xref: /netbsd-src/external/bsd/libevent/dist/test/regress_util.c (revision a848e48c71ba749fb09ccb3a2ec4c58ae10dc40b)
1 /*	$NetBSD: regress_util.c,v 1.5 2021/04/10 19:02:37 rillig Exp $	*/
2 
3 /*
4  * Copyright (c) 2009-2012 Nick Mathewson and Niels Provos
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /** For event_debug() usage/coverage */
30 #define EVENT_VISIBILITY_WANT_DLLIMPORT
31 
32 #include "../util-internal.h"
33 
34 #ifdef _WIN32
35 #include <winsock2.h>
36 #include <windows.h>
37 #include <ws2tcpip.h>
38 #endif
39 
40 #include "event2/event-config.h"
41 #include <sys/cdefs.h>
42 __RCSID("$NetBSD: regress_util.c,v 1.5 2021/04/10 19:02:37 rillig Exp $");
43 
44 #include <sys/types.h>
45 
46 #ifndef _WIN32
47 #include <sys/socket.h>
48 #include <netinet/in.h>
49 #include <arpa/inet.h>
50 #include <unistd.h>
51 #endif
52 #ifdef EVENT__HAVE_NETINET_IN6_H
53 #include <netinet/in6.h>
54 #endif
55 #ifdef EVENT__HAVE_SYS_WAIT_H
56 #include <sys/wait.h>
57 #endif
58 #include <signal.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <limits.h>
63 
64 #include "event2/event.h"
65 #include "event2/util.h"
66 #include "../ipv6-internal.h"
67 #include "../log-internal.h"
68 #include "../strlcpy-internal.h"
69 #include "../mm-internal.h"
70 #include "../time-internal.h"
71 
72 #include "regress.h"
73 
74 enum entry_status { NORMAL, CANONICAL, BAD };
75 
76 /* This is a big table of results we expect from generating and parsing */
77 static struct ipv4_entry {
78 	const char *addr;
79 	ev_uint32_t res;
80 	enum entry_status status;
81 } ipv4_entries[] = {
82 	{ "1.2.3.4", 0x01020304u, CANONICAL },
83 	{ "255.255.255.255", 0xffffffffu, CANONICAL },
84 	{ "256.0.0.0", 0, BAD },
85 	{ "ABC", 0, BAD },
86 	{ "1.2.3.4.5", 0, BAD },
87 	{ "176.192.208.244", 0xb0c0d0f4, CANONICAL },
88 	{ NULL, 0, BAD },
89 };
90 
91 static struct ipv6_entry {
92 	const char *addr;
93 	ev_uint32_t res[4];
94 	enum entry_status status;
95 } ipv6_entries[] = {
96 	{ "::", { 0, 0, 0, 0, }, CANONICAL },
97 	{ "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL },
98 	{ "::1", { 0, 0, 0, 1, }, CANONICAL },
99 	{ "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL },
100 	{ "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL },
101 	{ "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL },
102 	{ "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL },
103 	{ "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL },
104 	{ "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL },
105 	{ "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL },
106 	{ "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL },
107 	{ "foobar.", { 0, 0, 0, 0 }, BAD },
108 	{ "foobar", { 0, 0, 0, 0 }, BAD },
109 	{ "fo:obar", { 0, 0, 0, 0 }, BAD },
110 	{ "ffff", { 0, 0, 0, 0 }, BAD },
111 	{ "fffff::", { 0, 0, 0, 0 }, BAD },
112 	{ "fffff::", { 0, 0, 0, 0 }, BAD },
113 	{ "::1.0.1.1000", { 0, 0, 0, 0 }, BAD },
114 	{ "1:2:33333:4::", { 0, 0, 0, 0 }, BAD },
115 	{ "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD },
116 	{ "1::2::3", { 0, 0, 0, 0 }, BAD },
117 	{ ":::1", { 0, 0, 0, 0 }, BAD },
118 	{ NULL, { 0, 0, 0, 0,  }, BAD },
119 };
120 
121 static void
regress_ipv4_parse(void * ptr)122 regress_ipv4_parse(void *ptr)
123 {
124 	int i;
125 	for (i = 0; ipv4_entries[i].addr; ++i) {
126 		char written[128];
127 		struct ipv4_entry *ent = &ipv4_entries[i];
128 		struct in_addr in;
129 		int r;
130 		r = evutil_inet_pton(AF_INET, ent->addr, &in);
131 		if (r == 0) {
132 			if (ent->status != BAD) {
133 				TT_FAIL(("%s did not parse, but it's a good address!",
134 					ent->addr));
135 			}
136 			continue;
137 		}
138 		if (ent->status == BAD) {
139 			TT_FAIL(("%s parsed, but we expected an error", ent->addr));
140 			continue;
141 		}
142 		if (ntohl(in.s_addr) != ent->res) {
143 			TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr,
144 				(unsigned long)ntohl(in.s_addr),
145 				(unsigned long)ent->res));
146 			continue;
147 		}
148 		if (ent->status == CANONICAL) {
149 			const char *w = evutil_inet_ntop(AF_INET, &in, written,
150 											 sizeof(written));
151 			if (!w) {
152 				TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
153 				continue;
154 			}
155 			if (strcmp(written, ent->addr)) {
156 				TT_FAIL(("Tried to write out %s; got %s",
157 					ent->addr, written));
158 				continue;
159 			}
160 		}
161 
162 	}
163 
164 }
165 
166 static void
regress_ipv6_parse(void * ptr)167 regress_ipv6_parse(void *ptr)
168 {
169 #ifdef AF_INET6
170 	int i, j;
171 
172 	for (i = 0; ipv6_entries[i].addr; ++i) {
173 		char written[128];
174 		struct ipv6_entry *ent = &ipv6_entries[i];
175 		struct in6_addr in6;
176 		int r;
177 		r = evutil_inet_pton(AF_INET6, ent->addr, &in6);
178 		if (r == 0) {
179 			if (ent->status != BAD)
180 				TT_FAIL(("%s did not parse, but it's a good address!",
181 					ent->addr));
182 			continue;
183 		}
184 		if (ent->status == BAD) {
185 			TT_FAIL(("%s parsed, but we expected an error", ent->addr));
186 			continue;
187 		}
188 		for (j = 0; j < 4; ++j) {
189 			/* Can't use s6_addr32 here; some don't have it. */
190 			ev_uint32_t u =
191 			    ((ev_uint32_t)in6.s6_addr[j*4  ] << 24) |
192 			    ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
193 			    ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
194 			    ((ev_uint32_t)in6.s6_addr[j*4+3]);
195 			if (u != ent->res[j]) {
196 				TT_FAIL(("%s did not parse as expected.", ent->addr));
197 				continue;
198 			}
199 		}
200 		if (ent->status == CANONICAL) {
201 			const char *w = evutil_inet_ntop(AF_INET6, &in6, written,
202 											 sizeof(written));
203 			if (!w) {
204 				TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
205 				continue;
206 			}
207 			if (strcmp(written, ent->addr)) {
208 				TT_FAIL(("Tried to write out %s; got %s", ent->addr, written));
209 				continue;
210 			}
211 		}
212 
213 	}
214 #else
215 	TT_BLATHER(("Skipping IPv6 address parsing."));
216 #endif
217 }
218 
219 static struct ipv6_entry_scope {
220 	const char *addr;
221 	ev_uint32_t res[4];
222 	unsigned scope;
223 	enum entry_status status;
224 } ipv6_entries_scope[] = {
225 	{ "2001:DB8::", { 0x20010db8, 0, 0 }, 0, NORMAL },
226 	{ "2001:DB8::%0", { 0x20010db8, 0, 0, 0 }, 0, NORMAL },
227 	{ "2001:DB8::%1", { 0x20010db8, 0, 0, 0 }, 1, NORMAL },
228 	{ "foobar.", { 0, 0, 0, 0 }, 0, BAD },
229 	{ "2001:DB8::%does-not-exist", { 0, 0, 0, 0 }, 0, BAD },
230 	{ NULL, { 0, 0, 0, 0,  }, 0, BAD },
231 };
232 static void
regress_ipv6_parse_scope(void * ptr)233 regress_ipv6_parse_scope(void *ptr)
234 {
235 #ifdef AF_INET6
236 	int i, j;
237 	unsigned if_scope;
238 
239 	for (i = 0; ipv6_entries_scope[i].addr; ++i) {
240 		struct ipv6_entry_scope *ent = &ipv6_entries_scope[i];
241 		struct in6_addr in6;
242 		int r;
243 		r = evutil_inet_pton_scope(AF_INET6, ent->addr, &in6,
244 			&if_scope);
245 		if (r == 0) {
246 			if (ent->status != BAD)
247 				TT_FAIL(("%s did not parse, but it's a good address!",
248 					ent->addr));
249 			continue;
250 		}
251 		if (ent->status == BAD) {
252 			TT_FAIL(("%s parsed, but we expected an error", ent->addr));
253 			continue;
254 		}
255 		for (j = 0; j < 4; ++j) {
256 			/* Can't use s6_addr32 here; some don't have it. */
257 			ev_uint32_t u =
258 			    ((ev_uint32_t)in6.s6_addr[j*4  ] << 24) |
259 			    ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
260 			    ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
261 			    ((ev_uint32_t)in6.s6_addr[j*4+3]);
262 			if (u != ent->res[j]) {
263 				TT_FAIL(("%s did not parse as expected.", ent->addr));
264 				continue;
265 			}
266 		}
267 		if (if_scope != ent->scope) {
268 			TT_FAIL(("%s did not parse as expected.", ent->addr));
269 			continue;
270 		}
271 	}
272 #else
273 	TT_BLATHER(("Skipping IPv6 address parsing."));
274 #endif
275 }
276 
277 
278 static struct sa_port_ent {
279 	const char *parse;
280 	int safamily;
281 	const char *addr;
282 	int port;
283 } sa_port_ents[] = {
284 	{ "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 },
285 	{ "[ffff::1]", AF_INET6, "ffff::1", 0 },
286 	{ "[ffff::1", 0, NULL, 0 },
287 	{ "[ffff::1]:65599", 0, NULL, 0 },
288 	{ "[ffff::1]:0", 0, NULL, 0 },
289 	{ "[ffff::1]:-1", 0, NULL, 0 },
290 	{ "::1", AF_INET6, "::1", 0 },
291 	{ "1:2::1", AF_INET6, "1:2::1", 0 },
292 	{ "192.168.0.1:50", AF_INET, "192.168.0.1", 50 },
293 	{ "1.2.3.4", AF_INET, "1.2.3.4", 0 },
294 	{ NULL, 0, NULL, 0 },
295 };
296 
297 static void
regress_sockaddr_port_parse(void * ptr)298 regress_sockaddr_port_parse(void *ptr)
299 {
300 	struct sockaddr_storage ss;
301 	int i, r;
302 
303 	for (i = 0; sa_port_ents[i].parse; ++i) {
304 		struct sa_port_ent *ent = &sa_port_ents[i];
305 		int len = sizeof(ss);
306 		memset(&ss, 0, sizeof(ss));
307 		r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
308 		if (r < 0) {
309 			if (ent->safamily)
310 				TT_FAIL(("Couldn't parse %s!", ent->parse));
311 			continue;
312 		} else if (! ent->safamily) {
313 			TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse));
314 			continue;
315 		}
316 		if (ent->safamily == AF_INET) {
317 			struct sockaddr_in sin;
318 			memset(&sin, 0, sizeof(sin));
319 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
320 			sin.sin_len = sizeof(sin);
321 #endif
322 			sin.sin_family = AF_INET;
323 			sin.sin_port = htons(ent->port);
324 			r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr);
325 			if (1 != r) {
326 				TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr));
327 			} else if (memcmp(&sin, &ss, sizeof(sin))) {
328 				TT_FAIL(("Parse for %s was not as expected.", ent->parse));
329 			} else if (len != sizeof(sin)) {
330 				TT_FAIL(("Length for %s not as expected.",ent->parse));
331 			}
332 		} else {
333 			struct sockaddr_in6 sin6;
334 			memset(&sin6, 0, sizeof(sin6));
335 #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
336 			sin6.sin6_len = sizeof(sin6);
337 #endif
338 			sin6.sin6_family = AF_INET6;
339 			sin6.sin6_port = htons(ent->port);
340 			r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr);
341 			if (1 != r) {
342 				TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr));
343 			} else if (memcmp(&sin6, &ss, sizeof(sin6))) {
344 				TT_FAIL(("Parse for %s was not as expected.", ent->parse));
345 			} else if (len != sizeof(sin6)) {
346 				TT_FAIL(("Length for %s not as expected.",ent->parse));
347 			}
348 		}
349 	}
350 }
351 
352 
353 static void
regress_sockaddr_port_format(void * ptr)354 regress_sockaddr_port_format(void *ptr)
355 {
356 	struct sockaddr_storage ss;
357 	int len;
358 	const char *cp;
359 	char cbuf[128];
360 	int r;
361 
362 	len = sizeof(ss);
363 	r = evutil_parse_sockaddr_port("192.168.1.1:80",
364 	    (struct sockaddr*)&ss, &len);
365 	tt_int_op(r,==,0);
366 	cp = evutil_format_sockaddr_port_(
367 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
368 	tt_ptr_op(cp,==,cbuf);
369 	tt_str_op(cp,==,"192.168.1.1:80");
370 
371 	len = sizeof(ss);
372 	r = evutil_parse_sockaddr_port("[ff00::8010]:999",
373 	    (struct sockaddr*)&ss, &len);
374 	tt_int_op(r,==,0);
375 	cp = evutil_format_sockaddr_port_(
376 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
377 	tt_ptr_op(cp,==,cbuf);
378 	tt_str_op(cp,==,"[ff00::8010]:999");
379 
380 	ss.ss_family=99;
381 	cp = evutil_format_sockaddr_port_(
382 		(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
383 	tt_ptr_op(cp,==,cbuf);
384 	tt_str_op(cp,==,"<addr with socktype 99>");
385 end:
386 	;
387 }
388 
389 static struct sa_pred_ent {
390 	const char *parse;
391 
392 	int is_loopback;
393 } sa_pred_entries[] = {
394 	{ "127.0.0.1",	 1 },
395 	{ "127.0.3.2",	 1 },
396 	{ "128.1.2.3",	 0 },
397 	{ "18.0.0.1",	 0 },
398 	{ "129.168.1.1", 0 },
399 
400 	{ "::1",	 1 },
401 	{ "::0",	 0 },
402 	{ "f::1",	 0 },
403 	{ "::501",	 0 },
404 	{ NULL,		 0 },
405 
406 };
407 
408 static void
test_evutil_sockaddr_predicates(void * ptr)409 test_evutil_sockaddr_predicates(void *ptr)
410 {
411 	struct sockaddr_storage ss;
412 	int r, i;
413 
414 	for (i=0; sa_pred_entries[i].parse; ++i) {
415 		struct sa_pred_ent *ent = &sa_pred_entries[i];
416 		int len = sizeof(ss);
417 
418 		r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
419 
420 		if (r<0) {
421 			TT_FAIL(("Couldn't parse %s!", ent->parse));
422 			continue;
423 		}
424 
425 		/* sockaddr_is_loopback */
426 		if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) {
427 			TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected",
428 				ent->parse));
429 		}
430 	}
431 }
432 
433 static void
test_evutil_strtoll(void * ptr)434 test_evutil_strtoll(void *ptr)
435 {
436 	const char *s;
437 	char *endptr;
438 
439 	tt_want(evutil_strtoll("5000000000", NULL, 10) ==
440 		((ev_int64_t)5000000)*1000);
441 	tt_want(evutil_strtoll("-5000000000", NULL, 10) ==
442 		((ev_int64_t)5000000)*-1000);
443 	s = " 99999stuff";
444 	tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999);
445 	tt_want(endptr == s+6);
446 	tt_want(evutil_strtoll("foo", NULL, 10) == 0);
447  }
448 
449 static void
test_evutil_snprintf(void * ptr)450 test_evutil_snprintf(void *ptr)
451 {
452 	char buf[16];
453 	int r;
454 	ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200;
455 	ev_int64_t i64 = -1 * (ev_int64_t) u64;
456 	size_t size = 8000;
457 	ev_ssize_t ssize = -9000;
458 
459 	r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100);
460 	tt_str_op(buf, ==, "50 100");
461 	tt_int_op(r, ==, 6);
462 
463 	r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890);
464 	tt_str_op(buf, ==, "longish 1234567");
465 	tt_int_op(r, ==, 18);
466 
467 	r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64));
468 	tt_str_op(buf, ==, "200000000000");
469 	tt_int_op(r, ==, 12);
470 
471 	r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64));
472 	tt_str_op(buf, ==, "-200000000000");
473 	tt_int_op(r, ==, 13);
474 
475 	r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT,
476 	    EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize));
477 	tt_str_op(buf, ==, "8000 -9000");
478 	tt_int_op(r, ==, 10);
479 
480       end:
481 	;
482 }
483 
484 static void
test_evutil_casecmp(void * ptr)485 test_evutil_casecmp(void *ptr)
486 {
487 	tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0);
488 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0);
489 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0);
490 	tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0);
491 	tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0);
492 
493 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0);
494 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0);
495 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0);
496 	tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0);
497 	tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0);
498 	tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0);
499 	tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0);
500 	tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0);
501 end:
502 	;
503 }
504 
505 static void
test_evutil_rtrim(void * ptr)506 test_evutil_rtrim(void *ptr)
507 {
508 #define TEST_TRIM(s, result) \
509 	do {						\
510 	    if (cp) mm_free(cp);			\
511 	    cp = mm_strdup(s);				\
512 	    tt_assert(cp);				\
513 	    evutil_rtrim_lws_(cp);			\
514 	    tt_str_op(cp, ==, result);			\
515 	} while(0)
516 
517 	char *cp = NULL;
518 	(void) ptr;
519 
520 	TEST_TRIM("", "");
521 	TEST_TRIM("a", "a");
522 	TEST_TRIM("abcdef ghi", "abcdef ghi");
523 
524 	TEST_TRIM(" ", "");
525 	TEST_TRIM("  ", "");
526 	TEST_TRIM("a ", "a");
527 	TEST_TRIM("abcdef  gH       ", "abcdef  gH");
528 
529 	TEST_TRIM("\t\t", "");
530 	TEST_TRIM(" \t", "");
531 	TEST_TRIM("\t", "");
532 	TEST_TRIM("a \t", "a");
533 	TEST_TRIM("a\t ", "a");
534 	TEST_TRIM("a\t", "a");
535 	TEST_TRIM("abcdef  gH    \t  ", "abcdef  gH");
536 
537 end:
538 	if (cp)
539 		mm_free(cp);
540 }
541 
542 static int logsev = 0;
543 static char *logmsg = NULL;
544 
545 static void
logfn(int severity,const char * msg)546 logfn(int severity, const char *msg)
547 {
548 	logsev = severity;
549 	tt_want(msg);
550 	if (msg) {
551 		if (logmsg)
552 			free(logmsg);
553 		logmsg = strdup(msg);
554 	}
555 }
556 
557 static int fatal_want_severity = 0;
558 static const char *fatal_want_message = NULL;
559 static void
fatalfn(int exitcode)560 fatalfn(int exitcode)
561 {
562 	if (logsev != fatal_want_severity ||
563 	    !logmsg ||
564 	    strcmp(logmsg, fatal_want_message))
565 		exit(0);
566 	else
567 		exit(exitcode);
568 }
569 
570 #ifndef _WIN32
571 #define CAN_CHECK_ERR
572 static void
check_error_logging(void (* fn)(void),int wantexitcode,int wantseverity,const char * wantmsg)573 check_error_logging(void (*fn)(void), int wantexitcode,
574     int wantseverity, const char *wantmsg)
575 {
576 	pid_t pid;
577 	int status = 0, exitcode;
578 	fatal_want_severity = wantseverity;
579 	fatal_want_message = wantmsg;
580 	if ((pid = regress_fork()) == 0) {
581 		/* child process */
582 		fn();
583 		exit(0); /* should be unreachable. */
584 	} else {
585 		wait(&status);
586 		exitcode = WEXITSTATUS(status);
587 		tt_int_op(wantexitcode, ==, exitcode);
588 	}
589 end:
590 	;
591 }
592 
593 static void
errx_fn(void)594 errx_fn(void)
595 {
596 	event_errx(2, "Fatal error; too many kumquats (%d)", 5);
597 }
598 
599 static void
err_fn(void)600 err_fn(void)
601 {
602 	errno = ENOENT;
603 	event_err(5,"Couldn't open %s", "/very/bad/file");
604 }
605 
606 static void
sock_err_fn(void)607 sock_err_fn(void)
608 {
609 	evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0);
610 #ifdef _WIN32
611 	EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
612 #else
613 	errno = EAGAIN;
614 #endif
615 	event_sock_err(20, fd, "Unhappy socket");
616 }
617 #endif
618 
619 static void
test_evutil_log(void * ptr)620 test_evutil_log(void *ptr)
621 {
622 	evutil_socket_t fd = -1;
623 	char buf[128];
624 
625 	event_set_log_callback(logfn);
626 	event_set_fatal_callback(fatalfn);
627 #define RESET() do {				\
628 		logsev = 0;	\
629 		if (logmsg) free(logmsg);	\
630 		logmsg = NULL;			\
631 	} while (0)
632 #define LOGEQ(sev,msg) do {			\
633 		tt_int_op(logsev,==,sev);	\
634 		tt_assert(logmsg != NULL);	\
635 		tt_str_op(logmsg,==,msg);	\
636 	} while (0)
637 
638 #ifdef CAN_CHECK_ERR
639 	/* We need to disable these tests for now.  Previously, the logging
640 	 * module didn't enforce the requirement that a fatal callback
641 	 * actually exit.  Now, it exits no matter what, so if we wan to
642 	 * reinstate these tests, we'll need to fork for each one. */
643 	check_error_logging(errx_fn, 2, EVENT_LOG_ERR,
644 	    "Fatal error; too many kumquats (5)");
645 	RESET();
646 #endif
647 
648 	event_warnx("Far too many %s (%d)", "wombats", 99);
649 	LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)");
650 	RESET();
651 
652 	event_msgx("Connecting lime to coconut");
653 	LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut");
654 	RESET();
655 
656 	event_debug(("A millisecond passed! We should log that!"));
657 #ifdef USE_DEBUG
658 	LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!");
659 #else
660 	tt_int_op(logsev,==,0);
661 	tt_ptr_op(logmsg,==,NULL);
662 #endif
663 	RESET();
664 
665 	/* Try with an errno. */
666 	errno = ENOENT;
667 	event_warn("Couldn't open %s", "/bad/file");
668 	evutil_snprintf(buf, sizeof(buf),
669 	    "Couldn't open /bad/file: %s",strerror(ENOENT));
670 	LOGEQ(EVENT_LOG_WARN,buf);
671 	RESET();
672 
673 #ifdef CAN_CHECK_ERR
674 	evutil_snprintf(buf, sizeof(buf),
675 	    "Couldn't open /very/bad/file: %s",strerror(ENOENT));
676 	check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf);
677 	RESET();
678 #endif
679 
680 	/* Try with a socket errno. */
681 	fd = socket(AF_INET, SOCK_STREAM, 0);
682 #ifdef _WIN32
683 	evutil_snprintf(buf, sizeof(buf),
684 	    "Unhappy socket: %s",
685 	    evutil_socket_error_to_string(WSAEWOULDBLOCK));
686 	EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
687 #else
688 	evutil_snprintf(buf, sizeof(buf),
689 	    "Unhappy socket: %s", strerror(EAGAIN));
690 	errno = EAGAIN;
691 #endif
692 	event_sock_warn(fd, "Unhappy socket");
693 	LOGEQ(EVENT_LOG_WARN, buf);
694 	RESET();
695 
696 #ifdef CAN_CHECK_ERR
697 	check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf);
698 	RESET();
699 #endif
700 
701 #undef RESET
702 #undef LOGEQ
703 end:
704 	if (logmsg)
705 		free(logmsg);
706 	if (fd >= 0)
707 		evutil_closesocket(fd);
708 }
709 
710 static void
test_evutil_strlcpy(void * arg)711 test_evutil_strlcpy(void *arg)
712 {
713 	char buf[8];
714 
715 	/* Successful case. */
716 	tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf)));
717 	tt_str_op(buf, ==, "Hello");
718 
719 	/* Overflow by a lot. */
720 	tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf)));
721 	tt_str_op(buf, ==, "pentasy");
722 
723 	/* Overflow by exactly one. */
724 	tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf)));
725 	tt_str_op(buf, ==, "overlon");
726 end:
727 	;
728 }
729 
730 struct example_struct {
731 	const char *a;
732 	const char *b;
733 	long c;
734 };
735 
736 static void
test_evutil_upcast(void * arg)737 test_evutil_upcast(void *arg)
738 {
739 	struct example_struct es1;
740 	const char **cp;
741 	es1.a = "World";
742 	es1.b = "Hello";
743 	es1.c = -99;
744 
745 	tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*));
746 
747 	cp = &es1.b;
748 	tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1);
749 
750 end:
751 	;
752 }
753 
754 static void
test_evutil_integers(void * arg)755 test_evutil_integers(void *arg)
756 {
757 	ev_int64_t i64;
758 	ev_uint64_t u64;
759 	ev_int32_t i32;
760 	ev_uint32_t u32;
761 	ev_int16_t i16;
762 	ev_uint16_t u16;
763 	ev_int8_t  i8;
764 	ev_uint8_t  u8;
765 
766 	void *ptr;
767 	ev_intptr_t iptr;
768 	ev_uintptr_t uptr;
769 
770 	ev_ssize_t ssize;
771 
772 	tt_int_op(sizeof(u64), ==, 8);
773 	tt_int_op(sizeof(i64), ==, 8);
774 	tt_int_op(sizeof(u32), ==, 4);
775 	tt_int_op(sizeof(i32), ==, 4);
776 	tt_int_op(sizeof(u16), ==, 2);
777 	tt_int_op(sizeof(i16), ==, 2);
778 	tt_int_op(sizeof(u8), ==,  1);
779 	tt_int_op(sizeof(i8), ==,  1);
780 
781 	tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t));
782 	tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *));
783 	tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t));
784 
785 	u64 = 1000000000;
786 	u64 *= 1000000000;
787 	tt_assert(u64 / 1000000000 == 1000000000);
788 	i64 = -1000000000;
789 	i64 *= 1000000000;
790 	tt_assert(i64 / 1000000000 == -1000000000);
791 
792 	u64 = EV_UINT64_MAX;
793 	i64 = EV_INT64_MAX;
794 	tt_assert(u64 > 0);
795 	tt_assert(i64 > 0);
796 	u64++;
797 /*	i64++; */
798 	tt_assert(u64 == 0);
799 /*	tt_assert(i64 == EV_INT64_MIN); */
800 /*	tt_assert(i64 < 0); */
801 
802 	u32 = EV_UINT32_MAX;
803 	i32 = EV_INT32_MAX;
804 	tt_assert(u32 > 0);
805 	tt_assert(i32 > 0);
806 	u32++;
807 /*	i32++; */
808 	tt_assert(u32 == 0);
809 /*	tt_assert(i32 == EV_INT32_MIN); */
810 /*	tt_assert(i32 < 0); */
811 
812 	u16 = EV_UINT16_MAX;
813 	i16 = EV_INT16_MAX;
814 	tt_assert(u16 > 0);
815 	tt_assert(i16 > 0);
816 	u16++;
817 /*	i16++; */
818 	tt_assert(u16 == 0);
819 /*	tt_assert(i16 == EV_INT16_MIN); */
820 /* 	tt_assert(i16 < 0); */
821 
822 	u8 = EV_UINT8_MAX;
823 	i8 = EV_INT8_MAX;
824 	tt_assert(u8 > 0);
825 	tt_assert(i8 > 0);
826 	u8++;
827 /*	i8++;*/
828 	tt_assert(u8 == 0);
829 /*	tt_assert(i8 == EV_INT8_MIN); */
830 /*	tt_assert(i8 < 0); */
831 
832 /*
833 	ssize = EV_SSIZE_MAX;
834 	tt_assert(ssize > 0);
835 	ssize++;
836 	tt_assert(ssize < 0);
837 	tt_assert(ssize == EV_SSIZE_MIN);
838 */
839 
840 	ptr = &ssize;
841 	iptr = (ev_intptr_t)ptr;
842 	uptr = (ev_uintptr_t)ptr;
843 	ptr = (void *)iptr;
844 	tt_assert(ptr == &ssize);
845 	ptr = (void *)uptr;
846 	tt_assert(ptr == &ssize);
847 
848 	iptr = -1;
849 	tt_assert(iptr < 0);
850 end:
851 	;
852 }
853 
854 struct evutil_addrinfo *
ai_find_by_family(struct evutil_addrinfo * ai,int family)855 ai_find_by_family(struct evutil_addrinfo *ai, int family)
856 {
857 	while (ai) {
858 		if (ai->ai_family == family)
859 			return ai;
860 		ai = ai->ai_next;
861 	}
862 	return NULL;
863 }
864 
865 struct evutil_addrinfo *
ai_find_by_protocol(struct evutil_addrinfo * ai,int protocol)866 ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol)
867 {
868 	while (ai) {
869 		if (ai->ai_protocol == protocol)
870 			return ai;
871 		ai = ai->ai_next;
872 	}
873 	return NULL;
874 }
875 
876 
877 int
test_ai_eq_(const struct evutil_addrinfo * ai,const char * sockaddr_port,int socktype,int protocol,int line)878 test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port,
879     int socktype, int protocol, int line)
880 {
881 	struct sockaddr_storage ss;
882 	int slen = sizeof(ss);
883 	int gotport;
884 	char buf[128];
885 	memset(&ss, 0, sizeof(ss));
886 	if (socktype > 0)
887 		tt_int_op(ai->ai_socktype, ==, socktype);
888 	if (protocol > 0)
889 		tt_int_op(ai->ai_protocol, ==, protocol);
890 
891 	if (evutil_parse_sockaddr_port(
892 		    sockaddr_port, (struct sockaddr*)&ss, &slen)<0) {
893 		TT_FAIL(("Couldn't parse expected address %s on line %d",
894 			sockaddr_port, line));
895 		return -1;
896 	}
897 	if (ai->ai_family != ss.ss_family) {
898 		TT_FAIL(("Address family %d did not match %d on line %d",
899 			ai->ai_family, ss.ss_family, line));
900 		return -1;
901 	}
902 	if (ai->ai_addr->sa_family == AF_INET) {
903 		struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr;
904 		evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
905 		gotport = ntohs(sin->sin_port);
906 		if (ai->ai_addrlen != sizeof(struct sockaddr_in)) {
907 			TT_FAIL(("Addr size mismatch on line %d", line));
908 			return -1;
909 		}
910 	} else {
911 		struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr;
912 		evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf));
913 		gotport = ntohs(sin6->sin6_port);
914 		if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) {
915 			TT_FAIL(("Addr size mismatch on line %d", line));
916 			return -1;
917 		}
918 	}
919 	if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) {
920 		TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port,
921 			buf, gotport, line));
922 		return -1;
923 	} else {
924 		TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port,
925 			buf, gotport, line));
926 	}
927 	return 0;
928 end:
929 	TT_FAIL(("Test failed on line %d", line));
930 	return -1;
931 }
932 
933 static void
test_evutil_rand(void * arg)934 test_evutil_rand(void *arg)
935 {
936 	char buf1[32];
937 	char buf2[32];
938 	int counts[256];
939 	int i, j, k, n=0;
940 	struct evutil_weakrand_state seed = { 12346789U };
941 
942 	memset(buf2, 0, sizeof(buf2));
943 	memset(counts, 0, sizeof(counts));
944 
945 	for (k=0;k<32;++k) {
946 		/* Try a few different start and end points; try to catch
947 		 * the various misaligned cases of arc4random_buf */
948 		int startpoint = evutil_weakrand_(&seed) % 4;
949 		int endpoint = 32 - (evutil_weakrand_(&seed) % 4);
950 
951 		memset(buf2, 0, sizeof(buf2));
952 
953 		/* Do 6 runs over buf1, or-ing the result into buf2 each
954 		 * time, to make sure we're setting each byte that we mean
955 		 * to set. */
956 		for (i=0;i<8;++i) {
957 			memset(buf1, 0, sizeof(buf1));
958 			evutil_secure_rng_get_bytes(buf1 + startpoint,
959 			    endpoint-startpoint);
960 			n += endpoint - startpoint;
961 			for (j=0; j<32; ++j) {
962 				if (j >= startpoint && j < endpoint) {
963 					buf2[j] |= buf1[j];
964 					++counts[(unsigned char)buf1[j]];
965 				} else {
966 					tt_assert(buf1[j] == 0);
967 					tt_int_op(buf1[j], ==, 0);
968 
969 				}
970 			}
971 		}
972 
973 		/* This will give a false positive with P=(256**8)==(2**64)
974 		 * for each character. */
975 		for (j=startpoint;j<endpoint;++j) {
976 			tt_int_op(buf2[j], !=, 0);
977 		}
978 	}
979 
980 	evutil_weakrand_seed_(&seed, 0);
981 	for (i = 0; i < 10000; ++i) {
982 		ev_int32_t r = evutil_weakrand_range_(&seed, 9999);
983 		tt_int_op(0, <=, r);
984 		tt_int_op(r, <, 9999);
985 	}
986 
987 	/* for (i=0;i<256;++i) { printf("%3d %2d\n", i, counts[i]); } */
988 end:
989 	;
990 }
991 
992 static void
test_EVUTIL_IS_(void * arg)993 test_EVUTIL_IS_(void *arg)
994 {
995 	tt_int_op(EVUTIL_ISDIGIT_('0'), ==, 1);
996 	tt_int_op(EVUTIL_ISDIGIT_('a'), ==, 0);
997 	tt_int_op(EVUTIL_ISDIGIT_('\xff'), ==, 0);
998 end:
999 	;
1000 }
1001 
1002 static void
test_evutil_getaddrinfo(void * arg)1003 test_evutil_getaddrinfo(void *arg)
1004 {
1005 	struct evutil_addrinfo *ai = NULL, *a;
1006 	struct evutil_addrinfo hints;
1007 	int r;
1008 
1009 	/* Try using it as a pton. */
1010 	memset(&hints, 0, sizeof(hints));
1011 	hints.ai_family = PF_UNSPEC;
1012 	hints.ai_socktype = SOCK_STREAM;
1013 	r = evutil_getaddrinfo("1.2.3.4", "8080", &hints, &ai);
1014 	tt_int_op(r, ==, 0);
1015 	tt_assert(ai);
1016 	tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
1017 	test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP);
1018 	evutil_freeaddrinfo(ai);
1019 	ai = NULL;
1020 
1021 	memset(&hints, 0, sizeof(hints));
1022 	hints.ai_family = PF_UNSPEC;
1023 	hints.ai_protocol = IPPROTO_UDP;
1024 	r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai);
1025 	tt_int_op(r, ==, 0);
1026 	tt_assert(ai);
1027 	tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
1028 	test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP);
1029 	evutil_freeaddrinfo(ai);
1030 	ai = NULL;
1031 
1032 	/* Try out the behavior of nodename=NULL */
1033 	memset(&hints, 0, sizeof(hints));
1034 	hints.ai_family = PF_INET;
1035 	hints.ai_protocol = IPPROTO_TCP;
1036 	hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */
1037 	r = evutil_getaddrinfo(NULL, "9999", &hints, &ai);
1038 	tt_int_op(r,==,0);
1039 	tt_assert(ai);
1040 	tt_ptr_op(ai->ai_next, ==, NULL);
1041 	test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP);
1042 	evutil_freeaddrinfo(ai);
1043 	ai = NULL;
1044 	hints.ai_flags = 0; /* as if for connect */
1045 	r = evutil_getaddrinfo(NULL, "9998", &hints, &ai);
1046 	tt_assert(ai);
1047 	tt_int_op(r,==,0);
1048 	test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP);
1049 	tt_ptr_op(ai->ai_next, ==, NULL);
1050 	evutil_freeaddrinfo(ai);
1051 	ai = NULL;
1052 
1053 	hints.ai_flags = 0; /* as if for connect */
1054 	hints.ai_family = PF_INET6;
1055 	r = evutil_getaddrinfo(NULL, "9997", &hints, &ai);
1056 	tt_assert(ai);
1057 	tt_int_op(r,==,0);
1058 	tt_ptr_op(ai->ai_next, ==, NULL);
1059 	test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP);
1060 	evutil_freeaddrinfo(ai);
1061 	ai = NULL;
1062 
1063 	hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */
1064 	hints.ai_family = PF_INET6;
1065 	r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
1066 	tt_assert(ai);
1067 	tt_int_op(r,==,0);
1068 	tt_ptr_op(ai->ai_next, ==, NULL);
1069 	test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
1070 	evutil_freeaddrinfo(ai);
1071 	ai = NULL;
1072 
1073 	/* Now try an unspec one. We should get a v6 and a v4. */
1074 	hints.ai_family = PF_UNSPEC;
1075 	r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
1076 	tt_assert(ai);
1077 	tt_int_op(r,==,0);
1078 	a = ai_find_by_family(ai, PF_INET6);
1079 	tt_assert(a);
1080 	test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
1081 	a = ai_find_by_family(ai, PF_INET);
1082 	tt_assert(a);
1083 	test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP);
1084 	evutil_freeaddrinfo(ai);
1085 	ai = NULL;
1086 
1087 	/* Try out AI_NUMERICHOST: successful case.  Also try
1088 	 * multiprotocol. */
1089 	memset(&hints, 0, sizeof(hints));
1090 	hints.ai_family = PF_UNSPEC;
1091 	hints.ai_flags = EVUTIL_AI_NUMERICHOST;
1092 	r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai);
1093 	tt_int_op(r, ==, 0);
1094 	a = ai_find_by_protocol(ai, IPPROTO_TCP);
1095 	tt_assert(a);
1096 	test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP);
1097 	a = ai_find_by_protocol(ai, IPPROTO_UDP);
1098 	tt_assert(a);
1099 	test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP);
1100 	evutil_freeaddrinfo(ai);
1101 	ai = NULL;
1102 
1103 	/* Try the failing case of AI_NUMERICHOST */
1104 	memset(&hints, 0, sizeof(hints));
1105 	hints.ai_family = PF_UNSPEC;
1106 	hints.ai_flags = EVUTIL_AI_NUMERICHOST;
1107 	r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
1108 	tt_int_op(r, ==, EVUTIL_EAI_NONAME);
1109 	tt_ptr_op(ai, ==, NULL);
1110 
1111 	/* Try symbolic service names wit AI_NUMERICSERV */
1112 	memset(&hints, 0, sizeof(hints));
1113 	hints.ai_family = PF_UNSPEC;
1114 	hints.ai_socktype = SOCK_STREAM;
1115 	hints.ai_flags = EVUTIL_AI_NUMERICSERV;
1116 	r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
1117 	tt_int_op(r,==,EVUTIL_EAI_NONAME);
1118 
1119 	/* Try symbolic service names */
1120 	memset(&hints, 0, sizeof(hints));
1121 	hints.ai_family = PF_UNSPEC;
1122 	hints.ai_socktype = SOCK_STREAM;
1123 	r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
1124 	if (r!=0) {
1125 		TT_DECLARE("SKIP", ("Symbolic service names seem broken."));
1126 	} else {
1127 		tt_assert(ai);
1128 		test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP);
1129 		evutil_freeaddrinfo(ai);
1130 		ai = NULL;
1131 	}
1132 
1133 end:
1134 	if (ai)
1135 		evutil_freeaddrinfo(ai);
1136 }
1137 
1138 static void
test_evutil_getaddrinfo_live(void * arg)1139 test_evutil_getaddrinfo_live(void *arg)
1140 {
1141 	struct evutil_addrinfo *ai = NULL;
1142 	struct evutil_addrinfo hints;
1143 
1144 	struct sockaddr_in6 *sin6;
1145 	struct sockaddr_in *sin;
1146 	char buf[128];
1147 	const char *cp;
1148 	int r;
1149 
1150 	/* Now do some actual lookups. */
1151 	memset(&hints, 0, sizeof(hints));
1152 	hints.ai_family = PF_INET;
1153 	hints.ai_protocol = IPPROTO_TCP;
1154 	hints.ai_socktype = SOCK_STREAM;
1155 	r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
1156 	if (r != 0) {
1157 		TT_DECLARE("SKIP", ("Couldn't resolve www.google.com"));
1158 	} else {
1159 		tt_assert(ai);
1160 		tt_int_op(ai->ai_family, ==, PF_INET);
1161 		tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP);
1162 		tt_int_op(ai->ai_socktype, ==, SOCK_STREAM);
1163 		tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in));
1164 		sin = (struct sockaddr_in*)ai->ai_addr;
1165 		tt_int_op(sin->sin_family, ==, AF_INET);
1166 		tt_int_op(sin->sin_port, ==, htons(80));
1167 		tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff);
1168 
1169 		cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
1170 		TT_BLATHER(("www.google.com resolved to %s",
1171 			cp?cp:"<unwriteable>"));
1172 		evutil_freeaddrinfo(ai);
1173 		ai = NULL;
1174 	}
1175 
1176 	hints.ai_family = PF_INET6;
1177 	r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai);
1178 	if (r != 0) {
1179 		TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com"));
1180 	} else {
1181 		tt_assert(ai);
1182 		tt_int_op(ai->ai_family, ==, PF_INET6);
1183 		tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6));
1184 		sin6 = (struct sockaddr_in6*)ai->ai_addr;
1185 		tt_int_op(sin6->sin6_port, ==, htons(80));
1186 
1187 		cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf,
1188 		    sizeof(buf));
1189 		TT_BLATHER(("ipv6.google.com resolved to %s",
1190 			cp?cp:"<unwriteable>"));
1191 	}
1192 
1193 end:
1194 	if (ai)
1195 		evutil_freeaddrinfo(ai);
1196 }
1197 
1198 static void
test_evutil_getaddrinfo_AI_ADDRCONFIG(void * arg)1199 test_evutil_getaddrinfo_AI_ADDRCONFIG(void *arg)
1200 {
1201 	struct evutil_addrinfo *ai = NULL;
1202 	struct evutil_addrinfo hints;
1203 	int r;
1204 
1205 	memset(&hints, 0, sizeof(hints));
1206 	hints.ai_family = AF_UNSPEC;
1207 	hints.ai_socktype = SOCK_STREAM;
1208 	hints.ai_flags = EVUTIL_AI_PASSIVE|EVUTIL_AI_ADDRCONFIG;
1209 
1210 	/* IPv4 */
1211 	r = evutil_getaddrinfo("127.0.0.1", "80", &hints, &ai);
1212 	tt_int_op(r, ==, 0);
1213 	tt_assert(ai);
1214 	tt_ptr_op(ai->ai_next, ==, NULL);
1215 	test_ai_eq(ai, "127.0.0.1:80", SOCK_STREAM, IPPROTO_TCP);
1216 	evutil_freeaddrinfo(ai);
1217 	ai = NULL;
1218 
1219 	/* IPv6 */
1220 	r = evutil_getaddrinfo("::1", "80", &hints, &ai);
1221 	tt_int_op(r, ==, 0);
1222 	tt_assert(ai);
1223 	tt_ptr_op(ai->ai_next, ==, NULL);
1224 	test_ai_eq(ai, "[::1]:80", SOCK_STREAM, IPPROTO_TCP);
1225 	evutil_freeaddrinfo(ai);
1226 	ai = NULL;
1227 
1228 end:
1229 	if (ai)
1230 		evutil_freeaddrinfo(ai);
1231 }
1232 
1233 #ifdef _WIN32
1234 static void
test_evutil_loadsyslib(void * arg)1235 test_evutil_loadsyslib(void *arg)
1236 {
1237 	HMODULE h=NULL;
1238 
1239 	h = evutil_load_windows_system_library_(TEXT("kernel32.dll"));
1240 	tt_assert(h);
1241 
1242 end:
1243 	if (h)
1244 		CloseHandle(h);
1245 
1246 }
1247 #endif
1248 
1249 /** Test mm_malloc(). */
1250 static void
test_event_malloc(void * arg)1251 test_event_malloc(void *arg)
1252 {
1253 	void *p = NULL;
1254 	(void)arg;
1255 
1256 	/* mm_malloc(0) should simply return NULL. */
1257 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1258 	errno = 0;
1259 	p = mm_malloc(0);
1260 	tt_assert(p == NULL);
1261 	tt_int_op(errno, ==, 0);
1262 #endif
1263 
1264 	/* Trivial case. */
1265 	errno = 0;
1266 	p = mm_malloc(8);
1267 	tt_assert(p != NULL);
1268 	tt_int_op(errno, ==, 0);
1269 	mm_free(p);
1270 
1271  end:
1272 	errno = 0;
1273 	return;
1274 }
1275 
1276 static void
test_event_calloc(void * arg)1277 test_event_calloc(void *arg)
1278 {
1279 	void *p = NULL;
1280 	(void)arg;
1281 
1282 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1283 	/* mm_calloc() should simply return NULL
1284 	 * if either argument is zero. */
1285 	errno = 0;
1286 	p = mm_calloc(0, 0);
1287 	tt_assert(p == NULL);
1288 	tt_int_op(errno, ==, 0);
1289 	errno = 0;
1290 	p = mm_calloc(0, 1);
1291 	tt_assert(p == NULL);
1292 	tt_int_op(errno, ==, 0);
1293 	errno = 0;
1294 	p = mm_calloc(1, 0);
1295 	tt_assert(p == NULL);
1296 	tt_int_op(errno, ==, 0);
1297 #endif
1298 
1299 	/* Trivial case. */
1300 	errno = 0;
1301 	p = mm_calloc(8, 8);
1302 	tt_assert(p != NULL);
1303 	tt_int_op(errno, ==, 0);
1304 	mm_free(p);
1305 	p = NULL;
1306 
1307 	/* mm_calloc() should set errno = ENOMEM and return NULL
1308 	 * in case of potential overflow. */
1309 	errno = 0;
1310 	p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8);
1311 	tt_assert(p == NULL);
1312 	tt_int_op(errno, ==, ENOMEM);
1313 
1314  end:
1315 	errno = 0;
1316 	if (p)
1317 		mm_free(p);
1318 
1319 	return;
1320 }
1321 
1322 static void
test_event_strdup(void * arg)1323 test_event_strdup(void *arg)
1324 {
1325 	void *p = NULL;
1326 	(void)arg;
1327 
1328 #ifndef EVENT__DISABLE_MM_REPLACEMENT
1329 	/* mm_strdup(NULL) should set errno = EINVAL and return NULL. */
1330 	errno = 0;
1331 	p = mm_strdup(NULL);
1332 	tt_assert(p == NULL);
1333 	tt_int_op(errno, ==, EINVAL);
1334 #endif
1335 
1336 	/* Trivial cases. */
1337 
1338 	errno = 0;
1339 	p = mm_strdup("");
1340 	tt_assert(p != NULL);
1341 	tt_int_op(errno, ==, 0);
1342 	tt_str_op(p, ==, "");
1343 	mm_free(p);
1344 
1345 	errno = 0;
1346 	p = mm_strdup("foo");
1347 	tt_assert(p != NULL);
1348 	tt_int_op(errno, ==, 0);
1349 	tt_str_op(p, ==, "foo");
1350 	mm_free(p);
1351 
1352 	/* XXX
1353 	 * mm_strdup(str) where str is a string of length EV_SIZE_MAX
1354 	 * should set errno = ENOMEM and return NULL. */
1355 
1356  end:
1357 	errno = 0;
1358 	return;
1359 }
1360 
1361 static void
test_evutil_usleep(void * arg)1362 test_evutil_usleep(void *arg)
1363 {
1364 	struct timeval tv1, tv2, tv3, diff1, diff2;
1365 	const struct timeval quarter_sec = {0, 250*1000};
1366 	const struct timeval tenth_sec = {0, 100*1000};
1367 	long usec1, usec2;
1368 
1369 	evutil_gettimeofday(&tv1, NULL);
1370 	evutil_usleep_(&quarter_sec);
1371 	evutil_gettimeofday(&tv2, NULL);
1372 	evutil_usleep_(&tenth_sec);
1373 	evutil_gettimeofday(&tv3, NULL);
1374 
1375 	evutil_timersub(&tv2, &tv1, &diff1);
1376 	evutil_timersub(&tv3, &tv2, &diff2);
1377 	usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec;
1378 	usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec;
1379 
1380 	tt_int_op(usec1, >, 200000);
1381 	tt_int_op(usec1, <, 300000);
1382 	tt_int_op(usec2, >,  80000);
1383 	tt_int_op(usec2, <, 120000);
1384 
1385 end:
1386 	;
1387 }
1388 
1389 static void
test_evutil_monotonic_res(void * data_)1390 test_evutil_monotonic_res(void *data_)
1391 {
1392 	/* Basic santity-test for monotonic timers.  What we'd really like
1393 	 * to do is make sure that they can't go backwards even when the
1394 	 * system clock goes backwards. But we haven't got a good way to
1395 	 * move the system clock backwards.
1396 	 */
1397 	struct basic_test_data *data = data_;
1398 	struct evutil_monotonic_timer timer;
1399 	const int precise = strstr(data->setup_data, "precise") != NULL;
1400 	const int fallback = strstr(data->setup_data, "fallback") != NULL;
1401 	struct timeval tv[10], delay;
1402 	int total_diff = 0;
1403 
1404 	int flags = 0, wantres, acceptdiff, i;
1405 	if (precise)
1406 		flags |= EV_MONOT_PRECISE;
1407 	if (fallback)
1408 		flags |= EV_MONOT_FALLBACK;
1409 	if (precise || fallback) {
1410 #ifdef _WIN32
1411 		wantres = 10*1000;
1412 		acceptdiff = 1000;
1413 #else
1414 		wantres = 1000;
1415 		acceptdiff = 300;
1416 #endif
1417 	} else {
1418 		wantres = 40*1000;
1419 		acceptdiff = 20*1000;
1420 	}
1421 
1422 	TT_BLATHER(("Precise = %d", precise));
1423 	TT_BLATHER(("Fallback = %d", fallback));
1424 
1425 	/* First, make sure we match up with usleep. */
1426 
1427 	delay.tv_sec = 0;
1428 	delay.tv_usec = wantres;
1429 
1430 	tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
1431 
1432 	for (i = 0; i < 10; ++i) {
1433 		evutil_gettime_monotonic_(&timer, &tv[i]);
1434 		evutil_usleep_(&delay);
1435 	}
1436 
1437 	for (i = 0; i < 9; ++i) {
1438 		struct timeval diff;
1439 		tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
1440 		evutil_timersub(&tv[i+1], &tv[i], &diff);
1441 		tt_int_op(diff.tv_sec, ==, 0);
1442 		total_diff += diff.tv_usec;
1443 		TT_BLATHER(("Difference = %d", (int)diff.tv_usec));
1444 	}
1445 	tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff);
1446 
1447 end:
1448 	;
1449 }
1450 
1451 static void
test_evutil_monotonic_prc(void * data_)1452 test_evutil_monotonic_prc(void *data_)
1453 {
1454 	struct basic_test_data *data = data_;
1455 	struct evutil_monotonic_timer timer;
1456 	const int precise = strstr(data->setup_data, "precise") != NULL;
1457 	const int fallback = strstr(data->setup_data, "fallback") != NULL;
1458 	struct timeval tv[10];
1459 	int total_diff = 0;
1460 	int i, maxstep = 25*1000,flags=0;
1461 	if (precise)
1462 		maxstep = 500;
1463 	if (precise)
1464 		flags |= EV_MONOT_PRECISE;
1465 	if (fallback)
1466 		flags |= EV_MONOT_FALLBACK;
1467 	tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
1468 
1469 	/* find out what precision we actually see. */
1470 
1471 	evutil_gettime_monotonic_(&timer, &tv[0]);
1472 	for (i = 1; i < 10; ++i) {
1473 		do {
1474 			evutil_gettime_monotonic_(&timer, &tv[i]);
1475 		} while (evutil_timercmp(&tv[i-1], &tv[i], ==));
1476 	}
1477 
1478 	total_diff = 0;
1479 	for (i = 0; i < 9; ++i) {
1480 		struct timeval diff;
1481 		tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
1482 		evutil_timersub(&tv[i+1], &tv[i], &diff);
1483 		tt_int_op(diff.tv_sec, ==, 0);
1484 		total_diff += diff.tv_usec;
1485 		TT_BLATHER(("Step difference = %d", (int)diff.tv_usec));
1486 	}
1487 	TT_BLATHER(("Average step difference = %d", total_diff / 9));
1488 	tt_int_op(total_diff/9, <, maxstep);
1489 
1490 end:
1491 	;
1492 }
1493 
1494 static void
create_tm_from_unix_epoch(struct tm * cur_p,const time_t t)1495 create_tm_from_unix_epoch(struct tm *cur_p, const time_t t)
1496 {
1497 #ifdef _WIN32
1498 	struct tm *tmp = gmtime(&t);
1499 	if (!tmp) {
1500 		fprintf(stderr, "gmtime: %s (%i)", strerror(errno), (int)t);
1501 		exit(1);
1502 	}
1503 	*cur_p = *tmp;
1504 #else
1505 	gmtime_r(&t, cur_p);
1506 #endif
1507 }
1508 
1509 static struct date_rfc1123_case {
1510 	time_t t;
1511 	char date[30];
1512 } date_rfc1123_cases[] = {
1513 	{           0, "Thu, 01 Jan 1970 00:00:00 GMT"} /* UNIX time of zero */,
1514 	{   946684799, "Fri, 31 Dec 1999 23:59:59 GMT"} /* the last moment of the 20th century */,
1515 	{   946684800, "Sat, 01 Jan 2000 00:00:00 GMT"} /* the first moment of the 21st century */,
1516 	{   981072000, "Fri, 02 Feb 2001 00:00:00 GMT"},
1517 	{  1015113600, "Sun, 03 Mar 2002 00:00:00 GMT"},
1518 	{  1049414400, "Fri, 04 Apr 2003 00:00:00 GMT"},
1519 	{  1083715200, "Wed, 05 May 2004 00:00:00 GMT"},
1520 	{  1118016000, "Mon, 06 Jun 2005 00:00:00 GMT"},
1521 	{  1152230400, "Fri, 07 Jul 2006 00:00:00 GMT"},
1522 	{  1186531200, "Wed, 08 Aug 2007 00:00:00 GMT"},
1523 	{  1220918400, "Tue, 09 Sep 2008 00:00:00 GMT"},
1524 	{  1255132800, "Sat, 10 Oct 2009 00:00:00 GMT"},
1525 	{  1289433600, "Thu, 11 Nov 2010 00:00:00 GMT"},
1526 	{  1323648000, "Mon, 12 Dec 2011 00:00:00 GMT"},
1527 #ifndef _WIN32
1528 #if EVENT__SIZEOF_TIME_T > 4
1529 	/** In win32 case we have max   "23:59:59 January 18, 2038, UTC" for time32 */
1530 	{  4294967296, "Sun, 07 Feb 2106 06:28:16 GMT"} /* 2^32 */,
1531 	/** In win32 case we have max "23:59:59, December 31, 3000, UTC" for time64 */
1532 	{253402300799, "Fri, 31 Dec 9999 23:59:59 GMT"} /* long long future no one can imagine */,
1533 #endif /* time_t != 32bit */
1534 	{  1456704000, "Mon, 29 Feb 2016 00:00:00 GMT"} /* leap year */,
1535 #endif
1536 	{  1435708800, "Wed, 01 Jul 2015 00:00:00 GMT"} /* leap second */,
1537 	{  1481866376, "Fri, 16 Dec 2016 05:32:56 GMT"} /* the time this test case is generated */,
1538 	{0, ""} /* end of test cases. */
1539 };
1540 
1541 static void
test_evutil_date_rfc1123(void * arg)1542 test_evutil_date_rfc1123(void *arg)
1543 {
1544 	struct tm query;
1545 	char result[30];
1546 	size_t i = 0;
1547 
1548 	/* Checks if too small buffers are safely accepted. */
1549 	{
1550 		create_tm_from_unix_epoch(&query, 0);
1551 		evutil_date_rfc1123(result, 8, &query);
1552 		tt_str_op(result, ==, "Thu, 01");
1553 	}
1554 
1555 	/* Checks for testcases. */
1556 	for (i = 0; ; i++) {
1557 		struct date_rfc1123_case c = date_rfc1123_cases[i];
1558 
1559 		if (strlen(c.date) == 0)
1560 			break;
1561 
1562 		create_tm_from_unix_epoch(&query, c.t);
1563 		evutil_date_rfc1123(result, sizeof(result), &query);
1564 		tt_str_op(result, ==, c.date);
1565 	}
1566 
1567 end:
1568 	;
1569 }
1570 
1571 static void
test_evutil_v4addr_is_local(void * arg)1572 test_evutil_v4addr_is_local(void *arg)
1573 {
1574 	struct sockaddr_in sin;
1575 	sin.sin_family = AF_INET;
1576 
1577 	/* we use evutil_inet_pton() here to fill in network-byte order */
1578 #define LOCAL(str, yes) do {                                              \
1579 	tt_int_op(evutil_inet_pton(AF_INET, str, &sin.sin_addr), ==, 1);  \
1580 	tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, yes);       \
1581 } while (0)
1582 
1583 	/** any */
1584 	sin.sin_addr.s_addr = INADDR_ANY;
1585 	tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, 1);
1586 
1587 	/** loopback */
1588 	sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1589 	tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, 1);
1590 	LOCAL("127.0.0.1", 1);
1591 	LOCAL("127.255.255.255", 1);
1592 	LOCAL("121.0.0.1", 0);
1593 
1594 	/** link-local */
1595 	LOCAL("169.254.0.1", 1);
1596 	LOCAL("169.254.255.255", 1);
1597 	LOCAL("170.0.0.0", 0);
1598 
1599 	/** Multicast */
1600 	LOCAL("224.0.0.0", 1);
1601 	LOCAL("239.255.255.255", 1);
1602 	LOCAL("240.0.0.0", 0);
1603 end:
1604 	;
1605 }
1606 
1607 static void
test_evutil_v6addr_is_local(void * arg)1608 test_evutil_v6addr_is_local(void *arg)
1609 {
1610 	struct sockaddr_in6 sin6;
1611 	struct in6_addr anyaddr = IN6ADDR_ANY_INIT;
1612 	struct in6_addr loopback = IN6ADDR_LOOPBACK_INIT;
1613 
1614 	sin6.sin6_family = AF_INET6;
1615 #define LOCAL6(str, yes) do {                                              \
1616 	tt_int_op(evutil_inet_pton(AF_INET6, str, &sin6.sin6_addr), ==, 1);\
1617 	tt_int_op(evutil_v6addr_is_local_(&sin6.sin6_addr), ==, yes);      \
1618 } while (0)
1619 
1620 	/** any */
1621 	tt_int_op(evutil_v6addr_is_local_(&anyaddr), ==, 1);
1622 	LOCAL6("::0", 1);
1623 
1624 	/** loopback */
1625 	tt_int_op(evutil_v6addr_is_local_(&loopback), ==, 1);
1626 	LOCAL6("::1", 1);
1627 
1628 	/** IPV4 mapped */
1629 	LOCAL6("::ffff:0:0", 1);
1630 	/** IPv4 translated */
1631 	LOCAL6("::ffff:0:0:0", 1);
1632 	/** IPv4/IPv6 translation */
1633 	LOCAL6("64:ff9b::", 0);
1634 	/** Link-local */
1635 	LOCAL6("fe80::", 1);
1636 	/** Multicast */
1637 	LOCAL6("ff00::", 1);
1638 	/** Unspecified */
1639 	LOCAL6("::", 1);
1640 
1641 	/** Global Internet */
1642 	LOCAL6("2001::", 0);
1643 	LOCAL6("2001:4860:4802:32::1b", 0);
1644 end:
1645 	;
1646 }
1647 
1648 struct testcase_t util_testcases[] = {
1649 	{ "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL },
1650 	{ "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL },
1651 	{ "ipv6_parse_scope", regress_ipv6_parse_scope, 0, NULL, NULL },
1652 	{ "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL },
1653 	{ "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL },
1654 	{ "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL },
1655 	{ "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL },
1656 	{ "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL },
1657 	{ "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL },
1658 	{ "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL },
1659 	{ "strlcpy", test_evutil_strlcpy, 0, NULL, NULL },
1660 	{ "log", test_evutil_log, TT_FORK, NULL, NULL },
1661 	{ "upcast", test_evutil_upcast, 0, NULL, NULL },
1662 	{ "integers", test_evutil_integers, 0, NULL, NULL },
1663 	{ "rand", test_evutil_rand, TT_FORK, NULL, NULL },
1664 	{ "EVUTIL_IS_", test_EVUTIL_IS_, 0, NULL, NULL },
1665 	{ "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL },
1666 	{ "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
1667 	{ "getaddrinfo_AI_ADDRCONFIG", test_evutil_getaddrinfo_AI_ADDRCONFIG, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
1668 #ifdef _WIN32
1669 	{ "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL },
1670 #endif
1671 	{ "mm_malloc", test_event_malloc, 0, NULL, NULL },
1672 	{ "mm_calloc", test_event_calloc, 0, NULL, NULL },
1673 	{ "mm_strdup", test_event_strdup, 0, NULL, NULL },
1674 	{ "usleep", test_evutil_usleep, TT_RETRIABLE, NULL, NULL },
1675 	{ "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, __UNCONST("") },
1676 	{ "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, __UNCONST("precise") },
1677 	{ "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, __UNCONST("fallback") },
1678 	{ "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, __UNCONST("") },
1679 	{ "monotonic_prc_precise", test_evutil_monotonic_prc, TT_RETRIABLE, &basic_setup, __UNCONST("precise") },
1680 	{ "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, __UNCONST("fallback") },
1681 	{ "date_rfc1123", test_evutil_date_rfc1123, 0, NULL, NULL },
1682 	{ "evutil_v4addr_is_local", test_evutil_v4addr_is_local, 0, NULL, NULL },
1683 	{ "evutil_v6addr_is_local", test_evutil_v6addr_is_local, 0, NULL, NULL },
1684 	END_OF_TESTCASES,
1685 };
1686 
1687