1 /* $NetBSD: xmss_fast.c,v 1.2 2018/04/06 18:59:00 christos Exp $ */
2 /* $OpenBSD: xmss_fast.c,v 1.3 2018/03/22 07:06:11 markus Exp $ */
3 /*
4 xmss_fast.c version 20160722
5 Andreas Hülsing
6 Joost Rijneveld
7 Public domain.
8 */
9 #include "includes.h"
10 __RCSID("$NetBSD: xmss_fast.c,v 1.2 2018/04/06 18:59:00 christos Exp $");
11
12 #include <stdlib.h>
13 #include <string.h>
14 #include <stdint.h>
15
16 #include "xmss_fast.h"
17 #include "crypto_api.h"
18 #include "xmss_wots.h"
19 #include "xmss_hash.h"
20
21 #include "xmss_commons.h"
22 #include "xmss_hash_address.h"
23 // For testing
24 #include "stdio.h"
25
26
27
28 /**
29 * Used for pseudorandom keygeneration,
30 * generates the seed for the WOTS keypair at address addr
31 *
32 * takes n byte sk_seed and returns n byte seed using 32 byte address addr.
33 */
get_seed(unsigned char * seed,const unsigned char * sk_seed,int n,uint32_t addr[8])34 static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8])
35 {
36 unsigned char bytes[32];
37 // Make sure that chain addr, hash addr, and key bit are 0!
38 setChainADRS(addr,0);
39 setHashADRS(addr,0);
40 setKeyAndMask(addr,0);
41 // Generate pseudorandom value
42 addr_to_byte(bytes, addr);
43 prf(seed, bytes, sk_seed, n);
44 }
45
46 /**
47 * Initialize xmss params struct
48 * parameter names are the same as in the draft
49 * parameter k is K as used in the BDS algorithm
50 */
xmss_set_params(xmss_params * params,int n,int h,int w,int k)51 int xmss_set_params(xmss_params *params, int n, int h, int w, int k)
52 {
53 if (k >= h || k < 2 || (h - k) % 2) {
54 fprintf(stderr, "For BDS traversal, H - K must be even, with H > K >= 2!\n");
55 return 1;
56 }
57 params->h = h;
58 params->n = n;
59 params->k = k;
60 wots_params wots_par;
61 wots_set_params(&wots_par, n, w);
62 params->wots_par = wots_par;
63 return 0;
64 }
65
66 /**
67 * Initialize BDS state struct
68 * parameter names are the same as used in the description of the BDS traversal
69 */
xmss_set_bds_state(bds_state * state,unsigned char * stack,int stackoffset,unsigned char * stacklevels,unsigned char * auth,unsigned char * keep,treehash_inst * treehash,unsigned char * retain,int next_leaf)70 void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf)
71 {
72 state->stack = stack;
73 state->stackoffset = stackoffset;
74 state->stacklevels = stacklevels;
75 state->auth = auth;
76 state->keep = keep;
77 state->treehash = treehash;
78 state->retain = retain;
79 state->next_leaf = next_leaf;
80 }
81
82 /**
83 * Initialize xmssmt_params struct
84 * parameter names are the same as in the draft
85 *
86 * Especially h is the total tree height, i.e. the XMSS trees have height h/d
87 */
xmssmt_set_params(xmssmt_params * params,int n,int h,int d,int w,int k)88 int xmssmt_set_params(xmssmt_params *params, int n, int h, int d, int w, int k)
89 {
90 if (h % d) {
91 fprintf(stderr, "d must divide h without remainder!\n");
92 return 1;
93 }
94 params->h = h;
95 params->d = d;
96 params->n = n;
97 params->index_len = (h + 7) / 8;
98 xmss_params xmss_par;
99 if (xmss_set_params(&xmss_par, n, (h/d), w, k)) {
100 return 1;
101 }
102 params->xmss_par = xmss_par;
103 return 0;
104 }
105
106 /**
107 * Computes a leaf from a WOTS public key using an L-tree.
108 */
l_tree(unsigned char * leaf,unsigned char * wots_pk,const xmss_params * params,const unsigned char * pub_seed,uint32_t addr[8])109 static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8])
110 {
111 unsigned int l = params->wots_par.len;
112 unsigned int n = params->n;
113 uint32_t i = 0;
114 uint32_t height = 0;
115 uint32_t bound;
116
117 //ADRS.setTreeHeight(0);
118 setTreeHeight(addr, height);
119
120 while (l > 1) {
121 bound = l >> 1; //floor(l / 2);
122 for (i = 0; i < bound; i++) {
123 //ADRS.setTreeIndex(i);
124 setTreeIndex(addr, i);
125 //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS);
126 hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n);
127 }
128 //if ( l % 2 == 1 ) {
129 if (l & 1) {
130 //pk[floor(l / 2) + 1] = pk[l];
131 memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n);
132 //l = ceil(l / 2);
133 l=(l>>1)+1;
134 }
135 else {
136 //l = ceil(l / 2);
137 l=(l>>1);
138 }
139 //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
140 height++;
141 setTreeHeight(addr, height);
142 }
143 //return pk[0];
144 memcpy(leaf, wots_pk, n);
145 }
146
147 /**
148 * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address.
149 */
gen_leaf_wots(unsigned char * leaf,const unsigned char * sk_seed,const xmss_params * params,const unsigned char * pub_seed,uint32_t ltree_addr[8],uint32_t ots_addr[8])150 static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8])
151 {
152 unsigned char seed[params->n];
153 unsigned char pk[params->wots_par.keysize];
154
155 get_seed(seed, sk_seed, params->n, ots_addr);
156 wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr);
157
158 l_tree(leaf, pk, params, pub_seed, ltree_addr);
159 }
160
treehash_minheight_on_stack(bds_state * state,const xmss_params * params,const treehash_inst * treehash)161 static int treehash_minheight_on_stack(bds_state* state, const xmss_params *params, const treehash_inst *treehash) {
162 unsigned int r = params->h, i;
163 for (i = 0; i < treehash->stackusage; i++) {
164 if (state->stacklevels[state->stackoffset - i - 1] < r) {
165 r = state->stacklevels[state->stackoffset - i - 1];
166 }
167 }
168 return r;
169 }
170
171 /**
172 * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash.
173 * Currently only used for key generation.
174 *
175 */
treehash_setup(unsigned char * node,int height,int index,bds_state * state,const unsigned char * sk_seed,const xmss_params * params,const unsigned char * pub_seed,const uint32_t addr[8])176 static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8])
177 {
178 unsigned int idx = index;
179 unsigned int n = params->n;
180 unsigned int h = params->h;
181 unsigned int k = params->k;
182 // use three different addresses because at this point we use all three formats in parallel
183 uint32_t ots_addr[8];
184 uint32_t ltree_addr[8];
185 uint32_t node_addr[8];
186 // only copy layer and tree address parts
187 memcpy(ots_addr, addr, 12);
188 // type = ots
189 setType(ots_addr, 0);
190 memcpy(ltree_addr, addr, 12);
191 setType(ltree_addr, 1);
192 memcpy(node_addr, addr, 12);
193 setType(node_addr, 2);
194
195 uint32_t lastnode, i;
196 unsigned char stack[(height+1)*n];
197 unsigned int stacklevels[height+1];
198 unsigned int stackoffset=0;
199 unsigned int nodeh;
200
201 lastnode = idx+(1<<height);
202
203 for (i = 0; i < h-k; i++) {
204 state->treehash[i].h = i;
205 state->treehash[i].completed = 1;
206 state->treehash[i].stackusage = 0;
207 }
208
209 i = 0;
210 for (; idx < lastnode; idx++) {
211 setLtreeADRS(ltree_addr, idx);
212 setOTSADRS(ots_addr, idx);
213 gen_leaf_wots(stack+stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr);
214 stacklevels[stackoffset] = 0;
215 stackoffset++;
216 if (h - k > 0 && i == 3) {
217 memcpy(state->treehash[0].node, stack+stackoffset*n, n);
218 }
219 while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2])
220 {
221 nodeh = stacklevels[stackoffset-1];
222 if (i >> nodeh == 1) {
223 memcpy(state->auth + nodeh*n, stack+(stackoffset-1)*n, n);
224 }
225 else {
226 if (nodeh < h - k && i >> nodeh == 3) {
227 memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*n, n);
228 }
229 else if (nodeh >= h - k) {
230 memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((i >> nodeh) - 3) >> 1)) * n, stack+(stackoffset-1)*n, n);
231 }
232 }
233 setTreeHeight(node_addr, stacklevels[stackoffset-1]);
234 setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1)));
235 hash_h(stack+(stackoffset-2)*n, stack+(stackoffset-2)*n, pub_seed,
236 node_addr, n);
237 stacklevels[stackoffset-2]++;
238 stackoffset--;
239 }
240 i++;
241 }
242
243 for (i = 0; i < n; i++)
244 node[i] = stack[i];
245 }
246
treehash_update(treehash_inst * treehash,bds_state * state,const unsigned char * sk_seed,const xmss_params * params,const unsigned char * pub_seed,const uint32_t addr[8])247 static void treehash_update(treehash_inst *treehash, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) {
248 int n = params->n;
249
250 uint32_t ots_addr[8];
251 uint32_t ltree_addr[8];
252 uint32_t node_addr[8];
253 // only copy layer and tree address parts
254 memcpy(ots_addr, addr, 12);
255 // type = ots
256 setType(ots_addr, 0);
257 memcpy(ltree_addr, addr, 12);
258 setType(ltree_addr, 1);
259 memcpy(node_addr, addr, 12);
260 setType(node_addr, 2);
261
262 setLtreeADRS(ltree_addr, treehash->next_idx);
263 setOTSADRS(ots_addr, treehash->next_idx);
264
265 unsigned char nodebuffer[2 * n];
266 unsigned int nodeheight = 0;
267 gen_leaf_wots(nodebuffer, sk_seed, params, pub_seed, ltree_addr, ots_addr);
268 while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) {
269 memcpy(nodebuffer + n, nodebuffer, n);
270 memcpy(nodebuffer, state->stack + (state->stackoffset-1)*n, n);
271 setTreeHeight(node_addr, nodeheight);
272 setTreeIndex(node_addr, (treehash->next_idx >> (nodeheight+1)));
273 hash_h(nodebuffer, nodebuffer, pub_seed, node_addr, n);
274 nodeheight++;
275 treehash->stackusage--;
276 state->stackoffset--;
277 }
278 if (nodeheight == treehash->h) { // this also implies stackusage == 0
279 memcpy(treehash->node, nodebuffer, n);
280 treehash->completed = 1;
281 }
282 else {
283 memcpy(state->stack + state->stackoffset*n, nodebuffer, n);
284 treehash->stackusage++;
285 state->stacklevels[state->stackoffset] = nodeheight;
286 state->stackoffset++;
287 treehash->next_idx++;
288 }
289 }
290
291 /**
292 * Computes a root node given a leaf and an authapth
293 */
validate_authpath(unsigned char * root,const unsigned char * leaf,unsigned long leafidx,const unsigned char * authpath,const xmss_params * params,const unsigned char * pub_seed,uint32_t addr[8])294 static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8])
295 {
296 unsigned int n = params->n;
297
298 uint32_t i, j;
299 unsigned char buffer[2*n];
300
301 // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left.
302 // Otherwise, it is the other way around
303 if (leafidx & 1) {
304 for (j = 0; j < n; j++)
305 buffer[n+j] = leaf[j];
306 for (j = 0; j < n; j++)
307 buffer[j] = authpath[j];
308 }
309 else {
310 for (j = 0; j < n; j++)
311 buffer[j] = leaf[j];
312 for (j = 0; j < n; j++)
313 buffer[n+j] = authpath[j];
314 }
315 authpath += n;
316
317 for (i=0; i < params->h-1; i++) {
318 setTreeHeight(addr, i);
319 leafidx >>= 1;
320 setTreeIndex(addr, leafidx);
321 if (leafidx&1) {
322 hash_h(buffer+n, buffer, pub_seed, addr, n);
323 for (j = 0; j < n; j++)
324 buffer[j] = authpath[j];
325 }
326 else {
327 hash_h(buffer, buffer, pub_seed, addr, n);
328 for (j = 0; j < n; j++)
329 buffer[j+n] = authpath[j];
330 }
331 authpath += n;
332 }
333 setTreeHeight(addr, (params->h-1));
334 leafidx >>= 1;
335 setTreeIndex(addr, leafidx);
336 hash_h(root, buffer, pub_seed, addr, n);
337 }
338
339 /**
340 * Performs one treehash update on the instance that needs it the most.
341 * Returns 1 if such an instance was not found
342 **/
bds_treehash_update(bds_state * state,unsigned int updates,const unsigned char * sk_seed,const xmss_params * params,unsigned char * pub_seed,const uint32_t addr[8])343 static char bds_treehash_update(bds_state *state, unsigned int updates, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) {
344 uint32_t i, j;
345 unsigned int level, l_min, low;
346 unsigned int h = params->h;
347 unsigned int k = params->k;
348 unsigned int used = 0;
349
350 for (j = 0; j < updates; j++) {
351 l_min = h;
352 level = h - k;
353 for (i = 0; i < h - k; i++) {
354 if (state->treehash[i].completed) {
355 low = h;
356 }
357 else if (state->treehash[i].stackusage == 0) {
358 low = i;
359 }
360 else {
361 low = treehash_minheight_on_stack(state, params, &(state->treehash[i]));
362 }
363 if (low < l_min) {
364 level = i;
365 l_min = low;
366 }
367 }
368 if (level == h - k) {
369 break;
370 }
371 treehash_update(&(state->treehash[level]), state, sk_seed, params, pub_seed, addr);
372 used++;
373 }
374 return updates - used;
375 }
376
377 /**
378 * Updates the state (typically NEXT_i) by adding a leaf and updating the stack
379 * Returns 1 if all leaf nodes have already been processed
380 **/
bds_state_update(bds_state * state,const unsigned char * sk_seed,const xmss_params * params,unsigned char * pub_seed,const uint32_t addr[8])381 static char bds_state_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) {
382 uint32_t ltree_addr[8];
383 uint32_t node_addr[8];
384 uint32_t ots_addr[8];
385
386 int n = params->n;
387 int h = params->h;
388 int k = params->k;
389
390 int nodeh;
391 int idx = state->next_leaf;
392 if (idx == 1 << h) {
393 return 1;
394 }
395
396 // only copy layer and tree address parts
397 memcpy(ots_addr, addr, 12);
398 // type = ots
399 setType(ots_addr, 0);
400 memcpy(ltree_addr, addr, 12);
401 setType(ltree_addr, 1);
402 memcpy(node_addr, addr, 12);
403 setType(node_addr, 2);
404
405 setOTSADRS(ots_addr, idx);
406 setLtreeADRS(ltree_addr, idx);
407
408 gen_leaf_wots(state->stack+state->stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr);
409
410 state->stacklevels[state->stackoffset] = 0;
411 state->stackoffset++;
412 if (h - k > 0 && idx == 3) {
413 memcpy(state->treehash[0].node, state->stack+state->stackoffset*n, n);
414 }
415 while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) {
416 nodeh = state->stacklevels[state->stackoffset-1];
417 if (idx >> nodeh == 1) {
418 memcpy(state->auth + nodeh*n, state->stack+(state->stackoffset-1)*n, n);
419 }
420 else {
421 if (nodeh < h - k && idx >> nodeh == 3) {
422 memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*n, n);
423 }
424 else if (nodeh >= h - k) {
425 memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((idx >> nodeh) - 3) >> 1)) * n, state->stack+(state->stackoffset-1)*n, n);
426 }
427 }
428 setTreeHeight(node_addr, state->stacklevels[state->stackoffset-1]);
429 setTreeIndex(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1)));
430 hash_h(state->stack+(state->stackoffset-2)*n, state->stack+(state->stackoffset-2)*n, pub_seed, node_addr, n);
431
432 state->stacklevels[state->stackoffset-2]++;
433 state->stackoffset--;
434 }
435 state->next_leaf++;
436 return 0;
437 }
438
439 /**
440 * Returns the auth path for node leaf_idx and computes the auth path for the
441 * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo
442 * in "Post Quantum Cryptography", Springer 2009.
443 */
bds_round(bds_state * state,const unsigned long leaf_idx,const unsigned char * sk_seed,const xmss_params * params,unsigned char * pub_seed,uint32_t addr[8])444 static void bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, uint32_t addr[8])
445 {
446 unsigned int i;
447 unsigned int n = params->n;
448 unsigned int h = params->h;
449 unsigned int k = params->k;
450
451 unsigned int tau = h;
452 unsigned int startidx;
453 unsigned int offset, rowidx;
454 unsigned char buf[2 * n];
455
456 uint32_t ots_addr[8];
457 uint32_t ltree_addr[8];
458 uint32_t node_addr[8];
459 // only copy layer and tree address parts
460 memcpy(ots_addr, addr, 12);
461 // type = ots
462 setType(ots_addr, 0);
463 memcpy(ltree_addr, addr, 12);
464 setType(ltree_addr, 1);
465 memcpy(node_addr, addr, 12);
466 setType(node_addr, 2);
467
468 for (i = 0; i < h; i++) {
469 if (! ((leaf_idx >> i) & 1)) {
470 tau = i;
471 break;
472 }
473 }
474
475 if (tau > 0) {
476 memcpy(buf, state->auth + (tau-1) * n, n);
477 // we need to do this before refreshing state->keep to prevent overwriting
478 memcpy(buf + n, state->keep + ((tau-1) >> 1) * n, n);
479 }
480 if (!((leaf_idx >> (tau + 1)) & 1) && (tau < h - 1)) {
481 memcpy(state->keep + (tau >> 1)*n, state->auth + tau*n, n);
482 }
483 if (tau == 0) {
484 setLtreeADRS(ltree_addr, leaf_idx);
485 setOTSADRS(ots_addr, leaf_idx);
486 gen_leaf_wots(state->auth, sk_seed, params, pub_seed, ltree_addr, ots_addr);
487 }
488 else {
489 setTreeHeight(node_addr, (tau-1));
490 setTreeIndex(node_addr, leaf_idx >> tau);
491 hash_h(state->auth + tau * n, buf, pub_seed, node_addr, n);
492 for (i = 0; i < tau; i++) {
493 if (i < h - k) {
494 memcpy(state->auth + i * n, state->treehash[i].node, n);
495 }
496 else {
497 offset = (1 << (h - 1 - i)) + i - h;
498 rowidx = ((leaf_idx >> i) - 1) >> 1;
499 memcpy(state->auth + i * n, state->retain + (offset + rowidx) * n, n);
500 }
501 }
502
503 for (i = 0; i < ((tau < h - k) ? tau : (h - k)); i++) {
504 startidx = leaf_idx + 1 + 3 * (1 << i);
505 if (startidx < 1U << h) {
506 state->treehash[i].h = i;
507 state->treehash[i].next_idx = startidx;
508 state->treehash[i].completed = 0;
509 state->treehash[i].stackusage = 0;
510 }
511 }
512 }
513 }
514
515 /*
516 * Generates a XMSS key pair for a given parameter set.
517 * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]
518 * Format pk: [root || PUB_SEED] omitting algo oid.
519 */
xmss_keypair(unsigned char * pk,unsigned char * sk,bds_state * state,xmss_params * params)520 int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state, xmss_params *params)
521 {
522 unsigned int n = params->n;
523 // Set idx = 0
524 sk[0] = 0;
525 sk[1] = 0;
526 sk[2] = 0;
527 sk[3] = 0;
528 // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte)
529 randombytes(sk+4, 3*n);
530 // Copy PUB_SEED to public key
531 memcpy(pk+n, sk+4+2*n, n);
532
533 uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
534
535 // Compute root
536 treehash_setup(pk, params->h, 0, state, sk+4, params, sk+4+2*n, addr);
537 // copy root to sk
538 memcpy(sk+4+3*n, pk, n);
539 return 0;
540 }
541
542 /**
543 * Signs a message.
544 * Returns
545 * 1. an array containing the signature followed by the message AND
546 * 2. an updated secret key!
547 *
548 */
xmss_sign(unsigned char * sk,bds_state * state,unsigned char * sig_msg,unsigned long long * sig_msg_len,const unsigned char * msg,unsigned long long msglen,const xmss_params * params)549 int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params)
550 {
551 unsigned int h = params->h;
552 unsigned int n = params->n;
553 unsigned int k = params->k;
554 uint16_t i = 0;
555
556 // Extract SK
557 unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3];
558 unsigned char sk_seed[n];
559 memcpy(sk_seed, sk+4, n);
560 unsigned char sk_prf[n];
561 memcpy(sk_prf, sk+4+n, n);
562 unsigned char pub_seed[n];
563 memcpy(pub_seed, sk+4+2*n, n);
564
565 // index as 32 bytes string
566 unsigned char idx_bytes_32[32];
567 to_byte(idx_bytes_32, idx, 32);
568
569 unsigned char hash_key[3*n];
570
571 // Update SK
572 sk[0] = ((idx + 1) >> 24) & 255;
573 sk[1] = ((idx + 1) >> 16) & 255;
574 sk[2] = ((idx + 1) >> 8) & 255;
575 sk[3] = (idx + 1) & 255;
576 // -- Secret key for this non-forward-secure version is now updated.
577 // -- A productive implementation should use a file handle instead and write the updated secret key at this point!
578
579 // Init working params
580 unsigned char R[n];
581 unsigned char msg_h[n];
582 unsigned char ots_seed[n];
583 uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
584
585 // ---------------------------------
586 // Message Hashing
587 // ---------------------------------
588
589 // Message Hash:
590 // First compute pseudorandom value
591 prf(R, idx_bytes_32, sk_prf, n);
592 // Generate hash key (R || root || idx)
593 memcpy(hash_key, R, n);
594 memcpy(hash_key+n, sk+4+3*n, n);
595 to_byte(hash_key+2*n, idx, n);
596 // Then use it for message digest
597 h_msg(msg_h, msg, msglen, hash_key, 3*n, n);
598
599 // Start collecting signature
600 *sig_msg_len = 0;
601
602 // Copy index to signature
603 sig_msg[0] = (idx >> 24) & 255;
604 sig_msg[1] = (idx >> 16) & 255;
605 sig_msg[2] = (idx >> 8) & 255;
606 sig_msg[3] = idx & 255;
607
608 sig_msg += 4;
609 *sig_msg_len += 4;
610
611 // Copy R to signature
612 for (i = 0; i < n; i++)
613 sig_msg[i] = R[i];
614
615 sig_msg += n;
616 *sig_msg_len += n;
617
618 // ----------------------------------
619 // Now we start to "really sign"
620 // ----------------------------------
621
622 // Prepare Address
623 setType(ots_addr, 0);
624 setOTSADRS(ots_addr, idx);
625
626 // Compute seed for OTS key pair
627 get_seed(ots_seed, sk_seed, n, ots_addr);
628
629 // Compute WOTS signature
630 wots_sign(sig_msg, msg_h, ots_seed, &(params->wots_par), pub_seed, ots_addr);
631
632 sig_msg += params->wots_par.keysize;
633 *sig_msg_len += params->wots_par.keysize;
634
635 // the auth path was already computed during the previous round
636 memcpy(sig_msg, state->auth, h*n);
637
638 if (idx < (1U << h) - 1) {
639 bds_round(state, idx, sk_seed, params, pub_seed, ots_addr);
640 bds_treehash_update(state, (h - k) >> 1, sk_seed, params, pub_seed, ots_addr);
641 }
642
643 /* TODO: save key/bds state here! */
644
645 sig_msg += params->h*n;
646 *sig_msg_len += params->h*n;
647
648 //Whipe secret elements?
649 //zerobytes(tsk, CRYPTO_SECRETKEYBYTES);
650
651
652 memcpy(sig_msg, msg, msglen);
653 *sig_msg_len += msglen;
654
655 return 0;
656 }
657
658 /**
659 * Verifies a given message signature pair under a given public key.
660 */
xmss_sign_open(unsigned char * msg,unsigned long long * msglen,const unsigned char * sig_msg,unsigned long long sig_msg_len,const unsigned char * pk,const xmss_params * params)661 int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params)
662 {
663 unsigned int n = params->n;
664
665 unsigned long long i, m_len;
666 unsigned long idx=0;
667 unsigned char wots_pk[params->wots_par.keysize];
668 unsigned char pkhash[n];
669 unsigned char root[n];
670 unsigned char msg_h[n];
671 unsigned char hash_key[3*n];
672
673 unsigned char pub_seed[n];
674 memcpy(pub_seed, pk+n, n);
675
676 // Init addresses
677 uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
678 uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
679 uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
680
681 setType(ots_addr, 0);
682 setType(ltree_addr, 1);
683 setType(node_addr, 2);
684
685 // Extract index
686 idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3];
687 printf("verify:: idx = %lu\n", idx);
688
689 // Generate hash key (R || root || idx)
690 memcpy(hash_key, sig_msg+4,n);
691 memcpy(hash_key+n, pk, n);
692 to_byte(hash_key+2*n, idx, n);
693
694 sig_msg += (n+4);
695 sig_msg_len -= (n+4);
696
697 // hash message
698 unsigned long long tmp_sig_len = params->wots_par.keysize+params->h*n;
699 m_len = sig_msg_len - tmp_sig_len;
700 h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n);
701
702 //-----------------------
703 // Verify signature
704 //-----------------------
705
706 // Prepare Address
707 setOTSADRS(ots_addr, idx);
708 // Check WOTS signature
709 wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr);
710
711 sig_msg += params->wots_par.keysize;
712 sig_msg_len -= params->wots_par.keysize;
713
714 // Compute Ltree
715 setLtreeADRS(ltree_addr, idx);
716 l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr);
717
718 // Compute root
719 validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr);
720
721 sig_msg += params->h*n;
722 sig_msg_len -= params->h*n;
723
724 for (i = 0; i < n; i++)
725 if (root[i] != pk[i])
726 goto fail;
727
728 *msglen = sig_msg_len;
729 for (i = 0; i < *msglen; i++)
730 msg[i] = sig_msg[i];
731
732 return 0;
733
734
735 fail:
736 *msglen = sig_msg_len;
737 for (i = 0; i < *msglen; i++)
738 msg[i] = 0;
739 *msglen = -1;
740 return -1;
741 }
742
743 /*
744 * Generates a XMSSMT key pair for a given parameter set.
745 * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]
746 * Format pk: [root || PUB_SEED] omitting algo oid.
747 */
xmssmt_keypair(unsigned char * pk,unsigned char * sk,bds_state * states,unsigned char * wots_sigs,xmssmt_params * params)748 int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs, xmssmt_params *params)
749 {
750 unsigned int n = params->n;
751 unsigned int i;
752 unsigned char ots_seed[params->n];
753 // Set idx = 0
754 for (i = 0; i < params->index_len; i++) {
755 sk[i] = 0;
756 }
757 // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte)
758 randombytes(sk+params->index_len, 3*n);
759 // Copy PUB_SEED to public key
760 memcpy(pk+n, sk+params->index_len+2*n, n);
761
762 // Set address to point on the single tree on layer d-1
763 uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
764 setLayerADRS(addr, (params->d-1));
765 // Set up state and compute wots signatures for all but topmost tree root
766 for (i = 0; i < params->d - 1; i++) {
767 // Compute seed for OTS key pair
768 treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr);
769 setLayerADRS(addr, (i+1));
770 get_seed(ots_seed, sk+params->index_len, n, addr);
771 wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, pk, ots_seed, &(params->xmss_par.wots_par), pk+n, addr);
772 }
773 treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr);
774 memcpy(sk+params->index_len+3*n, pk, n);
775 return 0;
776 }
777
778 /**
779 * Signs a message.
780 * Returns
781 * 1. an array containing the signature followed by the message AND
782 * 2. an updated secret key!
783 *
784 */
xmssmt_sign(unsigned char * sk,bds_state * states,unsigned char * wots_sigs,unsigned char * sig_msg,unsigned long long * sig_msg_len,const unsigned char * msg,unsigned long long msglen,const xmssmt_params * params)785 int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params)
786 {
787 unsigned int n = params->n;
788
789 unsigned int tree_h = params->xmss_par.h;
790 unsigned int h = params->h;
791 unsigned int k = params->xmss_par.k;
792 unsigned int idx_len = params->index_len;
793 uint64_t idx_tree;
794 uint32_t idx_leaf;
795 uint64_t i, j;
796 int needswap_upto = -1;
797 unsigned int updates;
798
799 unsigned char sk_seed[n];
800 unsigned char sk_prf[n];
801 unsigned char pub_seed[n];
802 // Init working params
803 unsigned char R[n];
804 unsigned char msg_h[n];
805 unsigned char hash_key[3*n];
806 unsigned char ots_seed[n];
807 uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
808 uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
809 unsigned char idx_bytes_32[32];
810 bds_state tmp;
811
812 // Extract SK
813 unsigned long long idx = 0;
814 for (i = 0; i < idx_len; i++) {
815 idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i);
816 }
817
818 memcpy(sk_seed, sk+idx_len, n);
819 memcpy(sk_prf, sk+idx_len+n, n);
820 memcpy(pub_seed, sk+idx_len+2*n, n);
821
822 // Update SK
823 for (i = 0; i < idx_len; i++) {
824 sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255;
825 }
826 // -- Secret key for this non-forward-secure version is now updated.
827 // -- A productive implementation should use a file handle instead and write the updated secret key at this point!
828
829
830 // ---------------------------------
831 // Message Hashing
832 // ---------------------------------
833
834 // Message Hash:
835 // First compute pseudorandom value
836 to_byte(idx_bytes_32, idx, 32);
837 prf(R, idx_bytes_32, sk_prf, n);
838 // Generate hash key (R || root || idx)
839 memcpy(hash_key, R, n);
840 memcpy(hash_key+n, sk+idx_len+3*n, n);
841 to_byte(hash_key+2*n, idx, n);
842
843 // Then use it for message digest
844 h_msg(msg_h, msg, msglen, hash_key, 3*n, n);
845
846 // Start collecting signature
847 *sig_msg_len = 0;
848
849 // Copy index to signature
850 for (i = 0; i < idx_len; i++) {
851 sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255;
852 }
853
854 sig_msg += idx_len;
855 *sig_msg_len += idx_len;
856
857 // Copy R to signature
858 for (i = 0; i < n; i++)
859 sig_msg[i] = R[i];
860
861 sig_msg += n;
862 *sig_msg_len += n;
863
864 // ----------------------------------
865 // Now we start to "really sign"
866 // ----------------------------------
867
868 // Handle lowest layer separately as it is slightly different...
869
870 // Prepare Address
871 setType(ots_addr, 0);
872 idx_tree = idx >> tree_h;
873 idx_leaf = (idx & ((1 << tree_h)-1));
874 setLayerADRS(ots_addr, 0);
875 setTreeADRS(ots_addr, idx_tree);
876 setOTSADRS(ots_addr, idx_leaf);
877
878 // Compute seed for OTS key pair
879 get_seed(ots_seed, sk_seed, n, ots_addr);
880
881 // Compute WOTS signature
882 wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr);
883
884 sig_msg += params->xmss_par.wots_par.keysize;
885 *sig_msg_len += params->xmss_par.wots_par.keysize;
886
887 memcpy(sig_msg, states[0].auth, tree_h*n);
888 sig_msg += tree_h*n;
889 *sig_msg_len += tree_h*n;
890
891 // prepare signature of remaining layers
892 for (i = 1; i < params->d; i++) {
893 // put WOTS signature in place
894 memcpy(sig_msg, wots_sigs + (i-1)*params->xmss_par.wots_par.keysize, params->xmss_par.wots_par.keysize);
895
896 sig_msg += params->xmss_par.wots_par.keysize;
897 *sig_msg_len += params->xmss_par.wots_par.keysize;
898
899 // put AUTH nodes in place
900 memcpy(sig_msg, states[i].auth, tree_h*n);
901 sig_msg += tree_h*n;
902 *sig_msg_len += tree_h*n;
903 }
904
905 updates = (tree_h - k) >> 1;
906
907 setTreeADRS(addr, (idx_tree + 1));
908 // mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists
909 if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << h)) {
910 bds_state_update(&states[params->d], sk_seed, &(params->xmss_par), pub_seed, addr);
911 }
912
913 for (i = 0; i < params->d; i++) {
914 // check if we're not at the end of a tree
915 if (! (((idx + 1) & ((1ULL << ((i+1)*tree_h)) - 1)) == 0)) {
916 idx_leaf = (idx >> (tree_h * i)) & ((1 << tree_h)-1);
917 idx_tree = (idx >> (tree_h * (i+1)));
918 setLayerADRS(addr, i);
919 setTreeADRS(addr, idx_tree);
920 if (i == (unsigned int) (needswap_upto + 1)) {
921 bds_round(&states[i], idx_leaf, sk_seed, &(params->xmss_par), pub_seed, addr);
922 }
923 updates = bds_treehash_update(&states[i], updates, sk_seed, &(params->xmss_par), pub_seed, addr);
924 setTreeADRS(addr, (idx_tree + 1));
925 // if a NEXT-tree exists for this level;
926 if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << (h - tree_h * i))) {
927 if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << h)) {
928 bds_state_update(&states[params->d + i], sk_seed, &(params->xmss_par), pub_seed, addr);
929 updates--;
930 }
931 }
932 }
933 else if (idx < (1ULL << h) - 1) {
934 memcpy(&tmp, states+params->d + i, sizeof(bds_state));
935 memcpy(states+params->d + i, states + i, sizeof(bds_state));
936 memcpy(states + i, &tmp, sizeof(bds_state));
937
938 setLayerADRS(ots_addr, (i+1));
939 setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * tree_h)));
940 setOTSADRS(ots_addr, (((idx >> ((i+1) * tree_h)) + 1) & ((1 << tree_h)-1)));
941
942 get_seed(ots_seed, sk+params->index_len, n, ots_addr);
943 wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, states[i].stack, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr);
944
945 states[params->d + i].stackoffset = 0;
946 states[params->d + i].next_leaf = 0;
947
948 updates--; // WOTS-signing counts as one update
949 needswap_upto = i;
950 for (j = 0; j < tree_h-k; j++) {
951 states[i].treehash[j].completed = 1;
952 }
953 }
954 }
955
956 //Whipe secret elements?
957 //zerobytes(tsk, CRYPTO_SECRETKEYBYTES);
958
959 memcpy(sig_msg, msg, msglen);
960 *sig_msg_len += msglen;
961
962 return 0;
963 }
964
965 /**
966 * Verifies a given message signature pair under a given public key.
967 */
xmssmt_sign_open(unsigned char * msg,unsigned long long * msglen,const unsigned char * sig_msg,unsigned long long sig_msg_len,const unsigned char * pk,const xmssmt_params * params)968 int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params)
969 {
970 unsigned int n = params->n;
971
972 unsigned int tree_h = params->xmss_par.h;
973 unsigned int idx_len = params->index_len;
974 uint64_t idx_tree;
975 uint32_t idx_leaf;
976
977 unsigned long long i, m_len;
978 unsigned long long idx=0;
979 unsigned char wots_pk[params->xmss_par.wots_par.keysize];
980 unsigned char pkhash[n];
981 unsigned char root[n];
982 unsigned char msg_h[n];
983 unsigned char hash_key[3*n];
984
985 unsigned char pub_seed[n];
986 memcpy(pub_seed, pk+n, n);
987
988 // Init addresses
989 uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
990 uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
991 uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
992
993 // Extract index
994 for (i = 0; i < idx_len; i++) {
995 idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i));
996 }
997 printf("verify:: idx = %llu\n", idx);
998 sig_msg += idx_len;
999 sig_msg_len -= idx_len;
1000
1001 // Generate hash key (R || root || idx)
1002 memcpy(hash_key, sig_msg,n);
1003 memcpy(hash_key+n, pk, n);
1004 to_byte(hash_key+2*n, idx, n);
1005
1006 sig_msg += n;
1007 sig_msg_len -= n;
1008
1009
1010 // hash message (recall, R is now on pole position at sig_msg
1011 unsigned long long tmp_sig_len = (params->d * params->xmss_par.wots_par.keysize) + (params->h * n);
1012 m_len = sig_msg_len - tmp_sig_len;
1013 h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n);
1014
1015
1016 //-----------------------
1017 // Verify signature
1018 //-----------------------
1019
1020 // Prepare Address
1021 idx_tree = idx >> tree_h;
1022 idx_leaf = (idx & ((1 << tree_h)-1));
1023 setLayerADRS(ots_addr, 0);
1024 setTreeADRS(ots_addr, idx_tree);
1025 setType(ots_addr, 0);
1026
1027 memcpy(ltree_addr, ots_addr, 12);
1028 setType(ltree_addr, 1);
1029
1030 memcpy(node_addr, ltree_addr, 12);
1031 setType(node_addr, 2);
1032
1033 setOTSADRS(ots_addr, idx_leaf);
1034
1035 // Check WOTS signature
1036 wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr);
1037
1038 sig_msg += params->xmss_par.wots_par.keysize;
1039 sig_msg_len -= params->xmss_par.wots_par.keysize;
1040
1041 // Compute Ltree
1042 setLtreeADRS(ltree_addr, idx_leaf);
1043 l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr);
1044
1045 // Compute root
1046 validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr);
1047
1048 sig_msg += tree_h*n;
1049 sig_msg_len -= tree_h*n;
1050
1051 for (i = 1; i < params->d; i++) {
1052 // Prepare Address
1053 idx_leaf = (idx_tree & ((1 << tree_h)-1));
1054 idx_tree = idx_tree >> tree_h;
1055
1056 setLayerADRS(ots_addr, i);
1057 setTreeADRS(ots_addr, idx_tree);
1058 setType(ots_addr, 0);
1059
1060 memcpy(ltree_addr, ots_addr, 12);
1061 setType(ltree_addr, 1);
1062
1063 memcpy(node_addr, ltree_addr, 12);
1064 setType(node_addr, 2);
1065
1066 setOTSADRS(ots_addr, idx_leaf);
1067
1068 // Check WOTS signature
1069 wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr);
1070
1071 sig_msg += params->xmss_par.wots_par.keysize;
1072 sig_msg_len -= params->xmss_par.wots_par.keysize;
1073
1074 // Compute Ltree
1075 setLtreeADRS(ltree_addr, idx_leaf);
1076 l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr);
1077
1078 // Compute root
1079 validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr);
1080
1081 sig_msg += tree_h*n;
1082 sig_msg_len -= tree_h*n;
1083
1084 }
1085
1086 for (i = 0; i < n; i++)
1087 if (root[i] != pk[i])
1088 goto fail;
1089
1090 *msglen = sig_msg_len;
1091 for (i = 0; i < *msglen; i++)
1092 msg[i] = sig_msg[i];
1093
1094 return 0;
1095
1096
1097 fail:
1098 *msglen = sig_msg_len;
1099 for (i = 0; i < *msglen; i++)
1100 msg[i] = 0;
1101 *msglen = -1;
1102 return -1;
1103 }
1104