xref: /netbsd-src/external/cddl/osnet/dist/uts/common/fs/zfs/vdev_cache.c (revision 3227e6cf668bd374971740bd6660f43cee4417ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33 #include <sys/kstat.h>
34 
35 /*
36  * Virtual device read-ahead caching.
37  *
38  * This file implements a simple LRU read-ahead cache.  When the DMU reads
39  * a given block, it will often want other, nearby blocks soon thereafter.
40  * We take advantage of this by reading a larger disk region and caching
41  * the result.  In the best case, this can turn 128 back-to-back 512-byte
42  * reads into a single 64k read followed by 127 cache hits; this reduces
43  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
44  * read into a 64k read, which doesn't affect latency all that much but is
45  * terribly wasteful of bandwidth.  A more intelligent version of the cache
46  * could keep track of access patterns and not do read-ahead unless it sees
47  * at least two temporally close I/Os to the same region.  Currently, only
48  * metadata I/O is inflated.  A futher enhancement could take advantage of
49  * more semantic information about the I/O.  And it could use something
50  * faster than an AVL tree; that was chosen solely for convenience.
51  *
52  * There are five cache operations: allocate, fill, read, write, evict.
53  *
54  * (1) Allocate.  This reserves a cache entry for the specified region.
55  *     We separate the allocate and fill operations so that multiple threads
56  *     don't generate I/O for the same cache miss.
57  *
58  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
59  *     places the data in the previously allocated cache entry.
60  *
61  * (3) Read.  Read data from the cache.
62  *
63  * (4) Write.  Update cache contents after write completion.
64  *
65  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
66  *     if the total cache size exceeds zfs_vdev_cache_size.
67  */
68 
69 /*
70  * These tunables are for performance analysis.
71  */
72 /*
73  * All i/os smaller than zfs_vdev_cache_max will be turned into
74  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
75  * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
76  * vdev's vdev_cache.
77  *
78  * TODO: Note that with the current ZFS code, it turns out that the
79  * vdev cache is not helpful, and in some cases actually harmful.  It
80  * is better if we disable this.  Once some time has passed, we should
81  * actually remove this to simplify the code.  For now we just disable
82  * it by setting the zfs_vdev_cache_size to zero.  Note that Solaris 11
83  * has made these same changes.
84  */
85 int zfs_vdev_cache_max = 1<<14;			/* 16KB */
86 int zfs_vdev_cache_size = 0;
87 int zfs_vdev_cache_bshift = 16;
88 
89 #define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
90 
91 SYSCTL_DECL(_vfs_zfs_vdev);
92 SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, cache, CTLFLAG_RW, 0, "ZFS VDEV Cache");
93 SYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, max, CTLFLAG_RDTUN,
94     &zfs_vdev_cache_max, 0, "Maximum I/O request size that increase read size");
95 SYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, size, CTLFLAG_RDTUN,
96     &zfs_vdev_cache_size, 0, "Size of VDEV cache");
97 SYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, bshift, CTLFLAG_RDTUN,
98     &zfs_vdev_cache_bshift, 0, "Turn too small requests into 1 << this value");
99 
100 kstat_t	*vdc_ksp = NULL;
101 
102 typedef struct vdc_stats {
103 	kstat_named_t vdc_stat_delegations;
104 	kstat_named_t vdc_stat_hits;
105 	kstat_named_t vdc_stat_misses;
106 } vdc_stats_t;
107 
108 static vdc_stats_t vdc_stats = {
109 	{ "delegations",	KSTAT_DATA_UINT64 },
110 	{ "hits",		KSTAT_DATA_UINT64 },
111 	{ "misses",		KSTAT_DATA_UINT64 }
112 };
113 
114 #define	VDCSTAT_BUMP(stat)	atomic_inc_64(&vdc_stats.stat.value.ui64);
115 
116 static int
vdev_cache_offset_compare(const void * a1,const void * a2)117 vdev_cache_offset_compare(const void *a1, const void *a2)
118 {
119 	const vdev_cache_entry_t *ve1 = a1;
120 	const vdev_cache_entry_t *ve2 = a2;
121 
122 	if (ve1->ve_offset < ve2->ve_offset)
123 		return (-1);
124 	if (ve1->ve_offset > ve2->ve_offset)
125 		return (1);
126 	return (0);
127 }
128 
129 static int
vdev_cache_lastused_compare(const void * a1,const void * a2)130 vdev_cache_lastused_compare(const void *a1, const void *a2)
131 {
132 	const vdev_cache_entry_t *ve1 = a1;
133 	const vdev_cache_entry_t *ve2 = a2;
134 
135 	if (ve1->ve_lastused < ve2->ve_lastused)
136 		return (-1);
137 	if (ve1->ve_lastused > ve2->ve_lastused)
138 		return (1);
139 
140 	/*
141 	 * Among equally old entries, sort by offset to ensure uniqueness.
142 	 */
143 	return (vdev_cache_offset_compare(a1, a2));
144 }
145 
146 /*
147  * Evict the specified entry from the cache.
148  */
149 static void
vdev_cache_evict(vdev_cache_t * vc,vdev_cache_entry_t * ve)150 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
151 {
152 	ASSERT(MUTEX_HELD(&vc->vc_lock));
153 	ASSERT(ve->ve_fill_io == NULL);
154 	ASSERT(ve->ve_data != NULL);
155 
156 	avl_remove(&vc->vc_lastused_tree, ve);
157 	avl_remove(&vc->vc_offset_tree, ve);
158 	zio_buf_free(ve->ve_data, VCBS);
159 	kmem_free(ve, sizeof (vdev_cache_entry_t));
160 }
161 
162 /*
163  * Allocate an entry in the cache.  At the point we don't have the data,
164  * we're just creating a placeholder so that multiple threads don't all
165  * go off and read the same blocks.
166  */
167 static vdev_cache_entry_t *
vdev_cache_allocate(zio_t * zio)168 vdev_cache_allocate(zio_t *zio)
169 {
170 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
171 	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
172 	vdev_cache_entry_t *ve;
173 
174 	ASSERT(MUTEX_HELD(&vc->vc_lock));
175 
176 	if (zfs_vdev_cache_size == 0)
177 		return (NULL);
178 
179 	/*
180 	 * If adding a new entry would exceed the cache size,
181 	 * evict the oldest entry (LRU).
182 	 */
183 	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
184 	    zfs_vdev_cache_size) {
185 		ve = avl_first(&vc->vc_lastused_tree);
186 		if (ve->ve_fill_io != NULL)
187 			return (NULL);
188 		ASSERT(ve->ve_hits != 0);
189 		vdev_cache_evict(vc, ve);
190 	}
191 
192 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
193 	ve->ve_offset = offset;
194 	ve->ve_lastused = ddi_get_lbolt();
195 	ve->ve_data = zio_buf_alloc(VCBS);
196 
197 	avl_add(&vc->vc_offset_tree, ve);
198 	avl_add(&vc->vc_lastused_tree, ve);
199 
200 	return (ve);
201 }
202 
203 static void
vdev_cache_hit(vdev_cache_t * vc,vdev_cache_entry_t * ve,zio_t * zio)204 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
205 {
206 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
207 
208 	ASSERT(MUTEX_HELD(&vc->vc_lock));
209 	ASSERT(ve->ve_fill_io == NULL);
210 
211 	if (ve->ve_lastused != ddi_get_lbolt()) {
212 		avl_remove(&vc->vc_lastused_tree, ve);
213 		ve->ve_lastused = ddi_get_lbolt();
214 		avl_add(&vc->vc_lastused_tree, ve);
215 	}
216 
217 	ve->ve_hits++;
218 	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
219 }
220 
221 /*
222  * Fill a previously allocated cache entry with data.
223  */
224 static void
vdev_cache_fill(zio_t * fio)225 vdev_cache_fill(zio_t *fio)
226 {
227 	vdev_t *vd = fio->io_vd;
228 	vdev_cache_t *vc = &vd->vdev_cache;
229 	vdev_cache_entry_t *ve = fio->io_private;
230 	zio_t *pio;
231 
232 	ASSERT(fio->io_size == VCBS);
233 
234 	/*
235 	 * Add data to the cache.
236 	 */
237 	mutex_enter(&vc->vc_lock);
238 
239 	ASSERT(ve->ve_fill_io == fio);
240 	ASSERT(ve->ve_offset == fio->io_offset);
241 	ASSERT(ve->ve_data == fio->io_data);
242 
243 	ve->ve_fill_io = NULL;
244 
245 	/*
246 	 * Even if this cache line was invalidated by a missed write update,
247 	 * any reads that were queued up before the missed update are still
248 	 * valid, so we can satisfy them from this line before we evict it.
249 	 */
250 	zio_link_t *zl = NULL;
251 	while ((pio = zio_walk_parents(fio, &zl)) != NULL)
252 		vdev_cache_hit(vc, ve, pio);
253 
254 	if (fio->io_error || ve->ve_missed_update)
255 		vdev_cache_evict(vc, ve);
256 
257 	mutex_exit(&vc->vc_lock);
258 }
259 
260 /*
261  * Read data from the cache.  Returns B_TRUE cache hit, B_FALSE on miss.
262  */
263 boolean_t
vdev_cache_read(zio_t * zio)264 vdev_cache_read(zio_t *zio)
265 {
266 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
267 	vdev_cache_entry_t *ve, ve_search;
268 	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
269 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
270 	zio_t *fio;
271 
272 	ASSERT(zio->io_type == ZIO_TYPE_READ);
273 
274 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
275 		return (B_FALSE);
276 
277 	if (zio->io_size > zfs_vdev_cache_max)
278 		return (B_FALSE);
279 
280 	/*
281 	 * If the I/O straddles two or more cache blocks, don't cache it.
282 	 */
283 	if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
284 		return (B_FALSE);
285 
286 	ASSERT(cache_phase + zio->io_size <= VCBS);
287 
288 	mutex_enter(&vc->vc_lock);
289 
290 	ve_search.ve_offset = cache_offset;
291 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
292 
293 	if (ve != NULL) {
294 		if (ve->ve_missed_update) {
295 			mutex_exit(&vc->vc_lock);
296 			return (B_FALSE);
297 		}
298 
299 		if ((fio = ve->ve_fill_io) != NULL) {
300 			zio_vdev_io_bypass(zio);
301 			zio_add_child(zio, fio);
302 			mutex_exit(&vc->vc_lock);
303 			VDCSTAT_BUMP(vdc_stat_delegations);
304 			return (B_TRUE);
305 		}
306 
307 		vdev_cache_hit(vc, ve, zio);
308 		zio_vdev_io_bypass(zio);
309 
310 		mutex_exit(&vc->vc_lock);
311 		VDCSTAT_BUMP(vdc_stat_hits);
312 		return (B_TRUE);
313 	}
314 
315 	ve = vdev_cache_allocate(zio);
316 
317 	if (ve == NULL) {
318 		mutex_exit(&vc->vc_lock);
319 		return (B_FALSE);
320 	}
321 
322 	fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
323 	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
324 	    ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
325 
326 	ve->ve_fill_io = fio;
327 	zio_vdev_io_bypass(zio);
328 	zio_add_child(zio, fio);
329 
330 	mutex_exit(&vc->vc_lock);
331 	zio_nowait(fio);
332 	VDCSTAT_BUMP(vdc_stat_misses);
333 
334 	return (B_TRUE);
335 }
336 
337 /*
338  * Update cache contents upon write completion.
339  */
340 void
vdev_cache_write(zio_t * zio)341 vdev_cache_write(zio_t *zio)
342 {
343 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
344 	vdev_cache_entry_t *ve, ve_search;
345 	uint64_t io_start = zio->io_offset;
346 	uint64_t io_end = io_start + zio->io_size;
347 	uint64_t min_offset = P2ALIGN(io_start, VCBS);
348 	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
349 	avl_index_t where;
350 
351 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
352 
353 	mutex_enter(&vc->vc_lock);
354 
355 	ve_search.ve_offset = min_offset;
356 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
357 
358 	if (ve == NULL)
359 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
360 
361 	while (ve != NULL && ve->ve_offset < max_offset) {
362 		uint64_t start = MAX(ve->ve_offset, io_start);
363 		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
364 
365 		if (ve->ve_fill_io != NULL) {
366 			ve->ve_missed_update = 1;
367 		} else {
368 			bcopy((char *)zio->io_data + start - io_start,
369 			    ve->ve_data + start - ve->ve_offset, end - start);
370 		}
371 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
372 	}
373 	mutex_exit(&vc->vc_lock);
374 }
375 
376 void
vdev_cache_purge(vdev_t * vd)377 vdev_cache_purge(vdev_t *vd)
378 {
379 	vdev_cache_t *vc = &vd->vdev_cache;
380 	vdev_cache_entry_t *ve;
381 
382 	mutex_enter(&vc->vc_lock);
383 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
384 		vdev_cache_evict(vc, ve);
385 	mutex_exit(&vc->vc_lock);
386 }
387 
388 void
vdev_cache_init(vdev_t * vd)389 vdev_cache_init(vdev_t *vd)
390 {
391 	vdev_cache_t *vc = &vd->vdev_cache;
392 
393 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
394 
395 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
396 	    sizeof (vdev_cache_entry_t),
397 	    offsetof(struct vdev_cache_entry, ve_offset_node));
398 
399 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
400 	    sizeof (vdev_cache_entry_t),
401 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
402 }
403 
404 void
vdev_cache_fini(vdev_t * vd)405 vdev_cache_fini(vdev_t *vd)
406 {
407 	vdev_cache_t *vc = &vd->vdev_cache;
408 
409 	vdev_cache_purge(vd);
410 
411 	avl_destroy(&vc->vc_offset_tree);
412 	avl_destroy(&vc->vc_lastused_tree);
413 
414 	mutex_destroy(&vc->vc_lock);
415 }
416 
417 void
vdev_cache_stat_init(void)418 vdev_cache_stat_init(void)
419 {
420 	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
421 	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
422 	    KSTAT_FLAG_VIRTUAL);
423 	if (vdc_ksp != NULL) {
424 		vdc_ksp->ks_data = &vdc_stats;
425 		kstat_install(vdc_ksp);
426 	}
427 }
428 
429 void
vdev_cache_stat_fini(void)430 vdev_cache_stat_fini(void)
431 {
432 	if (vdc_ksp != NULL) {
433 		kstat_delete(vdc_ksp);
434 		vdc_ksp = NULL;
435 	}
436 }
437