xref: /llvm-project/clang/lib/Lex/PPMacroExpansion.cpp (revision c310b4e7bd2a6e736fbcd8d4885ff46b45ab9977)
1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the top level handling of macro expansion for the
10 // preprocessor.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Basic/AttributeCommonInfo.h"
15 #include "clang/Basic/Attributes.h"
16 #include "clang/Basic/Builtins.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/LLVM.h"
19 #include "clang/Basic/LangOptions.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Lex/CodeCompletionHandler.h"
23 #include "clang/Lex/DirectoryLookup.h"
24 #include "clang/Lex/ExternalPreprocessorSource.h"
25 #include "clang/Lex/HeaderSearch.h"
26 #include "clang/Lex/LexDiagnostic.h"
27 #include "clang/Lex/LiteralSupport.h"
28 #include "clang/Lex/MacroArgs.h"
29 #include "clang/Lex/MacroInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Lex/PreprocessorLexer.h"
32 #include "clang/Lex/PreprocessorOptions.h"
33 #include "clang/Lex/Token.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DenseSet.h"
37 #include "llvm/ADT/FoldingSet.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/Format.h"
44 #include "llvm/Support/Path.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstddef>
49 #include <cstring>
50 #include <ctime>
51 #include <iomanip>
52 #include <optional>
53 #include <sstream>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 
58 using namespace clang;
59 
60 MacroDirective *
61 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
62   if (!II->hadMacroDefinition())
63     return nullptr;
64   auto Pos = CurSubmoduleState->Macros.find(II);
65   return Pos == CurSubmoduleState->Macros.end() ? nullptr
66                                                 : Pos->second.getLatest();
67 }
68 
69 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
70   assert(MD && "MacroDirective should be non-zero!");
71   assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
72 
73   MacroState &StoredMD = CurSubmoduleState->Macros[II];
74   auto *OldMD = StoredMD.getLatest();
75   MD->setPrevious(OldMD);
76   StoredMD.setLatest(MD);
77   StoredMD.overrideActiveModuleMacros(*this, II);
78 
79   if (needModuleMacros()) {
80     // Track that we created a new macro directive, so we know we should
81     // consider building a ModuleMacro for it when we get to the end of
82     // the module.
83     PendingModuleMacroNames.push_back(II);
84   }
85 
86   // Set up the identifier as having associated macro history.
87   II->setHasMacroDefinition(true);
88   if (!MD->isDefined() && !LeafModuleMacros.contains(II))
89     II->setHasMacroDefinition(false);
90   if (II->isFromAST())
91     II->setChangedSinceDeserialization();
92 }
93 
94 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
95                                            MacroDirective *ED,
96                                            MacroDirective *MD) {
97   // Normally, when a macro is defined, it goes through appendMacroDirective()
98   // above, which chains a macro to previous defines, undefs, etc.
99   // However, in a pch, the whole macro history up to the end of the pch is
100   // stored, so ASTReader goes through this function instead.
101   // However, built-in macros are already registered in the Preprocessor
102   // ctor, and ASTWriter stops writing the macro chain at built-in macros,
103   // so in that case the chain from the pch needs to be spliced to the existing
104   // built-in.
105 
106   assert(II && MD);
107   MacroState &StoredMD = CurSubmoduleState->Macros[II];
108 
109   if (auto *OldMD = StoredMD.getLatest()) {
110     // shouldIgnoreMacro() in ASTWriter also stops at macros from the
111     // predefines buffer in module builds. However, in module builds, modules
112     // are loaded completely before predefines are processed, so StoredMD
113     // will be nullptr for them when they're loaded. StoredMD should only be
114     // non-nullptr for builtins read from a pch file.
115     assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
116            "only built-ins should have an entry here");
117     assert(!OldMD->getPrevious() && "builtin should only have a single entry");
118     ED->setPrevious(OldMD);
119     StoredMD.setLatest(MD);
120   } else {
121     StoredMD = MD;
122   }
123 
124   // Setup the identifier as having associated macro history.
125   II->setHasMacroDefinition(true);
126   if (!MD->isDefined() && !LeafModuleMacros.contains(II))
127     II->setHasMacroDefinition(false);
128 }
129 
130 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
131                                           MacroInfo *Macro,
132                                           ArrayRef<ModuleMacro *> Overrides,
133                                           bool &New) {
134   llvm::FoldingSetNodeID ID;
135   ModuleMacro::Profile(ID, Mod, II);
136 
137   void *InsertPos;
138   if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
139     New = false;
140     return MM;
141   }
142 
143   auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
144   ModuleMacros.InsertNode(MM, InsertPos);
145 
146   // Each overridden macro is now overridden by one more macro.
147   bool HidAny = false;
148   for (auto *O : Overrides) {
149     HidAny |= (O->NumOverriddenBy == 0);
150     ++O->NumOverriddenBy;
151   }
152 
153   // If we were the first overrider for any macro, it's no longer a leaf.
154   auto &LeafMacros = LeafModuleMacros[II];
155   if (HidAny) {
156     llvm::erase_if(LeafMacros,
157                    [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; });
158   }
159 
160   // The new macro is always a leaf macro.
161   LeafMacros.push_back(MM);
162   // The identifier now has defined macros (that may or may not be visible).
163   II->setHasMacroDefinition(true);
164 
165   New = true;
166   return MM;
167 }
168 
169 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod,
170                                           const IdentifierInfo *II) {
171   llvm::FoldingSetNodeID ID;
172   ModuleMacro::Profile(ID, Mod, II);
173 
174   void *InsertPos;
175   return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
176 }
177 
178 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
179                                          ModuleMacroInfo &Info) {
180   assert(Info.ActiveModuleMacrosGeneration !=
181              CurSubmoduleState->VisibleModules.getGeneration() &&
182          "don't need to update this macro name info");
183   Info.ActiveModuleMacrosGeneration =
184       CurSubmoduleState->VisibleModules.getGeneration();
185 
186   auto Leaf = LeafModuleMacros.find(II);
187   if (Leaf == LeafModuleMacros.end()) {
188     // No imported macros at all: nothing to do.
189     return;
190   }
191 
192   Info.ActiveModuleMacros.clear();
193 
194   // Every macro that's locally overridden is overridden by a visible macro.
195   llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
196   for (auto *O : Info.OverriddenMacros)
197     NumHiddenOverrides[O] = -1;
198 
199   // Collect all macros that are not overridden by a visible macro.
200   llvm::SmallVector<ModuleMacro *, 16> Worklist;
201   for (auto *LeafMM : Leaf->second) {
202     assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
203     if (NumHiddenOverrides.lookup(LeafMM) == 0)
204       Worklist.push_back(LeafMM);
205   }
206   while (!Worklist.empty()) {
207     auto *MM = Worklist.pop_back_val();
208     if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
209       // We only care about collecting definitions; undefinitions only act
210       // to override other definitions.
211       if (MM->getMacroInfo())
212         Info.ActiveModuleMacros.push_back(MM);
213     } else {
214       for (auto *O : MM->overrides())
215         if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
216           Worklist.push_back(O);
217     }
218   }
219   // Our reverse postorder walk found the macros in reverse order.
220   std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
221 
222   // Determine whether the macro name is ambiguous.
223   MacroInfo *MI = nullptr;
224   bool IsSystemMacro = true;
225   bool IsAmbiguous = false;
226   if (auto *MD = Info.MD) {
227     while (isa_and_nonnull<VisibilityMacroDirective>(MD))
228       MD = MD->getPrevious();
229     if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
230       MI = DMD->getInfo();
231       IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
232     }
233   }
234   for (auto *Active : Info.ActiveModuleMacros) {
235     auto *NewMI = Active->getMacroInfo();
236 
237     // Before marking the macro as ambiguous, check if this is a case where
238     // both macros are in system headers. If so, we trust that the system
239     // did not get it wrong. This also handles cases where Clang's own
240     // headers have a different spelling of certain system macros:
241     //   #define LONG_MAX __LONG_MAX__ (clang's limits.h)
242     //   #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
243     //
244     // FIXME: Remove the defined-in-system-headers check. clang's limits.h
245     // overrides the system limits.h's macros, so there's no conflict here.
246     if (MI && NewMI != MI &&
247         !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
248       IsAmbiguous = true;
249     IsSystemMacro &= Active->getOwningModule()->IsSystem ||
250                      SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
251     MI = NewMI;
252   }
253   Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
254 }
255 
256 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
257   ArrayRef<ModuleMacro*> Leaf;
258   auto LeafIt = LeafModuleMacros.find(II);
259   if (LeafIt != LeafModuleMacros.end())
260     Leaf = LeafIt->second;
261   const MacroState *State = nullptr;
262   auto Pos = CurSubmoduleState->Macros.find(II);
263   if (Pos != CurSubmoduleState->Macros.end())
264     State = &Pos->second;
265 
266   llvm::errs() << "MacroState " << State << " " << II->getNameStart();
267   if (State && State->isAmbiguous(*this, II))
268     llvm::errs() << " ambiguous";
269   if (State && !State->getOverriddenMacros().empty()) {
270     llvm::errs() << " overrides";
271     for (auto *O : State->getOverriddenMacros())
272       llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
273   }
274   llvm::errs() << "\n";
275 
276   // Dump local macro directives.
277   for (auto *MD = State ? State->getLatest() : nullptr; MD;
278        MD = MD->getPrevious()) {
279     llvm::errs() << " ";
280     MD->dump();
281   }
282 
283   // Dump module macros.
284   llvm::DenseSet<ModuleMacro*> Active;
285   for (auto *MM : State ? State->getActiveModuleMacros(*this, II)
286                         : ArrayRef<ModuleMacro *>())
287     Active.insert(MM);
288   llvm::DenseSet<ModuleMacro*> Visited;
289   llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf);
290   while (!Worklist.empty()) {
291     auto *MM = Worklist.pop_back_val();
292     llvm::errs() << " ModuleMacro " << MM << " "
293                  << MM->getOwningModule()->getFullModuleName();
294     if (!MM->getMacroInfo())
295       llvm::errs() << " undef";
296 
297     if (Active.count(MM))
298       llvm::errs() << " active";
299     else if (!CurSubmoduleState->VisibleModules.isVisible(
300                  MM->getOwningModule()))
301       llvm::errs() << " hidden";
302     else if (MM->getMacroInfo())
303       llvm::errs() << " overridden";
304 
305     if (!MM->overrides().empty()) {
306       llvm::errs() << " overrides";
307       for (auto *O : MM->overrides()) {
308         llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
309         if (Visited.insert(O).second)
310           Worklist.push_back(O);
311       }
312     }
313     llvm::errs() << "\n";
314     if (auto *MI = MM->getMacroInfo()) {
315       llvm::errs() << "  ";
316       MI->dump();
317       llvm::errs() << "\n";
318     }
319   }
320 }
321 
322 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
323 /// identifier table.
324 void Preprocessor::RegisterBuiltinMacros() {
325   Ident__LINE__ = RegisterBuiltinMacro("__LINE__");
326   Ident__FILE__ = RegisterBuiltinMacro("__FILE__");
327   Ident__DATE__ = RegisterBuiltinMacro("__DATE__");
328   Ident__TIME__ = RegisterBuiltinMacro("__TIME__");
329   Ident__COUNTER__ = RegisterBuiltinMacro("__COUNTER__");
330   Ident_Pragma = RegisterBuiltinMacro("_Pragma");
331   Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro("__FLT_EVAL_METHOD__");
332 
333   // C++ Standing Document Extensions.
334   if (getLangOpts().CPlusPlus)
335     Ident__has_cpp_attribute = RegisterBuiltinMacro("__has_cpp_attribute");
336   else
337     Ident__has_cpp_attribute = nullptr;
338 
339   // GCC Extensions.
340   Ident__BASE_FILE__ = RegisterBuiltinMacro("__BASE_FILE__");
341   Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro("__INCLUDE_LEVEL__");
342   Ident__TIMESTAMP__ = RegisterBuiltinMacro("__TIMESTAMP__");
343 
344   // Microsoft Extensions.
345   if (getLangOpts().MicrosoftExt) {
346     Ident__identifier = RegisterBuiltinMacro("__identifier");
347     Ident__pragma = RegisterBuiltinMacro("__pragma");
348   } else {
349     Ident__identifier = nullptr;
350     Ident__pragma = nullptr;
351   }
352 
353   // Clang Extensions.
354   Ident__FILE_NAME__ = RegisterBuiltinMacro("__FILE_NAME__");
355   Ident__has_feature = RegisterBuiltinMacro("__has_feature");
356   Ident__has_extension = RegisterBuiltinMacro("__has_extension");
357   Ident__has_builtin = RegisterBuiltinMacro("__has_builtin");
358   Ident__has_constexpr_builtin =
359       RegisterBuiltinMacro("__has_constexpr_builtin");
360   Ident__has_attribute = RegisterBuiltinMacro("__has_attribute");
361   if (!getLangOpts().CPlusPlus)
362     Ident__has_c_attribute = RegisterBuiltinMacro("__has_c_attribute");
363   else
364     Ident__has_c_attribute = nullptr;
365 
366   Ident__has_declspec = RegisterBuiltinMacro("__has_declspec_attribute");
367   Ident__has_embed = RegisterBuiltinMacro("__has_embed");
368   Ident__has_include = RegisterBuiltinMacro("__has_include");
369   Ident__has_include_next = RegisterBuiltinMacro("__has_include_next");
370   Ident__has_warning = RegisterBuiltinMacro("__has_warning");
371   Ident__is_identifier = RegisterBuiltinMacro("__is_identifier");
372   Ident__is_target_arch = RegisterBuiltinMacro("__is_target_arch");
373   Ident__is_target_vendor = RegisterBuiltinMacro("__is_target_vendor");
374   Ident__is_target_os = RegisterBuiltinMacro("__is_target_os");
375   Ident__is_target_environment =
376       RegisterBuiltinMacro("__is_target_environment");
377   Ident__is_target_variant_os = RegisterBuiltinMacro("__is_target_variant_os");
378   Ident__is_target_variant_environment =
379       RegisterBuiltinMacro("__is_target_variant_environment");
380 
381   // Modules.
382   Ident__building_module = RegisterBuiltinMacro("__building_module");
383   if (!getLangOpts().CurrentModule.empty())
384     Ident__MODULE__ = RegisterBuiltinMacro("__MODULE__");
385   else
386     Ident__MODULE__ = nullptr;
387 }
388 
389 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
390 /// in its expansion, currently expands to that token literally.
391 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
392                                           const IdentifierInfo *MacroIdent,
393                                           Preprocessor &PP) {
394   IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
395 
396   // If the token isn't an identifier, it's always literally expanded.
397   if (!II) return true;
398 
399   // If the information about this identifier is out of date, update it from
400   // the external source.
401   if (II->isOutOfDate())
402     PP.getExternalSource()->updateOutOfDateIdentifier(*II);
403 
404   // If the identifier is a macro, and if that macro is enabled, it may be
405   // expanded so it's not a trivial expansion.
406   if (auto *ExpansionMI = PP.getMacroInfo(II))
407     if (ExpansionMI->isEnabled() &&
408         // Fast expanding "#define X X" is ok, because X would be disabled.
409         II != MacroIdent)
410       return false;
411 
412   // If this is an object-like macro invocation, it is safe to trivially expand
413   // it.
414   if (MI->isObjectLike()) return true;
415 
416   // If this is a function-like macro invocation, it's safe to trivially expand
417   // as long as the identifier is not a macro argument.
418   return !llvm::is_contained(MI->params(), II);
419 }
420 
421 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
422 /// lexed is a '('.  If so, consume the token and return true, if not, this
423 /// method should have no observable side-effect on the lexed tokens.
424 bool Preprocessor::isNextPPTokenLParen() {
425   // Do some quick tests for rejection cases.
426   unsigned Val;
427   if (CurLexer)
428     Val = CurLexer->isNextPPTokenLParen();
429   else
430     Val = CurTokenLexer->isNextTokenLParen();
431 
432   if (Val == 2) {
433     // We have run off the end.  If it's a source file we don't
434     // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
435     // macro stack.
436     if (CurPPLexer)
437       return false;
438     for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
439       if (Entry.TheLexer)
440         Val = Entry.TheLexer->isNextPPTokenLParen();
441       else
442         Val = Entry.TheTokenLexer->isNextTokenLParen();
443 
444       if (Val != 2)
445         break;
446 
447       // Ran off the end of a source file?
448       if (Entry.ThePPLexer)
449         return false;
450     }
451   }
452 
453   // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
454   // have found something that isn't a '(' or we found the end of the
455   // translation unit.  In either case, return false.
456   return Val == 1;
457 }
458 
459 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
460 /// expanded as a macro, handle it and return the next token as 'Identifier'.
461 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
462                                                  const MacroDefinition &M) {
463   emitMacroExpansionWarnings(Identifier);
464 
465   MacroInfo *MI = M.getMacroInfo();
466 
467   // If this is a macro expansion in the "#if !defined(x)" line for the file,
468   // then the macro could expand to different things in other contexts, we need
469   // to disable the optimization in this case.
470   if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
471 
472   // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
473   if (MI->isBuiltinMacro()) {
474     if (Callbacks)
475       Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
476                               /*Args=*/nullptr);
477     ExpandBuiltinMacro(Identifier);
478     return true;
479   }
480 
481   /// Args - If this is a function-like macro expansion, this contains,
482   /// for each macro argument, the list of tokens that were provided to the
483   /// invocation.
484   MacroArgs *Args = nullptr;
485 
486   // Remember where the end of the expansion occurred.  For an object-like
487   // macro, this is the identifier.  For a function-like macro, this is the ')'.
488   SourceLocation ExpansionEnd = Identifier.getLocation();
489 
490   // If this is a function-like macro, read the arguments.
491   if (MI->isFunctionLike()) {
492     // Remember that we are now parsing the arguments to a macro invocation.
493     // Preprocessor directives used inside macro arguments are not portable, and
494     // this enables the warning.
495     InMacroArgs = true;
496     ArgMacro = &Identifier;
497 
498     Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
499 
500     // Finished parsing args.
501     InMacroArgs = false;
502     ArgMacro = nullptr;
503 
504     // If there was an error parsing the arguments, bail out.
505     if (!Args) return true;
506 
507     ++NumFnMacroExpanded;
508   } else {
509     ++NumMacroExpanded;
510   }
511 
512   // Notice that this macro has been used.
513   markMacroAsUsed(MI);
514 
515   // Remember where the token is expanded.
516   SourceLocation ExpandLoc = Identifier.getLocation();
517   SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
518 
519   if (Callbacks) {
520     if (InMacroArgs) {
521       // We can have macro expansion inside a conditional directive while
522       // reading the function macro arguments. To ensure, in that case, that
523       // MacroExpands callbacks still happen in source order, queue this
524       // callback to have it happen after the function macro callback.
525       DelayedMacroExpandsCallbacks.push_back(
526           MacroExpandsInfo(Identifier, M, ExpansionRange));
527     } else {
528       Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
529       if (!DelayedMacroExpandsCallbacks.empty()) {
530         for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
531           // FIXME: We lose macro args info with delayed callback.
532           Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
533                                   /*Args=*/nullptr);
534         }
535         DelayedMacroExpandsCallbacks.clear();
536       }
537     }
538   }
539 
540   // If the macro definition is ambiguous, complain.
541   if (M.isAmbiguous()) {
542     Diag(Identifier, diag::warn_pp_ambiguous_macro)
543       << Identifier.getIdentifierInfo();
544     Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
545       << Identifier.getIdentifierInfo();
546     M.forAllDefinitions([&](const MacroInfo *OtherMI) {
547       if (OtherMI != MI)
548         Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
549           << Identifier.getIdentifierInfo();
550     });
551   }
552 
553   // If we started lexing a macro, enter the macro expansion body.
554 
555   // If this macro expands to no tokens, don't bother to push it onto the
556   // expansion stack, only to take it right back off.
557   if (MI->getNumTokens() == 0) {
558     // No need for arg info.
559     if (Args) Args->destroy(*this);
560 
561     // Propagate whitespace info as if we had pushed, then popped,
562     // a macro context.
563     Identifier.setFlag(Token::LeadingEmptyMacro);
564     PropagateLineStartLeadingSpaceInfo(Identifier);
565     ++NumFastMacroExpanded;
566     return false;
567   } else if (MI->getNumTokens() == 1 &&
568              isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
569                                            *this)) {
570     // Otherwise, if this macro expands into a single trivially-expanded
571     // token: expand it now.  This handles common cases like
572     // "#define VAL 42".
573 
574     // No need for arg info.
575     if (Args) Args->destroy(*this);
576 
577     // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
578     // identifier to the expanded token.
579     bool isAtStartOfLine = Identifier.isAtStartOfLine();
580     bool hasLeadingSpace = Identifier.hasLeadingSpace();
581 
582     // Replace the result token.
583     Identifier = MI->getReplacementToken(0);
584 
585     // Restore the StartOfLine/LeadingSpace markers.
586     Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
587     Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
588 
589     // Update the tokens location to include both its expansion and physical
590     // locations.
591     SourceLocation Loc =
592       SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
593                                    ExpansionEnd,Identifier.getLength());
594     Identifier.setLocation(Loc);
595 
596     // If this is a disabled macro or #define X X, we must mark the result as
597     // unexpandable.
598     if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
599       if (MacroInfo *NewMI = getMacroInfo(NewII))
600         if (!NewMI->isEnabled() || NewMI == MI) {
601           Identifier.setFlag(Token::DisableExpand);
602           // Don't warn for "#define X X" like "#define bool bool" from
603           // stdbool.h.
604           if (NewMI != MI || MI->isFunctionLike())
605             Diag(Identifier, diag::pp_disabled_macro_expansion);
606         }
607     }
608 
609     // Since this is not an identifier token, it can't be macro expanded, so
610     // we're done.
611     ++NumFastMacroExpanded;
612     return true;
613   }
614 
615   // Start expanding the macro.
616   EnterMacro(Identifier, ExpansionEnd, MI, Args);
617   return false;
618 }
619 
620 enum Bracket {
621   Brace,
622   Paren
623 };
624 
625 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
626 /// token vector are properly nested.
627 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
628   SmallVector<Bracket, 8> Brackets;
629   for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
630                                               E = Tokens.end();
631        I != E; ++I) {
632     if (I->is(tok::l_paren)) {
633       Brackets.push_back(Paren);
634     } else if (I->is(tok::r_paren)) {
635       if (Brackets.empty() || Brackets.back() == Brace)
636         return false;
637       Brackets.pop_back();
638     } else if (I->is(tok::l_brace)) {
639       Brackets.push_back(Brace);
640     } else if (I->is(tok::r_brace)) {
641       if (Brackets.empty() || Brackets.back() == Paren)
642         return false;
643       Brackets.pop_back();
644     }
645   }
646   return Brackets.empty();
647 }
648 
649 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
650 /// vector of tokens in NewTokens.  The new number of arguments will be placed
651 /// in NumArgs and the ranges which need to surrounded in parentheses will be
652 /// in ParenHints.
653 /// Returns false if the token stream cannot be changed.  If this is because
654 /// of an initializer list starting a macro argument, the range of those
655 /// initializer lists will be place in InitLists.
656 static bool GenerateNewArgTokens(Preprocessor &PP,
657                                  SmallVectorImpl<Token> &OldTokens,
658                                  SmallVectorImpl<Token> &NewTokens,
659                                  unsigned &NumArgs,
660                                  SmallVectorImpl<SourceRange> &ParenHints,
661                                  SmallVectorImpl<SourceRange> &InitLists) {
662   if (!CheckMatchedBrackets(OldTokens))
663     return false;
664 
665   // Once it is known that the brackets are matched, only a simple count of the
666   // braces is needed.
667   unsigned Braces = 0;
668 
669   // First token of a new macro argument.
670   SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
671 
672   // First closing brace in a new macro argument.  Used to generate
673   // SourceRanges for InitLists.
674   SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
675   NumArgs = 0;
676   Token TempToken;
677   // Set to true when a macro separator token is found inside a braced list.
678   // If true, the fixed argument spans multiple old arguments and ParenHints
679   // will be updated.
680   bool FoundSeparatorToken = false;
681   for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
682                                         E = OldTokens.end();
683        I != E; ++I) {
684     if (I->is(tok::l_brace)) {
685       ++Braces;
686     } else if (I->is(tok::r_brace)) {
687       --Braces;
688       if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
689         ClosingBrace = I;
690     } else if (I->is(tok::eof)) {
691       // EOF token is used to separate macro arguments
692       if (Braces != 0) {
693         // Assume comma separator is actually braced list separator and change
694         // it back to a comma.
695         FoundSeparatorToken = true;
696         I->setKind(tok::comma);
697         I->setLength(1);
698       } else { // Braces == 0
699         // Separator token still separates arguments.
700         ++NumArgs;
701 
702         // If the argument starts with a brace, it can't be fixed with
703         // parentheses.  A different diagnostic will be given.
704         if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
705           InitLists.push_back(
706               SourceRange(ArgStartIterator->getLocation(),
707                           PP.getLocForEndOfToken(ClosingBrace->getLocation())));
708           ClosingBrace = E;
709         }
710 
711         // Add left paren
712         if (FoundSeparatorToken) {
713           TempToken.startToken();
714           TempToken.setKind(tok::l_paren);
715           TempToken.setLocation(ArgStartIterator->getLocation());
716           TempToken.setLength(0);
717           NewTokens.push_back(TempToken);
718         }
719 
720         // Copy over argument tokens
721         NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
722 
723         // Add right paren and store the paren locations in ParenHints
724         if (FoundSeparatorToken) {
725           SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
726           TempToken.startToken();
727           TempToken.setKind(tok::r_paren);
728           TempToken.setLocation(Loc);
729           TempToken.setLength(0);
730           NewTokens.push_back(TempToken);
731           ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
732                                            Loc));
733         }
734 
735         // Copy separator token
736         NewTokens.push_back(*I);
737 
738         // Reset values
739         ArgStartIterator = I + 1;
740         FoundSeparatorToken = false;
741       }
742     }
743   }
744 
745   return !ParenHints.empty() && InitLists.empty();
746 }
747 
748 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
749 /// token is the '(' of the macro, this method is invoked to read all of the
750 /// actual arguments specified for the macro invocation.  This returns null on
751 /// error.
752 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
753                                                    MacroInfo *MI,
754                                                    SourceLocation &MacroEnd) {
755   // The number of fixed arguments to parse.
756   unsigned NumFixedArgsLeft = MI->getNumParams();
757   bool isVariadic = MI->isVariadic();
758 
759   // Outer loop, while there are more arguments, keep reading them.
760   Token Tok;
761 
762   // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
763   // an argument value in a macro could expand to ',' or '(' or ')'.
764   LexUnexpandedToken(Tok);
765   assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
766 
767   // ArgTokens - Build up a list of tokens that make up each argument.  Each
768   // argument is separated by an EOF token.  Use a SmallVector so we can avoid
769   // heap allocations in the common case.
770   SmallVector<Token, 64> ArgTokens;
771   bool ContainsCodeCompletionTok = false;
772   bool FoundElidedComma = false;
773 
774   SourceLocation TooManyArgsLoc;
775 
776   unsigned NumActuals = 0;
777   while (Tok.isNot(tok::r_paren)) {
778     if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
779       break;
780 
781     assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
782            "only expect argument separators here");
783 
784     size_t ArgTokenStart = ArgTokens.size();
785     SourceLocation ArgStartLoc = Tok.getLocation();
786 
787     // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
788     // that we already consumed the first one.
789     unsigned NumParens = 0;
790 
791     while (true) {
792       // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
793       // an argument value in a macro could expand to ',' or '(' or ')'.
794       LexUnexpandedToken(Tok);
795 
796       if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
797         if (!ContainsCodeCompletionTok) {
798           Diag(MacroName, diag::err_unterm_macro_invoc);
799           Diag(MI->getDefinitionLoc(), diag::note_macro_here)
800             << MacroName.getIdentifierInfo();
801           // Do not lose the EOF/EOD.  Return it to the client.
802           MacroName = Tok;
803           return nullptr;
804         }
805         // Do not lose the EOF/EOD.
806         auto Toks = std::make_unique<Token[]>(1);
807         Toks[0] = Tok;
808         EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
809         break;
810       } else if (Tok.is(tok::r_paren)) {
811         // If we found the ) token, the macro arg list is done.
812         if (NumParens-- == 0) {
813           MacroEnd = Tok.getLocation();
814           if (!ArgTokens.empty() &&
815               ArgTokens.back().commaAfterElided()) {
816             FoundElidedComma = true;
817           }
818           break;
819         }
820       } else if (Tok.is(tok::l_paren)) {
821         ++NumParens;
822       } else if (Tok.is(tok::comma)) {
823         // In Microsoft-compatibility mode, single commas from nested macro
824         // expansions should not be considered as argument separators. We test
825         // for this with the IgnoredComma token flag.
826         if (Tok.getFlags() & Token::IgnoredComma) {
827           // However, in MSVC's preprocessor, subsequent expansions do treat
828           // these commas as argument separators. This leads to a common
829           // workaround used in macros that need to work in both MSVC and
830           // compliant preprocessors. Therefore, the IgnoredComma flag can only
831           // apply once to any given token.
832           Tok.clearFlag(Token::IgnoredComma);
833         } else if (NumParens == 0) {
834           // Comma ends this argument if there are more fixed arguments
835           // expected. However, if this is a variadic macro, and this is part of
836           // the variadic part, then the comma is just an argument token.
837           if (!isVariadic)
838             break;
839           if (NumFixedArgsLeft > 1)
840             break;
841         }
842       } else if (Tok.is(tok::comment) && !KeepMacroComments) {
843         // If this is a comment token in the argument list and we're just in
844         // -C mode (not -CC mode), discard the comment.
845         continue;
846       } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
847         // Reading macro arguments can cause macros that we are currently
848         // expanding from to be popped off the expansion stack.  Doing so causes
849         // them to be reenabled for expansion.  Here we record whether any
850         // identifiers we lex as macro arguments correspond to disabled macros.
851         // If so, we mark the token as noexpand.  This is a subtle aspect of
852         // C99 6.10.3.4p2.
853         if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
854           if (!MI->isEnabled())
855             Tok.setFlag(Token::DisableExpand);
856       } else if (Tok.is(tok::code_completion)) {
857         ContainsCodeCompletionTok = true;
858         if (CodeComplete)
859           CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
860                                                   MI, NumActuals);
861         // Don't mark that we reached the code-completion point because the
862         // parser is going to handle the token and there will be another
863         // code-completion callback.
864       }
865 
866       ArgTokens.push_back(Tok);
867     }
868 
869     // If this was an empty argument list foo(), don't add this as an empty
870     // argument.
871     if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
872       break;
873 
874     // If this is not a variadic macro, and too many args were specified, emit
875     // an error.
876     if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
877       if (ArgTokens.size() != ArgTokenStart)
878         TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
879       else
880         TooManyArgsLoc = ArgStartLoc;
881     }
882 
883     // Empty arguments are standard in C99 and C++0x, and are supported as an
884     // extension in other modes.
885     if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99)
886       Diag(Tok, getLangOpts().CPlusPlus11
887                     ? diag::warn_cxx98_compat_empty_fnmacro_arg
888                     : diag::ext_empty_fnmacro_arg);
889 
890     // Add a marker EOF token to the end of the token list for this argument.
891     Token EOFTok;
892     EOFTok.startToken();
893     EOFTok.setKind(tok::eof);
894     EOFTok.setLocation(Tok.getLocation());
895     EOFTok.setLength(0);
896     ArgTokens.push_back(EOFTok);
897     ++NumActuals;
898     if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
899       --NumFixedArgsLeft;
900   }
901 
902   // Okay, we either found the r_paren.  Check to see if we parsed too few
903   // arguments.
904   unsigned MinArgsExpected = MI->getNumParams();
905 
906   // If this is not a variadic macro, and too many args were specified, emit
907   // an error.
908   if (!isVariadic && NumActuals > MinArgsExpected &&
909       !ContainsCodeCompletionTok) {
910     // Emit the diagnostic at the macro name in case there is a missing ).
911     // Emitting it at the , could be far away from the macro name.
912     Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
913     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
914       << MacroName.getIdentifierInfo();
915 
916     // Commas from braced initializer lists will be treated as argument
917     // separators inside macros.  Attempt to correct for this with parentheses.
918     // TODO: See if this can be generalized to angle brackets for templates
919     // inside macro arguments.
920 
921     SmallVector<Token, 4> FixedArgTokens;
922     unsigned FixedNumArgs = 0;
923     SmallVector<SourceRange, 4> ParenHints, InitLists;
924     if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
925                               ParenHints, InitLists)) {
926       if (!InitLists.empty()) {
927         DiagnosticBuilder DB =
928             Diag(MacroName,
929                  diag::note_init_list_at_beginning_of_macro_argument);
930         for (SourceRange Range : InitLists)
931           DB << Range;
932       }
933       return nullptr;
934     }
935     if (FixedNumArgs != MinArgsExpected)
936       return nullptr;
937 
938     DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
939     for (SourceRange ParenLocation : ParenHints) {
940       DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
941       DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
942     }
943     ArgTokens.swap(FixedArgTokens);
944     NumActuals = FixedNumArgs;
945   }
946 
947   // See MacroArgs instance var for description of this.
948   bool isVarargsElided = false;
949 
950   if (ContainsCodeCompletionTok) {
951     // Recover from not-fully-formed macro invocation during code-completion.
952     Token EOFTok;
953     EOFTok.startToken();
954     EOFTok.setKind(tok::eof);
955     EOFTok.setLocation(Tok.getLocation());
956     EOFTok.setLength(0);
957     for (; NumActuals < MinArgsExpected; ++NumActuals)
958       ArgTokens.push_back(EOFTok);
959   }
960 
961   if (NumActuals < MinArgsExpected) {
962     // There are several cases where too few arguments is ok, handle them now.
963     if (NumActuals == 0 && MinArgsExpected == 1) {
964       // #define A(X)  or  #define A(...)   ---> A()
965 
966       // If there is exactly one argument, and that argument is missing,
967       // then we have an empty "()" argument empty list.  This is fine, even if
968       // the macro expects one argument (the argument is just empty).
969       isVarargsElided = MI->isVariadic();
970     } else if ((FoundElidedComma || MI->isVariadic()) &&
971                (NumActuals+1 == MinArgsExpected ||  // A(x, ...) -> A(X)
972                 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
973       // Varargs where the named vararg parameter is missing: OK as extension.
974       //   #define A(x, ...)
975       //   A("blah")
976       //
977       // If the macro contains the comma pasting extension, the diagnostic
978       // is suppressed; we know we'll get another diagnostic later.
979       if (!MI->hasCommaPasting()) {
980         // C++20 [cpp.replace]p15, C23 6.10.5p12
981         //
982         // C++20 and C23 allow this construct, but standards before that
983         // do not (we allow it as an extension).
984         unsigned ID;
985         if (getLangOpts().CPlusPlus20)
986           ID = diag::warn_cxx17_compat_missing_varargs_arg;
987         else if (getLangOpts().CPlusPlus)
988           ID = diag::ext_cxx_missing_varargs_arg;
989         else if (getLangOpts().C23)
990           ID = diag::warn_c17_compat_missing_varargs_arg;
991         else
992           ID = diag::ext_c_missing_varargs_arg;
993         Diag(Tok, ID);
994         Diag(MI->getDefinitionLoc(), diag::note_macro_here)
995           << MacroName.getIdentifierInfo();
996       }
997 
998       // Remember this occurred, allowing us to elide the comma when used for
999       // cases like:
1000       //   #define A(x, foo...) blah(a, ## foo)
1001       //   #define B(x, ...) blah(a, ## __VA_ARGS__)
1002       //   #define C(...) blah(a, ## __VA_ARGS__)
1003       //  A(x) B(x) C()
1004       isVarargsElided = true;
1005     } else if (!ContainsCodeCompletionTok) {
1006       // Otherwise, emit the error.
1007       Diag(Tok, diag::err_too_few_args_in_macro_invoc);
1008       Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1009         << MacroName.getIdentifierInfo();
1010       return nullptr;
1011     }
1012 
1013     // Add a marker EOF token to the end of the token list for this argument.
1014     SourceLocation EndLoc = Tok.getLocation();
1015     Tok.startToken();
1016     Tok.setKind(tok::eof);
1017     Tok.setLocation(EndLoc);
1018     Tok.setLength(0);
1019     ArgTokens.push_back(Tok);
1020 
1021     // If we expect two arguments, add both as empty.
1022     if (NumActuals == 0 && MinArgsExpected == 2)
1023       ArgTokens.push_back(Tok);
1024 
1025   } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
1026              !ContainsCodeCompletionTok) {
1027     // Emit the diagnostic at the macro name in case there is a missing ).
1028     // Emitting it at the , could be far away from the macro name.
1029     Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
1030     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1031       << MacroName.getIdentifierInfo();
1032     return nullptr;
1033   }
1034 
1035   return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
1036 }
1037 
1038 /// Keeps macro expanded tokens for TokenLexers.
1039 //
1040 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1041 /// going to lex in the cache and when it finishes the tokens are removed
1042 /// from the end of the cache.
1043 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
1044                                               ArrayRef<Token> tokens) {
1045   assert(tokLexer);
1046   if (tokens.empty())
1047     return nullptr;
1048 
1049   size_t newIndex = MacroExpandedTokens.size();
1050   bool cacheNeedsToGrow = tokens.size() >
1051                       MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
1052   MacroExpandedTokens.append(tokens.begin(), tokens.end());
1053 
1054   if (cacheNeedsToGrow) {
1055     // Go through all the TokenLexers whose 'Tokens' pointer points in the
1056     // buffer and update the pointers to the (potential) new buffer array.
1057     for (const auto &Lexer : MacroExpandingLexersStack) {
1058       TokenLexer *prevLexer;
1059       size_t tokIndex;
1060       std::tie(prevLexer, tokIndex) = Lexer;
1061       prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
1062     }
1063   }
1064 
1065   MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
1066   return MacroExpandedTokens.data() + newIndex;
1067 }
1068 
1069 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1070   assert(!MacroExpandingLexersStack.empty());
1071   size_t tokIndex = MacroExpandingLexersStack.back().second;
1072   assert(tokIndex < MacroExpandedTokens.size());
1073   // Pop the cached macro expanded tokens from the end.
1074   MacroExpandedTokens.resize(tokIndex);
1075   MacroExpandingLexersStack.pop_back();
1076 }
1077 
1078 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1079 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1080 /// the identifier tokens inserted.
1081 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1082                              Preprocessor &PP) {
1083   time_t TT;
1084   std::tm *TM;
1085   if (PP.getPreprocessorOpts().SourceDateEpoch) {
1086     TT = *PP.getPreprocessorOpts().SourceDateEpoch;
1087     TM = std::gmtime(&TT);
1088   } else {
1089     TT = std::time(nullptr);
1090     TM = std::localtime(&TT);
1091   }
1092 
1093   static const char * const Months[] = {
1094     "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1095   };
1096 
1097   {
1098     SmallString<32> TmpBuffer;
1099     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1100     if (TM)
1101       TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1102                                 TM->tm_mday, TM->tm_year + 1900);
1103     else
1104       TmpStream << "??? ?? ????";
1105     Token TmpTok;
1106     TmpTok.startToken();
1107     PP.CreateString(TmpStream.str(), TmpTok);
1108     DATELoc = TmpTok.getLocation();
1109   }
1110 
1111   {
1112     SmallString<32> TmpBuffer;
1113     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1114     if (TM)
1115       TmpStream << llvm::format("\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min,
1116                                 TM->tm_sec);
1117     else
1118       TmpStream << "??:??:??";
1119     Token TmpTok;
1120     TmpTok.startToken();
1121     PP.CreateString(TmpStream.str(), TmpTok);
1122     TIMELoc = TmpTok.getLocation();
1123   }
1124 }
1125 
1126 /// HasFeature - Return true if we recognize and implement the feature
1127 /// specified by the identifier as a standard language feature.
1128 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1129   const LangOptions &LangOpts = PP.getLangOpts();
1130 
1131   // Normalize the feature name, __foo__ becomes foo.
1132   if (Feature.starts_with("__") && Feature.ends_with("__") &&
1133       Feature.size() >= 4)
1134     Feature = Feature.substr(2, Feature.size() - 4);
1135 
1136 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1137   return llvm::StringSwitch<bool>(Feature)
1138 #include "clang/Basic/Features.def"
1139       .Default(false);
1140 #undef FEATURE
1141 }
1142 
1143 /// HasExtension - Return true if we recognize and implement the feature
1144 /// specified by the identifier, either as an extension or a standard language
1145 /// feature.
1146 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1147   if (HasFeature(PP, Extension))
1148     return true;
1149 
1150   // If the use of an extension results in an error diagnostic, extensions are
1151   // effectively unavailable, so just return false here.
1152   if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1153       diag::Severity::Error)
1154     return false;
1155 
1156   const LangOptions &LangOpts = PP.getLangOpts();
1157 
1158   // Normalize the extension name, __foo__ becomes foo.
1159   if (Extension.starts_with("__") && Extension.ends_with("__") &&
1160       Extension.size() >= 4)
1161     Extension = Extension.substr(2, Extension.size() - 4);
1162 
1163     // Because we inherit the feature list from HasFeature, this string switch
1164     // must be less restrictive than HasFeature's.
1165 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1166   return llvm::StringSwitch<bool>(Extension)
1167 #include "clang/Basic/Features.def"
1168       .Default(false);
1169 #undef EXTENSION
1170 }
1171 
1172 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1173 /// or '__has_include_next("path")' expression.
1174 /// Returns true if successful.
1175 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II,
1176                                      Preprocessor &PP,
1177                                      ConstSearchDirIterator LookupFrom,
1178                                      const FileEntry *LookupFromFile) {
1179   // Save the location of the current token.  If a '(' is later found, use
1180   // that location.  If not, use the end of this location instead.
1181   SourceLocation LParenLoc = Tok.getLocation();
1182 
1183   // These expressions are only allowed within a preprocessor directive.
1184   if (!PP.isParsingIfOrElifDirective()) {
1185     PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
1186     // Return a valid identifier token.
1187     assert(Tok.is(tok::identifier));
1188     Tok.setIdentifierInfo(II);
1189     return false;
1190   }
1191 
1192   // Get '('. If we don't have a '(', try to form a header-name token.
1193   do {
1194     if (PP.LexHeaderName(Tok))
1195       return false;
1196   } while (Tok.getKind() == tok::comment);
1197 
1198   // Ensure we have a '('.
1199   if (Tok.isNot(tok::l_paren)) {
1200     // No '(', use end of last token.
1201     LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1202     PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1203     // If the next token looks like a filename or the start of one,
1204     // assume it is and process it as such.
1205     if (Tok.isNot(tok::header_name))
1206       return false;
1207   } else {
1208     // Save '(' location for possible missing ')' message.
1209     LParenLoc = Tok.getLocation();
1210     if (PP.LexHeaderName(Tok))
1211       return false;
1212   }
1213 
1214   if (Tok.isNot(tok::header_name)) {
1215     PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1216     return false;
1217   }
1218 
1219   // Reserve a buffer to get the spelling.
1220   SmallString<128> FilenameBuffer;
1221   bool Invalid = false;
1222   StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1223   if (Invalid)
1224     return false;
1225 
1226   SourceLocation FilenameLoc = Tok.getLocation();
1227 
1228   // Get ')'.
1229   PP.LexNonComment(Tok);
1230 
1231   // Ensure we have a trailing ).
1232   if (Tok.isNot(tok::r_paren)) {
1233     PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1234         << II << tok::r_paren;
1235     PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1236     return false;
1237   }
1238 
1239   bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1240   // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1241   // error.
1242   if (Filename.empty())
1243     return false;
1244 
1245   // Passing this to LookupFile forces header search to check whether the found
1246   // file belongs to a module. Skipping that check could incorrectly mark
1247   // modular header as textual, causing issues down the line.
1248   ModuleMap::KnownHeader KH;
1249 
1250   // Search include directories.
1251   OptionalFileEntryRef File =
1252       PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1253                     nullptr, nullptr, nullptr, &KH, nullptr, nullptr);
1254 
1255   if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
1256     SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
1257     if (File)
1258       FileType = PP.getHeaderSearchInfo().getFileDirFlavor(*File);
1259     Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
1260   }
1261 
1262   // Get the result value.  A result of true means the file exists.
1263   return File.has_value();
1264 }
1265 
1266 /// EvaluateHasEmbed - Process a '__has_embed("foo" params...)' expression.
1267 /// Returns a filled optional with the value if successful; otherwise, empty.
1268 EmbedResult Preprocessor::EvaluateHasEmbed(Token &Tok, IdentifierInfo *II) {
1269   // These expressions are only allowed within a preprocessor directive.
1270   if (!this->isParsingIfOrElifDirective()) {
1271     Diag(Tok, diag::err_pp_directive_required) << II;
1272     // Return a valid identifier token.
1273     assert(Tok.is(tok::identifier));
1274     Tok.setIdentifierInfo(II);
1275     return EmbedResult::Invalid;
1276   }
1277 
1278   // Ensure we have a '('.
1279   LexUnexpandedToken(Tok);
1280   if (Tok.isNot(tok::l_paren)) {
1281     Diag(Tok, diag::err_pp_expected_after) << II << tok::l_paren;
1282     // If the next token looks like a filename or the start of one,
1283     // assume it is and process it as such.
1284     return EmbedResult::Invalid;
1285   }
1286 
1287   // Save '(' location for possible missing ')' message and then lex the header
1288   // name token for the embed resource.
1289   SourceLocation LParenLoc = Tok.getLocation();
1290   if (this->LexHeaderName(Tok))
1291     return EmbedResult::Invalid;
1292 
1293   if (Tok.isNot(tok::header_name)) {
1294     Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1295     return EmbedResult::Invalid;
1296   }
1297 
1298   SourceLocation FilenameLoc = Tok.getLocation();
1299   Token FilenameTok = Tok;
1300 
1301   std::optional<LexEmbedParametersResult> Params =
1302       this->LexEmbedParameters(Tok, /*ForHasEmbed=*/true);
1303   assert((Params || Tok.is(tok::eod)) &&
1304          "expected success or to be at the end of the directive");
1305 
1306   if (!Params)
1307     return EmbedResult::Invalid;
1308 
1309   if (Params->UnrecognizedParams > 0)
1310     return EmbedResult::NotFound;
1311 
1312   if (!Tok.is(tok::r_paren)) {
1313     Diag(this->getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1314         << II << tok::r_paren;
1315     Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1316     if (Tok.isNot(tok::eod))
1317       DiscardUntilEndOfDirective();
1318     return EmbedResult::Invalid;
1319   }
1320 
1321   SmallString<128> FilenameBuffer;
1322   StringRef Filename = this->getSpelling(FilenameTok, FilenameBuffer);
1323   bool isAngled =
1324       this->GetIncludeFilenameSpelling(FilenameTok.getLocation(), Filename);
1325   // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1326   // error.
1327   assert(!Filename.empty());
1328   const FileEntry *LookupFromFile =
1329       this->getCurrentFileLexer() ? *this->getCurrentFileLexer()->getFileEntry()
1330                                   : static_cast<FileEntry *>(nullptr);
1331   OptionalFileEntryRef MaybeFileEntry =
1332       this->LookupEmbedFile(Filename, isAngled, false, LookupFromFile);
1333   if (Callbacks) {
1334     Callbacks->HasEmbed(LParenLoc, Filename, isAngled, MaybeFileEntry);
1335   }
1336   if (!MaybeFileEntry)
1337     return EmbedResult::NotFound;
1338 
1339   size_t FileSize = MaybeFileEntry->getSize();
1340   // First, "offset" into the file (this reduces the amount of data we can read
1341   // from the file).
1342   if (Params->MaybeOffsetParam) {
1343     if (Params->MaybeOffsetParam->Offset > FileSize)
1344       FileSize = 0;
1345     else
1346       FileSize -= Params->MaybeOffsetParam->Offset;
1347   }
1348 
1349   // Second, limit the data from the file (this also reduces the amount of data
1350   // we can read from the file).
1351   if (Params->MaybeLimitParam) {
1352     if (Params->MaybeLimitParam->Limit > FileSize)
1353       FileSize = 0;
1354     else
1355       FileSize = Params->MaybeLimitParam->Limit;
1356   }
1357 
1358   // If we have no data left to read, the file is empty, otherwise we have the
1359   // expected resource.
1360   if (FileSize == 0)
1361     return EmbedResult::Empty;
1362   return EmbedResult::Found;
1363 }
1364 
1365 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) {
1366   return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr);
1367 }
1368 
1369 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) {
1370   ConstSearchDirIterator Lookup = nullptr;
1371   const FileEntry *LookupFromFile;
1372   std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok);
1373 
1374   return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile);
1375 }
1376 
1377 /// Process single-argument builtin feature-like macros that return
1378 /// integer values.
1379 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1380                                             Token &Tok, IdentifierInfo *II,
1381                                             Preprocessor &PP, bool ExpandArgs,
1382                                             llvm::function_ref<
1383                                               int(Token &Tok,
1384                                                   bool &HasLexedNextTok)> Op) {
1385   // Parse the initial '('.
1386   PP.LexUnexpandedToken(Tok);
1387   if (Tok.isNot(tok::l_paren)) {
1388     PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1389                                                             << tok::l_paren;
1390 
1391     // Provide a dummy '0' value on output stream to elide further errors.
1392     if (!Tok.isOneOf(tok::eof, tok::eod)) {
1393       OS << 0;
1394       Tok.setKind(tok::numeric_constant);
1395     }
1396     return;
1397   }
1398 
1399   unsigned ParenDepth = 1;
1400   SourceLocation LParenLoc = Tok.getLocation();
1401   std::optional<int> Result;
1402 
1403   Token ResultTok;
1404   bool SuppressDiagnostic = false;
1405   while (true) {
1406     // Parse next token.
1407     if (ExpandArgs)
1408       PP.Lex(Tok);
1409     else
1410       PP.LexUnexpandedToken(Tok);
1411 
1412 already_lexed:
1413     switch (Tok.getKind()) {
1414       case tok::eof:
1415       case tok::eod:
1416         // Don't provide even a dummy value if the eod or eof marker is
1417         // reached.  Simply provide a diagnostic.
1418         PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1419         return;
1420 
1421       case tok::comma:
1422         if (!SuppressDiagnostic) {
1423           PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1424           SuppressDiagnostic = true;
1425         }
1426         continue;
1427 
1428       case tok::l_paren:
1429         ++ParenDepth;
1430         if (Result)
1431           break;
1432         if (!SuppressDiagnostic) {
1433           PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1434           SuppressDiagnostic = true;
1435         }
1436         continue;
1437 
1438       case tok::r_paren:
1439         if (--ParenDepth > 0)
1440           continue;
1441 
1442         // The last ')' has been reached; return the value if one found or
1443         // a diagnostic and a dummy value.
1444         if (Result) {
1445           OS << *Result;
1446           // For strict conformance to __has_cpp_attribute rules, use 'L'
1447           // suffix for dated literals.
1448           if (*Result > 1)
1449             OS << 'L';
1450         } else {
1451           OS << 0;
1452           if (!SuppressDiagnostic)
1453             PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1454         }
1455         Tok.setKind(tok::numeric_constant);
1456         return;
1457 
1458       default: {
1459         // Parse the macro argument, if one not found so far.
1460         if (Result)
1461           break;
1462 
1463         bool HasLexedNextToken = false;
1464         Result = Op(Tok, HasLexedNextToken);
1465         ResultTok = Tok;
1466         if (HasLexedNextToken)
1467           goto already_lexed;
1468         continue;
1469       }
1470     }
1471 
1472     // Diagnose missing ')'.
1473     if (!SuppressDiagnostic) {
1474       if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1475         if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1476           Diag << LastII;
1477         else
1478           Diag << ResultTok.getKind();
1479         Diag << tok::r_paren << ResultTok.getLocation();
1480       }
1481       PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1482       SuppressDiagnostic = true;
1483     }
1484   }
1485 }
1486 
1487 /// Helper function to return the IdentifierInfo structure of a Token
1488 /// or generate a diagnostic if none available.
1489 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1490                                                    Preprocessor &PP,
1491                                                    signed DiagID) {
1492   IdentifierInfo *II;
1493   if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1494     return II;
1495 
1496   PP.Diag(Tok.getLocation(), DiagID);
1497   return nullptr;
1498 }
1499 
1500 /// Implements the __is_target_arch builtin macro.
1501 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
1502   std::string ArchName = II->getName().lower() + "--";
1503   llvm::Triple Arch(ArchName);
1504   const llvm::Triple &TT = TI.getTriple();
1505   if (TT.isThumb()) {
1506     // arm matches thumb or thumbv7. armv7 matches thumbv7.
1507     if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
1508          Arch.getSubArch() == TT.getSubArch()) &&
1509         ((TT.getArch() == llvm::Triple::thumb &&
1510           Arch.getArch() == llvm::Triple::arm) ||
1511          (TT.getArch() == llvm::Triple::thumbeb &&
1512           Arch.getArch() == llvm::Triple::armeb)))
1513       return true;
1514   }
1515   // Check the parsed arch when it has no sub arch to allow Clang to
1516   // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1517   return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
1518           Arch.getSubArch() == TT.getSubArch()) &&
1519          Arch.getArch() == TT.getArch();
1520 }
1521 
1522 /// Implements the __is_target_vendor builtin macro.
1523 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
1524   StringRef VendorName = TI.getTriple().getVendorName();
1525   if (VendorName.empty())
1526     VendorName = "unknown";
1527   return VendorName.equals_insensitive(II->getName());
1528 }
1529 
1530 /// Implements the __is_target_os builtin macro.
1531 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
1532   std::string OSName =
1533       (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1534   llvm::Triple OS(OSName);
1535   if (OS.getOS() == llvm::Triple::Darwin) {
1536     // Darwin matches macos, ios, etc.
1537     return TI.getTriple().isOSDarwin();
1538   }
1539   return TI.getTriple().getOS() == OS.getOS();
1540 }
1541 
1542 /// Implements the __is_target_environment builtin macro.
1543 static bool isTargetEnvironment(const TargetInfo &TI,
1544                                 const IdentifierInfo *II) {
1545   std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1546   llvm::Triple Env(EnvName);
1547   // The unknown environment is matched only if
1548   // '__is_target_environment(unknown)' is used.
1549   if (Env.getEnvironment() == llvm::Triple::UnknownEnvironment &&
1550       EnvName != "---unknown")
1551     return false;
1552   return TI.getTriple().getEnvironment() == Env.getEnvironment();
1553 }
1554 
1555 /// Implements the __is_target_variant_os builtin macro.
1556 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) {
1557   if (TI.getTriple().isOSDarwin()) {
1558     const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple();
1559     if (!VariantTriple)
1560       return false;
1561 
1562     std::string OSName =
1563         (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1564     llvm::Triple OS(OSName);
1565     if (OS.getOS() == llvm::Triple::Darwin) {
1566       // Darwin matches macos, ios, etc.
1567       return VariantTriple->isOSDarwin();
1568     }
1569     return VariantTriple->getOS() == OS.getOS();
1570   }
1571   return false;
1572 }
1573 
1574 /// Implements the __is_target_variant_environment builtin macro.
1575 static bool isTargetVariantEnvironment(const TargetInfo &TI,
1576                                 const IdentifierInfo *II) {
1577   if (TI.getTriple().isOSDarwin()) {
1578     const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple();
1579     if (!VariantTriple)
1580       return false;
1581     std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1582     llvm::Triple Env(EnvName);
1583     return VariantTriple->getEnvironment() == Env.getEnvironment();
1584   }
1585   return false;
1586 }
1587 
1588 #if defined(__sun__) && defined(__svr4__) && defined(__clang__) &&             \
1589     __clang__ < 20
1590 // GCC mangles std::tm as tm for binary compatibility on Solaris (Issue
1591 // #33114).  We need to match this to allow the std::put_time calls to link
1592 // (PR #99075).  clang 20 contains a fix, but the workaround is still needed
1593 // with older versions.
1594 asm("_ZNKSt8time_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE3putES3_"
1595     "RSt8ios_basecPKSt2tmPKcSB_ = "
1596     "_ZNKSt8time_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE3putES3_"
1597     "RSt8ios_basecPK2tmPKcSB_");
1598 #endif
1599 
1600 static bool IsBuiltinTrait(Token &Tok) {
1601 
1602 #define TYPE_TRAIT_1(Spelling, Name, Key)                                      \
1603   case tok::kw_##Spelling:                                                     \
1604     return true;
1605 #define TYPE_TRAIT_2(Spelling, Name, Key)                                      \
1606   case tok::kw_##Spelling:                                                     \
1607     return true;
1608 #define TYPE_TRAIT_N(Spelling, Name, Key)                                      \
1609   case tok::kw_##Spelling:                                                     \
1610     return true;
1611 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key)                                  \
1612   case tok::kw_##Spelling:                                                     \
1613     return true;
1614 #define EXPRESSION_TRAIT(Spelling, Name, Key)                                  \
1615   case tok::kw_##Spelling:                                                     \
1616     return true;
1617 #define TRANSFORM_TYPE_TRAIT_DEF(K, Spelling)                                  \
1618   case tok::kw___##Spelling:                                                   \
1619     return true;
1620 
1621   switch (Tok.getKind()) {
1622   default:
1623     return false;
1624 #include "clang/Basic/TokenKinds.def"
1625   }
1626 }
1627 
1628 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1629 /// as a builtin macro, handle it and return the next token as 'Tok'.
1630 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1631   // Figure out which token this is.
1632   IdentifierInfo *II = Tok.getIdentifierInfo();
1633   assert(II && "Can't be a macro without id info!");
1634 
1635   // If this is an _Pragma or Microsoft __pragma directive, expand it,
1636   // invoke the pragma handler, then lex the token after it.
1637   if (II == Ident_Pragma)
1638     return Handle_Pragma(Tok);
1639   else if (II == Ident__pragma) // in non-MS mode this is null
1640     return HandleMicrosoft__pragma(Tok);
1641 
1642   ++NumBuiltinMacroExpanded;
1643 
1644   SmallString<128> TmpBuffer;
1645   llvm::raw_svector_ostream OS(TmpBuffer);
1646 
1647   // Set up the return result.
1648   Tok.setIdentifierInfo(nullptr);
1649   Tok.clearFlag(Token::NeedsCleaning);
1650   bool IsAtStartOfLine = Tok.isAtStartOfLine();
1651   bool HasLeadingSpace = Tok.hasLeadingSpace();
1652 
1653   if (II == Ident__LINE__) {
1654     // C99 6.10.8: "__LINE__: The presumed line number (within the current
1655     // source file) of the current source line (an integer constant)".  This can
1656     // be affected by #line.
1657     SourceLocation Loc = Tok.getLocation();
1658 
1659     // Advance to the location of the first _, this might not be the first byte
1660     // of the token if it starts with an escaped newline.
1661     Loc = AdvanceToTokenCharacter(Loc, 0);
1662 
1663     // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1664     // a macro expansion.  This doesn't matter for object-like macros, but
1665     // can matter for a function-like macro that expands to contain __LINE__.
1666     // Skip down through expansion points until we find a file loc for the
1667     // end of the expansion history.
1668     Loc = SourceMgr.getExpansionRange(Loc).getEnd();
1669     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1670 
1671     // __LINE__ expands to a simple numeric value.
1672     OS << (PLoc.isValid()? PLoc.getLine() : 1);
1673     Tok.setKind(tok::numeric_constant);
1674   } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
1675              II == Ident__FILE_NAME__) {
1676     // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1677     // character string literal)". This can be affected by #line.
1678     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1679 
1680     // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1681     // #include stack instead of the current file.
1682     if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1683       SourceLocation NextLoc = PLoc.getIncludeLoc();
1684       while (NextLoc.isValid()) {
1685         PLoc = SourceMgr.getPresumedLoc(NextLoc);
1686         if (PLoc.isInvalid())
1687           break;
1688 
1689         NextLoc = PLoc.getIncludeLoc();
1690       }
1691     }
1692 
1693     // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
1694     SmallString<256> FN;
1695     if (PLoc.isValid()) {
1696       // __FILE_NAME__ is a Clang-specific extension that expands to the
1697       // the last part of __FILE__.
1698       if (II == Ident__FILE_NAME__) {
1699         processPathToFileName(FN, PLoc, getLangOpts(), getTargetInfo());
1700       } else {
1701         FN += PLoc.getFilename();
1702         processPathForFileMacro(FN, getLangOpts(), getTargetInfo());
1703       }
1704       Lexer::Stringify(FN);
1705       OS << '"' << FN << '"';
1706     }
1707     Tok.setKind(tok::string_literal);
1708   } else if (II == Ident__DATE__) {
1709     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1710     if (!DATELoc.isValid())
1711       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1712     Tok.setKind(tok::string_literal);
1713     Tok.setLength(strlen("\"Mmm dd yyyy\""));
1714     Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1715                                                  Tok.getLocation(),
1716                                                  Tok.getLength()));
1717     return;
1718   } else if (II == Ident__TIME__) {
1719     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1720     if (!TIMELoc.isValid())
1721       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1722     Tok.setKind(tok::string_literal);
1723     Tok.setLength(strlen("\"hh:mm:ss\""));
1724     Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1725                                                  Tok.getLocation(),
1726                                                  Tok.getLength()));
1727     return;
1728   } else if (II == Ident__INCLUDE_LEVEL__) {
1729     // Compute the presumed include depth of this token.  This can be affected
1730     // by GNU line markers.
1731     unsigned Depth = 0;
1732 
1733     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1734     if (PLoc.isValid()) {
1735       PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1736       for (; PLoc.isValid(); ++Depth)
1737         PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1738     }
1739 
1740     // __INCLUDE_LEVEL__ expands to a simple numeric value.
1741     OS << Depth;
1742     Tok.setKind(tok::numeric_constant);
1743   } else if (II == Ident__TIMESTAMP__) {
1744     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1745     // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
1746     // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1747     std::string Result;
1748     std::stringstream TmpStream;
1749     TmpStream.imbue(std::locale("C"));
1750     if (getPreprocessorOpts().SourceDateEpoch) {
1751       time_t TT = *getPreprocessorOpts().SourceDateEpoch;
1752       std::tm *TM = std::gmtime(&TT);
1753       TmpStream << std::put_time(TM, "%a %b %e %T %Y");
1754     } else {
1755       // Get the file that we are lexing out of.  If we're currently lexing from
1756       // a macro, dig into the include stack.
1757       const FileEntry *CurFile = nullptr;
1758       if (PreprocessorLexer *TheLexer = getCurrentFileLexer())
1759         CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1760       if (CurFile) {
1761         time_t TT = CurFile->getModificationTime();
1762         struct tm *TM = localtime(&TT);
1763         TmpStream << std::put_time(TM, "%a %b %e %T %Y");
1764       }
1765     }
1766     Result = TmpStream.str();
1767     if (Result.empty())
1768       Result = "??? ??? ?? ??:??:?? ????";
1769     OS << '"' << Result << '"';
1770     Tok.setKind(tok::string_literal);
1771   } else if (II == Ident__FLT_EVAL_METHOD__) {
1772     // __FLT_EVAL_METHOD__ is set to the default value.
1773     OS << getTUFPEvalMethod();
1774     // __FLT_EVAL_METHOD__ expands to a simple numeric value.
1775     Tok.setKind(tok::numeric_constant);
1776     if (getLastFPEvalPragmaLocation().isValid()) {
1777       // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered
1778       // by the pragma.
1779       Diag(Tok, diag::err_illegal_use_of_flt_eval_macro);
1780       Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here);
1781     }
1782   } else if (II == Ident__COUNTER__) {
1783     // __COUNTER__ expands to a simple numeric value.
1784     OS << CounterValue++;
1785     Tok.setKind(tok::numeric_constant);
1786   } else if (II == Ident__has_feature) {
1787     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1788       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1789         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1790                                            diag::err_feature_check_malformed);
1791         return II && HasFeature(*this, II->getName());
1792       });
1793   } else if (II == Ident__has_extension) {
1794     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1795       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1796         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1797                                            diag::err_feature_check_malformed);
1798         return II && HasExtension(*this, II->getName());
1799       });
1800   } else if (II == Ident__has_builtin) {
1801     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1802       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1803         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1804                                            diag::err_feature_check_malformed);
1805         if (!II)
1806           return false;
1807         else if (II->getBuiltinID() != 0) {
1808           switch (II->getBuiltinID()) {
1809           case Builtin::BI__builtin_cpu_is:
1810             return getTargetInfo().supportsCpuIs();
1811           case Builtin::BI__builtin_cpu_init:
1812             return getTargetInfo().supportsCpuInit();
1813           case Builtin::BI__builtin_cpu_supports:
1814             return getTargetInfo().supportsCpuSupports();
1815           case Builtin::BI__builtin_operator_new:
1816           case Builtin::BI__builtin_operator_delete:
1817             // denotes date of behavior change to support calling arbitrary
1818             // usual allocation and deallocation functions. Required by libc++
1819             return 201802;
1820           default:
1821             return Builtin::evaluateRequiredTargetFeatures(
1822                 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()),
1823                 getTargetInfo().getTargetOpts().FeatureMap);
1824           }
1825           return true;
1826         } else if (IsBuiltinTrait(Tok)) {
1827           return true;
1828         } else if (II->getTokenID() != tok::identifier &&
1829                    II->getName().starts_with("__builtin_")) {
1830           return true;
1831         } else {
1832           return llvm::StringSwitch<bool>(II->getName())
1833               // Report builtin templates as being builtins.
1834               .Case("__make_integer_seq", getLangOpts().CPlusPlus)
1835               .Case("__type_pack_element", getLangOpts().CPlusPlus)
1836               .Case("__builtin_common_type", getLangOpts().CPlusPlus)
1837               // Likewise for some builtin preprocessor macros.
1838               // FIXME: This is inconsistent; we usually suggest detecting
1839               // builtin macros via #ifdef. Don't add more cases here.
1840               .Case("__is_target_arch", true)
1841               .Case("__is_target_vendor", true)
1842               .Case("__is_target_os", true)
1843               .Case("__is_target_environment", true)
1844               .Case("__is_target_variant_os", true)
1845               .Case("__is_target_variant_environment", true)
1846               .Default(false);
1847         }
1848       });
1849   } else if (II == Ident__has_constexpr_builtin) {
1850     EvaluateFeatureLikeBuiltinMacro(
1851         OS, Tok, II, *this, false,
1852         [this](Token &Tok, bool &HasLexedNextToken) -> int {
1853           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1854               Tok, *this, diag::err_feature_check_malformed);
1855           if (!II)
1856             return false;
1857           unsigned BuiltinOp = II->getBuiltinID();
1858           return BuiltinOp != 0 &&
1859                  this->getBuiltinInfo().isConstantEvaluated(BuiltinOp);
1860         });
1861   } else if (II == Ident__is_identifier) {
1862     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1863       [](Token &Tok, bool &HasLexedNextToken) -> int {
1864         return Tok.is(tok::identifier);
1865       });
1866   } else if (II == Ident__has_attribute) {
1867     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1868       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1869         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1870                                            diag::err_feature_check_malformed);
1871         return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr,
1872                                  II, getTargetInfo(), getLangOpts())
1873                   : 0;
1874       });
1875   } else if (II == Ident__has_declspec) {
1876     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1877       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1878         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1879                                            diag::err_feature_check_malformed);
1880         if (II) {
1881           const LangOptions &LangOpts = getLangOpts();
1882           return LangOpts.DeclSpecKeyword &&
1883                  hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr,
1884                               II, getTargetInfo(), LangOpts);
1885         }
1886 
1887         return false;
1888       });
1889   } else if (II == Ident__has_cpp_attribute ||
1890              II == Ident__has_c_attribute) {
1891     bool IsCXX = II == Ident__has_cpp_attribute;
1892     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true,
1893         [&](Token &Tok, bool &HasLexedNextToken) -> int {
1894           IdentifierInfo *ScopeII = nullptr;
1895           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1896               Tok, *this, diag::err_feature_check_malformed);
1897           if (!II)
1898             return false;
1899 
1900           // It is possible to receive a scope token.  Read the "::", if it is
1901           // available, and the subsequent identifier.
1902           LexUnexpandedToken(Tok);
1903           if (Tok.isNot(tok::coloncolon))
1904             HasLexedNextToken = true;
1905           else {
1906             ScopeII = II;
1907             // Lex an expanded token for the attribute name.
1908             Lex(Tok);
1909             II = ExpectFeatureIdentifierInfo(Tok, *this,
1910                                              diag::err_feature_check_malformed);
1911           }
1912 
1913           AttributeCommonInfo::Syntax Syntax =
1914               IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11
1915                     : AttributeCommonInfo::Syntax::AS_C23;
1916           return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
1917                                    getLangOpts())
1918                     : 0;
1919         });
1920   } else if (II == Ident__has_include ||
1921              II == Ident__has_include_next) {
1922     // The argument to these two builtins should be a parenthesized
1923     // file name string literal using angle brackets (<>) or
1924     // double-quotes ("").
1925     bool Value;
1926     if (II == Ident__has_include)
1927       Value = EvaluateHasInclude(Tok, II);
1928     else
1929       Value = EvaluateHasIncludeNext(Tok, II);
1930 
1931     if (Tok.isNot(tok::r_paren))
1932       return;
1933     OS << (int)Value;
1934     Tok.setKind(tok::numeric_constant);
1935   } else if (II == Ident__has_embed) {
1936     // The argument to these two builtins should be a parenthesized
1937     // file name string literal using angle brackets (<>) or
1938     // double-quotes (""), optionally followed by a series of
1939     // arguments similar to form like attributes.
1940     EmbedResult Value = EvaluateHasEmbed(Tok, II);
1941     if (Value == EmbedResult::Invalid)
1942       return;
1943 
1944     Tok.setKind(tok::numeric_constant);
1945     OS << static_cast<int>(Value);
1946   } else if (II == Ident__has_warning) {
1947     // The argument should be a parenthesized string literal.
1948     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1949       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1950         std::string WarningName;
1951         SourceLocation StrStartLoc = Tok.getLocation();
1952 
1953         HasLexedNextToken = Tok.is(tok::string_literal);
1954         if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1955                                     /*AllowMacroExpansion=*/false))
1956           return false;
1957 
1958         // FIXME: Should we accept "-R..." flags here, or should that be
1959         // handled by a separate __has_remark?
1960         if (WarningName.size() < 3 || WarningName[0] != '-' ||
1961             WarningName[1] != 'W') {
1962           Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1963           return false;
1964         }
1965 
1966         // Finally, check if the warning flags maps to a diagnostic group.
1967         // We construct a SmallVector here to talk to getDiagnosticIDs().
1968         // Although we don't use the result, this isn't a hot path, and not
1969         // worth special casing.
1970         SmallVector<diag::kind, 10> Diags;
1971         return !getDiagnostics().getDiagnosticIDs()->
1972                 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1973                                       WarningName.substr(2), Diags);
1974       });
1975   } else if (II == Ident__building_module) {
1976     // The argument to this builtin should be an identifier. The
1977     // builtin evaluates to 1 when that identifier names the module we are
1978     // currently building.
1979     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false,
1980       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1981         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1982                                        diag::err_expected_id_building_module);
1983         return getLangOpts().isCompilingModule() && II &&
1984                (II->getName() == getLangOpts().CurrentModule);
1985       });
1986   } else if (II == Ident__MODULE__) {
1987     // The current module as an identifier.
1988     OS << getLangOpts().CurrentModule;
1989     IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1990     Tok.setIdentifierInfo(ModuleII);
1991     Tok.setKind(ModuleII->getTokenID());
1992   } else if (II == Ident__identifier) {
1993     SourceLocation Loc = Tok.getLocation();
1994 
1995     // We're expecting '__identifier' '(' identifier ')'. Try to recover
1996     // if the parens are missing.
1997     LexNonComment(Tok);
1998     if (Tok.isNot(tok::l_paren)) {
1999       // No '(', use end of last token.
2000       Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
2001         << II << tok::l_paren;
2002       // If the next token isn't valid as our argument, we can't recover.
2003       if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
2004         Tok.setKind(tok::identifier);
2005       return;
2006     }
2007 
2008     SourceLocation LParenLoc = Tok.getLocation();
2009     LexNonComment(Tok);
2010 
2011     if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
2012       Tok.setKind(tok::identifier);
2013     else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) {
2014       StringLiteralParser Literal(Tok, *this,
2015                                   StringLiteralEvalMethod::Unevaluated);
2016       if (Literal.hadError)
2017         return;
2018 
2019       Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString()));
2020       Tok.setKind(tok::identifier);
2021     } else {
2022       Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
2023         << Tok.getKind();
2024       // Don't walk past anything that's not a real token.
2025       if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
2026         return;
2027     }
2028 
2029     // Discard the ')', preserving 'Tok' as our result.
2030     Token RParen;
2031     LexNonComment(RParen);
2032     if (RParen.isNot(tok::r_paren)) {
2033       Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
2034         << Tok.getKind() << tok::r_paren;
2035       Diag(LParenLoc, diag::note_matching) << tok::l_paren;
2036     }
2037     return;
2038   } else if (II == Ident__is_target_arch) {
2039     EvaluateFeatureLikeBuiltinMacro(
2040         OS, Tok, II, *this, false,
2041         [this](Token &Tok, bool &HasLexedNextToken) -> int {
2042           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2043               Tok, *this, diag::err_feature_check_malformed);
2044           return II && isTargetArch(getTargetInfo(), II);
2045         });
2046   } else if (II == Ident__is_target_vendor) {
2047     EvaluateFeatureLikeBuiltinMacro(
2048         OS, Tok, II, *this, false,
2049         [this](Token &Tok, bool &HasLexedNextToken) -> int {
2050           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2051               Tok, *this, diag::err_feature_check_malformed);
2052           return II && isTargetVendor(getTargetInfo(), II);
2053         });
2054   } else if (II == Ident__is_target_os) {
2055     EvaluateFeatureLikeBuiltinMacro(
2056         OS, Tok, II, *this, false,
2057         [this](Token &Tok, bool &HasLexedNextToken) -> int {
2058           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2059               Tok, *this, diag::err_feature_check_malformed);
2060           return II && isTargetOS(getTargetInfo(), II);
2061         });
2062   } else if (II == Ident__is_target_environment) {
2063     EvaluateFeatureLikeBuiltinMacro(
2064         OS, Tok, II, *this, false,
2065         [this](Token &Tok, bool &HasLexedNextToken) -> int {
2066           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2067               Tok, *this, diag::err_feature_check_malformed);
2068           return II && isTargetEnvironment(getTargetInfo(), II);
2069         });
2070   } else if (II == Ident__is_target_variant_os) {
2071     EvaluateFeatureLikeBuiltinMacro(
2072         OS, Tok, II, *this, false,
2073         [this](Token &Tok, bool &HasLexedNextToken) -> int {
2074           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2075               Tok, *this, diag::err_feature_check_malformed);
2076           return II && isTargetVariantOS(getTargetInfo(), II);
2077         });
2078   } else if (II == Ident__is_target_variant_environment) {
2079     EvaluateFeatureLikeBuiltinMacro(
2080         OS, Tok, II, *this, false,
2081         [this](Token &Tok, bool &HasLexedNextToken) -> int {
2082           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
2083               Tok, *this, diag::err_feature_check_malformed);
2084           return II && isTargetVariantEnvironment(getTargetInfo(), II);
2085         });
2086   } else {
2087     llvm_unreachable("Unknown identifier!");
2088   }
2089   CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
2090   Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
2091   Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
2092 }
2093 
2094 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
2095   // If the 'used' status changed, and the macro requires 'unused' warning,
2096   // remove its SourceLocation from the warn-for-unused-macro locations.
2097   if (MI->isWarnIfUnused() && !MI->isUsed())
2098     WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
2099   MI->setIsUsed(true);
2100 }
2101 
2102 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path,
2103                                            const LangOptions &LangOpts,
2104                                            const TargetInfo &TI) {
2105   LangOpts.remapPathPrefix(Path);
2106   if (LangOpts.UseTargetPathSeparator) {
2107     if (TI.getTriple().isOSWindows())
2108       llvm::sys::path::remove_dots(Path, false,
2109                                    llvm::sys::path::Style::windows_backslash);
2110     else
2111       llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix);
2112   }
2113 }
2114 
2115 void Preprocessor::processPathToFileName(SmallVectorImpl<char> &FileName,
2116                                          const PresumedLoc &PLoc,
2117                                          const LangOptions &LangOpts,
2118                                          const TargetInfo &TI) {
2119   // Try to get the last path component, failing that return the original
2120   // presumed location.
2121   StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
2122   if (PLFileName.empty())
2123     PLFileName = PLoc.getFilename();
2124   FileName.append(PLFileName.begin(), PLFileName.end());
2125   processPathForFileMacro(FileName, LangOpts, TI);
2126 }
2127