1 /* $NetBSD: vfs_wapbl.c,v 1.117 2024/12/07 15:10:42 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2003, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * This implements file system independent write ahead filesystem logging. 34 */ 35 36 #define WAPBL_INTERNAL 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: vfs_wapbl.c,v 1.117 2024/12/07 15:10:42 riastradh Exp $"); 40 41 #include <sys/param.h> 42 #include <sys/types.h> 43 44 #include <sys/bitops.h> 45 #include <sys/time.h> 46 #include <sys/wapbl.h> 47 #include <sys/wapbl_replay.h> 48 49 #ifdef _KERNEL 50 51 #include <sys/atomic.h> 52 #include <sys/conf.h> 53 #include <sys/evcnt.h> 54 #include <sys/file.h> 55 #include <sys/kauth.h> 56 #include <sys/kernel.h> 57 #include <sys/module.h> 58 #include <sys/mount.h> 59 #include <sys/mutex.h> 60 #include <sys/namei.h> 61 #include <sys/proc.h> 62 #include <sys/resourcevar.h> 63 #include <sys/sdt.h> 64 #include <sys/sysctl.h> 65 #include <sys/uio.h> 66 #include <sys/vnode.h> 67 68 #include <miscfs/specfs/specdev.h> 69 70 #define wapbl_alloc(s) kmem_alloc((s), KM_SLEEP) 71 #define wapbl_free(a, s) kmem_free((a), (s)) 72 #define wapbl_calloc(n, s) kmem_zalloc((n)*(s), KM_SLEEP) 73 74 static int wapbl_flush_disk_cache = 1; 75 static int wapbl_verbose_commit = 0; 76 static int wapbl_allow_dpofua = 0; /* switched off by default for now */ 77 static int wapbl_journal_iobufs = 4; 78 79 static inline size_t wapbl_space_free(size_t, off_t, off_t); 80 81 #else /* !_KERNEL */ 82 83 #include <assert.h> 84 #include <errno.h> 85 #include <stdbool.h> 86 #include <stdio.h> 87 #include <stdlib.h> 88 #include <string.h> 89 90 #define KDASSERT(x) assert(x) 91 #define KASSERT(x) assert(x) 92 #define wapbl_alloc(s) malloc(s) 93 #define wapbl_free(a, s) free(a) 94 #define wapbl_calloc(n, s) calloc((n), (s)) 95 96 #define SET_ERROR(E) (E) 97 98 #endif /* !_KERNEL */ 99 100 /* 101 * INTERNAL DATA STRUCTURES 102 */ 103 104 /* 105 * This structure holds per-mount log information. 106 * 107 * Legend: a = atomic access only 108 * r = read-only after init 109 * l = rwlock held 110 * m = mutex held 111 * lm = rwlock held writing or mutex held 112 * u = unlocked access ok 113 * b = bufcache_lock held 114 */ 115 LIST_HEAD(wapbl_ino_head, wapbl_ino); 116 struct wapbl { 117 struct vnode *wl_logvp; /* r: log here */ 118 struct vnode *wl_devvp; /* r: log on this device */ 119 struct mount *wl_mount; /* r: mountpoint wl is associated with */ 120 daddr_t wl_logpbn; /* r: Physical block number of start of log */ 121 int wl_log_dev_bshift; /* r: logarithm of device block size of log 122 device */ 123 int wl_fs_dev_bshift; /* r: logarithm of device block size of 124 filesystem device */ 125 126 unsigned wl_lock_count; /* m: Count of transactions in progress */ 127 128 size_t wl_circ_size; /* r: Number of bytes in buffer of log */ 129 size_t wl_circ_off; /* r: Number of bytes reserved at start */ 130 131 size_t wl_bufcount_max; /* r: Number of buffers reserved for log */ 132 size_t wl_bufbytes_max; /* r: Number of buf bytes reserved for log */ 133 134 off_t wl_head; /* l: Byte offset of log head */ 135 off_t wl_tail; /* l: Byte offset of log tail */ 136 /* 137 * WAPBL log layout, stored on wl_devvp at wl_logpbn: 138 * 139 * ___________________ wl_circ_size __________________ 140 * / \ 141 * +---------+---------+-------+--------------+--------+ 142 * [ commit0 | commit1 | CCWCW | EEEEEEEEEEEE | CCCWCW ] 143 * +---------+---------+-------+--------------+--------+ 144 * wl_circ_off --^ ^-- wl_head ^-- wl_tail 145 * 146 * commit0 and commit1 are commit headers. A commit header has 147 * a generation number, indicating which of the two headers is 148 * more recent, and an assignment of head and tail pointers. 149 * The rest is a circular queue of log records, starting at 150 * the byte offset wl_circ_off. 151 * 152 * E marks empty space for records. 153 * W marks records for block writes issued but waiting. 154 * C marks completed records. 155 * 156 * wapbl_flush writes new records to empty `E' spaces after 157 * wl_head from the current transaction in memory. 158 * 159 * wapbl_truncate advances wl_tail past any completed `C' 160 * records, freeing them up for use. 161 * 162 * head == tail == 0 means log is empty. 163 * head == tail != 0 means log is full. 164 * 165 * See assertions in wapbl_advance() for other boundary 166 * conditions. 167 * 168 * Only wapbl_flush moves the head, except when wapbl_truncate 169 * sets it to 0 to indicate that the log is empty. 170 * 171 * Only wapbl_truncate moves the tail, except when wapbl_flush 172 * sets it to wl_circ_off to indicate that the log is full. 173 */ 174 175 struct wapbl_wc_header *wl_wc_header; /* l */ 176 void *wl_wc_scratch; /* l: scratch space (XXX: por que?!?) */ 177 178 kmutex_t wl_mtx; /* u: short-term lock */ 179 krwlock_t wl_rwlock; /* u: File system transaction lock */ 180 181 /* 182 * Must be held while accessing 183 * wl_count or wl_bufs or head or tail 184 */ 185 186 #if _KERNEL 187 /* 188 * Callback called from within the flush routine to flush any extra 189 * bits. Note that flush may be skipped without calling this if 190 * there are no outstanding buffers in the transaction. 191 */ 192 wapbl_flush_fn_t wl_flush; /* r */ 193 wapbl_flush_fn_t wl_flush_abort;/* r */ 194 195 /* Event counters */ 196 char wl_ev_group[EVCNT_STRING_MAX]; /* r */ 197 struct evcnt wl_ev_commit; /* l */ 198 struct evcnt wl_ev_journalwrite; /* l */ 199 struct evcnt wl_ev_jbufs_bio_nowait; /* l */ 200 struct evcnt wl_ev_metawrite; /* lm */ 201 struct evcnt wl_ev_cacheflush; /* l */ 202 #endif 203 204 size_t wl_bufbytes; /* m: Byte count of pages in wl_bufs */ 205 size_t wl_bufcount; /* m: Count of buffers in wl_bufs */ 206 size_t wl_bcount; /* m: Total bcount of wl_bufs */ 207 208 TAILQ_HEAD(, buf) wl_bufs; /* m: Buffers in current transaction */ 209 210 kcondvar_t wl_reclaimable_cv; /* m (obviously) */ 211 size_t wl_reclaimable_bytes; /* m: Amount of space available for 212 reclamation by truncate */ 213 int wl_error_count; /* m: # of wl_entries with errors */ 214 size_t wl_reserved_bytes; /* never truncate log smaller than this */ 215 216 #ifdef WAPBL_DEBUG_BUFBYTES 217 size_t wl_unsynced_bufbytes; /* Byte count of unsynced buffers */ 218 #endif 219 220 #if _KERNEL 221 int wl_brperjblock; /* r Block records per journal block */ 222 #endif 223 224 TAILQ_HEAD(, wapbl_dealloc) wl_dealloclist; /* lm: list head */ 225 int wl_dealloccnt; /* lm: total count */ 226 int wl_dealloclim; /* r: max count */ 227 228 /* hashtable of inode numbers for allocated but unlinked inodes */ 229 /* synch ??? */ 230 struct wapbl_ino_head *wl_inohash; 231 u_long wl_inohashmask; 232 int wl_inohashcnt; 233 234 SIMPLEQ_HEAD(, wapbl_entry) wl_entries; /* m: On disk transaction 235 accounting */ 236 237 /* buffers for wapbl_buffered_write() */ 238 TAILQ_HEAD(, buf) wl_iobufs; /* l: Free or filling bufs */ 239 TAILQ_HEAD(, buf) wl_iobufs_busy; /* l: In-transit bufs */ 240 241 int wl_dkcache; /* r: disk cache flags */ 242 #define WAPBL_USE_FUA(wl) \ 243 (wapbl_allow_dpofua && ISSET((wl)->wl_dkcache, DKCACHE_FUA)) 244 #define WAPBL_JFLAGS(wl) \ 245 (WAPBL_USE_FUA(wl) ? (wl)->wl_jwrite_flags : 0) 246 #define WAPBL_JDATA_FLAGS(wl) \ 247 (WAPBL_JFLAGS(wl) & B_MEDIA_DPO) /* only DPO */ 248 int wl_jwrite_flags; /* r: journal write flags */ 249 }; 250 251 #ifdef WAPBL_DEBUG_PRINT 252 int wapbl_debug_print = WAPBL_DEBUG_PRINT; 253 #endif 254 255 /****************************************************************/ 256 #ifdef _KERNEL 257 258 #ifdef WAPBL_DEBUG 259 struct wapbl *wapbl_debug_wl; 260 #endif 261 262 static int wapbl_write_commit(struct wapbl *, off_t, off_t); 263 static int wapbl_write_blocks(struct wapbl *, off_t *); 264 static int wapbl_write_revocations(struct wapbl *, off_t *); 265 static int wapbl_write_inodes(struct wapbl *, off_t *); 266 #endif /* _KERNEL */ 267 268 static int wapbl_replay_process(struct wapbl_replay *, off_t, off_t); 269 270 static inline size_t wapbl_space_used(size_t, off_t, off_t); 271 272 #ifdef _KERNEL 273 274 static struct pool wapbl_entry_pool; 275 static struct pool wapbl_dealloc_pool; 276 277 #define WAPBL_INODETRK_SIZE 83 278 static int wapbl_ino_pool_refcount; 279 static struct pool wapbl_ino_pool; 280 struct wapbl_ino { 281 LIST_ENTRY(wapbl_ino) wi_hash; 282 ino_t wi_ino; 283 mode_t wi_mode; 284 }; 285 286 static void wapbl_inodetrk_init(struct wapbl *wl, u_int size); 287 static void wapbl_inodetrk_free(struct wapbl *wl); 288 static struct wapbl_ino *wapbl_inodetrk_get(struct wapbl *wl, ino_t ino); 289 290 static size_t wapbl_transaction_len(struct wapbl *wl); 291 static inline size_t wapbl_transaction_inodes_len(struct wapbl *wl); 292 293 static void wapbl_deallocation_free(struct wapbl *, struct wapbl_dealloc *, 294 bool); 295 296 static void wapbl_evcnt_init(struct wapbl *); 297 static void wapbl_evcnt_free(struct wapbl *); 298 299 static void wapbl_dkcache_init(struct wapbl *); 300 301 #if 0 302 int wapbl_replay_verify(struct wapbl_replay *, struct vnode *); 303 #endif 304 305 static int wapbl_replay_isopen1(struct wapbl_replay *); 306 307 const struct wapbl_ops wapbl_ops = { 308 .wo_wapbl_discard = wapbl_discard, 309 .wo_wapbl_replay_isopen = wapbl_replay_isopen1, 310 .wo_wapbl_replay_can_read = wapbl_replay_can_read, 311 .wo_wapbl_replay_read = wapbl_replay_read, 312 .wo_wapbl_add_buf = wapbl_add_buf, 313 .wo_wapbl_remove_buf = wapbl_remove_buf, 314 .wo_wapbl_resize_buf = wapbl_resize_buf, 315 .wo_wapbl_begin = wapbl_begin, 316 .wo_wapbl_end = wapbl_end, 317 .wo_wapbl_junlock_assert= wapbl_junlock_assert, 318 .wo_wapbl_jlock_assert = wapbl_jlock_assert, 319 320 /* XXX: the following is only used to say "this is a wapbl buf" */ 321 .wo_wapbl_biodone = wapbl_biodone, 322 }; 323 324 SYSCTL_SETUP(wapbl_sysctl_init, "wapbl sysctl") 325 { 326 int rv; 327 const struct sysctlnode *rnode, *cnode; 328 329 rv = sysctl_createv(clog, 0, NULL, &rnode, 330 CTLFLAG_PERMANENT, 331 CTLTYPE_NODE, "wapbl", 332 SYSCTL_DESCR("WAPBL journaling options"), 333 NULL, 0, NULL, 0, 334 CTL_VFS, CTL_CREATE, CTL_EOL); 335 if (rv) 336 return; 337 338 rv = sysctl_createv(clog, 0, &rnode, &cnode, 339 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 340 CTLTYPE_INT, "flush_disk_cache", 341 SYSCTL_DESCR("flush disk cache"), 342 NULL, 0, &wapbl_flush_disk_cache, 0, 343 CTL_CREATE, CTL_EOL); 344 if (rv) 345 return; 346 347 rv = sysctl_createv(clog, 0, &rnode, &cnode, 348 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 349 CTLTYPE_INT, "verbose_commit", 350 SYSCTL_DESCR("show time and size of wapbl log commits"), 351 NULL, 0, &wapbl_verbose_commit, 0, 352 CTL_CREATE, CTL_EOL); 353 if (rv) 354 return; 355 356 rv = sysctl_createv(clog, 0, &rnode, &cnode, 357 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 358 CTLTYPE_INT, "allow_dpofua", 359 SYSCTL_DESCR("allow use of FUA/DPO instead of cache flush" 360 " if available"), 361 NULL, 0, &wapbl_allow_dpofua, 0, 362 CTL_CREATE, CTL_EOL); 363 if (rv) 364 return; 365 366 rv = sysctl_createv(clog, 0, &rnode, &cnode, 367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 368 CTLTYPE_INT, "journal_iobufs", 369 SYSCTL_DESCR("count of bufs used for journal I/O" 370 " (max async count)"), 371 NULL, 0, &wapbl_journal_iobufs, 0, 372 CTL_CREATE, CTL_EOL); 373 if (rv) 374 return; 375 376 return; 377 } 378 379 static void 380 wapbl_init(void) 381 { 382 383 pool_init(&wapbl_entry_pool, sizeof(struct wapbl_entry), 0, 0, 0, 384 "wapblentrypl", &pool_allocator_kmem, IPL_VM); 385 pool_init(&wapbl_dealloc_pool, sizeof(struct wapbl_dealloc), 0, 0, 0, 386 "wapbldealloc", &pool_allocator_nointr, IPL_NONE); 387 } 388 389 static int 390 wapbl_fini(void) 391 { 392 393 pool_destroy(&wapbl_dealloc_pool); 394 pool_destroy(&wapbl_entry_pool); 395 396 return 0; 397 } 398 399 static void 400 wapbl_evcnt_init(struct wapbl *wl) 401 { 402 403 snprintf(wl->wl_ev_group, sizeof(wl->wl_ev_group), 404 "wapbl fsid 0x%x/0x%x", 405 wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[0], 406 wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[1]); 407 408 evcnt_attach_dynamic(&wl->wl_ev_commit, EVCNT_TYPE_MISC, 409 NULL, wl->wl_ev_group, "commit"); 410 evcnt_attach_dynamic(&wl->wl_ev_journalwrite, EVCNT_TYPE_MISC, 411 NULL, wl->wl_ev_group, "journal write total"); 412 evcnt_attach_dynamic(&wl->wl_ev_jbufs_bio_nowait, EVCNT_TYPE_MISC, 413 NULL, wl->wl_ev_group, "journal write finished async"); 414 evcnt_attach_dynamic(&wl->wl_ev_metawrite, EVCNT_TYPE_MISC, 415 NULL, wl->wl_ev_group, "metadata async write"); 416 evcnt_attach_dynamic(&wl->wl_ev_cacheflush, EVCNT_TYPE_MISC, 417 NULL, wl->wl_ev_group, "cache flush"); 418 } 419 420 static void 421 wapbl_evcnt_free(struct wapbl *wl) 422 { 423 424 evcnt_detach(&wl->wl_ev_commit); 425 evcnt_detach(&wl->wl_ev_journalwrite); 426 evcnt_detach(&wl->wl_ev_jbufs_bio_nowait); 427 evcnt_detach(&wl->wl_ev_metawrite); 428 evcnt_detach(&wl->wl_ev_cacheflush); 429 } 430 431 static void 432 wapbl_dkcache_init(struct wapbl *wl) 433 { 434 int error; 435 436 /* Get disk cache flags */ 437 error = VOP_IOCTL(wl->wl_devvp, DIOCGCACHE, &wl->wl_dkcache, 438 FWRITE, FSCRED); 439 if (error) { 440 /* behave as if there was a write cache */ 441 wl->wl_dkcache = DKCACHE_WRITE; 442 } 443 444 /* Use FUA instead of cache flush if available */ 445 if (ISSET(wl->wl_dkcache, DKCACHE_FUA)) 446 wl->wl_jwrite_flags |= B_MEDIA_FUA; 447 448 /* Use DPO for journal writes if available */ 449 if (ISSET(wl->wl_dkcache, DKCACHE_DPO)) 450 wl->wl_jwrite_flags |= B_MEDIA_DPO; 451 } 452 453 static int 454 wapbl_start_flush_inodes(struct wapbl *wl, struct wapbl_replay *wr) 455 { 456 int error, i; 457 458 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 459 ("wapbl_start: reusing log with %d inodes\n", wr->wr_inodescnt)); 460 461 /* 462 * Its only valid to reuse the replay log if its 463 * the same as the new log we just opened. 464 */ 465 KDASSERT(!wapbl_replay_isopen(wr)); 466 KASSERT(wl->wl_devvp->v_type == VBLK); 467 KASSERT(wr->wr_devvp->v_type == VBLK); 468 KASSERT(wl->wl_devvp->v_rdev == wr->wr_devvp->v_rdev); 469 KASSERT(wl->wl_logpbn == wr->wr_logpbn); 470 KASSERT(wl->wl_circ_size == wr->wr_circ_size); 471 KASSERT(wl->wl_circ_off == wr->wr_circ_off); 472 KASSERT(wl->wl_log_dev_bshift == wr->wr_log_dev_bshift); 473 KASSERT(wl->wl_fs_dev_bshift == wr->wr_fs_dev_bshift); 474 475 wl->wl_wc_header->wc_generation = wr->wr_generation + 1; 476 477 for (i = 0; i < wr->wr_inodescnt; i++) 478 wapbl_register_inode(wl, wr->wr_inodes[i].wr_inumber, 479 wr->wr_inodes[i].wr_imode); 480 481 /* Make sure new transaction won't overwrite old inodes list */ 482 KDASSERT(wapbl_transaction_len(wl) <= 483 wapbl_space_free(wl->wl_circ_size, wr->wr_inodeshead, 484 wr->wr_inodestail)); 485 486 wl->wl_head = wl->wl_tail = wr->wr_inodeshead; 487 wl->wl_reclaimable_bytes = wl->wl_reserved_bytes = 488 wapbl_transaction_len(wl); 489 490 error = wapbl_write_inodes(wl, &wl->wl_head); 491 if (error) 492 return error; 493 494 KASSERT(wl->wl_head != wl->wl_tail); 495 KASSERT(wl->wl_head != 0); 496 497 return 0; 498 } 499 500 int 501 wapbl_start(struct wapbl ** wlp, struct mount *mp, struct vnode *vp, 502 daddr_t off, size_t count, size_t blksize, struct wapbl_replay *wr, 503 wapbl_flush_fn_t flushfn, wapbl_flush_fn_t flushabortfn) 504 { 505 struct wapbl *wl; 506 struct vnode *devvp; 507 daddr_t logpbn; 508 int error; 509 int log_dev_bshift = ilog2(blksize); 510 int fs_dev_bshift = log_dev_bshift; 511 int run; 512 513 WAPBL_PRINTF(WAPBL_PRINT_OPEN, 514 ("wapbl_start: vp=%p off=%"PRId64" count=%zu blksize=%zu\n", 515 vp, off, count, blksize)); 516 517 if (log_dev_bshift > fs_dev_bshift) { 518 WAPBL_PRINTF(WAPBL_PRINT_OPEN, 519 ("wapbl: log device's block size cannot be larger " 520 "than filesystem's\n")); 521 /* 522 * Not currently implemented, although it could be if 523 * needed someday. 524 */ 525 return SET_ERROR(ENOSYS); 526 } 527 528 if (off < 0) 529 return SET_ERROR(EINVAL); 530 531 if (blksize < DEV_BSIZE) 532 return SET_ERROR(EINVAL); 533 if (blksize % DEV_BSIZE) 534 return SET_ERROR(EINVAL); 535 536 /* XXXTODO: verify that the full load is writable */ 537 538 /* 539 * XXX check for minimum log size 540 * minimum is governed by minimum amount of space 541 * to complete a transaction. (probably truncate) 542 */ 543 /* XXX for now pick something minimal */ 544 if ((count * blksize) < MAXPHYS) { 545 return SET_ERROR(ENOSPC); 546 } 547 548 if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, &run)) != 0) { 549 return error; 550 } 551 552 wl = wapbl_calloc(1, sizeof(*wl)); 553 rw_init(&wl->wl_rwlock); 554 mutex_init(&wl->wl_mtx, MUTEX_DEFAULT, IPL_NONE); 555 cv_init(&wl->wl_reclaimable_cv, "wapblrec"); 556 TAILQ_INIT(&wl->wl_bufs); 557 SIMPLEQ_INIT(&wl->wl_entries); 558 559 wl->wl_logvp = vp; 560 wl->wl_devvp = devvp; 561 wl->wl_mount = mp; 562 wl->wl_logpbn = logpbn; 563 wl->wl_log_dev_bshift = log_dev_bshift; 564 wl->wl_fs_dev_bshift = fs_dev_bshift; 565 566 wl->wl_flush = flushfn; 567 wl->wl_flush_abort = flushabortfn; 568 569 /* Reserve two log device blocks for the commit headers */ 570 wl->wl_circ_off = 2<<wl->wl_log_dev_bshift; 571 wl->wl_circ_size = ((count * blksize) - wl->wl_circ_off); 572 /* truncate the log usage to a multiple of log_dev_bshift */ 573 wl->wl_circ_size >>= wl->wl_log_dev_bshift; 574 wl->wl_circ_size <<= wl->wl_log_dev_bshift; 575 576 /* 577 * wl_bufbytes_max limits the size of the in memory transaction space. 578 * - Since buffers are allocated and accounted for in units of 579 * PAGE_SIZE it is required to be a multiple of PAGE_SIZE 580 * (i.e. 1<<PAGE_SHIFT) 581 * - Since the log device has to be written in units of 582 * 1<<wl_log_dev_bshift it is required to be a multiple of 583 * 1<<wl_log_dev_bshift. 584 * - Since filesystem will provide data in units of 1<<wl_fs_dev_bshift, 585 * it is convenient to be a multiple of 1<<wl_fs_dev_bshift. 586 * Therefore it must be multiple of the least common multiple of those 587 * three quantities. Fortunately, all of those quantities are 588 * guaranteed to be a power of two, and the least common multiple of 589 * a set of numbers which are all powers of two is simply the maximum 590 * of those numbers. Finally, the maximum logarithm of a power of two 591 * is the same as the log of the maximum power of two. So we can do 592 * the following operations to size wl_bufbytes_max: 593 */ 594 595 /* XXX fix actual number of pages reserved per filesystem. */ 596 wl->wl_bufbytes_max = MIN(wl->wl_circ_size, buf_memcalc() / 2); 597 598 /* Round wl_bufbytes_max to the largest power of two constraint */ 599 wl->wl_bufbytes_max >>= PAGE_SHIFT; 600 wl->wl_bufbytes_max <<= PAGE_SHIFT; 601 wl->wl_bufbytes_max >>= wl->wl_log_dev_bshift; 602 wl->wl_bufbytes_max <<= wl->wl_log_dev_bshift; 603 wl->wl_bufbytes_max >>= wl->wl_fs_dev_bshift; 604 wl->wl_bufbytes_max <<= wl->wl_fs_dev_bshift; 605 606 /* XXX maybe use filesystem fragment size instead of 1024 */ 607 /* XXX fix actual number of buffers reserved per filesystem. */ 608 wl->wl_bufcount_max = (buf_nbuf() / 2) * 1024; 609 610 wl->wl_brperjblock = ((1<<wl->wl_log_dev_bshift) 611 - offsetof(struct wapbl_wc_blocklist, wc_blocks)) / 612 sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]); 613 KASSERT(wl->wl_brperjblock > 0); 614 615 /* XXX tie this into resource estimation */ 616 wl->wl_dealloclim = wl->wl_bufbytes_max / mp->mnt_stat.f_bsize / 2; 617 TAILQ_INIT(&wl->wl_dealloclist); 618 619 wapbl_inodetrk_init(wl, WAPBL_INODETRK_SIZE); 620 621 wapbl_evcnt_init(wl); 622 623 wapbl_dkcache_init(wl); 624 625 /* Initialize the commit header */ 626 { 627 struct wapbl_wc_header *wc; 628 size_t len = 1 << wl->wl_log_dev_bshift; 629 wc = wapbl_calloc(1, len); 630 wc->wc_type = WAPBL_WC_HEADER; 631 wc->wc_len = len; 632 wc->wc_circ_off = wl->wl_circ_off; 633 wc->wc_circ_size = wl->wl_circ_size; 634 /* XXX wc->wc_fsid */ 635 wc->wc_log_dev_bshift = wl->wl_log_dev_bshift; 636 wc->wc_fs_dev_bshift = wl->wl_fs_dev_bshift; 637 wl->wl_wc_header = wc; 638 wl->wl_wc_scratch = wapbl_alloc(len); 639 } 640 641 TAILQ_INIT(&wl->wl_iobufs); 642 TAILQ_INIT(&wl->wl_iobufs_busy); 643 for (int i = 0; i < wapbl_journal_iobufs; i++) { 644 struct buf *bp; 645 646 if ((bp = geteblk(MAXPHYS)) == NULL) 647 goto errout; 648 649 mutex_enter(&bufcache_lock); 650 mutex_enter(devvp->v_interlock); 651 bgetvp(devvp, bp); 652 mutex_exit(devvp->v_interlock); 653 mutex_exit(&bufcache_lock); 654 655 bp->b_dev = devvp->v_rdev; 656 657 TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist); 658 } 659 660 /* 661 * if there was an existing set of unlinked but 662 * allocated inodes, preserve it in the new 663 * log. 664 */ 665 if (wr && wr->wr_inodescnt) { 666 error = wapbl_start_flush_inodes(wl, wr); 667 if (error) 668 goto errout; 669 } 670 671 error = wapbl_write_commit(wl, wl->wl_head, wl->wl_tail); 672 if (error) { 673 goto errout; 674 } 675 676 *wlp = wl; 677 #if defined(WAPBL_DEBUG) 678 wapbl_debug_wl = wl; 679 #endif 680 681 return 0; 682 errout: 683 wapbl_discard(wl); 684 wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len); 685 wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len); 686 while (!TAILQ_EMPTY(&wl->wl_iobufs)) { 687 struct buf *bp; 688 689 bp = TAILQ_FIRST(&wl->wl_iobufs); 690 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist); 691 brelse(bp, BC_INVAL); 692 } 693 wapbl_inodetrk_free(wl); 694 wapbl_free(wl, sizeof(*wl)); 695 696 return error; 697 } 698 699 /* 700 * Like wapbl_flush, only discards the transaction 701 * completely 702 */ 703 704 void 705 wapbl_discard(struct wapbl *wl) 706 { 707 struct wapbl_entry *we; 708 struct wapbl_dealloc *wd; 709 struct buf *bp; 710 int i; 711 712 /* 713 * XXX we may consider using upgrade here 714 * if we want to call flush from inside a transaction 715 */ 716 rw_enter(&wl->wl_rwlock, RW_WRITER); 717 wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist)); 718 719 #ifdef WAPBL_DEBUG_PRINT 720 { 721 pid_t pid = -1; 722 lwpid_t lid = -1; 723 if (curproc) 724 pid = curproc->p_pid; 725 if (curlwp) 726 lid = curlwp->l_lid; 727 #ifdef WAPBL_DEBUG_BUFBYTES 728 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 729 ("wapbl_discard: thread %d.%d discarding " 730 "transaction\n" 731 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 732 "deallocs=%d inodes=%d\n" 733 "\terrcnt = %u, reclaimable=%zu reserved=%zu " 734 "unsynced=%zu\n", 735 pid, lid, 736 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount, 737 wl->wl_dealloccnt, wl->wl_inohashcnt, 738 wl->wl_error_count, wl->wl_reclaimable_bytes, 739 wl->wl_reserved_bytes, 740 wl->wl_unsynced_bufbytes)); 741 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 742 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 743 ("\tentry: bufcount = %zu, reclaimable = %zu, " 744 "error = %d, unsynced = %zu\n", 745 we->we_bufcount, we->we_reclaimable_bytes, 746 we->we_error, we->we_unsynced_bufbytes)); 747 } 748 #else /* !WAPBL_DEBUG_BUFBYTES */ 749 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 750 ("wapbl_discard: thread %d.%d discarding transaction\n" 751 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 752 "deallocs=%d inodes=%d\n" 753 "\terrcnt = %u, reclaimable=%zu reserved=%zu\n", 754 pid, lid, 755 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount, 756 wl->wl_dealloccnt, wl->wl_inohashcnt, 757 wl->wl_error_count, wl->wl_reclaimable_bytes, 758 wl->wl_reserved_bytes)); 759 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 760 WAPBL_PRINTF(WAPBL_PRINT_DISCARD, 761 ("\tentry: bufcount = %zu, reclaimable = %zu, " 762 "error = %d\n", 763 we->we_bufcount, we->we_reclaimable_bytes, 764 we->we_error)); 765 } 766 #endif /* !WAPBL_DEBUG_BUFBYTES */ 767 } 768 #endif /* WAPBL_DEBUG_PRINT */ 769 770 for (i = 0; i <= wl->wl_inohashmask; i++) { 771 struct wapbl_ino_head *wih; 772 struct wapbl_ino *wi; 773 774 wih = &wl->wl_inohash[i]; 775 while ((wi = LIST_FIRST(wih)) != NULL) { 776 LIST_REMOVE(wi, wi_hash); 777 pool_put(&wapbl_ino_pool, wi); 778 KASSERT(wl->wl_inohashcnt > 0); 779 wl->wl_inohashcnt--; 780 } 781 } 782 783 /* 784 * clean buffer list 785 */ 786 mutex_enter(&bufcache_lock); 787 mutex_enter(&wl->wl_mtx); 788 while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) { 789 if (bbusy(bp, 0, 0, &wl->wl_mtx) == 0) { 790 KASSERT(bp->b_flags & B_LOCKED); 791 KASSERT(bp->b_oflags & BO_DELWRI); 792 /* 793 * Buffer is already on BQ_LOCKED queue. 794 * The buffer will be unlocked and 795 * removed from the transaction in brelsel() 796 */ 797 mutex_exit(&wl->wl_mtx); 798 bremfree(bp); 799 brelsel(bp, BC_INVAL); 800 mutex_enter(&wl->wl_mtx); 801 } 802 } 803 804 /* 805 * Remove references to this wl from wl_entries, free any which 806 * no longer have buffers, others will be freed in wapbl_biodone() 807 * when they no longer have any buffers. 808 */ 809 while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) != NULL) { 810 SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries); 811 /* XXX should we be accumulating wl_error_count 812 * and increasing reclaimable bytes ? */ 813 we->we_wapbl = NULL; 814 if (we->we_bufcount == 0) { 815 #ifdef WAPBL_DEBUG_BUFBYTES 816 KASSERT(we->we_unsynced_bufbytes == 0); 817 #endif 818 pool_put(&wapbl_entry_pool, we); 819 } 820 } 821 822 mutex_exit(&wl->wl_mtx); 823 mutex_exit(&bufcache_lock); 824 825 /* Discard list of deallocs */ 826 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) 827 wapbl_deallocation_free(wl, wd, true); 828 829 /* XXX should we clear wl_reserved_bytes? */ 830 831 KASSERT(wl->wl_bufbytes == 0); 832 KASSERT(wl->wl_bcount == 0); 833 KASSERT(wl->wl_bufcount == 0); 834 KASSERT(TAILQ_EMPTY(&wl->wl_bufs)); 835 KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries)); 836 KASSERT(wl->wl_inohashcnt == 0); 837 KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist)); 838 KASSERT(wl->wl_dealloccnt == 0); 839 840 rw_exit(&wl->wl_rwlock); 841 } 842 843 int 844 wapbl_stop(struct wapbl *wl, int force) 845 { 846 int error; 847 848 WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_stop called\n")); 849 error = wapbl_flush(wl, 1); 850 if (error) { 851 if (force) 852 wapbl_discard(wl); 853 else 854 return error; 855 } 856 857 /* Unlinked inodes persist after a flush */ 858 if (wl->wl_inohashcnt) { 859 if (force) { 860 wapbl_discard(wl); 861 } else { 862 return SET_ERROR(EBUSY); 863 } 864 } 865 866 KASSERT(wl->wl_bufbytes == 0); 867 KASSERT(wl->wl_bcount == 0); 868 KASSERT(wl->wl_bufcount == 0); 869 KASSERT(TAILQ_EMPTY(&wl->wl_bufs)); 870 KASSERT(wl->wl_dealloccnt == 0); 871 KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries)); 872 KASSERT(wl->wl_inohashcnt == 0); 873 KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist)); 874 KASSERT(wl->wl_dealloccnt == 0); 875 KASSERT(TAILQ_EMPTY(&wl->wl_iobufs_busy)); 876 877 wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len); 878 wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len); 879 while (!TAILQ_EMPTY(&wl->wl_iobufs)) { 880 struct buf *bp; 881 882 bp = TAILQ_FIRST(&wl->wl_iobufs); 883 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist); 884 brelse(bp, BC_INVAL); 885 } 886 wapbl_inodetrk_free(wl); 887 888 wapbl_evcnt_free(wl); 889 890 cv_destroy(&wl->wl_reclaimable_cv); 891 mutex_destroy(&wl->wl_mtx); 892 rw_destroy(&wl->wl_rwlock); 893 wapbl_free(wl, sizeof(*wl)); 894 895 return 0; 896 } 897 898 /****************************************************************/ 899 /* 900 * Unbuffered disk I/O 901 */ 902 903 static void 904 wapbl_doio_accounting(struct vnode *devvp, int flags) 905 { 906 struct pstats *pstats = curlwp->l_proc->p_stats; 907 908 if ((flags & (B_WRITE | B_READ)) == B_WRITE) { 909 mutex_enter(devvp->v_interlock); 910 devvp->v_numoutput++; 911 mutex_exit(devvp->v_interlock); 912 pstats->p_ru.ru_oublock++; 913 } else { 914 pstats->p_ru.ru_inblock++; 915 } 916 917 } 918 919 static int 920 wapbl_doio(void *data, size_t len, struct vnode *devvp, daddr_t pbn, int flags) 921 { 922 struct buf *bp; 923 int error; 924 925 KASSERT(devvp->v_type == VBLK); 926 927 wapbl_doio_accounting(devvp, flags); 928 929 bp = getiobuf(devvp, true); 930 bp->b_flags = flags; 931 bp->b_cflags |= BC_BUSY; /* mandatory, asserted by biowait() */ 932 bp->b_dev = devvp->v_rdev; 933 bp->b_data = data; 934 bp->b_bufsize = bp->b_resid = bp->b_bcount = len; 935 bp->b_blkno = pbn; 936 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 937 938 WAPBL_PRINTF(WAPBL_PRINT_IO, 939 ("wapbl_doio: %s %d bytes at block %"PRId64" on dev 0x%"PRIx64"\n", 940 BUF_ISWRITE(bp) ? "write" : "read", bp->b_bcount, 941 bp->b_blkno, bp->b_dev)); 942 943 VOP_STRATEGY(devvp, bp); 944 945 error = biowait(bp); 946 putiobuf(bp); 947 948 if (error) { 949 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 950 ("wapbl_doio: %s %zu bytes at block %" PRId64 951 " on dev 0x%"PRIx64" failed with error %d\n", 952 (((flags & (B_WRITE | B_READ)) == B_WRITE) ? 953 "write" : "read"), 954 len, pbn, devvp->v_rdev, error)); 955 } 956 957 return error; 958 } 959 960 /* 961 * wapbl_write(data, len, devvp, pbn) 962 * 963 * Synchronously write len bytes from data to physical block pbn 964 * on devvp. 965 */ 966 int 967 wapbl_write(void *data, size_t len, struct vnode *devvp, daddr_t pbn) 968 { 969 970 return wapbl_doio(data, len, devvp, pbn, B_WRITE); 971 } 972 973 /* 974 * wapbl_read(data, len, devvp, pbn) 975 * 976 * Synchronously read len bytes into data from physical block pbn 977 * on devvp. 978 */ 979 int 980 wapbl_read(void *data, size_t len, struct vnode *devvp, daddr_t pbn) 981 { 982 983 return wapbl_doio(data, len, devvp, pbn, B_READ); 984 } 985 986 /****************************************************************/ 987 /* 988 * Buffered disk writes -- try to coalesce writes and emit 989 * MAXPHYS-aligned blocks. 990 */ 991 992 /* 993 * wapbl_buffered_write_async(wl, bp) 994 * 995 * Send buffer for asynchronous write. 996 */ 997 static void 998 wapbl_buffered_write_async(struct wapbl *wl, struct buf *bp) 999 { 1000 1001 wapbl_doio_accounting(wl->wl_devvp, bp->b_flags); 1002 1003 KASSERT(TAILQ_FIRST(&wl->wl_iobufs) == bp); 1004 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist); 1005 1006 bp->b_flags |= B_WRITE; 1007 bp->b_cflags |= BC_BUSY; /* mandatory, asserted by biowait() */ 1008 bp->b_oflags = 0; 1009 bp->b_bcount = bp->b_resid; 1010 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1011 1012 VOP_STRATEGY(wl->wl_devvp, bp); 1013 1014 wl->wl_ev_journalwrite.ev_count++; 1015 1016 TAILQ_INSERT_TAIL(&wl->wl_iobufs_busy, bp, b_wapbllist); 1017 } 1018 1019 /* 1020 * wapbl_buffered_flush(wl) 1021 * 1022 * Flush any buffered writes from wapbl_buffered_write. 1023 */ 1024 static int 1025 wapbl_buffered_flush(struct wapbl *wl, bool full) 1026 { 1027 int error = 0; 1028 struct buf *bp, *bnext; 1029 bool only_done = true, found = false; 1030 1031 /* if there is outstanding buffered write, send it now */ 1032 if ((bp = TAILQ_FIRST(&wl->wl_iobufs)) && bp->b_resid > 0) 1033 wapbl_buffered_write_async(wl, bp); 1034 1035 /* wait for I/O to complete */ 1036 again: 1037 TAILQ_FOREACH_SAFE(bp, &wl->wl_iobufs_busy, b_wapbllist, bnext) { 1038 if (!full && only_done) { 1039 /* skip unfinished */ 1040 if (!ISSET(bp->b_oflags, BO_DONE)) 1041 continue; 1042 } 1043 1044 if (ISSET(bp->b_oflags, BO_DONE)) 1045 wl->wl_ev_jbufs_bio_nowait.ev_count++; 1046 1047 TAILQ_REMOVE(&wl->wl_iobufs_busy, bp, b_wapbllist); 1048 error = biowait(bp); 1049 1050 /* reset for reuse */ 1051 bp->b_blkno = bp->b_resid = bp->b_flags = 0; 1052 TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist); 1053 found = true; 1054 1055 if (!full) 1056 break; 1057 } 1058 1059 if (!found && only_done && !TAILQ_EMPTY(&wl->wl_iobufs_busy)) { 1060 only_done = false; 1061 goto again; 1062 } 1063 1064 return error; 1065 } 1066 1067 /* 1068 * wapbl_buffered_write(data, len, wl, pbn) 1069 * 1070 * Write len bytes from data to physical block pbn on 1071 * wl->wl_devvp. The write may not complete until 1072 * wapbl_buffered_flush. 1073 */ 1074 static int 1075 wapbl_buffered_write(void *data, size_t len, struct wapbl *wl, daddr_t pbn, 1076 int bflags) 1077 { 1078 size_t resid; 1079 struct buf *bp; 1080 1081 again: 1082 bp = TAILQ_FIRST(&wl->wl_iobufs); 1083 1084 if (bp == NULL) { 1085 /* No more buffers, wait for any previous I/O to finish. */ 1086 wapbl_buffered_flush(wl, false); 1087 1088 bp = TAILQ_FIRST(&wl->wl_iobufs); 1089 KASSERT(bp != NULL); 1090 } 1091 1092 /* 1093 * If not adjacent to buffered data flush first. Disk block 1094 * address is always valid for non-empty buffer. 1095 */ 1096 if ((bp->b_resid > 0 && pbn != bp->b_blkno + btodb(bp->b_resid))) { 1097 wapbl_buffered_write_async(wl, bp); 1098 goto again; 1099 } 1100 1101 /* 1102 * If this write goes to an empty buffer we have to 1103 * save the disk block address first. 1104 */ 1105 if (bp->b_blkno == 0) { 1106 bp->b_blkno = pbn; 1107 bp->b_flags |= bflags; 1108 } 1109 1110 /* 1111 * Remaining space so this buffer ends on a buffer size boundary. 1112 * 1113 * Cannot become less or equal zero as the buffer would have been 1114 * flushed on the last call then. 1115 */ 1116 resid = bp->b_bufsize - dbtob(bp->b_blkno % btodb(bp->b_bufsize)) - 1117 bp->b_resid; 1118 KASSERT(resid > 0); 1119 KASSERT(dbtob(btodb(resid)) == resid); 1120 1121 if (len < resid) 1122 resid = len; 1123 1124 memcpy((uint8_t *)bp->b_data + bp->b_resid, data, resid); 1125 bp->b_resid += resid; 1126 1127 if (len >= resid) { 1128 /* Just filled the buf, or data did not fit */ 1129 wapbl_buffered_write_async(wl, bp); 1130 1131 data = (uint8_t *)data + resid; 1132 len -= resid; 1133 pbn += btodb(resid); 1134 1135 if (len > 0) 1136 goto again; 1137 } 1138 1139 return 0; 1140 } 1141 1142 /* 1143 * wapbl_circ_write(wl, data, len, offp) 1144 * 1145 * Write len bytes from data to the circular queue of wl, starting 1146 * at linear byte offset *offp, and returning the new linear byte 1147 * offset in *offp. 1148 * 1149 * If the starting linear byte offset precedes wl->wl_circ_off, 1150 * the write instead begins at wl->wl_circ_off. XXX WTF? This 1151 * should be a KASSERT, not a conditional. 1152 * 1153 * The write is buffered in wl and must be flushed with 1154 * wapbl_buffered_flush before it will be submitted to the disk. 1155 */ 1156 static int 1157 wapbl_circ_write(struct wapbl *wl, void *data, size_t len, off_t *offp) 1158 { 1159 size_t slen; 1160 off_t off = *offp; 1161 int error; 1162 daddr_t pbn; 1163 1164 KDASSERT(((len >> wl->wl_log_dev_bshift) << wl->wl_log_dev_bshift) == 1165 len); 1166 1167 if (off < wl->wl_circ_off) 1168 off = wl->wl_circ_off; 1169 slen = wl->wl_circ_off + wl->wl_circ_size - off; 1170 if (slen < len) { 1171 pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift); 1172 #ifdef _KERNEL 1173 pbn = btodb(pbn << wl->wl_log_dev_bshift); 1174 #endif 1175 error = wapbl_buffered_write(data, slen, wl, pbn, 1176 WAPBL_JDATA_FLAGS(wl)); 1177 if (error) 1178 return error; 1179 data = (uint8_t *)data + slen; 1180 len -= slen; 1181 off = wl->wl_circ_off; 1182 } 1183 pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift); 1184 #ifdef _KERNEL 1185 pbn = btodb(pbn << wl->wl_log_dev_bshift); 1186 #endif 1187 error = wapbl_buffered_write(data, len, wl, pbn, 1188 WAPBL_JDATA_FLAGS(wl)); 1189 if (error) 1190 return error; 1191 off += len; 1192 if (off >= wl->wl_circ_off + wl->wl_circ_size) 1193 off = wl->wl_circ_off; 1194 *offp = off; 1195 return 0; 1196 } 1197 1198 /****************************************************************/ 1199 /* 1200 * WAPBL transactions: entering, adding/removing bufs, and exiting 1201 */ 1202 1203 int 1204 wapbl_begin(struct wapbl *wl, const char *file, int line) 1205 { 1206 int doflush; 1207 unsigned lockcount; 1208 1209 KDASSERT(wl); 1210 1211 /* 1212 * XXX this needs to be made much more sophisticated. 1213 * perhaps each wapbl_begin could reserve a specified 1214 * number of buffers and bytes. 1215 */ 1216 mutex_enter(&wl->wl_mtx); 1217 lockcount = wl->wl_lock_count; 1218 doflush = ((wl->wl_bufbytes + (lockcount * MAXPHYS)) > 1219 wl->wl_bufbytes_max / 2) || 1220 ((wl->wl_bufcount + (lockcount * 10)) > 1221 wl->wl_bufcount_max / 2) || 1222 (wapbl_transaction_len(wl) > wl->wl_circ_size / 2) || 1223 (wl->wl_dealloccnt >= (wl->wl_dealloclim / 2)); 1224 mutex_exit(&wl->wl_mtx); 1225 1226 if (doflush) { 1227 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1228 ("force flush lockcnt=%d bufbytes=%zu " 1229 "(max=%zu) bufcount=%zu (max=%zu) " 1230 "dealloccnt %d (lim=%d)\n", 1231 lockcount, wl->wl_bufbytes, 1232 wl->wl_bufbytes_max, wl->wl_bufcount, 1233 wl->wl_bufcount_max, 1234 wl->wl_dealloccnt, wl->wl_dealloclim)); 1235 } 1236 1237 if (doflush) { 1238 int error = wapbl_flush(wl, 0); 1239 if (error) 1240 return error; 1241 } 1242 1243 rw_enter(&wl->wl_rwlock, RW_READER); 1244 mutex_enter(&wl->wl_mtx); 1245 wl->wl_lock_count++; 1246 mutex_exit(&wl->wl_mtx); 1247 1248 #if defined(WAPBL_DEBUG_PRINT) 1249 WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION, 1250 ("wapbl_begin thread %d.%d with bufcount=%zu " 1251 "bufbytes=%zu bcount=%zu at %s:%d\n", 1252 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1253 wl->wl_bufbytes, wl->wl_bcount, file, line)); 1254 #endif 1255 1256 return 0; 1257 } 1258 1259 void 1260 wapbl_end(struct wapbl *wl) 1261 { 1262 1263 #if defined(WAPBL_DEBUG_PRINT) 1264 WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION, 1265 ("wapbl_end thread %d.%d with bufcount=%zu " 1266 "bufbytes=%zu bcount=%zu\n", 1267 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1268 wl->wl_bufbytes, wl->wl_bcount)); 1269 #endif 1270 1271 /* 1272 * XXX this could be handled more gracefully, perhaps place 1273 * only a partial transaction in the log and allow the 1274 * remaining to flush without the protection of the journal. 1275 */ 1276 KASSERTMSG((wapbl_transaction_len(wl) <= 1277 (wl->wl_circ_size - wl->wl_reserved_bytes)), 1278 "wapbl_end: current transaction too big to flush"); 1279 1280 mutex_enter(&wl->wl_mtx); 1281 KASSERT(wl->wl_lock_count > 0); 1282 wl->wl_lock_count--; 1283 mutex_exit(&wl->wl_mtx); 1284 1285 rw_exit(&wl->wl_rwlock); 1286 } 1287 1288 void 1289 wapbl_add_buf(struct wapbl *wl, struct buf * bp) 1290 { 1291 1292 KASSERT(bp->b_cflags & BC_BUSY); 1293 KASSERT(bp->b_vp); 1294 1295 wapbl_jlock_assert(wl); 1296 1297 #if 0 1298 /* 1299 * XXX this might be an issue for swapfiles. 1300 * see uvm_swap.c:1702 1301 * 1302 * XXX2 why require it then? leap of semantics? 1303 */ 1304 KASSERT((bp->b_cflags & BC_NOCACHE) == 0); 1305 #endif 1306 1307 mutex_enter(&wl->wl_mtx); 1308 if (bp->b_flags & B_LOCKED) { 1309 TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist); 1310 WAPBL_PRINTF(WAPBL_PRINT_BUFFER2, 1311 ("wapbl_add_buf thread %d.%d re-adding buf %p " 1312 "with %d bytes %d bcount\n", 1313 curproc->p_pid, curlwp->l_lid, bp, 1314 bp->b_bufsize, bp->b_bcount)); 1315 } else { 1316 /* unlocked by dirty buffers shouldn't exist */ 1317 KASSERT(!(bp->b_oflags & BO_DELWRI)); 1318 wl->wl_bufbytes += bp->b_bufsize; 1319 wl->wl_bcount += bp->b_bcount; 1320 wl->wl_bufcount++; 1321 WAPBL_PRINTF(WAPBL_PRINT_BUFFER, 1322 ("wapbl_add_buf thread %d.%d adding buf %p " 1323 "with %d bytes %d bcount\n", 1324 curproc->p_pid, curlwp->l_lid, bp, 1325 bp->b_bufsize, bp->b_bcount)); 1326 } 1327 TAILQ_INSERT_TAIL(&wl->wl_bufs, bp, b_wapbllist); 1328 mutex_exit(&wl->wl_mtx); 1329 1330 bp->b_flags |= B_LOCKED; 1331 } 1332 1333 static void 1334 wapbl_remove_buf_locked(struct wapbl * wl, struct buf *bp) 1335 { 1336 1337 KASSERT(mutex_owned(&wl->wl_mtx)); 1338 KASSERT(bp->b_cflags & BC_BUSY); 1339 wapbl_jlock_assert(wl); 1340 1341 #if 0 1342 /* 1343 * XXX this might be an issue for swapfiles. 1344 * see uvm_swap.c:1725 1345 * 1346 * XXXdeux: see above 1347 */ 1348 KASSERT((bp->b_flags & BC_NOCACHE) == 0); 1349 #endif 1350 KASSERT(bp->b_flags & B_LOCKED); 1351 1352 WAPBL_PRINTF(WAPBL_PRINT_BUFFER, 1353 ("wapbl_remove_buf thread %d.%d removing buf %p with " 1354 "%d bytes %d bcount\n", 1355 curproc->p_pid, curlwp->l_lid, bp, 1356 bp->b_bufsize, bp->b_bcount)); 1357 1358 KASSERT(wl->wl_bufbytes >= bp->b_bufsize); 1359 wl->wl_bufbytes -= bp->b_bufsize; 1360 KASSERT(wl->wl_bcount >= bp->b_bcount); 1361 wl->wl_bcount -= bp->b_bcount; 1362 KASSERT(wl->wl_bufcount > 0); 1363 wl->wl_bufcount--; 1364 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0)); 1365 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0)); 1366 TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist); 1367 1368 bp->b_flags &= ~B_LOCKED; 1369 } 1370 1371 /* called from brelsel() in vfs_bio among other places */ 1372 void 1373 wapbl_remove_buf(struct wapbl * wl, struct buf *bp) 1374 { 1375 1376 mutex_enter(&wl->wl_mtx); 1377 wapbl_remove_buf_locked(wl, bp); 1378 mutex_exit(&wl->wl_mtx); 1379 } 1380 1381 void 1382 wapbl_resize_buf(struct wapbl *wl, struct buf *bp, long oldsz, long oldcnt) 1383 { 1384 1385 KASSERT(bp->b_cflags & BC_BUSY); 1386 1387 /* 1388 * XXX: why does this depend on B_LOCKED? otherwise the buf 1389 * is not for a transaction? if so, why is this called in the 1390 * first place? 1391 */ 1392 if (bp->b_flags & B_LOCKED) { 1393 mutex_enter(&wl->wl_mtx); 1394 wl->wl_bufbytes += bp->b_bufsize - oldsz; 1395 wl->wl_bcount += bp->b_bcount - oldcnt; 1396 mutex_exit(&wl->wl_mtx); 1397 } 1398 } 1399 1400 #endif /* _KERNEL */ 1401 1402 /****************************************************************/ 1403 /* Some utility inlines */ 1404 1405 /* 1406 * wapbl_space_used(avail, head, tail) 1407 * 1408 * Number of bytes used in a circular queue of avail total bytes, 1409 * from tail to head. 1410 */ 1411 static inline size_t 1412 wapbl_space_used(size_t avail, off_t head, off_t tail) 1413 { 1414 1415 if (tail == 0) { 1416 KASSERT(head == 0); 1417 return 0; 1418 } 1419 return ((head + (avail - 1) - tail) % avail) + 1; 1420 } 1421 1422 #ifdef _KERNEL 1423 /* 1424 * wapbl_advance(size, off, oldoff, delta) 1425 * 1426 * Given a byte offset oldoff into a circular queue of size bytes 1427 * starting at off, return a new byte offset oldoff + delta into 1428 * the circular queue. 1429 */ 1430 static inline off_t 1431 wapbl_advance(size_t size, size_t off, off_t oldoff, size_t delta) 1432 { 1433 off_t newoff; 1434 1435 /* Define acceptable ranges for inputs. */ 1436 KASSERT(delta <= (size_t)size); 1437 KASSERT(oldoff == 0 || (size_t)oldoff >= off); 1438 KASSERT(oldoff < (off_t)(size + off)); 1439 1440 if (oldoff == 0 && delta != 0) 1441 newoff = off + delta; 1442 else if (oldoff + delta < size + off) 1443 newoff = oldoff + delta; 1444 else 1445 newoff = (oldoff + delta) - size; 1446 1447 /* Note some interesting axioms */ 1448 KASSERT(delta != 0 || newoff == oldoff); 1449 KASSERT(delta == 0 || newoff != 0); 1450 KASSERT(delta != size || newoff == oldoff); 1451 1452 /* Define acceptable ranges for output. */ 1453 KASSERT(newoff == 0 || (size_t)newoff >= off); 1454 KASSERT((size_t)newoff < size + off); 1455 return newoff; 1456 } 1457 1458 /* 1459 * wapbl_space_free(avail, head, tail) 1460 * 1461 * Number of bytes free in a circular queue of avail total bytes, 1462 * in which everything from tail to head is used. 1463 */ 1464 static inline size_t 1465 wapbl_space_free(size_t avail, off_t head, off_t tail) 1466 { 1467 1468 return avail - wapbl_space_used(avail, head, tail); 1469 } 1470 1471 /* 1472 * wapbl_advance_head(size, off, delta, headp, tailp) 1473 * 1474 * In a circular queue of size bytes starting at off, given the 1475 * old head and tail offsets *headp and *tailp, store the new head 1476 * and tail offsets in *headp and *tailp resulting from adding 1477 * delta bytes of data to the head. 1478 */ 1479 static inline void 1480 wapbl_advance_head(size_t size, size_t off, size_t delta, off_t *headp, 1481 off_t *tailp) 1482 { 1483 off_t head = *headp; 1484 off_t tail = *tailp; 1485 1486 KASSERT(delta <= wapbl_space_free(size, head, tail)); 1487 head = wapbl_advance(size, off, head, delta); 1488 if (tail == 0 && head != 0) 1489 tail = off; 1490 *headp = head; 1491 *tailp = tail; 1492 } 1493 1494 /* 1495 * wapbl_advance_tail(size, off, delta, headp, tailp) 1496 * 1497 * In a circular queue of size bytes starting at off, given the 1498 * old head and tail offsets *headp and *tailp, store the new head 1499 * and tail offsets in *headp and *tailp resulting from removing 1500 * delta bytes of data from the tail. 1501 */ 1502 static inline void 1503 wapbl_advance_tail(size_t size, size_t off, size_t delta, off_t *headp, 1504 off_t *tailp) 1505 { 1506 off_t head = *headp; 1507 off_t tail = *tailp; 1508 1509 KASSERT(delta <= wapbl_space_used(size, head, tail)); 1510 tail = wapbl_advance(size, off, tail, delta); 1511 if (head == tail) { 1512 head = tail = 0; 1513 } 1514 *headp = head; 1515 *tailp = tail; 1516 } 1517 1518 1519 /****************************************************************/ 1520 1521 /* 1522 * wapbl_truncate(wl, minfree) 1523 * 1524 * Wait until at least minfree bytes are available in the log. 1525 * 1526 * If it was necessary to wait for writes to complete, 1527 * advance the circular queue tail to reflect the new write 1528 * completions and issue a write commit to the log. 1529 * 1530 * => Caller must hold wl->wl_rwlock writer lock. 1531 */ 1532 static int 1533 wapbl_truncate(struct wapbl *wl, size_t minfree) 1534 { 1535 size_t delta; 1536 size_t avail; 1537 off_t head; 1538 off_t tail; 1539 int error = 0; 1540 1541 KASSERT(minfree <= (wl->wl_circ_size - wl->wl_reserved_bytes)); 1542 KASSERT(rw_write_held(&wl->wl_rwlock)); 1543 1544 mutex_enter(&wl->wl_mtx); 1545 1546 /* 1547 * First check to see if we have to do a commit 1548 * at all. 1549 */ 1550 avail = wapbl_space_free(wl->wl_circ_size, wl->wl_head, wl->wl_tail); 1551 if (minfree < avail) { 1552 mutex_exit(&wl->wl_mtx); 1553 return 0; 1554 } 1555 minfree -= avail; 1556 while (wl->wl_error_count == 0 && 1557 wl->wl_reclaimable_bytes < minfree) { 1558 WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE, 1559 ("wapbl_truncate: sleeping on %p" 1560 " wl=%p bytes=%zd minfree=%zd\n", 1561 &wl->wl_reclaimable_bytes, 1562 wl, wl->wl_reclaimable_bytes, minfree)); 1563 cv_wait(&wl->wl_reclaimable_cv, &wl->wl_mtx); 1564 } 1565 if (wl->wl_reclaimable_bytes < minfree) { 1566 KASSERT(wl->wl_error_count); 1567 /* XXX maybe get actual error from buffer instead someday? */ 1568 error = SET_ERROR(EIO); 1569 } 1570 head = wl->wl_head; 1571 tail = wl->wl_tail; 1572 delta = wl->wl_reclaimable_bytes; 1573 1574 /* If all of the entries are flushed, then be sure to keep 1575 * the reserved bytes reserved. Watch out for discarded transactions, 1576 * which could leave more bytes reserved than are reclaimable. 1577 */ 1578 if (SIMPLEQ_EMPTY(&wl->wl_entries) && delta >= wl->wl_reserved_bytes) { 1579 delta -= wl->wl_reserved_bytes; 1580 } 1581 wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, &head, 1582 &tail); 1583 KDASSERT(wl->wl_reserved_bytes <= 1584 wapbl_space_used(wl->wl_circ_size, head, tail)); 1585 mutex_exit(&wl->wl_mtx); 1586 1587 if (error) 1588 return error; 1589 1590 /* 1591 * This is where head, tail and delta are unprotected 1592 * from races against itself or flush. This is ok since 1593 * we only call this routine from inside flush itself. 1594 * 1595 * XXX: how can it race against itself when accessed only 1596 * from behind the write-locked rwlock? 1597 */ 1598 error = wapbl_write_commit(wl, head, tail); 1599 if (error) 1600 return error; 1601 1602 wl->wl_head = head; 1603 wl->wl_tail = tail; 1604 1605 mutex_enter(&wl->wl_mtx); 1606 KASSERT(wl->wl_reclaimable_bytes >= delta); 1607 wl->wl_reclaimable_bytes -= delta; 1608 mutex_exit(&wl->wl_mtx); 1609 WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE, 1610 ("wapbl_truncate thread %d.%d truncating %zu bytes\n", 1611 curproc->p_pid, curlwp->l_lid, delta)); 1612 1613 return 0; 1614 } 1615 1616 /****************************************************************/ 1617 1618 void 1619 wapbl_biodone(struct buf *bp) 1620 { 1621 struct wapbl_entry *we = bp->b_private; 1622 struct wapbl *wl; 1623 #ifdef WAPBL_DEBUG_BUFBYTES 1624 const int bufsize = bp->b_bufsize; 1625 #endif 1626 1627 mutex_enter(&bufcache_lock); 1628 wl = we->we_wapbl; 1629 mutex_exit(&bufcache_lock); 1630 1631 /* 1632 * Handle possible flushing of buffers after log has been 1633 * decomissioned. 1634 */ 1635 if (!wl) { 1636 KASSERT(we->we_bufcount > 0); 1637 we->we_bufcount--; 1638 #ifdef WAPBL_DEBUG_BUFBYTES 1639 KASSERT(we->we_unsynced_bufbytes >= bufsize); 1640 we->we_unsynced_bufbytes -= bufsize; 1641 #endif 1642 1643 if (we->we_bufcount == 0) { 1644 #ifdef WAPBL_DEBUG_BUFBYTES 1645 KASSERT(we->we_unsynced_bufbytes == 0); 1646 #endif 1647 pool_put(&wapbl_entry_pool, we); 1648 } 1649 1650 brelse(bp, 0); 1651 return; 1652 } 1653 1654 #ifdef ohbother 1655 KDASSERT(bp->b_oflags & BO_DONE); 1656 KDASSERT(!(bp->b_oflags & BO_DELWRI)); 1657 KDASSERT(bp->b_flags & B_ASYNC); 1658 KDASSERT(bp->b_cflags & BC_BUSY); 1659 KDASSERT(!(bp->b_flags & B_LOCKED)); 1660 KDASSERT(!(bp->b_flags & B_READ)); 1661 KDASSERT(!(bp->b_cflags & BC_INVAL)); 1662 KDASSERT(!(bp->b_cflags & BC_NOCACHE)); 1663 #endif 1664 1665 if (bp->b_error) { 1666 /* 1667 * If an error occurs, it would be nice to leave the buffer 1668 * as a delayed write on the LRU queue so that we can retry 1669 * it later. But buffercache(9) can't handle dirty buffer 1670 * reuse, so just mark the log permanently errored out. 1671 */ 1672 mutex_enter(&wl->wl_mtx); 1673 if (wl->wl_error_count == 0) { 1674 wl->wl_error_count++; 1675 cv_broadcast(&wl->wl_reclaimable_cv); 1676 } 1677 mutex_exit(&wl->wl_mtx); 1678 } 1679 1680 /* 1681 * Make sure that the buf doesn't retain the media flags, so that 1682 * e.g. wapbl_allow_fuadpo has immediate effect on any following I/O. 1683 * The flags will be set again if needed by another I/O. 1684 */ 1685 bp->b_flags &= ~B_MEDIA_FLAGS; 1686 1687 /* 1688 * Release the buffer here. wapbl_flush() may wait for the 1689 * log to become empty and we better unbusy the buffer before 1690 * wapbl_flush() returns. 1691 */ 1692 brelse(bp, 0); 1693 1694 mutex_enter(&wl->wl_mtx); 1695 1696 KASSERT(we->we_bufcount > 0); 1697 we->we_bufcount--; 1698 #ifdef WAPBL_DEBUG_BUFBYTES 1699 KASSERT(we->we_unsynced_bufbytes >= bufsize); 1700 we->we_unsynced_bufbytes -= bufsize; 1701 KASSERT(wl->wl_unsynced_bufbytes >= bufsize); 1702 wl->wl_unsynced_bufbytes -= bufsize; 1703 #endif 1704 wl->wl_ev_metawrite.ev_count++; 1705 1706 /* 1707 * If the current transaction can be reclaimed, start 1708 * at the beginning and reclaim any consecutive reclaimable 1709 * transactions. If we successfully reclaim anything, 1710 * then wakeup anyone waiting for the reclaim. 1711 */ 1712 if (we->we_bufcount == 0) { 1713 size_t delta = 0; 1714 int errcnt = 0; 1715 #ifdef WAPBL_DEBUG_BUFBYTES 1716 KDASSERT(we->we_unsynced_bufbytes == 0); 1717 #endif 1718 /* 1719 * clear any posted error, since the buffer it came from 1720 * has successfully flushed by now 1721 */ 1722 while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) && 1723 we->we_bufcount == 0) { 1724 delta += we->we_reclaimable_bytes; 1725 if (we->we_error) 1726 errcnt++; 1727 SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries); 1728 pool_put(&wapbl_entry_pool, we); 1729 } 1730 1731 if (delta) { 1732 wl->wl_reclaimable_bytes += delta; 1733 KASSERT(wl->wl_error_count >= errcnt); 1734 wl->wl_error_count -= errcnt; 1735 cv_broadcast(&wl->wl_reclaimable_cv); 1736 } 1737 } 1738 1739 mutex_exit(&wl->wl_mtx); 1740 } 1741 1742 /* 1743 * wapbl_flush(wl, wait) 1744 * 1745 * Flush pending block writes, deallocations, and inodes from 1746 * the current transaction in memory to the log on disk: 1747 * 1748 * 1. Call the file system's wl_flush callback to flush any 1749 * per-file-system pending updates. 1750 * 2. Wait for enough space in the log for the current transaction. 1751 * 3. Synchronously write the new log records, advancing the 1752 * circular queue head. 1753 * 4. Issue the pending block writes asynchronously, now that they 1754 * are recorded in the log and can be replayed after crash. 1755 * 5. If wait is true, wait for all writes to complete and for the 1756 * log to become empty. 1757 * 1758 * On failure, call the file system's wl_flush_abort callback. 1759 */ 1760 int 1761 wapbl_flush(struct wapbl *wl, int waitfor) 1762 { 1763 struct buf *bp; 1764 struct wapbl_entry *we; 1765 off_t off; 1766 off_t head; 1767 off_t tail; 1768 size_t delta = 0; 1769 size_t flushsize; 1770 size_t reserved; 1771 int error = 0; 1772 1773 /* 1774 * Do a quick check to see if a full flush can be skipped 1775 * This assumes that the flush callback does not need to be called 1776 * unless there are other outstanding bufs. 1777 */ 1778 if (!waitfor) { 1779 size_t nbufs; 1780 mutex_enter(&wl->wl_mtx); /* XXX need mutex here to 1781 protect the KASSERTS */ 1782 nbufs = wl->wl_bufcount; 1783 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0)); 1784 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0)); 1785 mutex_exit(&wl->wl_mtx); 1786 if (nbufs == 0) 1787 return 0; 1788 } 1789 1790 /* 1791 * XXX we may consider using LK_UPGRADE here 1792 * if we want to call flush from inside a transaction 1793 */ 1794 rw_enter(&wl->wl_rwlock, RW_WRITER); 1795 wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist)); 1796 1797 /* 1798 * Now that we are exclusively locked and the file system has 1799 * issued any deferred block writes for this transaction, check 1800 * whether there are any blocks to write to the log. If not, 1801 * skip waiting for space or writing any log entries. 1802 * 1803 * XXX Shouldn't this also check wl_dealloccnt and 1804 * wl_inohashcnt? Perhaps wl_dealloccnt doesn't matter if the 1805 * file system didn't produce any blocks as a consequence of 1806 * it, but the same does not seem to be so of wl_inohashcnt. 1807 */ 1808 if (wl->wl_bufcount == 0) { 1809 goto wait_out; 1810 } 1811 1812 #if 0 1813 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1814 ("wapbl_flush thread %d.%d flushing entries with " 1815 "bufcount=%zu bufbytes=%zu\n", 1816 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount, 1817 wl->wl_bufbytes)); 1818 #endif 1819 1820 /* Calculate amount of space needed to flush */ 1821 flushsize = wapbl_transaction_len(wl); 1822 if (wapbl_verbose_commit) { 1823 struct timespec ts; 1824 getnanotime(&ts); 1825 printf("%s: %lld.%09ld this transaction = %zu bytes\n", 1826 __func__, (long long)ts.tv_sec, 1827 (long)ts.tv_nsec, flushsize); 1828 } 1829 1830 if (flushsize > (wl->wl_circ_size - wl->wl_reserved_bytes)) { 1831 /* 1832 * XXX this could be handled more gracefully, perhaps place 1833 * only a partial transaction in the log and allow the 1834 * remaining to flush without the protection of the journal. 1835 */ 1836 panic("wapbl_flush: current transaction too big to flush"); 1837 } 1838 1839 error = wapbl_truncate(wl, flushsize); 1840 if (error) 1841 goto out; 1842 1843 off = wl->wl_head; 1844 KASSERT(off == 0 || off >= wl->wl_circ_off); 1845 KASSERT(off == 0 || off < wl->wl_circ_off + wl->wl_circ_size); 1846 error = wapbl_write_blocks(wl, &off); 1847 if (error) 1848 goto out; 1849 error = wapbl_write_revocations(wl, &off); 1850 if (error) 1851 goto out; 1852 error = wapbl_write_inodes(wl, &off); 1853 if (error) 1854 goto out; 1855 1856 reserved = 0; 1857 if (wl->wl_inohashcnt) 1858 reserved = wapbl_transaction_inodes_len(wl); 1859 1860 head = wl->wl_head; 1861 tail = wl->wl_tail; 1862 1863 wapbl_advance_head(wl->wl_circ_size, wl->wl_circ_off, flushsize, 1864 &head, &tail); 1865 1866 KASSERTMSG(head == off, 1867 "lost head! head=%"PRIdMAX" tail=%" PRIdMAX 1868 " off=%"PRIdMAX" flush=%zu", 1869 (intmax_t)head, (intmax_t)tail, (intmax_t)off, 1870 flushsize); 1871 1872 /* Opportunistically move the tail forward if we can */ 1873 mutex_enter(&wl->wl_mtx); 1874 delta = wl->wl_reclaimable_bytes; 1875 mutex_exit(&wl->wl_mtx); 1876 wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, 1877 &head, &tail); 1878 1879 error = wapbl_write_commit(wl, head, tail); 1880 if (error) 1881 goto out; 1882 1883 we = pool_get(&wapbl_entry_pool, PR_WAITOK); 1884 1885 #ifdef WAPBL_DEBUG_BUFBYTES 1886 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1887 ("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu" 1888 " unsynced=%zu" 1889 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d " 1890 "inodes=%d\n", 1891 curproc->p_pid, curlwp->l_lid, flushsize, delta, 1892 wapbl_space_used(wl->wl_circ_size, head, tail), 1893 wl->wl_unsynced_bufbytes, wl->wl_bufcount, 1894 wl->wl_bufbytes, wl->wl_bcount, wl->wl_dealloccnt, 1895 wl->wl_inohashcnt)); 1896 #else 1897 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1898 ("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu" 1899 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d " 1900 "inodes=%d\n", 1901 curproc->p_pid, curlwp->l_lid, flushsize, delta, 1902 wapbl_space_used(wl->wl_circ_size, head, tail), 1903 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount, 1904 wl->wl_dealloccnt, wl->wl_inohashcnt)); 1905 #endif 1906 1907 1908 mutex_enter(&bufcache_lock); 1909 mutex_enter(&wl->wl_mtx); 1910 1911 wl->wl_reserved_bytes = reserved; 1912 wl->wl_head = head; 1913 wl->wl_tail = tail; 1914 KASSERT(wl->wl_reclaimable_bytes >= delta); 1915 wl->wl_reclaimable_bytes -= delta; 1916 KDASSERT(wl->wl_dealloccnt == 0); 1917 #ifdef WAPBL_DEBUG_BUFBYTES 1918 wl->wl_unsynced_bufbytes += wl->wl_bufbytes; 1919 #endif 1920 1921 we->we_wapbl = wl; 1922 we->we_bufcount = wl->wl_bufcount; 1923 #ifdef WAPBL_DEBUG_BUFBYTES 1924 we->we_unsynced_bufbytes = wl->wl_bufbytes; 1925 #endif 1926 we->we_reclaimable_bytes = flushsize; 1927 we->we_error = 0; 1928 SIMPLEQ_INSERT_TAIL(&wl->wl_entries, we, we_entries); 1929 1930 /* 1931 * This flushes bufs in order than they were queued, so the LRU 1932 * order is preserved. 1933 */ 1934 while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) { 1935 if (bbusy(bp, 0, 0, &wl->wl_mtx)) { 1936 continue; 1937 } 1938 bp->b_iodone = wapbl_biodone; 1939 bp->b_private = we; 1940 1941 bremfree(bp); 1942 wapbl_remove_buf_locked(wl, bp); 1943 mutex_exit(&wl->wl_mtx); 1944 mutex_exit(&bufcache_lock); 1945 bawrite(bp); 1946 mutex_enter(&bufcache_lock); 1947 mutex_enter(&wl->wl_mtx); 1948 } 1949 mutex_exit(&wl->wl_mtx); 1950 mutex_exit(&bufcache_lock); 1951 1952 #if 0 1953 WAPBL_PRINTF(WAPBL_PRINT_FLUSH, 1954 ("wapbl_flush thread %d.%d done flushing entries...\n", 1955 curproc->p_pid, curlwp->l_lid)); 1956 #endif 1957 1958 wait_out: 1959 1960 /* 1961 * If the waitfor flag is set, don't return until everything is 1962 * fully flushed and the on disk log is empty. 1963 */ 1964 if (waitfor) { 1965 error = wapbl_truncate(wl, wl->wl_circ_size - 1966 wl->wl_reserved_bytes); 1967 } 1968 1969 out: 1970 if (error) { 1971 wl->wl_flush_abort(wl->wl_mount, 1972 TAILQ_FIRST(&wl->wl_dealloclist)); 1973 } 1974 1975 #ifdef WAPBL_DEBUG_PRINT 1976 if (error) { 1977 pid_t pid = -1; 1978 lwpid_t lid = -1; 1979 if (curproc) 1980 pid = curproc->p_pid; 1981 if (curlwp) 1982 lid = curlwp->l_lid; 1983 mutex_enter(&wl->wl_mtx); 1984 #ifdef WAPBL_DEBUG_BUFBYTES 1985 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1986 ("wapbl_flush: thread %d.%d aborted flush: " 1987 "error = %d\n" 1988 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 1989 "deallocs=%d inodes=%d\n" 1990 "\terrcnt = %d, reclaimable=%zu reserved=%zu " 1991 "unsynced=%zu\n", 1992 pid, lid, error, wl->wl_bufcount, 1993 wl->wl_bufbytes, wl->wl_bcount, 1994 wl->wl_dealloccnt, wl->wl_inohashcnt, 1995 wl->wl_error_count, wl->wl_reclaimable_bytes, 1996 wl->wl_reserved_bytes, wl->wl_unsynced_bufbytes)); 1997 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 1998 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 1999 ("\tentry: bufcount = %zu, reclaimable = %zu, " 2000 "error = %d, unsynced = %zu\n", 2001 we->we_bufcount, we->we_reclaimable_bytes, 2002 we->we_error, we->we_unsynced_bufbytes)); 2003 } 2004 #else 2005 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 2006 ("wapbl_flush: thread %d.%d aborted flush: " 2007 "error = %d\n" 2008 "\tbufcount=%zu bufbytes=%zu bcount=%zu " 2009 "deallocs=%d inodes=%d\n" 2010 "\terrcnt = %d, reclaimable=%zu reserved=%zu\n", 2011 pid, lid, error, wl->wl_bufcount, 2012 wl->wl_bufbytes, wl->wl_bcount, 2013 wl->wl_dealloccnt, wl->wl_inohashcnt, 2014 wl->wl_error_count, wl->wl_reclaimable_bytes, 2015 wl->wl_reserved_bytes)); 2016 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 2017 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 2018 ("\tentry: bufcount = %zu, reclaimable = %zu, " 2019 "error = %d\n", we->we_bufcount, 2020 we->we_reclaimable_bytes, we->we_error)); 2021 } 2022 #endif 2023 mutex_exit(&wl->wl_mtx); 2024 } 2025 #endif 2026 2027 rw_exit(&wl->wl_rwlock); 2028 return error; 2029 } 2030 2031 /****************************************************************/ 2032 2033 void 2034 wapbl_jlock_assert(struct wapbl *wl) 2035 { 2036 2037 KASSERT(rw_lock_held(&wl->wl_rwlock)); 2038 } 2039 2040 void 2041 wapbl_junlock_assert(struct wapbl *wl) 2042 { 2043 2044 KASSERT(!rw_write_held(&wl->wl_rwlock)); 2045 } 2046 2047 /****************************************************************/ 2048 2049 /* locks missing */ 2050 void 2051 wapbl_print(struct wapbl *wl, int full, void (*pr)(const char *, ...)) 2052 { 2053 struct buf *bp; 2054 struct wapbl_entry *we; 2055 (*pr)("wapbl %p", wl); 2056 (*pr)("\nlogvp = %p, devvp = %p, logpbn = %"PRId64"\n", 2057 wl->wl_logvp, wl->wl_devvp, wl->wl_logpbn); 2058 (*pr)("circ = %zu, header = %zu," 2059 " head = %"PRIdMAX" tail = %"PRIdMAX"\n", 2060 wl->wl_circ_size, wl->wl_circ_off, 2061 (intmax_t)wl->wl_head, (intmax_t)wl->wl_tail); 2062 (*pr)("fs_dev_bshift = %d, log_dev_bshift = %d\n", 2063 wl->wl_log_dev_bshift, wl->wl_fs_dev_bshift); 2064 #ifdef WAPBL_DEBUG_BUFBYTES 2065 (*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu " 2066 "reserved = %zu errcnt = %d unsynced = %zu\n", 2067 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount, 2068 wl->wl_reclaimable_bytes, wl->wl_reserved_bytes, 2069 wl->wl_error_count, wl->wl_unsynced_bufbytes); 2070 #else 2071 (*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu " 2072 "reserved = %zu errcnt = %d\n", wl->wl_bufcount, wl->wl_bufbytes, 2073 wl->wl_bcount, wl->wl_reclaimable_bytes, wl->wl_reserved_bytes, 2074 wl->wl_error_count); 2075 #endif 2076 (*pr)("\tdealloccnt = %d, dealloclim = %d\n", 2077 wl->wl_dealloccnt, wl->wl_dealloclim); 2078 (*pr)("\tinohashcnt = %d, inohashmask = 0x%08x\n", 2079 wl->wl_inohashcnt, wl->wl_inohashmask); 2080 (*pr)("entries:\n"); 2081 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) { 2082 #ifdef WAPBL_DEBUG_BUFBYTES 2083 (*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d, " 2084 "unsynced = %zu\n", 2085 we->we_bufcount, we->we_reclaimable_bytes, 2086 we->we_error, we->we_unsynced_bufbytes); 2087 #else 2088 (*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d\n", 2089 we->we_bufcount, we->we_reclaimable_bytes, we->we_error); 2090 #endif 2091 } 2092 if (full) { 2093 int cnt = 0; 2094 (*pr)("bufs ="); 2095 TAILQ_FOREACH(bp, &wl->wl_bufs, b_wapbllist) { 2096 if (!TAILQ_NEXT(bp, b_wapbllist)) { 2097 (*pr)(" %p", bp); 2098 } else if ((++cnt % 6) == 0) { 2099 (*pr)(" %p,\n\t", bp); 2100 } else { 2101 (*pr)(" %p,", bp); 2102 } 2103 } 2104 (*pr)("\n"); 2105 2106 (*pr)("dealloced blks = "); 2107 { 2108 struct wapbl_dealloc *wd; 2109 cnt = 0; 2110 TAILQ_FOREACH(wd, &wl->wl_dealloclist, wd_entries) { 2111 (*pr)(" %"PRId64":%d,", 2112 wd->wd_blkno, 2113 wd->wd_len); 2114 if ((++cnt % 4) == 0) { 2115 (*pr)("\n\t"); 2116 } 2117 } 2118 } 2119 (*pr)("\n"); 2120 2121 (*pr)("registered inodes = "); 2122 { 2123 int i; 2124 cnt = 0; 2125 for (i = 0; i <= wl->wl_inohashmask; i++) { 2126 struct wapbl_ino_head *wih; 2127 struct wapbl_ino *wi; 2128 2129 wih = &wl->wl_inohash[i]; 2130 LIST_FOREACH(wi, wih, wi_hash) { 2131 if (wi->wi_ino == 0) 2132 continue; 2133 (*pr)(" %"PRIu64"/0%06"PRIo32",", 2134 wi->wi_ino, wi->wi_mode); 2135 if ((++cnt % 4) == 0) { 2136 (*pr)("\n\t"); 2137 } 2138 } 2139 } 2140 (*pr)("\n"); 2141 } 2142 2143 (*pr)("iobufs free ="); 2144 TAILQ_FOREACH(bp, &wl->wl_iobufs, b_wapbllist) { 2145 if (!TAILQ_NEXT(bp, b_wapbllist)) { 2146 (*pr)(" %p", bp); 2147 } else if ((++cnt % 6) == 0) { 2148 (*pr)(" %p,\n\t", bp); 2149 } else { 2150 (*pr)(" %p,", bp); 2151 } 2152 } 2153 (*pr)("\n"); 2154 2155 (*pr)("iobufs busy ="); 2156 TAILQ_FOREACH(bp, &wl->wl_iobufs_busy, b_wapbllist) { 2157 if (!TAILQ_NEXT(bp, b_wapbllist)) { 2158 (*pr)(" %p", bp); 2159 } else if ((++cnt % 6) == 0) { 2160 (*pr)(" %p,\n\t", bp); 2161 } else { 2162 (*pr)(" %p,", bp); 2163 } 2164 } 2165 (*pr)("\n"); 2166 } 2167 } 2168 2169 #if defined(WAPBL_DEBUG) || defined(DDB) 2170 void 2171 wapbl_dump(struct wapbl *wl) 2172 { 2173 #if defined(WAPBL_DEBUG) 2174 if (!wl) 2175 wl = wapbl_debug_wl; 2176 #endif 2177 if (!wl) 2178 return; 2179 wapbl_print(wl, 1, printf); 2180 } 2181 #endif 2182 2183 /****************************************************************/ 2184 2185 int 2186 wapbl_register_deallocation(struct wapbl *wl, daddr_t blk, int len, bool force, 2187 void **cookiep) 2188 { 2189 struct wapbl_dealloc *wd; 2190 int error = 0; 2191 2192 wapbl_jlock_assert(wl); 2193 2194 mutex_enter(&wl->wl_mtx); 2195 2196 if (__predict_false(wl->wl_dealloccnt >= wl->wl_dealloclim)) { 2197 if (!force) { 2198 error = SET_ERROR(EAGAIN); 2199 goto out; 2200 } 2201 2202 /* 2203 * Forced registration can only be used when: 2204 * 1) the caller can't cope with failure 2205 * 2) the path can be triggered only bounded, small 2206 * times per transaction 2207 * If this is not fullfilled, and the path would be triggered 2208 * many times, this could overflow maximum transaction size 2209 * and panic later. 2210 */ 2211 printf("%s: forced dealloc registration over limit:" 2212 " %d >= %d\n", 2213 wl->wl_mount->mnt_stat.f_mntonname, 2214 wl->wl_dealloccnt, wl->wl_dealloclim); 2215 } 2216 2217 wl->wl_dealloccnt++; 2218 mutex_exit(&wl->wl_mtx); 2219 2220 wd = pool_get(&wapbl_dealloc_pool, PR_WAITOK); 2221 wd->wd_blkno = blk; 2222 wd->wd_len = len; 2223 2224 mutex_enter(&wl->wl_mtx); 2225 TAILQ_INSERT_TAIL(&wl->wl_dealloclist, wd, wd_entries); 2226 2227 if (cookiep) 2228 *cookiep = wd; 2229 2230 out: 2231 mutex_exit(&wl->wl_mtx); 2232 2233 WAPBL_PRINTF(WAPBL_PRINT_ALLOC, 2234 ("wapbl_register_deallocation: blk=%"PRId64" len=%d error=%d\n", 2235 blk, len, error)); 2236 2237 return error; 2238 } 2239 2240 static void 2241 wapbl_deallocation_free(struct wapbl *wl, struct wapbl_dealloc *wd, 2242 bool locked) 2243 { 2244 2245 KASSERT(!locked 2246 || rw_lock_held(&wl->wl_rwlock) || mutex_owned(&wl->wl_mtx)); 2247 2248 if (!locked) 2249 mutex_enter(&wl->wl_mtx); 2250 2251 TAILQ_REMOVE(&wl->wl_dealloclist, wd, wd_entries); 2252 wl->wl_dealloccnt--; 2253 2254 if (!locked) 2255 mutex_exit(&wl->wl_mtx); 2256 2257 pool_put(&wapbl_dealloc_pool, wd); 2258 } 2259 2260 void 2261 wapbl_unregister_deallocation(struct wapbl *wl, void *cookie) 2262 { 2263 2264 KASSERT(cookie != NULL); 2265 wapbl_deallocation_free(wl, cookie, false); 2266 } 2267 2268 /****************************************************************/ 2269 2270 static void 2271 wapbl_inodetrk_init(struct wapbl *wl, u_int size) 2272 { 2273 2274 wl->wl_inohash = hashinit(size, HASH_LIST, true, &wl->wl_inohashmask); 2275 if (atomic_inc_uint_nv(&wapbl_ino_pool_refcount) == 1) { 2276 pool_init(&wapbl_ino_pool, sizeof(struct wapbl_ino), 0, 0, 0, 2277 "wapblinopl", &pool_allocator_nointr, IPL_NONE); 2278 } 2279 } 2280 2281 static void 2282 wapbl_inodetrk_free(struct wapbl *wl) 2283 { 2284 2285 /* XXX this KASSERT needs locking/mutex analysis */ 2286 KASSERT(wl->wl_inohashcnt == 0); 2287 hashdone(wl->wl_inohash, HASH_LIST, wl->wl_inohashmask); 2288 membar_release(); 2289 if (atomic_dec_uint_nv(&wapbl_ino_pool_refcount) == 0) { 2290 membar_acquire(); 2291 pool_destroy(&wapbl_ino_pool); 2292 } 2293 } 2294 2295 static struct wapbl_ino * 2296 wapbl_inodetrk_get(struct wapbl *wl, ino_t ino) 2297 { 2298 struct wapbl_ino_head *wih; 2299 struct wapbl_ino *wi; 2300 2301 KASSERT(mutex_owned(&wl->wl_mtx)); 2302 2303 wih = &wl->wl_inohash[ino & wl->wl_inohashmask]; 2304 LIST_FOREACH(wi, wih, wi_hash) { 2305 if (ino == wi->wi_ino) 2306 return wi; 2307 } 2308 return 0; 2309 } 2310 2311 void 2312 wapbl_register_inode(struct wapbl *wl, ino_t ino, mode_t mode) 2313 { 2314 struct wapbl_ino_head *wih; 2315 struct wapbl_ino *wi; 2316 2317 wi = pool_get(&wapbl_ino_pool, PR_WAITOK); 2318 2319 mutex_enter(&wl->wl_mtx); 2320 if (wapbl_inodetrk_get(wl, ino) == NULL) { 2321 wi->wi_ino = ino; 2322 wi->wi_mode = mode; 2323 wih = &wl->wl_inohash[ino & wl->wl_inohashmask]; 2324 LIST_INSERT_HEAD(wih, wi, wi_hash); 2325 wl->wl_inohashcnt++; 2326 WAPBL_PRINTF(WAPBL_PRINT_INODE, 2327 ("wapbl_register_inode: ino=%"PRId64"\n", ino)); 2328 mutex_exit(&wl->wl_mtx); 2329 } else { 2330 mutex_exit(&wl->wl_mtx); 2331 pool_put(&wapbl_ino_pool, wi); 2332 } 2333 } 2334 2335 void 2336 wapbl_unregister_inode(struct wapbl *wl, ino_t ino, mode_t mode) 2337 { 2338 struct wapbl_ino *wi; 2339 2340 mutex_enter(&wl->wl_mtx); 2341 wi = wapbl_inodetrk_get(wl, ino); 2342 if (wi) { 2343 WAPBL_PRINTF(WAPBL_PRINT_INODE, 2344 ("wapbl_unregister_inode: ino=%"PRId64"\n", ino)); 2345 KASSERT(wl->wl_inohashcnt > 0); 2346 wl->wl_inohashcnt--; 2347 LIST_REMOVE(wi, wi_hash); 2348 mutex_exit(&wl->wl_mtx); 2349 2350 pool_put(&wapbl_ino_pool, wi); 2351 } else { 2352 mutex_exit(&wl->wl_mtx); 2353 } 2354 } 2355 2356 /****************************************************************/ 2357 2358 /* 2359 * wapbl_transaction_inodes_len(wl) 2360 * 2361 * Calculate the number of bytes required for inode registration 2362 * log records in wl. 2363 */ 2364 static inline size_t 2365 wapbl_transaction_inodes_len(struct wapbl *wl) 2366 { 2367 int blocklen = 1<<wl->wl_log_dev_bshift; 2368 int iph; 2369 2370 /* Calculate number of inodes described in a inodelist header */ 2371 iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) / 2372 sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]); 2373 2374 KASSERT(iph > 0); 2375 2376 return MAX(1, howmany(wl->wl_inohashcnt, iph)) * blocklen; 2377 } 2378 2379 2380 /* 2381 * wapbl_transaction_len(wl) 2382 * 2383 * Calculate number of bytes required for all log records in wl. 2384 */ 2385 static size_t 2386 wapbl_transaction_len(struct wapbl *wl) 2387 { 2388 int blocklen = 1<<wl->wl_log_dev_bshift; 2389 size_t len; 2390 2391 /* Calculate number of blocks described in a blocklist header */ 2392 len = wl->wl_bcount; 2393 len += howmany(wl->wl_bufcount, wl->wl_brperjblock) * blocklen; 2394 len += howmany(wl->wl_dealloccnt, wl->wl_brperjblock) * blocklen; 2395 len += wapbl_transaction_inodes_len(wl); 2396 2397 return len; 2398 } 2399 2400 /* 2401 * wapbl_cache_sync(wl, msg) 2402 * 2403 * Issue DIOCCACHESYNC to wl->wl_devvp. 2404 * 2405 * If sysctl(vfs.wapbl.verbose_commit) >= 2, print a message 2406 * including msg about the duration of the cache sync. 2407 */ 2408 static int 2409 wapbl_cache_sync(struct wapbl *wl, const char *msg) 2410 { 2411 const bool verbose = wapbl_verbose_commit >= 2; 2412 struct bintime start_time; 2413 int force = 1; 2414 int error; 2415 2416 /* Skip full cache sync if disabled */ 2417 if (!wapbl_flush_disk_cache) { 2418 return 0; 2419 } 2420 if (verbose) { 2421 bintime(&start_time); 2422 } 2423 error = VOP_IOCTL(wl->wl_devvp, DIOCCACHESYNC, &force, 2424 FWRITE, FSCRED); 2425 if (error) { 2426 WAPBL_PRINTF(WAPBL_PRINT_ERROR, 2427 ("wapbl_cache_sync: DIOCCACHESYNC on dev 0x%jx " 2428 "returned %d\n", (uintmax_t)wl->wl_devvp->v_rdev, 2429 error)); 2430 } 2431 if (verbose) { 2432 struct bintime d; 2433 struct timespec ts; 2434 2435 bintime(&d); 2436 bintime_sub(&d, &start_time); 2437 bintime2timespec(&d, &ts); 2438 printf("wapbl_cache_sync: %s: dev 0x%jx %ju.%09lu\n", 2439 msg, (uintmax_t)wl->wl_devvp->v_rdev, 2440 (uintmax_t)ts.tv_sec, ts.tv_nsec); 2441 } 2442 2443 wl->wl_ev_cacheflush.ev_count++; 2444 2445 return error; 2446 } 2447 2448 /* 2449 * wapbl_write_commit(wl, head, tail) 2450 * 2451 * Issue a disk cache sync to wait for all pending writes to the 2452 * log to complete, and then synchronously commit the current 2453 * circular queue head and tail to the log, in the next of two 2454 * locations for commit headers on disk. 2455 * 2456 * Increment the generation number. If the generation number 2457 * rolls over to zero, then a subsequent commit would appear to 2458 * have an older generation than this one -- in that case, issue a 2459 * duplicate commit to avoid this. 2460 * 2461 * => Caller must have exclusive access to wl, either by holding 2462 * wl->wl_rwlock for writer or by being wapbl_start before anyone 2463 * else has seen wl. 2464 */ 2465 static int 2466 wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail) 2467 { 2468 struct wapbl_wc_header *wc = wl->wl_wc_header; 2469 struct timespec ts; 2470 int error; 2471 daddr_t pbn; 2472 2473 error = wapbl_buffered_flush(wl, true); 2474 if (error) 2475 return error; 2476 /* 2477 * Flush disk cache to ensure that blocks we've written are actually 2478 * written to the stable storage before the commit header. 2479 * This flushes to disk not only journal blocks, but also all 2480 * metadata blocks, written asynchronously since previous commit. 2481 * 2482 * XXX Calc checksum here, instead we do this for now 2483 */ 2484 wapbl_cache_sync(wl, "1"); 2485 2486 wc->wc_head = head; 2487 wc->wc_tail = tail; 2488 wc->wc_checksum = 0; 2489 wc->wc_version = 1; 2490 getnanotime(&ts); 2491 wc->wc_time = ts.tv_sec; 2492 wc->wc_timensec = ts.tv_nsec; 2493 2494 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2495 ("wapbl_write_commit: head = %"PRIdMAX "tail = %"PRIdMAX"\n", 2496 (intmax_t)head, (intmax_t)tail)); 2497 2498 /* 2499 * write the commit header. 2500 * 2501 * XXX if generation will rollover, then first zero 2502 * over second commit header before trying to write both headers. 2503 */ 2504 2505 pbn = wl->wl_logpbn + (wc->wc_generation % 2); 2506 #ifdef _KERNEL 2507 pbn = btodb(pbn << wc->wc_log_dev_bshift); 2508 #endif 2509 error = wapbl_buffered_write(wc, wc->wc_len, wl, pbn, 2510 WAPBL_JFLAGS(wl)); 2511 if (error) 2512 return error; 2513 error = wapbl_buffered_flush(wl, true); 2514 if (error) 2515 return error; 2516 2517 /* 2518 * Flush disk cache to ensure that the commit header is actually 2519 * written before meta data blocks. Commit block is written using 2520 * FUA when enabled, in that case this flush is not needed. 2521 */ 2522 if (!WAPBL_USE_FUA(wl)) 2523 wapbl_cache_sync(wl, "2"); 2524 2525 /* 2526 * If the generation number was zero, write it out a second time. 2527 * This handles initialization and generation number rollover 2528 */ 2529 if (wc->wc_generation++ == 0) { 2530 error = wapbl_write_commit(wl, head, tail); 2531 /* 2532 * This panic should be able to be removed if we do the 2533 * zero'ing mentioned above, and we are certain to roll 2534 * back generation number on failure. 2535 */ 2536 if (error) { 2537 panic("wapbl_write_commit: error writing duplicate " 2538 "log header: %d", error); 2539 } 2540 } 2541 2542 wl->wl_ev_commit.ev_count++; 2543 2544 return 0; 2545 } 2546 2547 /* 2548 * wapbl_write_blocks(wl, offp) 2549 * 2550 * Write all pending physical blocks in the current transaction 2551 * from wapbl_add_buf to the log on disk, adding to the circular 2552 * queue head at byte offset *offp, and returning the new head's 2553 * byte offset in *offp. 2554 */ 2555 static int 2556 wapbl_write_blocks(struct wapbl *wl, off_t *offp) 2557 { 2558 struct wapbl_wc_blocklist *wc = 2559 (struct wapbl_wc_blocklist *)wl->wl_wc_scratch; 2560 int blocklen = 1<<wl->wl_log_dev_bshift; 2561 struct buf *bp; 2562 off_t off = *offp; 2563 int error; 2564 size_t padding; 2565 2566 KASSERT(rw_write_held(&wl->wl_rwlock)); 2567 2568 bp = TAILQ_FIRST(&wl->wl_bufs); 2569 2570 while (bp) { 2571 int cnt; 2572 struct buf *obp = bp; 2573 2574 KASSERT(bp->b_flags & B_LOCKED); 2575 2576 wc->wc_type = WAPBL_WC_BLOCKS; 2577 wc->wc_len = blocklen; 2578 wc->wc_blkcount = 0; 2579 wc->wc_unused = 0; 2580 while (bp && wc->wc_blkcount < wl->wl_brperjblock) { 2581 /* 2582 * Make sure all the physical block numbers are up to 2583 * date. If this is not always true on a given 2584 * filesystem, then VOP_BMAP must be called. We 2585 * could call VOP_BMAP here, or else in the filesystem 2586 * specific flush callback, although neither of those 2587 * solutions allow us to take the vnode lock. If a 2588 * filesystem requires that we must take the vnode lock 2589 * to call VOP_BMAP, then we can probably do it in 2590 * bwrite when the vnode lock should already be held 2591 * by the invoking code. 2592 */ 2593 KASSERT(bp->b_vp->v_type == VBLK || 2594 bp->b_blkno != bp->b_lblkno); 2595 KASSERT(bp->b_blkno > 0); 2596 2597 wc->wc_blocks[wc->wc_blkcount].wc_daddr = bp->b_blkno; 2598 wc->wc_blocks[wc->wc_blkcount].wc_dlen = bp->b_bcount; 2599 wc->wc_len += bp->b_bcount; 2600 wc->wc_blkcount++; 2601 bp = TAILQ_NEXT(bp, b_wapbllist); 2602 } 2603 if (wc->wc_len % blocklen != 0) { 2604 padding = blocklen - wc->wc_len % blocklen; 2605 wc->wc_len += padding; 2606 } else { 2607 padding = 0; 2608 } 2609 2610 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2611 ("wapbl_write_blocks:" 2612 " len = %u (padding %zu) off = %"PRIdMAX"\n", 2613 wc->wc_len, padding, (intmax_t)off)); 2614 2615 error = wapbl_circ_write(wl, wc, blocklen, &off); 2616 if (error) 2617 return error; 2618 bp = obp; 2619 cnt = 0; 2620 while (bp && cnt++ < wl->wl_brperjblock) { 2621 error = wapbl_circ_write(wl, bp->b_data, 2622 bp->b_bcount, &off); 2623 if (error) 2624 return error; 2625 bp = TAILQ_NEXT(bp, b_wapbllist); 2626 } 2627 if (padding) { 2628 void *zero; 2629 2630 zero = wapbl_alloc(padding); 2631 memset(zero, 0, padding); 2632 error = wapbl_circ_write(wl, zero, padding, &off); 2633 wapbl_free(zero, padding); 2634 if (error) 2635 return error; 2636 } 2637 } 2638 *offp = off; 2639 return 0; 2640 } 2641 2642 /* 2643 * wapbl_write_revocations(wl, offp) 2644 * 2645 * Write all pending deallocations in the current transaction from 2646 * wapbl_register_deallocation to the log on disk, adding to the 2647 * circular queue's head at byte offset *offp, and returning the 2648 * new head's byte offset in *offp. 2649 */ 2650 static int 2651 wapbl_write_revocations(struct wapbl *wl, off_t *offp) 2652 { 2653 struct wapbl_wc_blocklist *wc = 2654 (struct wapbl_wc_blocklist *)wl->wl_wc_scratch; 2655 struct wapbl_dealloc *wd, *lwd; 2656 int blocklen = 1<<wl->wl_log_dev_bshift; 2657 off_t off = *offp; 2658 int error; 2659 2660 KASSERT(rw_write_held(&wl->wl_rwlock)); 2661 2662 if (wl->wl_dealloccnt == 0) 2663 return 0; 2664 2665 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) { 2666 wc->wc_type = WAPBL_WC_REVOCATIONS; 2667 wc->wc_len = blocklen; 2668 wc->wc_blkcount = 0; 2669 wc->wc_unused = 0; 2670 while (wd && wc->wc_blkcount < wl->wl_brperjblock) { 2671 wc->wc_blocks[wc->wc_blkcount].wc_daddr = 2672 wd->wd_blkno; 2673 wc->wc_blocks[wc->wc_blkcount].wc_dlen = 2674 wd->wd_len; 2675 wc->wc_blkcount++; 2676 2677 wd = TAILQ_NEXT(wd, wd_entries); 2678 } 2679 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2680 ("wapbl_write_revocations: len = %u off = %"PRIdMAX"\n", 2681 wc->wc_len, (intmax_t)off)); 2682 error = wapbl_circ_write(wl, wc, blocklen, &off); 2683 if (error) 2684 return error; 2685 2686 /* free all successfully written deallocs */ 2687 lwd = wd; 2688 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) { 2689 if (wd == lwd) 2690 break; 2691 wapbl_deallocation_free(wl, wd, true); 2692 } 2693 } 2694 *offp = off; 2695 return 0; 2696 } 2697 2698 /* 2699 * wapbl_write_inodes(wl, offp) 2700 * 2701 * Write all pending inode allocations in the current transaction 2702 * from wapbl_register_inode to the log on disk, adding to the 2703 * circular queue's head at byte offset *offp and returning the 2704 * new head's byte offset in *offp. 2705 */ 2706 static int 2707 wapbl_write_inodes(struct wapbl *wl, off_t *offp) 2708 { 2709 struct wapbl_wc_inodelist *wc = 2710 (struct wapbl_wc_inodelist *)wl->wl_wc_scratch; 2711 int i; 2712 int blocklen = 1 << wl->wl_log_dev_bshift; 2713 off_t off = *offp; 2714 int error; 2715 2716 struct wapbl_ino_head *wih; 2717 struct wapbl_ino *wi; 2718 int iph; 2719 2720 iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) / 2721 sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]); 2722 2723 i = 0; 2724 wih = &wl->wl_inohash[0]; 2725 wi = 0; 2726 do { 2727 wc->wc_type = WAPBL_WC_INODES; 2728 wc->wc_len = blocklen; 2729 wc->wc_inocnt = 0; 2730 wc->wc_clear = (i == 0); 2731 while (i < wl->wl_inohashcnt && wc->wc_inocnt < iph) { 2732 while (!wi) { 2733 KASSERT((wih - &wl->wl_inohash[0]) 2734 <= wl->wl_inohashmask); 2735 wi = LIST_FIRST(wih++); 2736 } 2737 wc->wc_inodes[wc->wc_inocnt].wc_inumber = wi->wi_ino; 2738 wc->wc_inodes[wc->wc_inocnt].wc_imode = wi->wi_mode; 2739 wc->wc_inocnt++; 2740 i++; 2741 wi = LIST_NEXT(wi, wi_hash); 2742 } 2743 WAPBL_PRINTF(WAPBL_PRINT_WRITE, 2744 ("wapbl_write_inodes: len = %u off = %"PRIdMAX"\n", 2745 wc->wc_len, (intmax_t)off)); 2746 error = wapbl_circ_write(wl, wc, blocklen, &off); 2747 if (error) 2748 return error; 2749 } while (i < wl->wl_inohashcnt); 2750 2751 *offp = off; 2752 return 0; 2753 } 2754 2755 #endif /* _KERNEL */ 2756 2757 /****************************************************************/ 2758 2759 struct wapbl_blk { 2760 LIST_ENTRY(wapbl_blk) wb_hash; 2761 daddr_t wb_blk; 2762 off_t wb_off; /* Offset of this block in the log */ 2763 }; 2764 #define WAPBL_BLKPOOL_MIN 83 2765 2766 static void 2767 wapbl_blkhash_init(struct wapbl_replay *wr, u_int size) 2768 { 2769 2770 if (size < WAPBL_BLKPOOL_MIN) 2771 size = WAPBL_BLKPOOL_MIN; 2772 KASSERT(wr->wr_blkhash == 0); 2773 #ifdef _KERNEL 2774 wr->wr_blkhash = hashinit(size, HASH_LIST, true, &wr->wr_blkhashmask); 2775 #else /* ! _KERNEL */ 2776 /* Manually implement hashinit */ 2777 { 2778 unsigned long i, hashsize; 2779 2780 for (hashsize = 1; hashsize < size; hashsize <<= 1) 2781 continue; 2782 wr->wr_blkhash = wapbl_alloc(hashsize * 2783 sizeof(*wr->wr_blkhash)); 2784 for (i = 0; i < hashsize; i++) 2785 LIST_INIT(&wr->wr_blkhash[i]); 2786 wr->wr_blkhashmask = hashsize - 1; 2787 } 2788 #endif /* ! _KERNEL */ 2789 } 2790 2791 static void 2792 wapbl_blkhash_free(struct wapbl_replay *wr) 2793 { 2794 2795 KASSERT(wr->wr_blkhashcnt == 0); 2796 #ifdef _KERNEL 2797 hashdone(wr->wr_blkhash, HASH_LIST, wr->wr_blkhashmask); 2798 #else /* ! _KERNEL */ 2799 wapbl_free(wr->wr_blkhash, 2800 (wr->wr_blkhashmask + 1) * sizeof(*wr->wr_blkhash)); 2801 #endif /* ! _KERNEL */ 2802 } 2803 2804 static struct wapbl_blk * 2805 wapbl_blkhash_get(struct wapbl_replay *wr, daddr_t blk) 2806 { 2807 struct wapbl_blk_head *wbh; 2808 struct wapbl_blk *wb; 2809 2810 wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask]; 2811 LIST_FOREACH(wb, wbh, wb_hash) { 2812 if (blk == wb->wb_blk) 2813 return wb; 2814 } 2815 return 0; 2816 } 2817 2818 static void 2819 wapbl_blkhash_ins(struct wapbl_replay *wr, daddr_t blk, off_t off) 2820 { 2821 struct wapbl_blk_head *wbh; 2822 struct wapbl_blk *wb; 2823 2824 wb = wapbl_blkhash_get(wr, blk); 2825 if (wb) { 2826 KASSERT(wb->wb_blk == blk); 2827 wb->wb_off = off; 2828 } else { 2829 wb = wapbl_alloc(sizeof(*wb)); 2830 wb->wb_blk = blk; 2831 wb->wb_off = off; 2832 wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask]; 2833 LIST_INSERT_HEAD(wbh, wb, wb_hash); 2834 wr->wr_blkhashcnt++; 2835 } 2836 } 2837 2838 static void 2839 wapbl_blkhash_rem(struct wapbl_replay *wr, daddr_t blk) 2840 { 2841 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 2842 2843 if (wb) { 2844 KASSERT(wr->wr_blkhashcnt > 0); 2845 wr->wr_blkhashcnt--; 2846 LIST_REMOVE(wb, wb_hash); 2847 wapbl_free(wb, sizeof(*wb)); 2848 } 2849 } 2850 2851 static void 2852 wapbl_blkhash_clear(struct wapbl_replay *wr) 2853 { 2854 unsigned long i; 2855 2856 for (i = 0; i <= wr->wr_blkhashmask; i++) { 2857 struct wapbl_blk *wb; 2858 2859 while ((wb = LIST_FIRST(&wr->wr_blkhash[i]))) { 2860 KASSERT(wr->wr_blkhashcnt > 0); 2861 wr->wr_blkhashcnt--; 2862 LIST_REMOVE(wb, wb_hash); 2863 wapbl_free(wb, sizeof(*wb)); 2864 } 2865 } 2866 KASSERT(wr->wr_blkhashcnt == 0); 2867 } 2868 2869 /****************************************************************/ 2870 2871 /* 2872 * wapbl_circ_read(wr, data, len, offp) 2873 * 2874 * Read len bytes into data from the circular queue of wr, 2875 * starting at the linear byte offset *offp, and returning the new 2876 * linear byte offset in *offp. 2877 * 2878 * If the starting linear byte offset precedes wr->wr_circ_off, 2879 * the read instead begins at wr->wr_circ_off. XXX WTF? This 2880 * should be a KASSERT, not a conditional. 2881 */ 2882 static int 2883 wapbl_circ_read(struct wapbl_replay *wr, void *data, size_t len, off_t *offp) 2884 { 2885 size_t slen; 2886 off_t off = *offp; 2887 int error; 2888 daddr_t pbn; 2889 2890 KASSERT(((len >> wr->wr_log_dev_bshift) << wr->wr_log_dev_bshift) == 2891 len); 2892 2893 if (off < wr->wr_circ_off) 2894 off = wr->wr_circ_off; 2895 slen = wr->wr_circ_off + wr->wr_circ_size - off; 2896 if (slen < len) { 2897 pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift); 2898 #ifdef _KERNEL 2899 pbn = btodb(pbn << wr->wr_log_dev_bshift); 2900 #endif 2901 error = wapbl_read(data, slen, wr->wr_devvp, pbn); 2902 if (error) 2903 return error; 2904 data = (uint8_t *)data + slen; 2905 len -= slen; 2906 off = wr->wr_circ_off; 2907 } 2908 pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift); 2909 #ifdef _KERNEL 2910 pbn = btodb(pbn << wr->wr_log_dev_bshift); 2911 #endif 2912 error = wapbl_read(data, len, wr->wr_devvp, pbn); 2913 if (error) 2914 return error; 2915 off += len; 2916 if (off >= wr->wr_circ_off + wr->wr_circ_size) 2917 off = wr->wr_circ_off; 2918 *offp = off; 2919 return 0; 2920 } 2921 2922 /* 2923 * wapbl_circ_advance(wr, len, offp) 2924 * 2925 * Compute the linear byte offset of the circular queue of wr that 2926 * is len bytes past *offp, and store it in *offp. 2927 * 2928 * This is as if wapbl_circ_read, but without actually reading 2929 * anything. 2930 * 2931 * If the starting linear byte offset precedes wr->wr_circ_off, it 2932 * is taken to be wr->wr_circ_off instead. XXX WTF? This should 2933 * be a KASSERT, not a conditional. 2934 */ 2935 static void 2936 wapbl_circ_advance(struct wapbl_replay *wr, size_t len, off_t *offp) 2937 { 2938 size_t slen; 2939 off_t off = *offp; 2940 2941 KASSERT(((len >> wr->wr_log_dev_bshift) << wr->wr_log_dev_bshift) == 2942 len); 2943 2944 if (off < wr->wr_circ_off) 2945 off = wr->wr_circ_off; 2946 slen = wr->wr_circ_off + wr->wr_circ_size - off; 2947 if (slen < len) { 2948 len -= slen; 2949 off = wr->wr_circ_off; 2950 } 2951 off += len; 2952 if (off >= wr->wr_circ_off + wr->wr_circ_size) 2953 off = wr->wr_circ_off; 2954 *offp = off; 2955 } 2956 2957 /****************************************************************/ 2958 2959 int 2960 wapbl_replay_start(struct wapbl_replay **wrp, struct vnode *vp, 2961 daddr_t off, size_t count, size_t blksize) 2962 { 2963 struct wapbl_replay *wr; 2964 int error; 2965 struct vnode *devvp; 2966 daddr_t logpbn; 2967 uint8_t *scratch; 2968 struct wapbl_wc_header *wch; 2969 struct wapbl_wc_header *wch2; 2970 /* Use this until we read the actual log header */ 2971 int log_dev_bshift = ilog2(blksize); 2972 size_t used; 2973 daddr_t pbn; 2974 2975 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 2976 ("wapbl_replay_start: vp=%p off=%"PRId64" count=%zu blksize=%zu\n", 2977 vp, off, count, blksize)); 2978 2979 if (off < 0) 2980 return SET_ERROR(EINVAL); 2981 2982 if (blksize < DEV_BSIZE) 2983 return SET_ERROR(EINVAL); 2984 if (blksize % DEV_BSIZE) 2985 return SET_ERROR(EINVAL); 2986 2987 #ifdef _KERNEL 2988 #if 0 2989 /* XXX vp->v_size isn't reliably set for VBLK devices, 2990 * especially root. However, we might still want to verify 2991 * that the full load is readable */ 2992 if ((off + count) * blksize > vp->v_size) 2993 return SET_ERROR(EINVAL); 2994 #endif 2995 if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, 0)) != 0) { 2996 return error; 2997 } 2998 #else /* ! _KERNEL */ 2999 devvp = vp; 3000 logpbn = off; 3001 #endif /* ! _KERNEL */ 3002 3003 scratch = wapbl_alloc(MAXBSIZE); 3004 3005 pbn = logpbn; 3006 #ifdef _KERNEL 3007 pbn = btodb(pbn << log_dev_bshift); 3008 #endif 3009 error = wapbl_read(scratch, 2<<log_dev_bshift, devvp, pbn); 3010 if (error) 3011 goto errout; 3012 3013 wch = (struct wapbl_wc_header *)scratch; 3014 wch2 = 3015 (struct wapbl_wc_header *)(scratch + (1<<log_dev_bshift)); 3016 /* XXX verify checksums and magic numbers */ 3017 if (wch->wc_type != WAPBL_WC_HEADER) { 3018 printf("Unrecognized wapbl magic: 0x%08x\n", wch->wc_type); 3019 error = SET_ERROR(EFTYPE); 3020 goto errout; 3021 } 3022 3023 if (wch2->wc_generation > wch->wc_generation) 3024 wch = wch2; 3025 3026 wr = wapbl_calloc(1, sizeof(*wr)); 3027 3028 wr->wr_logvp = vp; 3029 wr->wr_devvp = devvp; 3030 wr->wr_logpbn = logpbn; 3031 3032 wr->wr_scratch = scratch; 3033 3034 wr->wr_log_dev_bshift = wch->wc_log_dev_bshift; 3035 wr->wr_fs_dev_bshift = wch->wc_fs_dev_bshift; 3036 wr->wr_circ_off = wch->wc_circ_off; 3037 wr->wr_circ_size = wch->wc_circ_size; 3038 wr->wr_generation = wch->wc_generation; 3039 3040 used = wapbl_space_used(wch->wc_circ_size, wch->wc_head, wch->wc_tail); 3041 3042 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, 3043 ("wapbl_replay: head=%"PRId64" tail=%"PRId64" off=%"PRId64 3044 " len=%"PRId64" used=%zu\n", 3045 wch->wc_head, wch->wc_tail, wch->wc_circ_off, 3046 wch->wc_circ_size, used)); 3047 3048 wapbl_blkhash_init(wr, (used >> wch->wc_fs_dev_bshift)); 3049 3050 error = wapbl_replay_process(wr, wch->wc_head, wch->wc_tail); 3051 if (error) { 3052 wapbl_replay_stop(wr); 3053 wapbl_replay_free(wr); 3054 return error; 3055 } 3056 3057 *wrp = wr; 3058 return 0; 3059 3060 errout: 3061 wapbl_free(scratch, MAXBSIZE); 3062 return error; 3063 } 3064 3065 void 3066 wapbl_replay_stop(struct wapbl_replay *wr) 3067 { 3068 3069 if (!wapbl_replay_isopen(wr)) 3070 return; 3071 3072 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, ("wapbl_replay_stop called\n")); 3073 3074 wapbl_free(wr->wr_scratch, MAXBSIZE); 3075 wr->wr_scratch = NULL; 3076 3077 wr->wr_logvp = NULL; 3078 3079 wapbl_blkhash_clear(wr); 3080 wapbl_blkhash_free(wr); 3081 } 3082 3083 void 3084 wapbl_replay_free(struct wapbl_replay *wr) 3085 { 3086 3087 KDASSERT(!wapbl_replay_isopen(wr)); 3088 3089 if (wr->wr_inodes) { 3090 wapbl_free(wr->wr_inodes, 3091 wr->wr_inodescnt * sizeof(wr->wr_inodes[0])); 3092 } 3093 wapbl_free(wr, sizeof(*wr)); 3094 } 3095 3096 #ifdef _KERNEL 3097 int 3098 wapbl_replay_isopen1(struct wapbl_replay *wr) 3099 { 3100 3101 return wapbl_replay_isopen(wr); 3102 } 3103 #endif 3104 3105 /* 3106 * calculate the disk address for the i'th block in the wc_blockblist 3107 * offset by j blocks of size blen. 3108 * 3109 * wc_daddr is always a kernel disk address in DEV_BSIZE units that 3110 * was written to the journal. 3111 * 3112 * The kernel needs that address plus the offset in DEV_BSIZE units. 3113 * 3114 * Userland needs that address plus the offset in blen units. 3115 * 3116 */ 3117 static daddr_t 3118 wapbl_block_daddr(struct wapbl_wc_blocklist *wc, int i, int j, int blen) 3119 { 3120 daddr_t pbn; 3121 3122 #ifdef _KERNEL 3123 pbn = wc->wc_blocks[i].wc_daddr + btodb(j * blen); 3124 #else 3125 pbn = dbtob(wc->wc_blocks[i].wc_daddr) / blen + j; 3126 #endif 3127 3128 return pbn; 3129 } 3130 3131 static void 3132 wapbl_replay_process_blocks(struct wapbl_replay *wr, off_t *offp) 3133 { 3134 struct wapbl_wc_blocklist *wc = 3135 (struct wapbl_wc_blocklist *)wr->wr_scratch; 3136 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3137 int i, j, n; 3138 3139 for (i = 0; i < wc->wc_blkcount; i++) { 3140 /* 3141 * Enter each physical block into the hashtable independently. 3142 */ 3143 n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift; 3144 for (j = 0; j < n; j++) { 3145 wapbl_blkhash_ins(wr, 3146 wapbl_block_daddr(wc, i, j, fsblklen), 3147 *offp); 3148 wapbl_circ_advance(wr, fsblklen, offp); 3149 } 3150 } 3151 } 3152 3153 static void 3154 wapbl_replay_process_revocations(struct wapbl_replay *wr) 3155 { 3156 struct wapbl_wc_blocklist *wc = 3157 (struct wapbl_wc_blocklist *)wr->wr_scratch; 3158 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3159 int i, j, n; 3160 3161 for (i = 0; i < wc->wc_blkcount; i++) { 3162 /* 3163 * Remove any blocks found from the hashtable. 3164 */ 3165 n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift; 3166 for (j = 0; j < n; j++) { 3167 wapbl_blkhash_rem(wr, wapbl_block_daddr(wc, i, j, 3168 fsblklen)); 3169 } 3170 } 3171 } 3172 3173 static void 3174 wapbl_replay_process_inodes(struct wapbl_replay *wr, off_t oldoff, 3175 off_t newoff) 3176 { 3177 struct wapbl_wc_inodelist *wc = 3178 (struct wapbl_wc_inodelist *)wr->wr_scratch; 3179 void *new_inodes; 3180 const size_t oldsize = wr->wr_inodescnt * sizeof(wr->wr_inodes[0]); 3181 3182 KASSERT(sizeof(wr->wr_inodes[0]) == sizeof(wc->wc_inodes[0])); 3183 3184 /* 3185 * Keep track of where we found this so location won't be 3186 * overwritten. 3187 */ 3188 if (wc->wc_clear) { 3189 wr->wr_inodestail = oldoff; 3190 wr->wr_inodescnt = 0; 3191 if (wr->wr_inodes != NULL) { 3192 wapbl_free(wr->wr_inodes, oldsize); 3193 wr->wr_inodes = NULL; 3194 } 3195 } 3196 wr->wr_inodeshead = newoff; 3197 if (wc->wc_inocnt == 0) 3198 return; 3199 3200 new_inodes = wapbl_alloc((wr->wr_inodescnt + wc->wc_inocnt) * 3201 sizeof(wr->wr_inodes[0])); 3202 if (wr->wr_inodes != NULL) { 3203 memcpy(new_inodes, wr->wr_inodes, oldsize); 3204 wapbl_free(wr->wr_inodes, oldsize); 3205 } 3206 wr->wr_inodes = new_inodes; 3207 memcpy(&wr->wr_inodes[wr->wr_inodescnt], wc->wc_inodes, 3208 wc->wc_inocnt * sizeof(wr->wr_inodes[0])); 3209 wr->wr_inodescnt += wc->wc_inocnt; 3210 } 3211 3212 static int 3213 wapbl_replay_process(struct wapbl_replay *wr, off_t head, off_t tail) 3214 { 3215 off_t off; 3216 int error; 3217 3218 int logblklen = 1 << wr->wr_log_dev_bshift; 3219 3220 wapbl_blkhash_clear(wr); 3221 3222 off = tail; 3223 while (off != head) { 3224 struct wapbl_wc_null *wcn; 3225 off_t saveoff = off; 3226 error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off); 3227 if (error) 3228 goto errout; 3229 wcn = (struct wapbl_wc_null *)wr->wr_scratch; 3230 switch (wcn->wc_type) { 3231 case WAPBL_WC_BLOCKS: 3232 wapbl_replay_process_blocks(wr, &off); 3233 break; 3234 3235 case WAPBL_WC_REVOCATIONS: 3236 wapbl_replay_process_revocations(wr); 3237 break; 3238 3239 case WAPBL_WC_INODES: 3240 wapbl_replay_process_inodes(wr, saveoff, off); 3241 break; 3242 3243 default: 3244 printf("Unrecognized wapbl type: 0x%08x\n", 3245 wcn->wc_type); 3246 error = SET_ERROR(EFTYPE); 3247 goto errout; 3248 } 3249 wapbl_circ_advance(wr, wcn->wc_len, &saveoff); 3250 if (off != saveoff) { 3251 printf("wapbl_replay: corrupted records\n"); 3252 error = SET_ERROR(EFTYPE); 3253 goto errout; 3254 } 3255 } 3256 return 0; 3257 3258 errout: 3259 wapbl_blkhash_clear(wr); 3260 return error; 3261 } 3262 3263 #if 0 3264 int 3265 wapbl_replay_verify(struct wapbl_replay *wr, struct vnode *fsdevvp) 3266 { 3267 off_t off; 3268 int mismatchcnt = 0; 3269 int logblklen = 1 << wr->wr_log_dev_bshift; 3270 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3271 void *scratch1 = wapbl_alloc(MAXBSIZE); 3272 void *scratch2 = wapbl_alloc(MAXBSIZE); 3273 int error = 0; 3274 3275 KDASSERT(wapbl_replay_isopen(wr)); 3276 3277 off = wch->wc_tail; 3278 while (off != wch->wc_head) { 3279 struct wapbl_wc_null *wcn; 3280 #ifdef DEBUG 3281 off_t saveoff = off; 3282 #endif 3283 error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off); 3284 if (error) 3285 goto out; 3286 wcn = (struct wapbl_wc_null *)wr->wr_scratch; 3287 switch (wcn->wc_type) { 3288 case WAPBL_WC_BLOCKS: { 3289 struct wapbl_wc_blocklist *wc = 3290 (struct wapbl_wc_blocklist *)wr->wr_scratch; 3291 int i; 3292 for (i = 0; i < wc->wc_blkcount; i++) { 3293 int foundcnt = 0; 3294 int dirtycnt = 0; 3295 int j, n; 3296 /* 3297 * Check each physical block into the 3298 * hashtable independently 3299 */ 3300 n = wc->wc_blocks[i].wc_dlen >> 3301 wch->wc_fs_dev_bshift; 3302 for (j = 0; j < n; j++) { 3303 struct wapbl_blk *wb = 3304 wapbl_blkhash_get(wr, 3305 wapbl_block_daddr(wc, i, j, 3306 fsblklen)); 3307 if (wb && wb->wb_off == off) { 3308 foundcnt++; 3309 error = 3310 wapbl_circ_read(wr, 3311 scratch1, fsblklen, 3312 &off); 3313 if (error) 3314 goto out; 3315 error = 3316 wapbl_read(scratch2, 3317 fsblklen, fsdevvp, 3318 wb->wb_blk); 3319 if (error) 3320 goto out; 3321 if (memcmp(scratch1, 3322 scratch2, 3323 fsblklen)) { 3324 printf("wapbl_verify:" 3325 " mismatch block" 3326 " %"PRId64 3327 " at off" 3328 " %"PRIdMAX"\n", 3329 wb->wb_blk, 3330 (intmax_t)off); 3331 dirtycnt++; 3332 mismatchcnt++; 3333 } 3334 } else { 3335 wapbl_circ_advance(wr, 3336 fsblklen, &off); 3337 } 3338 } 3339 #if 0 3340 /* 3341 * If all of the blocks in an entry 3342 * are clean, then remove all of its 3343 * blocks from the hashtable since they 3344 * never will need replay. 3345 */ 3346 if (foundcnt != 0 && dirtycnt == 0) { 3347 off = saveoff; 3348 wapbl_circ_advance(wr, logblklen, 3349 &off); 3350 for (j = 0; j < n; j++) { 3351 struct wapbl_blk *wb = 3352 wapbl_blkhash_get(wr, 3353 wapbl_block_daddr(wc, 3354 i, j, fsblklen)); 3355 if (wb && 3356 (wb->wb_off == off)) { 3357 wapbl_blkhash_rem(wr, 3358 wb->wb_blk); 3359 } 3360 wapbl_circ_advance(wr, 3361 fsblklen, &off); 3362 } 3363 } 3364 #endif 3365 } 3366 } 3367 break; 3368 case WAPBL_WC_REVOCATIONS: 3369 case WAPBL_WC_INODES: 3370 break; 3371 default: 3372 KASSERT(0); 3373 } 3374 #ifdef DEBUG 3375 wapbl_circ_advance(wr, wcn->wc_len, &saveoff); 3376 KASSERT(off == saveoff); 3377 #endif 3378 } 3379 out: 3380 wapbl_free(scratch1, MAXBSIZE); 3381 wapbl_free(scratch2, MAXBSIZE); 3382 if (!error && mismatchcnt) 3383 error = SET_ERROR(EFTYPE); 3384 return error; 3385 } 3386 #endif 3387 3388 int 3389 wapbl_replay_write(struct wapbl_replay *wr, struct vnode *fsdevvp) 3390 { 3391 struct wapbl_blk *wb; 3392 size_t i; 3393 off_t off; 3394 void *scratch; 3395 int error = 0; 3396 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3397 3398 KDASSERT(wapbl_replay_isopen(wr)); 3399 3400 scratch = wapbl_alloc(MAXBSIZE); 3401 3402 for (i = 0; i <= wr->wr_blkhashmask; ++i) { 3403 LIST_FOREACH(wb, &wr->wr_blkhash[i], wb_hash) { 3404 off = wb->wb_off; 3405 error = wapbl_circ_read(wr, scratch, fsblklen, &off); 3406 if (error) 3407 break; 3408 error = wapbl_write(scratch, fsblklen, fsdevvp, 3409 wb->wb_blk); 3410 if (error) 3411 break; 3412 } 3413 } 3414 3415 wapbl_free(scratch, MAXBSIZE); 3416 return error; 3417 } 3418 3419 int 3420 wapbl_replay_can_read(struct wapbl_replay *wr, daddr_t blk, long len) 3421 { 3422 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3423 3424 KDASSERT(wapbl_replay_isopen(wr)); 3425 KASSERT((len % fsblklen) == 0); 3426 3427 while (len != 0) { 3428 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 3429 if (wb) 3430 return 1; 3431 len -= fsblklen; 3432 } 3433 return 0; 3434 } 3435 3436 int 3437 wapbl_replay_read(struct wapbl_replay *wr, void *data, daddr_t blk, long len) 3438 { 3439 int fsblklen = 1 << wr->wr_fs_dev_bshift; 3440 3441 KDASSERT(wapbl_replay_isopen(wr)); 3442 3443 KASSERT((len % fsblklen) == 0); 3444 3445 while (len != 0) { 3446 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk); 3447 if (wb) { 3448 off_t off = wb->wb_off; 3449 int error; 3450 error = wapbl_circ_read(wr, data, fsblklen, &off); 3451 if (error) 3452 return error; 3453 } 3454 data = (uint8_t *)data + fsblklen; 3455 len -= fsblklen; 3456 blk++; 3457 } 3458 return 0; 3459 } 3460 3461 #ifdef _KERNEL 3462 3463 MODULE(MODULE_CLASS_VFS, wapbl, NULL); 3464 3465 static int 3466 wapbl_modcmd(modcmd_t cmd, void *arg) 3467 { 3468 3469 switch (cmd) { 3470 case MODULE_CMD_INIT: 3471 wapbl_init(); 3472 return 0; 3473 case MODULE_CMD_FINI: 3474 return wapbl_fini(); 3475 default: 3476 return SET_ERROR(ENOTTY); 3477 } 3478 } 3479 3480 #endif /* _KERNEL */ 3481