xref: /llvm-project/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp (revision f7ba2bdf863b589140cb97a3fafb2f4688532456)
1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements straight-line strength reduction (SLSR). Unlike loop
10 // strength reduction, this algorithm is designed to reduce arithmetic
11 // redundancy in straight-line code instead of loops. It has proven to be
12 // effective in simplifying arithmetic statements derived from an unrolled loop.
13 // It can also simplify the logic of SeparateConstOffsetFromGEP.
14 //
15 // There are many optimizations we can perform in the domain of SLSR. This file
16 // for now contains only an initial step. Specifically, we look for strength
17 // reduction candidates in the following forms:
18 //
19 // Form 1: B + i * S
20 // Form 2: (B + i) * S
21 // Form 3: &B[i * S]
22 //
23 // where S is an integer variable, and i is a constant integer. If we found two
24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
25 // in a simpler way with respect to S1. For example,
26 //
27 // S1: X = B + i * S
28 // S2: Y = B + i' * S   => X + (i' - i) * S
29 //
30 // S1: X = (B + i) * S
31 // S2: Y = (B + i') * S => X + (i' - i) * S
32 //
33 // S1: X = &B[i * S]
34 // S2: Y = &B[i' * S]   => &X[(i' - i) * S]
35 //
36 // Note: (i' - i) * S is folded to the extent possible.
37 //
38 // This rewriting is in general a good idea. The code patterns we focus on
39 // usually come from loop unrolling, so (i' - i) * S is likely the same
40 // across iterations and can be reused. When that happens, the optimized form
41 // takes only one add starting from the second iteration.
42 //
43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
44 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
45 // basis, the basis that is the closest ancestor in the dominator tree.
46 //
47 // TODO:
48 //
49 // - Floating point arithmetics when fast math is enabled.
50 //
51 // - SLSR may decrease ILP at the architecture level. Targets that are very
52 //   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
53 //   left as future work.
54 //
55 // - When (i' - i) is constant but i and i' are not, we could still perform
56 //   SLSR.
57 
58 #include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h"
59 #include "llvm/ADT/APInt.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/Analysis/ValueTracking.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/Instruction.h"
72 #include "llvm/IR/Instructions.h"
73 #include "llvm/IR/Module.h"
74 #include "llvm/IR/Operator.h"
75 #include "llvm/IR/PatternMatch.h"
76 #include "llvm/IR/Type.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/InitializePasses.h"
79 #include "llvm/Pass.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/DebugCounter.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/Local.h"
85 #include <cassert>
86 #include <cstdint>
87 #include <limits>
88 #include <list>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 static const unsigned UnknownAddressSpace =
95     std::numeric_limits<unsigned>::max();
96 
97 DEBUG_COUNTER(StraightLineStrengthReduceCounter, "slsr-counter",
98               "Controls whether rewriteCandidateWithBasis is executed.");
99 
100 namespace {
101 
102 class StraightLineStrengthReduceLegacyPass : public FunctionPass {
103   const DataLayout *DL = nullptr;
104 
105 public:
106   static char ID;
107 
108   StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) {
109     initializeStraightLineStrengthReduceLegacyPassPass(
110         *PassRegistry::getPassRegistry());
111   }
112 
113   void getAnalysisUsage(AnalysisUsage &AU) const override {
114     AU.addRequired<DominatorTreeWrapperPass>();
115     AU.addRequired<ScalarEvolutionWrapperPass>();
116     AU.addRequired<TargetTransformInfoWrapperPass>();
117     // We do not modify the shape of the CFG.
118     AU.setPreservesCFG();
119   }
120 
121   bool doInitialization(Module &M) override {
122     DL = &M.getDataLayout();
123     return false;
124   }
125 
126   bool runOnFunction(Function &F) override;
127 };
128 
129 class StraightLineStrengthReduce {
130 public:
131   StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT,
132                              ScalarEvolution *SE, TargetTransformInfo *TTI)
133       : DL(DL), DT(DT), SE(SE), TTI(TTI) {}
134 
135   // SLSR candidate. Such a candidate must be in one of the forms described in
136   // the header comments.
137   struct Candidate {
138     enum Kind {
139       Invalid, // reserved for the default constructor
140       Add,     // B + i * S
141       Mul,     // (B + i) * S
142       GEP,     // &B[..][i * S][..]
143     };
144 
145     Candidate() = default;
146     Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
147               Instruction *I)
148         : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
149 
150     Kind CandidateKind = Invalid;
151 
152     const SCEV *Base = nullptr;
153 
154     // Note that Index and Stride of a GEP candidate do not necessarily have the
155     // same integer type. In that case, during rewriting, Stride will be
156     // sign-extended or truncated to Index's type.
157     ConstantInt *Index = nullptr;
158 
159     Value *Stride = nullptr;
160 
161     // The instruction this candidate corresponds to. It helps us to rewrite a
162     // candidate with respect to its immediate basis. Note that one instruction
163     // can correspond to multiple candidates depending on how you associate the
164     // expression. For instance,
165     //
166     // (a + 1) * (b + 2)
167     //
168     // can be treated as
169     //
170     // <Base: a, Index: 1, Stride: b + 2>
171     //
172     // or
173     //
174     // <Base: b, Index: 2, Stride: a + 1>
175     Instruction *Ins = nullptr;
176 
177     // Points to the immediate basis of this candidate, or nullptr if we cannot
178     // find any basis for this candidate.
179     Candidate *Basis = nullptr;
180   };
181 
182   bool runOnFunction(Function &F);
183 
184 private:
185   // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
186   // share the same base and stride.
187   bool isBasisFor(const Candidate &Basis, const Candidate &C);
188 
189   // Returns whether the candidate can be folded into an addressing mode.
190   bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
191                   const DataLayout *DL);
192 
193   // Returns true if C is already in a simplest form and not worth being
194   // rewritten.
195   bool isSimplestForm(const Candidate &C);
196 
197   // Checks whether I is in a candidate form. If so, adds all the matching forms
198   // to Candidates, and tries to find the immediate basis for each of them.
199   void allocateCandidatesAndFindBasis(Instruction *I);
200 
201   // Allocate candidates and find bases for Add instructions.
202   void allocateCandidatesAndFindBasisForAdd(Instruction *I);
203 
204   // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
205   // candidate.
206   void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
207                                             Instruction *I);
208   // Allocate candidates and find bases for Mul instructions.
209   void allocateCandidatesAndFindBasisForMul(Instruction *I);
210 
211   // Splits LHS into Base + Index and, if succeeds, calls
212   // allocateCandidatesAndFindBasis.
213   void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
214                                             Instruction *I);
215 
216   // Allocate candidates and find bases for GetElementPtr instructions.
217   void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
218 
219   // A helper function that scales Idx with ElementSize before invoking
220   // allocateCandidatesAndFindBasis.
221   void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
222                                             Value *S, uint64_t ElementSize,
223                                             Instruction *I);
224 
225   // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
226   // basis.
227   void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
228                                       ConstantInt *Idx, Value *S,
229                                       Instruction *I);
230 
231   // Rewrites candidate C with respect to Basis.
232   void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
233 
234   // A helper function that factors ArrayIdx to a product of a stride and a
235   // constant index, and invokes allocateCandidatesAndFindBasis with the
236   // factorings.
237   void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
238                         GetElementPtrInst *GEP);
239 
240   // Emit code that computes the "bump" from Basis to C.
241   static Value *emitBump(const Candidate &Basis, const Candidate &C,
242                          IRBuilder<> &Builder, const DataLayout *DL);
243 
244   const DataLayout *DL = nullptr;
245   DominatorTree *DT = nullptr;
246   ScalarEvolution *SE;
247   TargetTransformInfo *TTI = nullptr;
248   std::list<Candidate> Candidates;
249 
250   // Temporarily holds all instructions that are unlinked (but not deleted) by
251   // rewriteCandidateWithBasis. These instructions will be actually removed
252   // after all rewriting finishes.
253   std::vector<Instruction *> UnlinkedInstructions;
254 };
255 
256 } // end anonymous namespace
257 
258 char StraightLineStrengthReduceLegacyPass::ID = 0;
259 
260 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr",
261                       "Straight line strength reduction", false, false)
262 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
263 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
264 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
265 INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr",
266                     "Straight line strength reduction", false, false)
267 
268 FunctionPass *llvm::createStraightLineStrengthReducePass() {
269   return new StraightLineStrengthReduceLegacyPass();
270 }
271 
272 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
273                                             const Candidate &C) {
274   return (Basis.Ins != C.Ins && // skip the same instruction
275           // They must have the same type too. Basis.Base == C.Base
276           // doesn't guarantee their types are the same (PR23975).
277           Basis.Ins->getType() == C.Ins->getType() &&
278           // Basis must dominate C in order to rewrite C with respect to Basis.
279           DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
280           // They share the same base, stride, and candidate kind.
281           Basis.Base == C.Base && Basis.Stride == C.Stride &&
282           Basis.CandidateKind == C.CandidateKind);
283 }
284 
285 static bool isGEPFoldable(GetElementPtrInst *GEP,
286                           const TargetTransformInfo *TTI) {
287   SmallVector<const Value *, 4> Indices(GEP->indices());
288   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
289                          Indices) == TargetTransformInfo::TCC_Free;
290 }
291 
292 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
293 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
294                           TargetTransformInfo *TTI) {
295   // Index->getSExtValue() may crash if Index is wider than 64-bit.
296   return Index->getBitWidth() <= 64 &&
297          TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
298                                     Index->getSExtValue(), UnknownAddressSpace);
299 }
300 
301 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
302                                             TargetTransformInfo *TTI,
303                                             const DataLayout *DL) {
304   if (C.CandidateKind == Candidate::Add)
305     return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
306   if (C.CandidateKind == Candidate::GEP)
307     return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
308   return false;
309 }
310 
311 // Returns true if GEP has zero or one non-zero index.
312 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
313   unsigned NumNonZeroIndices = 0;
314   for (Use &Idx : GEP->indices()) {
315     ConstantInt *ConstIdx = dyn_cast<ConstantInt>(Idx);
316     if (ConstIdx == nullptr || !ConstIdx->isZero())
317       ++NumNonZeroIndices;
318   }
319   return NumNonZeroIndices <= 1;
320 }
321 
322 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
323   if (C.CandidateKind == Candidate::Add) {
324     // B + 1 * S or B + (-1) * S
325     return C.Index->isOne() || C.Index->isMinusOne();
326   }
327   if (C.CandidateKind == Candidate::Mul) {
328     // (B + 0) * S
329     return C.Index->isZero();
330   }
331   if (C.CandidateKind == Candidate::GEP) {
332     // (char*)B + S or (char*)B - S
333     return ((C.Index->isOne() || C.Index->isMinusOne()) &&
334             hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
335   }
336   return false;
337 }
338 
339 // TODO: We currently implement an algorithm whose time complexity is linear in
340 // the number of existing candidates. However, we could do better by using
341 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
342 // maintain all the candidates that dominate the basic block being traversed in
343 // a ScopedHashTable. This hash table is indexed by the base and the stride of
344 // a candidate. Therefore, finding the immediate basis of a candidate boils down
345 // to one hash-table look up.
346 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
347     Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
348     Instruction *I) {
349   Candidate C(CT, B, Idx, S, I);
350   // SLSR can complicate an instruction in two cases:
351   //
352   // 1. If we can fold I into an addressing mode, computing I is likely free or
353   // takes only one instruction.
354   //
355   // 2. I is already in a simplest form. For example, when
356   //      X = B + 8 * S
357   //      Y = B + S,
358   //    rewriting Y to X - 7 * S is probably a bad idea.
359   //
360   // In the above cases, we still add I to the candidate list so that I can be
361   // the basis of other candidates, but we leave I's basis blank so that I
362   // won't be rewritten.
363   if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
364     // Try to compute the immediate basis of C.
365     unsigned NumIterations = 0;
366     // Limit the scan radius to avoid running in quadratice time.
367     static const unsigned MaxNumIterations = 50;
368     for (auto Basis = Candidates.rbegin();
369          Basis != Candidates.rend() && NumIterations < MaxNumIterations;
370          ++Basis, ++NumIterations) {
371       if (isBasisFor(*Basis, C)) {
372         C.Basis = &(*Basis);
373         break;
374       }
375     }
376   }
377   // Regardless of whether we find a basis for C, we need to push C to the
378   // candidate list so that it can be the basis of other candidates.
379   Candidates.push_back(C);
380 }
381 
382 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
383     Instruction *I) {
384   switch (I->getOpcode()) {
385   case Instruction::Add:
386     allocateCandidatesAndFindBasisForAdd(I);
387     break;
388   case Instruction::Mul:
389     allocateCandidatesAndFindBasisForMul(I);
390     break;
391   case Instruction::GetElementPtr:
392     allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
393     break;
394   }
395 }
396 
397 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
398     Instruction *I) {
399   // Try matching B + i * S.
400   if (!isa<IntegerType>(I->getType()))
401     return;
402 
403   assert(I->getNumOperands() == 2 && "isn't I an add?");
404   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
405   allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
406   if (LHS != RHS)
407     allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
408 }
409 
410 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
411     Value *LHS, Value *RHS, Instruction *I) {
412   Value *S = nullptr;
413   ConstantInt *Idx = nullptr;
414   if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
415     // I = LHS + RHS = LHS + Idx * S
416     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
417   } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
418     // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
419     APInt One(Idx->getBitWidth(), 1);
420     Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
421     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
422   } else {
423     // At least, I = LHS + 1 * RHS
424     ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
425     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
426                                    I);
427   }
428 }
429 
430 // Returns true if A matches B + C where C is constant.
431 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
432   return match(A, m_c_Add(m_Value(B), m_ConstantInt(C)));
433 }
434 
435 // Returns true if A matches B | C where C is constant.
436 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
437   return match(A, m_c_Or(m_Value(B), m_ConstantInt(C)));
438 }
439 
440 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
441     Value *LHS, Value *RHS, Instruction *I) {
442   Value *B = nullptr;
443   ConstantInt *Idx = nullptr;
444   if (matchesAdd(LHS, B, Idx)) {
445     // If LHS is in the form of "Base + Index", then I is in the form of
446     // "(Base + Index) * RHS".
447     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
448   } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
449     // If LHS is in the form of "Base | Index" and Base and Index have no common
450     // bits set, then
451     //   Base | Index = Base + Index
452     // and I is thus in the form of "(Base + Index) * RHS".
453     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
454   } else {
455     // Otherwise, at least try the form (LHS + 0) * RHS.
456     ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
457     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
458                                    I);
459   }
460 }
461 
462 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
463     Instruction *I) {
464   // Try matching (B + i) * S.
465   // TODO: we could extend SLSR to float and vector types.
466   if (!isa<IntegerType>(I->getType()))
467     return;
468 
469   assert(I->getNumOperands() == 2 && "isn't I a mul?");
470   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
471   allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
472   if (LHS != RHS) {
473     // Symmetrically, try to split RHS to Base + Index.
474     allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
475   }
476 }
477 
478 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
479     const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
480     Instruction *I) {
481   // I = B + sext(Idx *nsw S) * ElementSize
482   //   = B + (sext(Idx) * sext(S)) * ElementSize
483   //   = B + (sext(Idx) * ElementSize) * sext(S)
484   // Casting to IntegerType is safe because we skipped vector GEPs.
485   IntegerType *PtrIdxTy = cast<IntegerType>(DL->getIndexType(I->getType()));
486   ConstantInt *ScaledIdx = ConstantInt::get(
487       PtrIdxTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
488   allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
489 }
490 
491 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
492                                                   const SCEV *Base,
493                                                   uint64_t ElementSize,
494                                                   GetElementPtrInst *GEP) {
495   // At least, ArrayIdx = ArrayIdx *nsw 1.
496   allocateCandidatesAndFindBasisForGEP(
497       Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
498       ArrayIdx, ElementSize, GEP);
499   Value *LHS = nullptr;
500   ConstantInt *RHS = nullptr;
501   // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
502   // itself. This would allow us to handle the shl case for free. However,
503   // matching SCEVs has two issues:
504   //
505   // 1. this would complicate rewriting because the rewriting procedure
506   // would have to translate SCEVs back to IR instructions. This translation
507   // is difficult when LHS is further evaluated to a composite SCEV.
508   //
509   // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
510   // to strip nsw/nuw flags which are critical for SLSR to trace into
511   // sext'ed multiplication.
512   if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
513     // SLSR is currently unsafe if i * S may overflow.
514     // GEP = Base + sext(LHS *nsw RHS) * ElementSize
515     allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
516   } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
517     // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
518     //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
519     APInt One(RHS->getBitWidth(), 1);
520     ConstantInt *PowerOf2 =
521         ConstantInt::get(RHS->getContext(), One << RHS->getValue());
522     allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
523   }
524 }
525 
526 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
527     GetElementPtrInst *GEP) {
528   // TODO: handle vector GEPs
529   if (GEP->getType()->isVectorTy())
530     return;
531 
532   SmallVector<const SCEV *, 4> IndexExprs;
533   for (Use &Idx : GEP->indices())
534     IndexExprs.push_back(SE->getSCEV(Idx));
535 
536   gep_type_iterator GTI = gep_type_begin(GEP);
537   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
538     if (GTI.isStruct())
539       continue;
540 
541     const SCEV *OrigIndexExpr = IndexExprs[I - 1];
542     IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
543 
544     // The base of this candidate is GEP's base plus the offsets of all
545     // indices except this current one.
546     const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
547     Value *ArrayIdx = GEP->getOperand(I);
548     uint64_t ElementSize = GTI.getSequentialElementStride(*DL);
549     if (ArrayIdx->getType()->getIntegerBitWidth() <=
550         DL->getIndexSizeInBits(GEP->getAddressSpace())) {
551       // Skip factoring if ArrayIdx is wider than the index size, because
552       // ArrayIdx is implicitly truncated to the index size.
553       factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
554     }
555     // When ArrayIdx is the sext of a value, we try to factor that value as
556     // well.  Handling this case is important because array indices are
557     // typically sign-extended to the pointer index size.
558     Value *TruncatedArrayIdx = nullptr;
559     if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
560         TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
561             DL->getIndexSizeInBits(GEP->getAddressSpace())) {
562       // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
563       // because TruncatedArrayIdx is implicitly truncated to the pointer size.
564       factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
565     }
566 
567     IndexExprs[I - 1] = OrigIndexExpr;
568   }
569 }
570 
571 // A helper function that unifies the bitwidth of A and B.
572 static void unifyBitWidth(APInt &A, APInt &B) {
573   if (A.getBitWidth() < B.getBitWidth())
574     A = A.sext(B.getBitWidth());
575   else if (A.getBitWidth() > B.getBitWidth())
576     B = B.sext(A.getBitWidth());
577 }
578 
579 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
580                                             const Candidate &C,
581                                             IRBuilder<> &Builder,
582                                             const DataLayout *DL) {
583   APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
584   unifyBitWidth(Idx, BasisIdx);
585   APInt IndexOffset = Idx - BasisIdx;
586 
587   // Compute Bump = C - Basis = (i' - i) * S.
588   // Common case 1: if (i' - i) is 1, Bump = S.
589   if (IndexOffset == 1)
590     return C.Stride;
591   // Common case 2: if (i' - i) is -1, Bump = -S.
592   if (IndexOffset.isAllOnes())
593     return Builder.CreateNeg(C.Stride);
594 
595   // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
596   // have different bit widths.
597   IntegerType *DeltaType =
598       IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
599   Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
600   if (IndexOffset.isPowerOf2()) {
601     // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
602     ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
603     return Builder.CreateShl(ExtendedStride, Exponent);
604   }
605   if (IndexOffset.isNegatedPowerOf2()) {
606     // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
607     ConstantInt *Exponent =
608         ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
609     return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
610   }
611   Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
612   return Builder.CreateMul(ExtendedStride, Delta);
613 }
614 
615 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
616     const Candidate &C, const Candidate &Basis) {
617   if (!DebugCounter::shouldExecute(StraightLineStrengthReduceCounter))
618     return;
619 
620   assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
621          C.Stride == Basis.Stride);
622   // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
623   // basis of a candidate cannot be unlinked before the candidate.
624   assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
625 
626   // An instruction can correspond to multiple candidates. Therefore, instead of
627   // simply deleting an instruction when we rewrite it, we mark its parent as
628   // nullptr (i.e. unlink it) so that we can skip the candidates whose
629   // instruction is already rewritten.
630   if (!C.Ins->getParent())
631     return;
632 
633   IRBuilder<> Builder(C.Ins);
634   Value *Bump = emitBump(Basis, C, Builder, DL);
635   Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
636   switch (C.CandidateKind) {
637   case Candidate::Add:
638   case Candidate::Mul: {
639     // C = Basis + Bump
640     Value *NegBump;
641     if (match(Bump, m_Neg(m_Value(NegBump)))) {
642       // If Bump is a neg instruction, emit C = Basis - (-Bump).
643       Reduced = Builder.CreateSub(Basis.Ins, NegBump);
644       // We only use the negative argument of Bump, and Bump itself may be
645       // trivially dead.
646       RecursivelyDeleteTriviallyDeadInstructions(Bump);
647     } else {
648       // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
649       // usually unsound, e.g.,
650       //
651       // X = (-2 +nsw 1) *nsw INT_MAX
652       // Y = (-2 +nsw 3) *nsw INT_MAX
653       //   =>
654       // Y = X + 2 * INT_MAX
655       //
656       // Neither + and * in the resultant expression are nsw.
657       Reduced = Builder.CreateAdd(Basis.Ins, Bump);
658     }
659     break;
660   }
661   case Candidate::GEP: {
662     bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
663     // C = (char *)Basis + Bump
664     Reduced = Builder.CreatePtrAdd(Basis.Ins, Bump, "", InBounds);
665     break;
666   }
667   default:
668     llvm_unreachable("C.CandidateKind is invalid");
669   };
670   Reduced->takeName(C.Ins);
671   C.Ins->replaceAllUsesWith(Reduced);
672   // Unlink C.Ins so that we can skip other candidates also corresponding to
673   // C.Ins. The actual deletion is postponed to the end of runOnFunction.
674   C.Ins->removeFromParent();
675   UnlinkedInstructions.push_back(C.Ins);
676 }
677 
678 bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) {
679   if (skipFunction(F))
680     return false;
681 
682   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
683   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
684   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
685   return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F);
686 }
687 
688 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
689   // Traverse the dominator tree in the depth-first order. This order makes sure
690   // all bases of a candidate are in Candidates when we process it.
691   for (const auto Node : depth_first(DT))
692     for (auto &I : *(Node->getBlock()))
693       allocateCandidatesAndFindBasis(&I);
694 
695   // Rewrite candidates in the reverse depth-first order. This order makes sure
696   // a candidate being rewritten is not a basis for any other candidate.
697   while (!Candidates.empty()) {
698     const Candidate &C = Candidates.back();
699     if (C.Basis != nullptr) {
700       rewriteCandidateWithBasis(C, *C.Basis);
701     }
702     Candidates.pop_back();
703   }
704 
705   // Delete all unlink instructions.
706   for (auto *UnlinkedInst : UnlinkedInstructions) {
707     for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
708       Value *Op = UnlinkedInst->getOperand(I);
709       UnlinkedInst->setOperand(I, nullptr);
710       RecursivelyDeleteTriviallyDeadInstructions(Op);
711     }
712     UnlinkedInst->deleteValue();
713   }
714   bool Ret = !UnlinkedInstructions.empty();
715   UnlinkedInstructions.clear();
716   return Ret;
717 }
718 
719 namespace llvm {
720 
721 PreservedAnalyses
722 StraightLineStrengthReducePass::run(Function &F, FunctionAnalysisManager &AM) {
723   const DataLayout *DL = &F.getDataLayout();
724   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
725   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
726   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
727 
728   if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F))
729     return PreservedAnalyses::all();
730 
731   PreservedAnalyses PA;
732   PA.preserveSet<CFGAnalyses>();
733   PA.preserve<DominatorTreeAnalysis>();
734   PA.preserve<ScalarEvolutionAnalysis>();
735   PA.preserve<TargetIRAnalysis>();
736   return PA;
737 }
738 
739 } // namespace llvm
740