1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include <linux/shmem_fs.h> 7 8 #include <drm/ttm/ttm_placement.h> 9 #include <drm/ttm/ttm_tt.h> 10 #include <drm/drm_buddy.h> 11 12 #include "i915_drv.h" 13 #include "i915_ttm_buddy_manager.h" 14 #include "intel_memory_region.h" 15 #include "intel_region_ttm.h" 16 17 #include "gem/i915_gem_mman.h" 18 #include "gem/i915_gem_object.h" 19 #include "gem/i915_gem_region.h" 20 #include "gem/i915_gem_ttm.h" 21 #include "gem/i915_gem_ttm_move.h" 22 #include "gem/i915_gem_ttm_pm.h" 23 #include "gt/intel_gpu_commands.h" 24 25 #define I915_TTM_PRIO_PURGE 0 26 #define I915_TTM_PRIO_NO_PAGES 1 27 #define I915_TTM_PRIO_HAS_PAGES 2 28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3 29 30 /* 31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs 32 */ 33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN 34 35 /** 36 * struct i915_ttm_tt - TTM page vector with additional private information 37 * @ttm: The base TTM page vector. 38 * @dev: The struct device used for dma mapping and unmapping. 39 * @cached_rsgt: The cached scatter-gather table. 40 * @is_shmem: Set if using shmem. 41 * @filp: The shmem file, if using shmem backend. 42 * 43 * Note that DMA may be going on right up to the point where the page- 44 * vector is unpopulated in delayed destroy. Hence keep the 45 * scatter-gather table mapped and cached up to that point. This is 46 * different from the cached gem object io scatter-gather table which 47 * doesn't have an associated dma mapping. 48 */ 49 struct i915_ttm_tt { 50 struct ttm_tt ttm; 51 struct device *dev; 52 struct i915_refct_sgt cached_rsgt; 53 54 bool is_shmem; 55 struct file *filp; 56 }; 57 58 static const struct ttm_place sys_placement_flags = { 59 .fpfn = 0, 60 .lpfn = 0, 61 .mem_type = I915_PL_SYSTEM, 62 .flags = 0, 63 }; 64 65 static struct ttm_placement i915_sys_placement = { 66 .num_placement = 1, 67 .placement = &sys_placement_flags, 68 .num_busy_placement = 1, 69 .busy_placement = &sys_placement_flags, 70 }; 71 72 /** 73 * i915_ttm_sys_placement - Return the struct ttm_placement to be 74 * used for an object in system memory. 75 * 76 * Rather than making the struct extern, use this 77 * function. 78 * 79 * Return: A pointer to a static variable for sys placement. 80 */ 81 struct ttm_placement *i915_ttm_sys_placement(void) 82 { 83 return &i915_sys_placement; 84 } 85 86 static int i915_ttm_err_to_gem(int err) 87 { 88 /* Fastpath */ 89 if (likely(!err)) 90 return 0; 91 92 switch (err) { 93 case -EBUSY: 94 /* 95 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to 96 * restart the operation, since we don't record the contending 97 * lock. We use -EAGAIN to restart. 98 */ 99 return -EAGAIN; 100 case -ENOSPC: 101 /* 102 * Memory type / region is full, and we can't evict. 103 * Except possibly system, that returns -ENOMEM; 104 */ 105 return -ENXIO; 106 default: 107 break; 108 } 109 110 return err; 111 } 112 113 static enum ttm_caching 114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj) 115 { 116 /* 117 * Objects only allowed in system get cached cpu-mappings, or when 118 * evicting lmem-only buffers to system for swapping. Other objects get 119 * WC mapping for now. Even if in system. 120 */ 121 if (obj->mm.n_placements <= 1) 122 return ttm_cached; 123 124 return ttm_write_combined; 125 } 126 127 static void 128 i915_ttm_place_from_region(const struct intel_memory_region *mr, 129 struct ttm_place *place, 130 resource_size_t offset, 131 resource_size_t size, 132 unsigned int flags) 133 { 134 memset(place, 0, sizeof(*place)); 135 place->mem_type = intel_region_to_ttm_type(mr); 136 137 if (mr->type == INTEL_MEMORY_SYSTEM) 138 return; 139 140 if (flags & I915_BO_ALLOC_CONTIGUOUS) 141 place->flags |= TTM_PL_FLAG_CONTIGUOUS; 142 if (offset != I915_BO_INVALID_OFFSET) { 143 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn)); 144 place->fpfn = offset >> PAGE_SHIFT; 145 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn)); 146 place->lpfn = place->fpfn + (size >> PAGE_SHIFT); 147 } else if (resource_size(&mr->io) && resource_size(&mr->io) < mr->total) { 148 if (flags & I915_BO_ALLOC_GPU_ONLY) { 149 place->flags |= TTM_PL_FLAG_TOPDOWN; 150 } else { 151 place->fpfn = 0; 152 WARN_ON(overflows_type(resource_size(&mr->io) >> PAGE_SHIFT, place->lpfn)); 153 place->lpfn = resource_size(&mr->io) >> PAGE_SHIFT; 154 } 155 } 156 } 157 158 static void 159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj, 160 struct ttm_place *requested, 161 struct ttm_place *busy, 162 struct ttm_placement *placement) 163 { 164 unsigned int num_allowed = obj->mm.n_placements; 165 unsigned int flags = obj->flags; 166 unsigned int i; 167 168 placement->num_placement = 1; 169 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] : 170 obj->mm.region, requested, obj->bo_offset, 171 obj->base.size, flags); 172 173 /* Cache this on object? */ 174 placement->num_busy_placement = num_allowed; 175 for (i = 0; i < placement->num_busy_placement; ++i) 176 i915_ttm_place_from_region(obj->mm.placements[i], busy + i, 177 obj->bo_offset, obj->base.size, flags); 178 179 if (num_allowed == 0) { 180 *busy = *requested; 181 placement->num_busy_placement = 1; 182 } 183 184 placement->placement = requested; 185 placement->busy_placement = busy; 186 } 187 188 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev, 189 struct ttm_tt *ttm, 190 struct ttm_operation_ctx *ctx) 191 { 192 STUB(); 193 return -ENOSYS; 194 #ifdef notyet 195 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev); 196 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM]; 197 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 198 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev); 199 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT; 200 struct file *filp = i915_tt->filp; 201 struct sgt_iter sgt_iter; 202 struct sg_table *st; 203 struct vm_page *page; 204 unsigned long i; 205 int err; 206 207 if (!filp) { 208 struct address_space *mapping; 209 gfp_t mask; 210 211 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE); 212 if (IS_ERR(filp)) 213 return PTR_ERR(filp); 214 215 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE; 216 217 mapping = filp->f_mapping; 218 mapping_set_gfp_mask(mapping, mask); 219 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM)); 220 221 i915_tt->filp = filp; 222 } 223 224 st = &i915_tt->cached_rsgt.table; 225 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping, 226 max_segment); 227 if (err) 228 return err; 229 230 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 231 DMA_ATTR_SKIP_CPU_SYNC); 232 if (err) 233 goto err_free_st; 234 235 i = 0; 236 for_each_sgt_page(page, sgt_iter, st) 237 ttm->pages[i++] = page; 238 239 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED) 240 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 241 242 return 0; 243 244 err_free_st: 245 shmem_sg_free_table(st, filp->f_mapping, false, false); 246 247 return err; 248 #endif 249 } 250 251 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm) 252 { 253 STUB(); 254 #ifdef notyet 255 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 256 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED; 257 struct sg_table *st = &i915_tt->cached_rsgt.table; 258 259 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping, 260 backup, backup); 261 #endif 262 } 263 264 static void i915_ttm_tt_release(struct kref *ref) 265 { 266 struct i915_ttm_tt *i915_tt = 267 container_of(ref, typeof(*i915_tt), cached_rsgt.kref); 268 struct sg_table *st = &i915_tt->cached_rsgt.table; 269 270 GEM_WARN_ON(st->sgl); 271 272 kfree(i915_tt); 273 } 274 275 static const struct i915_refct_sgt_ops tt_rsgt_ops = { 276 .release = i915_ttm_tt_release 277 }; 278 279 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo, 280 uint32_t page_flags) 281 { 282 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915), 283 bdev); 284 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 285 unsigned long ccs_pages = 0; 286 enum ttm_caching caching; 287 struct i915_ttm_tt *i915_tt; 288 int ret; 289 290 if (i915_ttm_is_ghost_object(bo)) 291 return NULL; 292 293 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL); 294 if (!i915_tt) 295 return NULL; 296 297 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource || 298 ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt)) 299 page_flags |= TTM_TT_FLAG_ZERO_ALLOC; 300 301 caching = i915_ttm_select_tt_caching(obj); 302 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) { 303 page_flags |= TTM_TT_FLAG_EXTERNAL | 304 TTM_TT_FLAG_EXTERNAL_MAPPABLE; 305 i915_tt->is_shmem = true; 306 } 307 308 if (i915_gem_object_needs_ccs_pages(obj)) 309 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size, 310 NUM_BYTES_PER_CCS_BYTE), 311 PAGE_SIZE); 312 313 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages); 314 if (ret) 315 goto err_free; 316 317 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size, 318 &tt_rsgt_ops); 319 320 i915_tt->dev = obj->base.dev->dev; 321 322 return &i915_tt->ttm; 323 324 err_free: 325 kfree(i915_tt); 326 return NULL; 327 } 328 329 static int i915_ttm_tt_populate(struct ttm_device *bdev, 330 struct ttm_tt *ttm, 331 struct ttm_operation_ctx *ctx) 332 { 333 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 334 335 if (i915_tt->is_shmem) 336 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx); 337 338 return ttm_pool_alloc(&bdev->pool, ttm, ctx); 339 } 340 341 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) 342 { 343 STUB(); 344 #ifdef notyet 345 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 346 struct sg_table *st = &i915_tt->cached_rsgt.table; 347 348 if (st->sgl) 349 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 350 351 if (i915_tt->is_shmem) { 352 i915_ttm_tt_shmem_unpopulate(ttm); 353 } else { 354 sg_free_table(st); 355 ttm_pool_free(&bdev->pool, ttm); 356 } 357 #endif 358 } 359 360 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) 361 { 362 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 363 364 if (i915_tt->filp) 365 fput(i915_tt->filp); 366 367 ttm_tt_fini(ttm); 368 i915_refct_sgt_put(&i915_tt->cached_rsgt); 369 } 370 371 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo, 372 const struct ttm_place *place) 373 { 374 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 375 376 if (i915_ttm_is_ghost_object(bo)) 377 return false; 378 379 /* 380 * EXTERNAL objects should never be swapped out by TTM, instead we need 381 * to handle that ourselves. TTM will already skip such objects for us, 382 * but we would like to avoid grabbing locks for no good reason. 383 */ 384 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL) 385 return false; 386 387 /* Will do for now. Our pinned objects are still on TTM's LRU lists */ 388 if (!i915_gem_object_evictable(obj)) 389 return false; 390 391 return ttm_bo_eviction_valuable(bo, place); 392 } 393 394 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo, 395 struct ttm_placement *placement) 396 { 397 *placement = i915_sys_placement; 398 } 399 400 /** 401 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information 402 * @obj: The GEM object 403 * This function frees any LMEM-related information that is cached on 404 * the object. For example the radix tree for fast page lookup and the 405 * cached refcounted sg-table 406 */ 407 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj) 408 { 409 struct radix_tree_iter iter; 410 void __rcu **slot; 411 412 if (!obj->ttm.cached_io_rsgt) 413 return; 414 415 rcu_read_lock(); 416 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0) 417 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index); 418 rcu_read_unlock(); 419 420 i915_refct_sgt_put(obj->ttm.cached_io_rsgt); 421 obj->ttm.cached_io_rsgt = NULL; 422 } 423 424 /** 425 * i915_ttm_purge - Clear an object of its memory 426 * @obj: The object 427 * 428 * This function is called to clear an object of it's memory when it is 429 * marked as not needed anymore. 430 * 431 * Return: 0 on success, negative error code on failure. 432 */ 433 int i915_ttm_purge(struct drm_i915_gem_object *obj) 434 { 435 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 436 struct i915_ttm_tt *i915_tt = 437 container_of(bo->ttm, typeof(*i915_tt), ttm); 438 struct ttm_operation_ctx ctx = { 439 .interruptible = true, 440 .no_wait_gpu = false, 441 }; 442 struct ttm_placement place = {}; 443 int ret; 444 445 if (obj->mm.madv == __I915_MADV_PURGED) 446 return 0; 447 448 ret = ttm_bo_validate(bo, &place, &ctx); 449 if (ret) 450 return ret; 451 452 if (bo->ttm && i915_tt->filp) { 453 /* 454 * The below fput(which eventually calls shmem_truncate) might 455 * be delayed by worker, so when directly called to purge the 456 * pages(like by the shrinker) we should try to be more 457 * aggressive and release the pages immediately. 458 */ 459 #ifdef __linux__ 460 shmem_truncate_range(file_inode(i915_tt->filp), 461 0, (loff_t)-1); 462 #else 463 rw_enter(obj->base.uao->vmobjlock, RW_WRITE); 464 obj->base.uao->pgops->pgo_flush(obj->base.uao, 0, obj->base.size, 465 PGO_ALLPAGES | PGO_FREE); 466 rw_exit(obj->base.uao->vmobjlock); 467 #endif 468 fput(fetch_and_zero(&i915_tt->filp)); 469 } 470 471 obj->write_domain = 0; 472 obj->read_domains = 0; 473 i915_ttm_adjust_gem_after_move(obj); 474 i915_ttm_free_cached_io_rsgt(obj); 475 obj->mm.madv = __I915_MADV_PURGED; 476 477 return 0; 478 } 479 480 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags) 481 { 482 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 483 struct i915_ttm_tt *i915_tt = 484 container_of(bo->ttm, typeof(*i915_tt), ttm); 485 struct ttm_operation_ctx ctx = { 486 .interruptible = true, 487 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT, 488 }; 489 struct ttm_placement place = {}; 490 int ret; 491 492 if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource)) 493 return 0; 494 495 GEM_BUG_ON(!i915_tt->is_shmem); 496 497 if (!i915_tt->filp) 498 return 0; 499 500 ret = ttm_bo_wait_ctx(bo, &ctx); 501 if (ret) 502 return ret; 503 504 switch (obj->mm.madv) { 505 case I915_MADV_DONTNEED: 506 return i915_ttm_purge(obj); 507 case __I915_MADV_PURGED: 508 return 0; 509 } 510 511 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) 512 return 0; 513 514 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED; 515 ret = ttm_bo_validate(bo, &place, &ctx); 516 if (ret) { 517 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED; 518 return ret; 519 } 520 521 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK) 522 #ifdef notyet 523 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping); 524 #else 525 STUB(); 526 #endif 527 528 return 0; 529 } 530 531 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo) 532 { 533 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 534 535 /* 536 * This gets called twice by ttm, so long as we have a ttm resource or 537 * ttm_tt then we can still safely call this. Due to pipeline-gutting, 538 * we maybe have NULL bo->resource, but in that case we should always 539 * have a ttm alive (like if the pages are swapped out). 540 */ 541 if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) { 542 __i915_gem_object_pages_fini(obj); 543 i915_ttm_free_cached_io_rsgt(obj); 544 } 545 } 546 547 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm) 548 { 549 STUB(); 550 return ERR_PTR(-ENOSYS); 551 #ifdef notyet 552 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm); 553 struct sg_table *st; 554 int ret; 555 556 if (i915_tt->cached_rsgt.table.sgl) 557 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 558 559 st = &i915_tt->cached_rsgt.table; 560 ret = sg_alloc_table_from_pages_segment(st, 561 ttm->pages, ttm->num_pages, 562 0, (unsigned long)ttm->num_pages << PAGE_SHIFT, 563 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL); 564 if (ret) { 565 st->sgl = NULL; 566 return ERR_PTR(ret); 567 } 568 569 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0); 570 if (ret) { 571 sg_free_table(st); 572 return ERR_PTR(ret); 573 } 574 575 return i915_refct_sgt_get(&i915_tt->cached_rsgt); 576 #endif 577 } 578 579 /** 580 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the 581 * resource memory 582 * @obj: The GEM object used for sg-table caching 583 * @res: The struct ttm_resource for which an sg-table is requested. 584 * 585 * This function returns a refcounted sg-table representing the memory 586 * pointed to by @res. If @res is the object's current resource it may also 587 * cache the sg_table on the object or attempt to access an already cached 588 * sg-table. The refcounted sg-table needs to be put when no-longer in use. 589 * 590 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on 591 * failure. 592 */ 593 struct i915_refct_sgt * 594 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj, 595 struct ttm_resource *res) 596 { 597 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 598 u32 page_alignment; 599 600 if (!i915_ttm_gtt_binds_lmem(res)) 601 return i915_ttm_tt_get_st(bo->ttm); 602 603 page_alignment = bo->page_alignment << PAGE_SHIFT; 604 if (!page_alignment) 605 page_alignment = obj->mm.region->min_page_size; 606 607 /* 608 * If CPU mapping differs, we need to add the ttm_tt pages to 609 * the resulting st. Might make sense for GGTT. 610 */ 611 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res)); 612 if (bo->resource == res) { 613 if (!obj->ttm.cached_io_rsgt) { 614 struct i915_refct_sgt *rsgt; 615 616 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region, 617 res, 618 page_alignment); 619 if (IS_ERR(rsgt)) 620 return rsgt; 621 622 obj->ttm.cached_io_rsgt = rsgt; 623 } 624 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt); 625 } 626 627 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res, 628 page_alignment); 629 } 630 631 static int i915_ttm_truncate(struct drm_i915_gem_object *obj) 632 { 633 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 634 long err; 635 636 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED); 637 638 err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, 639 true, 15 * HZ); 640 if (err < 0) 641 return err; 642 if (err == 0) 643 return -EBUSY; 644 645 err = i915_ttm_move_notify(bo); 646 if (err) 647 return err; 648 649 return i915_ttm_purge(obj); 650 } 651 652 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo) 653 { 654 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 655 int ret; 656 657 if (i915_ttm_is_ghost_object(bo)) 658 return; 659 660 ret = i915_ttm_move_notify(bo); 661 GEM_WARN_ON(ret); 662 GEM_WARN_ON(obj->ttm.cached_io_rsgt); 663 if (!ret && obj->mm.madv != I915_MADV_WILLNEED) 664 i915_ttm_purge(obj); 665 } 666 667 /** 668 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU 669 * accessible. 670 * @res: The TTM resource to check. 671 * 672 * This is interesting on small-BAR systems where we may encounter lmem objects 673 * that can't be accessed via the CPU. 674 */ 675 bool i915_ttm_resource_mappable(struct ttm_resource *res) 676 { 677 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res); 678 679 if (!i915_ttm_cpu_maps_iomem(res)) 680 return true; 681 682 return bman_res->used_visible_size == PFN_UP(bman_res->base.size); 683 } 684 685 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) 686 { 687 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo); 688 bool unknown_state; 689 690 if (i915_ttm_is_ghost_object(mem->bo)) 691 return -EINVAL; 692 693 if (!kref_get_unless_zero(&obj->base.refcount)) 694 return -EINVAL; 695 696 assert_object_held(obj); 697 698 unknown_state = i915_gem_object_has_unknown_state(obj); 699 i915_gem_object_put(obj); 700 if (unknown_state) 701 return -EINVAL; 702 703 if (!i915_ttm_cpu_maps_iomem(mem)) 704 return 0; 705 706 if (!i915_ttm_resource_mappable(mem)) 707 return -EINVAL; 708 709 mem->bus.caching = ttm_write_combined; 710 mem->bus.is_iomem = true; 711 712 return 0; 713 } 714 715 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo, 716 unsigned long page_offset) 717 { 718 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 719 struct scatterlist *sg; 720 unsigned long base; 721 unsigned int ofs; 722 723 GEM_BUG_ON(i915_ttm_is_ghost_object(bo)); 724 GEM_WARN_ON(bo->ttm); 725 726 base = obj->mm.region->iomap.base - obj->mm.region->region.start; 727 sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs); 728 729 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs; 730 } 731 732 static int i915_ttm_access_memory(struct ttm_buffer_object *bo, 733 unsigned long offset, void *buf, 734 int len, int write) 735 { 736 STUB(); 737 return -ENOSYS; 738 #ifdef notyet 739 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 740 resource_size_t iomap = obj->mm.region->iomap.base - 741 obj->mm.region->region.start; 742 unsigned long page = offset >> PAGE_SHIFT; 743 unsigned long bytes_left = len; 744 745 /* 746 * TODO: For now just let it fail if the resource is non-mappable, 747 * otherwise we need to perform the memcpy from the gpu here, without 748 * interfering with the object (like moving the entire thing). 749 */ 750 if (!i915_ttm_resource_mappable(bo->resource)) 751 return -EIO; 752 753 offset -= page << PAGE_SHIFT; 754 do { 755 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset); 756 void __iomem *ptr; 757 dma_addr_t daddr; 758 759 daddr = i915_gem_object_get_dma_address(obj, page); 760 ptr = ioremap_wc(iomap + daddr + offset, bytes); 761 if (!ptr) 762 return -EIO; 763 764 if (write) 765 memcpy_toio(ptr, buf, bytes); 766 else 767 memcpy_fromio(buf, ptr, bytes); 768 iounmap(ptr); 769 770 page++; 771 buf += bytes; 772 bytes_left -= bytes; 773 offset = 0; 774 } while (bytes_left); 775 776 return len; 777 #endif 778 } 779 780 /* 781 * All callbacks need to take care not to downcast a struct ttm_buffer_object 782 * without checking its subclass, since it might be a TTM ghost object. 783 */ 784 static struct ttm_device_funcs i915_ttm_bo_driver = { 785 .ttm_tt_create = i915_ttm_tt_create, 786 .ttm_tt_populate = i915_ttm_tt_populate, 787 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate, 788 .ttm_tt_destroy = i915_ttm_tt_destroy, 789 .eviction_valuable = i915_ttm_eviction_valuable, 790 .evict_flags = i915_ttm_evict_flags, 791 .move = i915_ttm_move, 792 .swap_notify = i915_ttm_swap_notify, 793 .delete_mem_notify = i915_ttm_delete_mem_notify, 794 .io_mem_reserve = i915_ttm_io_mem_reserve, 795 .io_mem_pfn = i915_ttm_io_mem_pfn, 796 .access_memory = i915_ttm_access_memory, 797 }; 798 799 /** 800 * i915_ttm_driver - Return a pointer to the TTM device funcs 801 * 802 * Return: Pointer to statically allocated TTM device funcs. 803 */ 804 struct ttm_device_funcs *i915_ttm_driver(void) 805 { 806 return &i915_ttm_bo_driver; 807 } 808 809 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj, 810 struct ttm_placement *placement) 811 { 812 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 813 struct ttm_operation_ctx ctx = { 814 .interruptible = true, 815 .no_wait_gpu = false, 816 }; 817 int real_num_busy; 818 int ret; 819 820 /* First try only the requested placement. No eviction. */ 821 real_num_busy = fetch_and_zero(&placement->num_busy_placement); 822 ret = ttm_bo_validate(bo, placement, &ctx); 823 if (ret) { 824 ret = i915_ttm_err_to_gem(ret); 825 /* 826 * Anything that wants to restart the operation gets to 827 * do that. 828 */ 829 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS || 830 ret == -EAGAIN) 831 return ret; 832 833 /* 834 * If the initial attempt fails, allow all accepted placements, 835 * evicting if necessary. 836 */ 837 placement->num_busy_placement = real_num_busy; 838 ret = ttm_bo_validate(bo, placement, &ctx); 839 if (ret) 840 return i915_ttm_err_to_gem(ret); 841 } 842 843 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) { 844 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx); 845 if (ret) 846 return ret; 847 848 i915_ttm_adjust_domains_after_move(obj); 849 i915_ttm_adjust_gem_after_move(obj); 850 } 851 852 if (!i915_gem_object_has_pages(obj)) { 853 struct i915_refct_sgt *rsgt = 854 i915_ttm_resource_get_st(obj, bo->resource); 855 856 if (IS_ERR(rsgt)) 857 return PTR_ERR(rsgt); 858 859 GEM_BUG_ON(obj->mm.rsgt); 860 obj->mm.rsgt = rsgt; 861 __i915_gem_object_set_pages(obj, &rsgt->table); 862 } 863 864 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages)); 865 i915_ttm_adjust_lru(obj); 866 return ret; 867 } 868 869 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj) 870 { 871 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS]; 872 struct ttm_placement placement; 873 874 /* restricted by sg_alloc_table */ 875 if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int)) 876 return -E2BIG; 877 878 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS); 879 880 /* Move to the requested placement. */ 881 i915_ttm_placement_from_obj(obj, &requested, busy, &placement); 882 883 return __i915_ttm_get_pages(obj, &placement); 884 } 885 886 /** 887 * DOC: Migration vs eviction 888 * 889 * GEM migration may not be the same as TTM migration / eviction. If 890 * the TTM core decides to evict an object it may be evicted to a 891 * TTM memory type that is not in the object's allowable GEM regions, or 892 * in fact theoretically to a TTM memory type that doesn't correspond to 893 * a GEM memory region. In that case the object's GEM region is not 894 * updated, and the data is migrated back to the GEM region at 895 * get_pages time. TTM may however set up CPU ptes to the object even 896 * when it is evicted. 897 * Gem forced migration using the i915_ttm_migrate() op, is allowed even 898 * to regions that are not in the object's list of allowable placements. 899 */ 900 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj, 901 struct intel_memory_region *mr, 902 unsigned int flags) 903 { 904 struct ttm_place requested; 905 struct ttm_placement placement; 906 int ret; 907 908 i915_ttm_place_from_region(mr, &requested, obj->bo_offset, 909 obj->base.size, flags); 910 placement.num_placement = 1; 911 placement.num_busy_placement = 1; 912 placement.placement = &requested; 913 placement.busy_placement = &requested; 914 915 ret = __i915_ttm_get_pages(obj, &placement); 916 if (ret) 917 return ret; 918 919 /* 920 * Reinitialize the region bindings. This is primarily 921 * required for objects where the new region is not in 922 * its allowable placements. 923 */ 924 if (obj->mm.region != mr) { 925 i915_gem_object_release_memory_region(obj); 926 i915_gem_object_init_memory_region(obj, mr); 927 } 928 929 return 0; 930 } 931 932 static int i915_ttm_migrate(struct drm_i915_gem_object *obj, 933 struct intel_memory_region *mr, 934 unsigned int flags) 935 { 936 return __i915_ttm_migrate(obj, mr, flags); 937 } 938 939 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj, 940 struct sg_table *st) 941 { 942 /* 943 * We're currently not called from a shrinker, so put_pages() 944 * typically means the object is about to destroyed, or called 945 * from move_notify(). So just avoid doing much for now. 946 * If the object is not destroyed next, The TTM eviction logic 947 * and shrinkers will move it out if needed. 948 */ 949 950 if (obj->mm.rsgt) 951 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt)); 952 } 953 954 /** 955 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists. 956 * @obj: The object 957 */ 958 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj) 959 { 960 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 961 struct i915_ttm_tt *i915_tt = 962 container_of(bo->ttm, typeof(*i915_tt), ttm); 963 bool shrinkable = 964 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm); 965 966 /* 967 * Don't manipulate the TTM LRUs while in TTM bo destruction. 968 * We're called through i915_ttm_delete_mem_notify(). 969 */ 970 if (!kref_read(&bo->kref)) 971 return; 972 973 /* 974 * We skip managing the shrinker LRU in set_pages() and just manage 975 * everything here. This does at least solve the issue with having 976 * temporary shmem mappings(like with evicted lmem) not being visible to 977 * the shrinker. Only our shmem objects are shrinkable, everything else 978 * we keep as unshrinkable. 979 * 980 * To make sure everything plays nice we keep an extra shrink pin in TTM 981 * if the underlying pages are not currently shrinkable. Once we release 982 * our pin, like when the pages are moved to shmem, the pages will then 983 * be added to the shrinker LRU, assuming the caller isn't also holding 984 * a pin. 985 * 986 * TODO: consider maybe also bumping the shrinker list here when we have 987 * already unpinned it, which should give us something more like an LRU. 988 * 989 * TODO: There is a small window of opportunity for this function to 990 * get called from eviction after we've dropped the last GEM refcount, 991 * but before the TTM deleted flag is set on the object. Avoid 992 * adjusting the shrinker list in such cases, since the object is 993 * not available to the shrinker anyway due to its zero refcount. 994 * To fix this properly we should move to a TTM shrinker LRU list for 995 * these objects. 996 */ 997 if (kref_get_unless_zero(&obj->base.refcount)) { 998 if (shrinkable != obj->mm.ttm_shrinkable) { 999 if (shrinkable) { 1000 if (obj->mm.madv == I915_MADV_WILLNEED) 1001 __i915_gem_object_make_shrinkable(obj); 1002 else 1003 __i915_gem_object_make_purgeable(obj); 1004 } else { 1005 i915_gem_object_make_unshrinkable(obj); 1006 } 1007 1008 obj->mm.ttm_shrinkable = shrinkable; 1009 } 1010 i915_gem_object_put(obj); 1011 } 1012 1013 /* 1014 * Put on the correct LRU list depending on the MADV status 1015 */ 1016 spin_lock(&bo->bdev->lru_lock); 1017 if (shrinkable) { 1018 /* Try to keep shmem_tt from being considered for shrinking. */ 1019 bo->priority = TTM_MAX_BO_PRIORITY - 1; 1020 } else if (obj->mm.madv != I915_MADV_WILLNEED) { 1021 bo->priority = I915_TTM_PRIO_PURGE; 1022 } else if (!i915_gem_object_has_pages(obj)) { 1023 bo->priority = I915_TTM_PRIO_NO_PAGES; 1024 } else { 1025 struct ttm_resource_manager *man = 1026 ttm_manager_type(bo->bdev, bo->resource->mem_type); 1027 1028 /* 1029 * If we need to place an LMEM resource which doesn't need CPU 1030 * access then we should try not to victimize mappable objects 1031 * first, since we likely end up stealing more of the mappable 1032 * portion. And likewise when we try to find space for a mappble 1033 * object, we know not to ever victimize objects that don't 1034 * occupy any mappable pages. 1035 */ 1036 if (i915_ttm_cpu_maps_iomem(bo->resource) && 1037 i915_ttm_buddy_man_visible_size(man) < man->size && 1038 !(obj->flags & I915_BO_ALLOC_GPU_ONLY)) 1039 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS; 1040 else 1041 bo->priority = I915_TTM_PRIO_HAS_PAGES; 1042 } 1043 1044 ttm_bo_move_to_lru_tail(bo); 1045 spin_unlock(&bo->bdev->lru_lock); 1046 } 1047 1048 /* 1049 * TTM-backed gem object destruction requires some clarification. 1050 * Basically we have two possibilities here. We can either rely on the 1051 * i915 delayed destruction and put the TTM object when the object 1052 * is idle. This would be detected by TTM which would bypass the 1053 * TTM delayed destroy handling. The other approach is to put the TTM 1054 * object early and rely on the TTM destroyed handling, and then free 1055 * the leftover parts of the GEM object once TTM's destroyed list handling is 1056 * complete. For now, we rely on the latter for two reasons: 1057 * a) TTM can evict an object even when it's on the delayed destroy list, 1058 * which in theory allows for complete eviction. 1059 * b) There is work going on in TTM to allow freeing an object even when 1060 * it's not idle, and using the TTM destroyed list handling could help us 1061 * benefit from that. 1062 */ 1063 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj) 1064 { 1065 GEM_BUG_ON(!obj->ttm.created); 1066 1067 ttm_bo_put(i915_gem_to_ttm(obj)); 1068 } 1069 1070 #ifdef __linux__ 1071 1072 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf) 1073 { 1074 struct vm_area_struct *area = vmf->vma; 1075 struct ttm_buffer_object *bo = area->vm_private_data; 1076 struct drm_device *dev = bo->base.dev; 1077 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1078 intel_wakeref_t wakeref = 0; 1079 vm_fault_t ret; 1080 int idx; 1081 1082 /* Sanity check that we allow writing into this object */ 1083 if (unlikely(i915_gem_object_is_readonly(obj) && 1084 area->vm_flags & VM_WRITE)) 1085 return VM_FAULT_SIGBUS; 1086 1087 ret = ttm_bo_vm_reserve(bo, vmf); 1088 if (ret) 1089 return ret; 1090 1091 if (obj->mm.madv != I915_MADV_WILLNEED) { 1092 dma_resv_unlock(bo->base.resv); 1093 return VM_FAULT_SIGBUS; 1094 } 1095 1096 /* 1097 * This must be swapped out with shmem ttm_tt (pipeline-gutting). 1098 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as 1099 * far as far doing a ttm_bo_move_null(), which should skip all the 1100 * other junk. 1101 */ 1102 if (!bo->resource) { 1103 struct ttm_operation_ctx ctx = { 1104 .interruptible = true, 1105 .no_wait_gpu = true, /* should be idle already */ 1106 }; 1107 int err; 1108 1109 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 1110 1111 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx); 1112 if (err) { 1113 dma_resv_unlock(bo->base.resv); 1114 return VM_FAULT_SIGBUS; 1115 } 1116 } else if (!i915_ttm_resource_mappable(bo->resource)) { 1117 int err = -ENODEV; 1118 int i; 1119 1120 for (i = 0; i < obj->mm.n_placements; i++) { 1121 struct intel_memory_region *mr = obj->mm.placements[i]; 1122 unsigned int flags; 1123 1124 if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM) 1125 continue; 1126 1127 flags = obj->flags; 1128 flags &= ~I915_BO_ALLOC_GPU_ONLY; 1129 err = __i915_ttm_migrate(obj, mr, flags); 1130 if (!err) 1131 break; 1132 } 1133 1134 if (err) { 1135 drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n", 1136 ERR_PTR(err)); 1137 dma_resv_unlock(bo->base.resv); 1138 ret = VM_FAULT_SIGBUS; 1139 goto out_rpm; 1140 } 1141 } 1142 1143 if (i915_ttm_cpu_maps_iomem(bo->resource)) 1144 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1145 1146 if (drm_dev_enter(dev, &idx)) { 1147 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot, 1148 TTM_BO_VM_NUM_PREFAULT); 1149 drm_dev_exit(idx); 1150 } else { 1151 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1152 } 1153 1154 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1155 goto out_rpm; 1156 1157 /* 1158 * ttm_bo_vm_reserve() already has dma_resv_lock. 1159 * userfault_count is protected by dma_resv lock and rpm wakeref. 1160 */ 1161 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) { 1162 obj->userfault_count = 1; 1163 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1164 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list); 1165 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1166 1167 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource)); 1168 } 1169 1170 if (wakeref && CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND != 0) 1171 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref, 1172 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 1173 1174 i915_ttm_adjust_lru(obj); 1175 1176 dma_resv_unlock(bo->base.resv); 1177 1178 out_rpm: 1179 if (wakeref) 1180 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1181 1182 return ret; 1183 } 1184 1185 static int 1186 vm_access_ttm(struct vm_area_struct *area, unsigned long addr, 1187 void *buf, int len, int write) 1188 { 1189 struct drm_i915_gem_object *obj = 1190 i915_ttm_to_gem(area->vm_private_data); 1191 1192 if (i915_gem_object_is_readonly(obj) && write) 1193 return -EACCES; 1194 1195 return ttm_bo_vm_access(area, addr, buf, len, write); 1196 } 1197 1198 static void ttm_vm_open(struct vm_area_struct *vma) 1199 { 1200 struct drm_i915_gem_object *obj = 1201 i915_ttm_to_gem(vma->vm_private_data); 1202 1203 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1204 i915_gem_object_get(obj); 1205 } 1206 1207 static void ttm_vm_close(struct vm_area_struct *vma) 1208 { 1209 struct drm_i915_gem_object *obj = 1210 i915_ttm_to_gem(vma->vm_private_data); 1211 1212 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data)); 1213 i915_gem_object_put(obj); 1214 } 1215 1216 static const struct vm_operations_struct vm_ops_ttm = { 1217 .fault = vm_fault_ttm, 1218 .access = vm_access_ttm, 1219 .open = ttm_vm_open, 1220 .close = ttm_vm_close, 1221 }; 1222 1223 #else /* !__linux__ */ 1224 1225 static int 1226 1227 vm_fault_ttm(struct uvm_faultinfo *ufi, vaddr_t vaddr, vm_page_t *pps, 1228 int npages, int centeridx, vm_fault_t fault_type, 1229 vm_prot_t access_type, int flags) 1230 { 1231 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 1232 struct ttm_buffer_object *bo = (struct ttm_buffer_object *)uobj; 1233 struct drm_device *dev = bo->base.dev; 1234 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1235 intel_wakeref_t wakeref = 0; 1236 vm_fault_t ret; 1237 int idx; 1238 int write = !!(access_type & PROT_WRITE); 1239 1240 /* Sanity check that we allow writing into this object */ 1241 if (unlikely(i915_gem_object_is_readonly(obj) && write)) { 1242 uvmfault_unlockall(ufi, NULL, &obj->base.uobj); 1243 return EACCES; 1244 } 1245 1246 ret = ttm_bo_vm_reserve(bo); 1247 if (ret) { 1248 switch (ret) { 1249 case VM_FAULT_NOPAGE: 1250 ret = 0; 1251 break; 1252 case VM_FAULT_RETRY: 1253 ret = ERESTART; 1254 break; 1255 default: 1256 ret = EACCES; 1257 break; 1258 } 1259 uvmfault_unlockall(ufi, NULL, &obj->base.uobj); 1260 return ret; 1261 } 1262 1263 if (obj->mm.madv != I915_MADV_WILLNEED) { 1264 dma_resv_unlock(bo->base.resv); 1265 uvmfault_unlockall(ufi, NULL, &obj->base.uobj); 1266 return EACCES; 1267 } 1268 1269 /* 1270 * This must be swapped out with shmem ttm_tt (pipeline-gutting). 1271 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as 1272 * far as far doing a ttm_bo_move_null(), which should skip all the 1273 * other junk. 1274 */ 1275 if (!bo->resource) { 1276 struct ttm_operation_ctx ctx = { 1277 .interruptible = true, 1278 .no_wait_gpu = true, /* should be idle already */ 1279 }; 1280 int err; 1281 1282 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)); 1283 1284 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx); 1285 if (err) { 1286 dma_resv_unlock(bo->base.resv); 1287 uvmfault_unlockall(ufi, NULL, &obj->base.uobj); 1288 return EACCES; 1289 } 1290 } else if (!i915_ttm_resource_mappable(bo->resource)) { 1291 int err = -ENODEV; 1292 int i; 1293 1294 for (i = 0; i < obj->mm.n_placements; i++) { 1295 struct intel_memory_region *mr = obj->mm.placements[i]; 1296 unsigned int flags; 1297 1298 if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM) 1299 continue; 1300 1301 flags = obj->flags; 1302 flags &= ~I915_BO_ALLOC_GPU_ONLY; 1303 err = __i915_ttm_migrate(obj, mr, flags); 1304 if (!err) 1305 break; 1306 } 1307 1308 if (err) { 1309 drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n", 1310 ERR_PTR(err)); 1311 dma_resv_unlock(bo->base.resv); 1312 ret = VM_FAULT_SIGBUS; 1313 goto out_rpm; 1314 } 1315 } 1316 1317 if (i915_ttm_cpu_maps_iomem(bo->resource)) 1318 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1319 1320 if (drm_dev_enter(dev, &idx)) { 1321 ret = ttm_bo_vm_fault_reserved(ufi, vaddr, 1322 TTM_BO_VM_NUM_PREFAULT, 1); 1323 drm_dev_exit(idx); 1324 } else { 1325 STUB(); 1326 #ifdef notyet 1327 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot); 1328 #else 1329 STUB(); 1330 ret = VM_FAULT_NOPAGE; 1331 #endif 1332 } 1333 #ifdef __linux__ 1334 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) 1335 goto out_rpm; 1336 #endif 1337 1338 /* 1339 * ttm_bo_vm_reserve() already has dma_resv_lock. 1340 * userfault_count is protected by dma_resv lock and rpm wakeref. 1341 */ 1342 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) { 1343 obj->userfault_count = 1; 1344 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1345 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list); 1346 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1347 1348 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource)); 1349 } 1350 1351 if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND) 1352 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref, 1353 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)); 1354 1355 i915_ttm_adjust_lru(obj); 1356 1357 dma_resv_unlock(bo->base.resv); 1358 1359 out_rpm: 1360 switch (ret) { 1361 case VM_FAULT_NOPAGE: 1362 ret = 0; 1363 break; 1364 case VM_FAULT_RETRY: 1365 ret = ERESTART; 1366 break; 1367 default: 1368 ret = EACCES; 1369 break; 1370 } 1371 1372 if (wakeref) 1373 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1374 1375 uvmfault_unlockall(ufi, NULL, &obj->base.uobj); 1376 1377 return ret; 1378 } 1379 1380 static void 1381 ttm_vm_reference(struct uvm_object *uobj) 1382 { 1383 struct drm_i915_gem_object *obj = 1384 i915_ttm_to_gem((struct ttm_buffer_object *)uobj); 1385 1386 i915_gem_object_get(obj); 1387 } 1388 1389 static void 1390 ttm_vm_detach(struct uvm_object *uobj) 1391 { 1392 struct drm_i915_gem_object *obj = 1393 i915_ttm_to_gem((struct ttm_buffer_object *)uobj); 1394 1395 i915_gem_object_put(obj); 1396 } 1397 1398 const struct uvm_pagerops vm_ops_ttm = { 1399 .pgo_fault = vm_fault_ttm, 1400 .pgo_reference = ttm_vm_reference, 1401 .pgo_detach = ttm_vm_detach, 1402 }; 1403 1404 #endif 1405 1406 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj) 1407 { 1408 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */ 1409 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node)); 1410 1411 return drm_vma_node_offset_addr(&obj->base.vma_node); 1412 } 1413 1414 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj) 1415 { 1416 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj); 1417 intel_wakeref_t wakeref = 0; 1418 1419 assert_object_held_shared(obj); 1420 1421 if (i915_ttm_cpu_maps_iomem(bo->resource)) { 1422 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm); 1423 1424 /* userfault_count is protected by obj lock and rpm wakeref. */ 1425 if (obj->userfault_count) { 1426 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1427 list_del(&obj->userfault_link); 1428 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock); 1429 obj->userfault_count = 0; 1430 } 1431 } 1432 1433 GEM_WARN_ON(obj->userfault_count); 1434 1435 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj)); 1436 1437 if (wakeref) 1438 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref); 1439 } 1440 1441 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = { 1442 .name = "i915_gem_object_ttm", 1443 .flags = I915_GEM_OBJECT_IS_SHRINKABLE | 1444 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST, 1445 1446 .get_pages = i915_ttm_get_pages, 1447 .put_pages = i915_ttm_put_pages, 1448 .truncate = i915_ttm_truncate, 1449 .shrink = i915_ttm_shrink, 1450 1451 .adjust_lru = i915_ttm_adjust_lru, 1452 .delayed_free = i915_ttm_delayed_free, 1453 .migrate = i915_ttm_migrate, 1454 1455 .mmap_offset = i915_ttm_mmap_offset, 1456 .unmap_virtual = i915_ttm_unmap_virtual, 1457 .mmap_ops = &vm_ops_ttm, 1458 }; 1459 1460 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo) 1461 { 1462 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo); 1463 1464 i915_gem_object_release_memory_region(obj); 1465 mutex_destroy(&obj->ttm.get_io_page.lock); 1466 1467 if (obj->ttm.created) { 1468 /* 1469 * We freely manage the shrinker LRU outide of the mm.pages life 1470 * cycle. As a result when destroying the object we should be 1471 * extra paranoid and ensure we remove it from the LRU, before 1472 * we free the object. 1473 * 1474 * Touching the ttm_shrinkable outside of the object lock here 1475 * should be safe now that the last GEM object ref was dropped. 1476 */ 1477 if (obj->mm.ttm_shrinkable) 1478 i915_gem_object_make_unshrinkable(obj); 1479 1480 i915_ttm_backup_free(obj); 1481 1482 /* This releases all gem object bindings to the backend. */ 1483 __i915_gem_free_object(obj); 1484 1485 call_rcu(&obj->rcu, __i915_gem_free_object_rcu); 1486 } else { 1487 __i915_gem_object_fini(obj); 1488 } 1489 } 1490 1491 /* 1492 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object 1493 * @mem: The initial memory region for the object. 1494 * @obj: The gem object. 1495 * @size: Object size in bytes. 1496 * @flags: gem object flags. 1497 * 1498 * Return: 0 on success, negative error code on failure. 1499 */ 1500 int __i915_gem_ttm_object_init(struct intel_memory_region *mem, 1501 struct drm_i915_gem_object *obj, 1502 resource_size_t offset, 1503 resource_size_t size, 1504 resource_size_t page_size, 1505 unsigned int flags) 1506 { 1507 static struct lock_class_key lock_class; 1508 struct drm_i915_private *i915 = mem->i915; 1509 struct ttm_operation_ctx ctx = { 1510 .interruptible = true, 1511 .no_wait_gpu = false, 1512 }; 1513 enum ttm_bo_type bo_type; 1514 int ret; 1515 1516 drm_gem_private_object_init(&i915->drm, &obj->base, size); 1517 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags); 1518 1519 obj->bo_offset = offset; 1520 1521 /* Don't put on a region list until we're either locked or fully initialized. */ 1522 obj->mm.region = mem; 1523 INIT_LIST_HEAD(&obj->mm.region_link); 1524 1525 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN); 1526 rw_init(&obj->ttm.get_io_page.lock, "i915ttm"); 1527 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device : 1528 ttm_bo_type_kernel; 1529 1530 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj); 1531 1532 /* Forcing the page size is kernel internal only */ 1533 GEM_BUG_ON(page_size && obj->mm.n_placements); 1534 1535 /* 1536 * Keep an extra shrink pin to prevent the object from being made 1537 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we 1538 * drop the pin. The TTM backend manages the shrinker LRU itself, 1539 * outside of the normal mm.pages life cycle. 1540 */ 1541 i915_gem_object_make_unshrinkable(obj); 1542 1543 /* 1544 * If this function fails, it will call the destructor, but 1545 * our caller still owns the object. So no freeing in the 1546 * destructor until obj->ttm.created is true. 1547 * Similarly, in delayed_destroy, we can't call ttm_bo_put() 1548 * until successful initialization. 1549 */ 1550 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type, 1551 &i915_sys_placement, page_size >> PAGE_SHIFT, 1552 &ctx, NULL, NULL, i915_ttm_bo_destroy); 1553 1554 /* 1555 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size 1556 * is too big to add vma. The direct function that returns -ENOSPC is 1557 * drm_mm_insert_node_in_range(). To handle the same error as other code 1558 * that returns -E2BIG when the size is too large, it converts -ENOSPC to 1559 * -E2BIG. 1560 */ 1561 if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC) 1562 ret = -E2BIG; 1563 1564 if (ret) 1565 return i915_ttm_err_to_gem(ret); 1566 1567 obj->ttm.created = true; 1568 i915_gem_object_release_memory_region(obj); 1569 i915_gem_object_init_memory_region(obj, mem); 1570 i915_ttm_adjust_domains_after_move(obj); 1571 i915_ttm_adjust_gem_after_move(obj); 1572 i915_gem_object_unlock(obj); 1573 1574 return 0; 1575 } 1576 1577 static const struct intel_memory_region_ops ttm_system_region_ops = { 1578 .init_object = __i915_gem_ttm_object_init, 1579 .release = intel_region_ttm_fini, 1580 }; 1581 1582 struct intel_memory_region * 1583 i915_gem_ttm_system_setup(struct drm_i915_private *i915, 1584 u16 type, u16 instance) 1585 { 1586 struct intel_memory_region *mr; 1587 1588 mr = intel_memory_region_create(i915, 0, 1589 totalram_pages() << PAGE_SHIFT, 1590 PAGE_SIZE, 0, 0, 1591 type, instance, 1592 &ttm_system_region_ops); 1593 if (IS_ERR(mr)) 1594 return mr; 1595 1596 intel_memory_region_set_name(mr, "system-ttm"); 1597 return mr; 1598 } 1599