpretation rules don't allow a later ACE to undo
2066 * something granted or denied by an earlier ACE. Removing the
2067 * discovered access or denial enforces this rule. At the end of
2068 * processing the ACEs, all AoI that were found to be denied are
2069 * placed into the working_mode, giving the caller a mask of denied
2070 * accesses. Returns:
2071 * 0 if all AoI granted
2072 * EACCESS if the denied mask is non-zero
2073 * other error if abnormal failure (e.g., IO error)
2074 *
2075 * A secondary usage of the function is to determine if any of the
2076 * AoI are granted. If an ACE grants any access in
2077 * the working_mode, we immediately short circuit out of the function.
2078 * This mode is chosen by setting anyaccess to B_TRUE. The
2079 * working_mode is not a denied access mask upon exit if the function
2080 * is used in this manner.
2081 */
2082 static int
zfs_zaccess_aces_check(znode_t * zp,uint32_t * working_mode,boolean_t anyaccess,cred_t * cr)2083 zfs_zaccess_aces_check(znode_t *zp, uint32_t *working_mode,
2084 boolean_t anyaccess, cred_t *cr)
2085 {
2086 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2087 zfs_acl_t *aclp;
2088 int error;
2089 uid_t uid = crgetuid(cr);
2090 uint64_t who;
2091 uint16_t type, iflags;
2092 uint16_t entry_type;
2093 uint32_t access_mask;
2094 uint32_t deny_mask = 0;
2095 zfs_ace_hdr_t *acep = NULL;
2096 boolean_t checkit;
2097 uid_t gowner;
2098 uid_t fowner;
2099
2100 zfs_fuid_map_ids(zp, cr, &fowner, &gowner);
2101
2102 mutex_enter(&zp->z_acl_lock);
2103
2104 ASSERT_VOP_LOCKED(ZTOV(zp), __func__);
2105 error = zfs_acl_node_read(zp, &aclp, B_FALSE);
2106 if (error != 0) {
2107 mutex_exit(&zp->z_acl_lock);
2108 return (error);
2109 }
2110
2111 ASSERT(zp->z_acl_cached);
2112
2113 while (acep = zfs_acl_next_ace(aclp, acep, &who, &access_mask,
2114 &iflags, &type)) {
2115 uint32_t mask_matched;
2116
2117 if (!zfs_acl_valid_ace_type(type, iflags))
2118 continue;
2119
2120 if (ZTOV(zp)->v_type == VDIR && (iflags & ACE_INHERIT_ONLY_ACE))
2121 continue;
2122
2123 /* Skip ACE if it does not affect any AoI */
2124 mask_matched = (access_mask & *working_mode);
2125 if (!mask_matched)
2126 continue;
2127
2128 entry_type = (iflags & ACE_TYPE_FLAGS);
2129
2130 checkit = B_FALSE;
2131
2132 switch (entry_type) {
2133 case ACE_OWNER:
2134 if (uid == fowner)
2135 checkit = B_TRUE;
2136 break;
2137 case OWNING_GROUP:
2138 who = gowner;
2139 /*FALLTHROUGH*/
2140 case ACE_IDENTIFIER_GROUP:
2141 checkit = zfs_groupmember(zfsvfs, who, cr);
2142 break;
2143 case ACE_EVERYONE:
2144 checkit = B_TRUE;
2145 break;
2146
2147 /* USER Entry */
2148 default:
2149 if (entry_type == 0) {
2150 uid_t newid;
2151
2152 newid = zfs_fuid_map_id(zfsvfs, who, cr,
2153 ZFS_ACE_USER);
2154 if (newid != IDMAP_WK_CREATOR_OWNER_UID &&
2155 uid == newid)
2156 checkit = B_TRUE;
2157 break;
2158 } else {
2159 mutex_exit(&zp->z_acl_lock);
2160 return (SET_ERROR(EIO));
2161 }
2162 }
2163
2164 if (checkit) {
2165 if (type == DENY) {
2166 DTRACE_PROBE3(zfs__ace__denies,
2167 znode_t *, zp,
2168 zfs_ace_hdr_t *, acep,
2169 uint32_t, mask_matched);
2170 deny_mask |= mask_matched;
2171 } else {
2172 DTRACE_PROBE3(zfs__ace__allows,
2173 znode_t *, zp,
2174 zfs_ace_hdr_t *, acep,
2175 uint32_t, mask_matched);
2176 if (anyaccess) {
2177 mutex_exit(&zp->z_acl_lock);
2178 return (0);
2179 }
2180 }
2181 *working_mode &= ~mask_matched;
2182 }
2183
2184 /* Are we done? */
2185 if (*working_mode == 0)
2186 break;
2187 }
2188
2189 mutex_exit(&zp->z_acl_lock);
2190
2191 /* Put the found 'denies' back on the working mode */
2192 if (deny_mask) {
2193 *working_mode |= deny_mask;
2194 return (SET_ERROR(EACCES));
2195 } else if (*working_mode) {
2196 return (-1);
2197 }
2198
2199 return (0);
2200 }
2201
2202 /*
2203 * Return true if any access whatsoever granted, we don't actually
2204 * care what access is granted.
2205 */
2206 boolean_t
zfs_has_access(znode_t * zp,cred_t * cr)2207 zfs_has_access(znode_t *zp, cred_t *cr)
2208 {
2209 uint32_t have = ACE_ALL_PERMS;
2210
2211 if (zfs_zaccess_aces_check(zp, &have, B_TRUE, cr) != 0) {
2212 uid_t owner;
2213
2214 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2215 return (secpolicy_vnode_any_access(cr, ZTOV(zp), owner) == 0);
2216 }
2217 return (B_TRUE);
2218 }
2219
2220 static int
zfs_zaccess_common(znode_t * zp,uint32_t v4_mode,uint32_t * working_mode,boolean_t * check_privs,boolean_t skipaclchk,cred_t * cr)2221 zfs_zaccess_common(znode_t *zp, uint32_t v4_mode, uint32_t *working_mode,
2222 boolean_t *check_privs, boolean_t skipaclchk, cred_t *cr)
2223 {
2224 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2225 int err;
2226
2227 *working_mode = v4_mode;
2228 *check_privs = B_TRUE;
2229
2230 /*
2231 * Short circuit empty requests
2232 */
2233 if (v4_mode == 0 || zfsvfs->z_replay) {
2234 *working_mode = 0;
2235 return (0);
2236 }
2237
2238 if ((err = zfs_zaccess_dataset_check(zp, v4_mode)) != 0) {
2239 *check_privs = B_FALSE;
2240 return (err);
2241 }
2242
2243 /*
2244 * The caller requested that the ACL check be skipped. This
2245 * would only happen if the caller checked VOP_ACCESS() with a
2246 * 32 bit ACE mask and already had the appropriate permissions.
2247 */
2248 if (skipaclchk) {
2249 *working_mode = 0;
2250 return (0);
2251 }
2252
2253 return (zfs_zaccess_aces_check(zp, working_mode, B_FALSE, cr));
2254 }
2255
2256 static int
zfs_zaccess_append(znode_t * zp,uint32_t * working_mode,boolean_t * check_privs,cred_t * cr)2257 zfs_zaccess_append(znode_t *zp, uint32_t *working_mode, boolean_t *check_privs,
2258 cred_t *cr)
2259 {
2260 if (*working_mode != ACE_WRITE_DATA)
2261 return (SET_ERROR(EACCES));
2262
2263 return (zfs_zaccess_common(zp, ACE_APPEND_DATA, working_mode,
2264 check_privs, B_FALSE, cr));
2265 }
2266
2267 int
zfs_fastaccesschk_execute(znode_t * zdp,cred_t * cr)2268 zfs_fastaccesschk_execute(znode_t *zdp, cred_t *cr)
2269 {
2270 boolean_t owner = B_FALSE;
2271 boolean_t groupmbr = B_FALSE;
2272 boolean_t is_attr;
2273 uid_t uid = crgetuid(cr);
2274 int error;
2275
2276 if (zdp->z_pflags & ZFS_AV_QUARANTINED)
2277 return (SET_ERROR(EACCES));
2278
2279 is_attr = ((zdp->z_pflags & ZFS_XATTR) &&
2280 (ZTOV(zdp)->v_type == VDIR));
2281 if (is_attr)
2282 goto slow;
2283
2284
2285 mutex_enter(&zdp->z_acl_lock);
2286
2287 if (zdp->z_pflags & ZFS_NO_EXECS_DENIED) {
2288 mutex_exit(&zdp->z_acl_lock);
2289 return (0);
2290 }
2291
2292 if (FUID_INDEX(zdp->z_uid) != 0 || FUID_INDEX(zdp->z_gid) != 0) {
2293 mutex_exit(&zdp->z_acl_lock);
2294 goto slow;
2295 }
2296
2297 if (uid == zdp->z_uid) {
2298 owner = B_TRUE;
2299 if (zdp->z_mode & S_IXUSR) {
2300 mutex_exit(&zdp->z_acl_lock);
2301 return (0);
2302 } else {
2303 mutex_exit(&zdp->z_acl_lock);
2304 goto slow;
2305 }
2306 }
2307 if (groupmember(zdp->z_gid, cr)) {
2308 groupmbr = B_TRUE;
2309 if (zdp->z_mode & S_IXGRP) {
2310 mutex_exit(&zdp->z_acl_lock);
2311 return (0);
2312 } else {
2313 mutex_exit(&zdp->z_acl_lock);
2314 goto slow;
2315 }
2316 }
2317 if (!owner && !groupmbr) {
2318 if (zdp->z_mode & S_IXOTH) {
2319 mutex_exit(&zdp->z_acl_lock);
2320 return (0);
2321 }
2322 }
2323
2324 mutex_exit(&zdp->z_acl_lock);
2325
2326 slow:
2327 DTRACE_PROBE(zfs__fastpath__execute__access__miss);
2328 ZFS_ENTER(zdp->z_zfsvfs);
2329 error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr);
2330 ZFS_EXIT(zdp->z_zfsvfs);
2331 return (error);
2332 }
2333
2334 /*
2335 * Determine whether Access should be granted/denied.
2336 *
2337 * The least priv subsytem is always consulted as a basic privilege
2338 * can define any form of access.
2339 */
2340 int
zfs_zaccess(znode_t * zp,int mode,int flags,boolean_t skipaclchk,cred_t * cr)2341 zfs_zaccess(znode_t *zp, int mode, int flags, boolean_t skipaclchk, cred_t *cr)
2342 {
2343 uint32_t working_mode;
2344 int error;
2345 int is_attr;
2346 boolean_t check_privs;
2347 znode_t *xzp;
2348 znode_t *check_zp = zp;
2349 mode_t needed_bits;
2350 uid_t owner;
2351
2352 is_attr = ((zp->z_pflags & ZFS_XATTR) && (ZTOV(zp)->v_type == VDIR));
2353
2354 #ifndef illumos
2355 /*
2356 * In FreeBSD, we don't care about permissions of individual ADS.
2357 * Note that not checking them is not just an optimization - without
2358 * this shortcut, EA operations may bogusly fail with EACCES.
2359 */
2360 if (zp->z_pflags & ZFS_XATTR)
2361 return (0);
2362 xzp = NULL; // XXX: hello clang is_attr is false here.
2363 #else
2364 /*
2365 * If attribute then validate against base file
2366 */
2367 if (is_attr) {
2368 uint64_t parent;
2369
2370 if ((error = sa_lookup(zp->z_sa_hdl,
2371 SA_ZPL_PARENT(zp->z_zfsvfs), &parent,
2372 sizeof (parent))) != 0)
2373 return (error);
2374
2375 if ((error = zfs_zget(zp->z_zfsvfs,
2376 parent, &xzp)) != 0) {
2377 return (error);
2378 }
2379
2380 check_zp = xzp;
2381
2382 /*
2383 * fixup mode to map to xattr perms
2384 */
2385
2386 if (mode & (ACE_WRITE_DATA|ACE_APPEND_DATA)) {
2387 mode &= ~(ACE_WRITE_DATA|ACE_APPEND_DATA);
2388 mode |= ACE_WRITE_NAMED_ATTRS;
2389 }
2390
2391 if (mode & (ACE_READ_DATA|ACE_EXECUTE)) {
2392 mode &= ~(ACE_READ_DATA|ACE_EXECUTE);
2393 mode |= ACE_READ_NAMED_ATTRS;
2394 }
2395 }
2396 #endif
2397
2398 owner = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_uid, cr, ZFS_OWNER);
2399 /*
2400 * Map the bits required to the standard vnode flags VREAD|VWRITE|VEXEC
2401 * in needed_bits. Map the bits mapped by working_mode (currently
2402 * missing) in missing_bits.
2403 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2404 * needed_bits.
2405 */
2406 needed_bits = 0;
2407
2408 working_mode = mode;
2409 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES)) &&
2410 owner == crgetuid(cr))
2411 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2412
2413 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2414 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2415 needed_bits |= VREAD;
2416 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2417 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2418 needed_bits |= VWRITE;
2419 if (working_mode & ACE_EXECUTE)
2420 needed_bits |= VEXEC;
2421
2422 if ((error = zfs_zaccess_common(check_zp, mode, &working_mode,
2423 &check_privs, skipaclchk, cr)) == 0) {
2424 if (is_attr)
2425 VN_RELE(ZTOV(xzp));
2426 return (secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2427 needed_bits, needed_bits));
2428 }
2429
2430 if (error && !check_privs) {
2431 if (is_attr)
2432 VN_RELE(ZTOV(xzp));
2433 return (error);
2434 }
2435
2436 if (error && (flags & V_APPEND)) {
2437 error = zfs_zaccess_append(zp, &working_mode, &check_privs, cr);
2438 }
2439
2440 if (error && check_privs) {
2441 mode_t checkmode = 0;
2442
2443 /*
2444 * First check for implicit owner permission on
2445 * read_acl/read_attributes
2446 */
2447
2448 error = 0;
2449 ASSERT(working_mode != 0);
2450
2451 if ((working_mode & (ACE_READ_ACL|ACE_READ_ATTRIBUTES) &&
2452 owner == crgetuid(cr)))
2453 working_mode &= ~(ACE_READ_ACL|ACE_READ_ATTRIBUTES);
2454
2455 if (working_mode & (ACE_READ_DATA|ACE_READ_NAMED_ATTRS|
2456 ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_SYNCHRONIZE))
2457 checkmode |= VREAD;
2458 if (working_mode & (ACE_WRITE_DATA|ACE_WRITE_NAMED_ATTRS|
2459 ACE_APPEND_DATA|ACE_WRITE_ATTRIBUTES|ACE_SYNCHRONIZE))
2460 checkmode |= VWRITE;
2461 if (working_mode & ACE_EXECUTE)
2462 checkmode |= VEXEC;
2463
2464 error = secpolicy_vnode_access2(cr, ZTOV(check_zp), owner,
2465 needed_bits & ~checkmode, needed_bits);
2466
2467 if (error == 0 && (working_mode & ACE_WRITE_OWNER))
2468 error = secpolicy_vnode_chown(ZTOV(check_zp), cr, owner);
2469 if (error == 0 && (working_mode & ACE_WRITE_ACL))
2470 error = secpolicy_vnode_setdac(ZTOV(check_zp), cr, owner);
2471
2472 if (error == 0 && (working_mode &
2473 (ACE_DELETE|ACE_DELETE_CHILD)))
2474 error = secpolicy_vnode_remove(ZTOV(check_zp), cr);
2475
2476 if (error == 0 && (working_mode & ACE_SYNCHRONIZE)) {
2477 error = secpolicy_vnode_chown(ZTOV(check_zp), cr, owner);
2478 }
2479 if (error == 0) {
2480 /*
2481 * See if any bits other than those already checked
2482 * for are still present. If so then return EACCES
2483 */
2484 if (working_mode & ~(ZFS_CHECKED_MASKS)) {
2485 error = SET_ERROR(EACCES);
2486 }
2487 }
2488 } else if (error == 0) {
2489 error = secpolicy_vnode_access2(cr, ZTOV(zp), owner,
2490 needed_bits, needed_bits);
2491 }
2492
2493
2494 if (is_attr)
2495 VN_RELE(ZTOV(xzp));
2496
2497 return (error);
2498 }
2499
2500 /*
2501 * Translate traditional unix VREAD/VWRITE/VEXEC mode into
2502 * native ACL format and call zfs_zaccess()
2503 */
2504 int
zfs_zaccess_rwx(znode_t * zp,mode_t mode,int flags,cred_t * cr)2505 zfs_zaccess_rwx(znode_t *zp, mode_t mode, int flags, cred_t *cr)
2506 {
2507 return (zfs_zaccess(zp, zfs_unix_to_v4(mode >> 6), flags, B_FALSE, cr));
2508 }
2509
2510 /*
2511 * Access function for secpolicy_vnode_setattr
2512 */
2513 int
zfs_zaccess_unix(znode_t * zp,mode_t mode,cred_t * cr)2514 zfs_zaccess_unix(znode_t *zp, mode_t mode, cred_t *cr)
2515 {
2516 int v4_mode = zfs_unix_to_v4(mode >> 6);
2517
2518 return (zfs_zaccess(zp, v4_mode, 0, B_FALSE, cr));
2519 }
2520
2521 static int
zfs_delete_final_check(znode_t * zp,znode_t * dzp,mode_t available_perms,cred_t * cr)2522 zfs_delete_final_check(znode_t *zp, znode_t *dzp,
2523 mode_t available_perms, cred_t *cr)
2524 {
2525 int error;
2526 uid_t downer;
2527
2528 downer = zfs_fuid_map_id(dzp->z_zfsvfs, dzp->z_uid, cr, ZFS_OWNER);
2529
2530 error = secpolicy_vnode_access2(cr, ZTOV(dzp),
2531 downer, available_perms, VWRITE|VEXEC);
2532
2533 if (error == 0)
2534 error = zfs_sticky_remove_access(dzp, zp, cr);
2535
2536 return (error);
2537 }
2538
2539 /*
2540 * Determine whether Access should be granted/deny, without
2541 * consulting least priv subsystem.
2542 *
2543 * The following chart is the recommended NFSv4 enforcement for
2544 * ability to delete an object.
2545 *
2546 * -------------------------------------------------------
2547 * | Parent Dir | Target Object Permissions |
2548 * | permissions | |
2549 * -------------------------------------------------------
2550 * | | ACL Allows | ACL Denies| Delete |
2551 * | | Delete | Delete | unspecified|
2552 * -------------------------------------------------------
2553 * | ACL Allows | Permit | Permit | Permit |
2554 * | DELETE_CHILD | |
2555 * -------------------------------------------------------
2556 * | ACL Denies | Permit | Deny | Deny |
2557 * | DELETE_CHILD | | | |
2558 * -------------------------------------------------------
2559 * | ACL specifies | | | |
2560 * | only allow | Permit | Permit | Permit |
2561 * | write and | | | |
2562 * | execute | | | |
2563 * -------------------------------------------------------
2564 * | ACL denies | | | |
2565 * | write and | Permit | Deny | Deny |
2566 * | execute | | | |
2567 * -------------------------------------------------------
2568 * ^
2569 * |
2570 * No search privilege, can't even look up file?
2571 *
2572 */
2573 int
zfs_zaccess_delete(znode_t * dzp,znode_t * zp,cred_t * cr)2574 zfs_zaccess_delete(znode_t *dzp, znode_t *zp, cred_t *cr)
2575 {
2576 uint32_t dzp_working_mode = 0;
2577 uint32_t zp_working_mode = 0;
2578 int dzp_error, zp_error;
2579 mode_t available_perms;
2580 boolean_t dzpcheck_privs = B_TRUE;
2581 boolean_t zpcheck_privs = B_TRUE;
2582
2583 /*
2584 * We want specific DELETE permissions to
2585 * take precedence over WRITE/EXECUTE. We don't
2586 * want an ACL such as this to mess us up.
2587 * user:joe:write_data:deny,user:joe:delete:allow
2588 *
2589 * However, deny permissions may ultimately be overridden
2590 * by secpolicy_vnode_access().
2591 *
2592 * We will ask for all of the necessary permissions and then
2593 * look at the working modes from the directory and target object
2594 * to determine what was found.
2595 */
2596
2597 if (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_NOUNLINK))
2598 return (SET_ERROR(EPERM));
2599
2600 /*
2601 * First row
2602 * If the directory permissions allow the delete, we are done.
2603 */
2604 if ((dzp_error = zfs_zaccess_common(dzp, ACE_DELETE_CHILD,
2605 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr)) == 0)
2606 return (0);
2607
2608 /*
2609 * If target object has delete permission then we are done
2610 */
2611 if ((zp_error = zfs_zaccess_common(zp, ACE_DELETE, &zp_working_mode,
2612 &zpcheck_privs, B_FALSE, cr)) == 0)
2613 return (0);
2614
2615 ASSERT(dzp_error && zp_error);
2616
2617 if (!dzpcheck_privs)
2618 return (dzp_error);
2619 if (!zpcheck_privs)
2620 return (zp_error);
2621
2622 /*
2623 * Second row
2624 *
2625 * If directory returns EACCES then delete_child was denied
2626 * due to deny delete_child. In this case send the request through
2627 * secpolicy_vnode_remove(). We don't use zfs_delete_final_check()
2628 * since that *could* allow the delete based on write/execute permission
2629 * and we want delete permissions to override write/execute.
2630 */
2631
2632 if (dzp_error == EACCES)
2633 return (secpolicy_vnode_remove(ZTOV(dzp), cr)); /* XXXPJD: s/dzp/zp/ ? */
2634
2635 /*
2636 * Third Row
2637 * only need to see if we have write/execute on directory.
2638 */
2639
2640 dzp_error = zfs_zaccess_common(dzp, ACE_EXECUTE|ACE_WRITE_DATA,
2641 &dzp_working_mode, &dzpcheck_privs, B_FALSE, cr);
2642
2643 if (dzp_error != 0 && !dzpcheck_privs)
2644 return (dzp_error);
2645
2646 /*
2647 * Fourth row
2648 */
2649
2650 available_perms = (dzp_working_mode & ACE_WRITE_DATA) ? 0 : VWRITE;
2651 available_perms |= (dzp_working_mode & ACE_EXECUTE) ? 0 : VEXEC;
2652
2653 return (zfs_delete_final_check(zp, dzp, available_perms, cr));
2654
2655 }
2656
2657 int
zfs_zaccess_rename(znode_t * sdzp,znode_t * szp,znode_t * tdzp,znode_t * tzp,cred_t * cr)2658 zfs_zaccess_rename(znode_t *sdzp, znode_t *szp, znode_t *tdzp,
2659 znode_t *tzp, cred_t *cr)
2660 {
2661 int add_perm;
2662 int error;
2663
2664 if (szp->z_pflags & ZFS_AV_QUARANTINED)
2665 return (SET_ERROR(EACCES));
2666
2667 add_perm = (ZTOV(szp)->v_type == VDIR) ?
2668 ACE_ADD_SUBDIRECTORY : ACE_ADD_FILE;
2669
2670 /*
2671 * Rename permissions are combination of delete permission +
2672 * add file/subdir permission.
2673 *
2674 * BSD operating systems also require write permission
2675 * on the directory being moved from one parent directory
2676 * to another.
2677 */
2678 if (ZTOV(szp)->v_type == VDIR && ZTOV(sdzp) != ZTOV(tdzp)) {
2679 if (error = zfs_zaccess(szp, ACE_WRITE_DATA, 0, B_FALSE, cr))
2680 return (error);
2681 }
2682
2683 /*
2684 * first make sure we do the delete portion.
2685 *
2686 * If that succeeds then check for add_file/add_subdir permissions
2687 */
2688
2689 if (error = zfs_zaccess_delete(sdzp, szp, cr))
2690 return (error);
2691
2692 /*
2693 * If we have a tzp, see if we can delete it?
2694 */
2695 if (tzp) {
2696 if (error = zfs_zaccess_delete(tdzp, tzp, cr))
2697 return (error);
2698 }
2699
2700 /*
2701 * Now check for add permissions
2702 */
2703 error = zfs_zaccess(tdzp, add_perm, 0, B_FALSE, cr);
2704
2705 return (error);
2706 }
2707