1 //===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
21 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
22 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
23 #include "clang/Analysis/AnalysisContext.h"
24 #include "clang/Analysis/CFG.h"
25 #include "clang/Basic/OperatorKinds.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include <algorithm>
32 #include <climits>
33 #include <vector>
34
35
36 namespace clang {
37 namespace threadSafety {
38
39 // From ThreadSafetyUtil.h
getSourceLiteralString(const clang::Expr * CE)40 std::string getSourceLiteralString(const clang::Expr *CE) {
41 switch (CE->getStmtClass()) {
42 case Stmt::IntegerLiteralClass:
43 return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
44 case Stmt::StringLiteralClass: {
45 std::string ret("\"");
46 ret += cast<StringLiteral>(CE)->getString();
47 ret += "\"";
48 return ret;
49 }
50 case Stmt::CharacterLiteralClass:
51 case Stmt::CXXNullPtrLiteralExprClass:
52 case Stmt::GNUNullExprClass:
53 case Stmt::CXXBoolLiteralExprClass:
54 case Stmt::FloatingLiteralClass:
55 case Stmt::ImaginaryLiteralClass:
56 case Stmt::ObjCStringLiteralClass:
57 default:
58 return "#lit";
59 }
60 }
61
62 namespace til {
63
64 // Return true if E is a variable that points to an incomplete Phi node.
isIncompletePhi(const SExpr * E)65 static bool isIncompletePhi(const SExpr *E) {
66 if (const auto *Ph = dyn_cast<Phi>(E))
67 return Ph->status() == Phi::PH_Incomplete;
68 return false;
69 }
70
71 } // end namespace til
72
73
74 typedef SExprBuilder::CallingContext CallingContext;
75
76
lookupStmt(const Stmt * S)77 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
78 auto It = SMap.find(S);
79 if (It != SMap.end())
80 return It->second;
81 return nullptr;
82 }
83
84
buildCFG(CFGWalker & Walker)85 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
86 Walker.walk(*this);
87 return Scfg;
88 }
89
90
91
isCalleeArrow(const Expr * E)92 inline bool isCalleeArrow(const Expr *E) {
93 const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
94 return ME ? ME->isArrow() : false;
95 }
96
97
98 /// \brief Translate a clang expression in an attribute to a til::SExpr.
99 /// Constructs the context from D, DeclExp, and SelfDecl.
100 ///
101 /// \param AttrExp The expression to translate.
102 /// \param D The declaration to which the attribute is attached.
103 /// \param DeclExp An expression involving the Decl to which the attribute
104 /// is attached. E.g. the call to a function.
translateAttrExpr(const Expr * AttrExp,const NamedDecl * D,const Expr * DeclExp,VarDecl * SelfDecl)105 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
106 const NamedDecl *D,
107 const Expr *DeclExp,
108 VarDecl *SelfDecl) {
109 // If we are processing a raw attribute expression, with no substitutions.
110 if (!DeclExp)
111 return translateAttrExpr(AttrExp, nullptr);
112
113 CallingContext Ctx(nullptr, D);
114
115 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
116 // for formal parameters when we call buildMutexID later.
117 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
118 Ctx.SelfArg = ME->getBase();
119 Ctx.SelfArrow = ME->isArrow();
120 } else if (const CXXMemberCallExpr *CE =
121 dyn_cast<CXXMemberCallExpr>(DeclExp)) {
122 Ctx.SelfArg = CE->getImplicitObjectArgument();
123 Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
124 Ctx.NumArgs = CE->getNumArgs();
125 Ctx.FunArgs = CE->getArgs();
126 } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
127 Ctx.NumArgs = CE->getNumArgs();
128 Ctx.FunArgs = CE->getArgs();
129 } else if (const CXXConstructExpr *CE =
130 dyn_cast<CXXConstructExpr>(DeclExp)) {
131 Ctx.SelfArg = nullptr; // Will be set below
132 Ctx.NumArgs = CE->getNumArgs();
133 Ctx.FunArgs = CE->getArgs();
134 } else if (D && isa<CXXDestructorDecl>(D)) {
135 // There's no such thing as a "destructor call" in the AST.
136 Ctx.SelfArg = DeclExp;
137 }
138
139 // Hack to handle constructors, where self cannot be recovered from
140 // the expression.
141 if (SelfDecl && !Ctx.SelfArg) {
142 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
143 SelfDecl->getLocation());
144 Ctx.SelfArg = &SelfDRE;
145
146 // If the attribute has no arguments, then assume the argument is "this".
147 if (!AttrExp)
148 return translateAttrExpr(Ctx.SelfArg, nullptr);
149 else // For most attributes.
150 return translateAttrExpr(AttrExp, &Ctx);
151 }
152
153 // If the attribute has no arguments, then assume the argument is "this".
154 if (!AttrExp)
155 return translateAttrExpr(Ctx.SelfArg, nullptr);
156 else // For most attributes.
157 return translateAttrExpr(AttrExp, &Ctx);
158 }
159
160
161 /// \brief Translate a clang expression in an attribute to a til::SExpr.
162 // This assumes a CallingContext has already been created.
translateAttrExpr(const Expr * AttrExp,CallingContext * Ctx)163 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
164 CallingContext *Ctx) {
165 if (!AttrExp)
166 return CapabilityExpr(nullptr, false);
167
168 if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
169 if (SLit->getString() == StringRef("*"))
170 // The "*" expr is a universal lock, which essentially turns off
171 // checks until it is removed from the lockset.
172 return CapabilityExpr(new (Arena) til::Wildcard(), false);
173 else
174 // Ignore other string literals for now.
175 return CapabilityExpr(nullptr, false);
176 }
177
178 bool Neg = false;
179 if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
180 if (OE->getOperator() == OO_Exclaim) {
181 Neg = true;
182 AttrExp = OE->getArg(0);
183 }
184 }
185 else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
186 if (UO->getOpcode() == UO_LNot) {
187 Neg = true;
188 AttrExp = UO->getSubExpr();
189 }
190 }
191
192 til::SExpr *E = translate(AttrExp, Ctx);
193
194 // Trap mutex expressions like nullptr, or 0.
195 // Any literal value is nonsense.
196 if (!E || isa<til::Literal>(E))
197 return CapabilityExpr(nullptr, false);
198
199 // Hack to deal with smart pointers -- strip off top-level pointer casts.
200 if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
201 if (CE->castOpcode() == til::CAST_objToPtr)
202 return CapabilityExpr(CE->expr(), Neg);
203 }
204 return CapabilityExpr(E, Neg);
205 }
206
207
208
209 // Translate a clang statement or expression to a TIL expression.
210 // Also performs substitution of variables; Ctx provides the context.
211 // Dispatches on the type of S.
translate(const Stmt * S,CallingContext * Ctx)212 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
213 if (!S)
214 return nullptr;
215
216 // Check if S has already been translated and cached.
217 // This handles the lookup of SSA names for DeclRefExprs here.
218 if (til::SExpr *E = lookupStmt(S))
219 return E;
220
221 switch (S->getStmtClass()) {
222 case Stmt::DeclRefExprClass:
223 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
224 case Stmt::CXXThisExprClass:
225 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
226 case Stmt::MemberExprClass:
227 return translateMemberExpr(cast<MemberExpr>(S), Ctx);
228 case Stmt::CallExprClass:
229 return translateCallExpr(cast<CallExpr>(S), Ctx);
230 case Stmt::CXXMemberCallExprClass:
231 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
232 case Stmt::CXXOperatorCallExprClass:
233 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
234 case Stmt::UnaryOperatorClass:
235 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
236 case Stmt::BinaryOperatorClass:
237 case Stmt::CompoundAssignOperatorClass:
238 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
239
240 case Stmt::ArraySubscriptExprClass:
241 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
242 case Stmt::ConditionalOperatorClass:
243 return translateAbstractConditionalOperator(
244 cast<ConditionalOperator>(S), Ctx);
245 case Stmt::BinaryConditionalOperatorClass:
246 return translateAbstractConditionalOperator(
247 cast<BinaryConditionalOperator>(S), Ctx);
248
249 // We treat these as no-ops
250 case Stmt::ParenExprClass:
251 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
252 case Stmt::ExprWithCleanupsClass:
253 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
254 case Stmt::CXXBindTemporaryExprClass:
255 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
256
257 // Collect all literals
258 case Stmt::CharacterLiteralClass:
259 case Stmt::CXXNullPtrLiteralExprClass:
260 case Stmt::GNUNullExprClass:
261 case Stmt::CXXBoolLiteralExprClass:
262 case Stmt::FloatingLiteralClass:
263 case Stmt::ImaginaryLiteralClass:
264 case Stmt::IntegerLiteralClass:
265 case Stmt::StringLiteralClass:
266 case Stmt::ObjCStringLiteralClass:
267 return new (Arena) til::Literal(cast<Expr>(S));
268
269 case Stmt::DeclStmtClass:
270 return translateDeclStmt(cast<DeclStmt>(S), Ctx);
271 default:
272 break;
273 }
274 if (const CastExpr *CE = dyn_cast<CastExpr>(S))
275 return translateCastExpr(CE, Ctx);
276
277 return new (Arena) til::Undefined(S);
278 }
279
280
281
translateDeclRefExpr(const DeclRefExpr * DRE,CallingContext * Ctx)282 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
283 CallingContext *Ctx) {
284 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
285
286 // Function parameters require substitution and/or renaming.
287 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
288 const FunctionDecl *FD =
289 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
290 unsigned I = PV->getFunctionScopeIndex();
291
292 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
293 // Substitute call arguments for references to function parameters
294 assert(I < Ctx->NumArgs);
295 return translate(Ctx->FunArgs[I], Ctx->Prev);
296 }
297 // Map the param back to the param of the original function declaration
298 // for consistent comparisons.
299 VD = FD->getParamDecl(I);
300 }
301
302 // For non-local variables, treat it as a referenced to a named object.
303 return new (Arena) til::LiteralPtr(VD);
304 }
305
306
translateCXXThisExpr(const CXXThisExpr * TE,CallingContext * Ctx)307 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
308 CallingContext *Ctx) {
309 // Substitute for 'this'
310 if (Ctx && Ctx->SelfArg)
311 return translate(Ctx->SelfArg, Ctx->Prev);
312 assert(SelfVar && "We have no variable for 'this'!");
313 return SelfVar;
314 }
315
316
getValueDeclFromSExpr(const til::SExpr * E)317 const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
318 if (auto *V = dyn_cast<til::Variable>(E))
319 return V->clangDecl();
320 if (auto *Ph = dyn_cast<til::Phi>(E))
321 return Ph->clangDecl();
322 if (auto *P = dyn_cast<til::Project>(E))
323 return P->clangDecl();
324 if (auto *L = dyn_cast<til::LiteralPtr>(E))
325 return L->clangDecl();
326 return 0;
327 }
328
hasCppPointerType(const til::SExpr * E)329 bool hasCppPointerType(const til::SExpr *E) {
330 auto *VD = getValueDeclFromSExpr(E);
331 if (VD && VD->getType()->isPointerType())
332 return true;
333 if (auto *C = dyn_cast<til::Cast>(E))
334 return C->castOpcode() == til::CAST_objToPtr;
335
336 return false;
337 }
338
339
340 // Grab the very first declaration of virtual method D
getFirstVirtualDecl(const CXXMethodDecl * D)341 const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
342 while (true) {
343 D = D->getCanonicalDecl();
344 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
345 E = D->end_overridden_methods();
346 if (I == E)
347 return D; // Method does not override anything
348 D = *I; // FIXME: this does not work with multiple inheritance.
349 }
350 return nullptr;
351 }
352
translateMemberExpr(const MemberExpr * ME,CallingContext * Ctx)353 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
354 CallingContext *Ctx) {
355 til::SExpr *BE = translate(ME->getBase(), Ctx);
356 til::SExpr *E = new (Arena) til::SApply(BE);
357
358 const ValueDecl *D = ME->getMemberDecl();
359 if (auto *VD = dyn_cast<CXXMethodDecl>(D))
360 D = getFirstVirtualDecl(VD);
361
362 til::Project *P = new (Arena) til::Project(E, D);
363 if (hasCppPointerType(BE))
364 P->setArrow(true);
365 return P;
366 }
367
368
translateCallExpr(const CallExpr * CE,CallingContext * Ctx,const Expr * SelfE)369 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
370 CallingContext *Ctx,
371 const Expr *SelfE) {
372 if (CapabilityExprMode) {
373 // Handle LOCK_RETURNED
374 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
375 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
376 CallingContext LRCallCtx(Ctx);
377 LRCallCtx.AttrDecl = CE->getDirectCallee();
378 LRCallCtx.SelfArg = SelfE;
379 LRCallCtx.NumArgs = CE->getNumArgs();
380 LRCallCtx.FunArgs = CE->getArgs();
381 return const_cast<til::SExpr*>(
382 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
383 }
384 }
385
386 til::SExpr *E = translate(CE->getCallee(), Ctx);
387 for (const auto *Arg : CE->arguments()) {
388 til::SExpr *A = translate(Arg, Ctx);
389 E = new (Arena) til::Apply(E, A);
390 }
391 return new (Arena) til::Call(E, CE);
392 }
393
394
translateCXXMemberCallExpr(const CXXMemberCallExpr * ME,CallingContext * Ctx)395 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
396 const CXXMemberCallExpr *ME, CallingContext *Ctx) {
397 if (CapabilityExprMode) {
398 // Ignore calls to get() on smart pointers.
399 if (ME->getMethodDecl()->getNameAsString() == "get" &&
400 ME->getNumArgs() == 0) {
401 auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
402 return new (Arena) til::Cast(til::CAST_objToPtr, E);
403 // return E;
404 }
405 }
406 return translateCallExpr(cast<CallExpr>(ME), Ctx,
407 ME->getImplicitObjectArgument());
408 }
409
410
translateCXXOperatorCallExpr(const CXXOperatorCallExpr * OCE,CallingContext * Ctx)411 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
412 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
413 if (CapabilityExprMode) {
414 // Ignore operator * and operator -> on smart pointers.
415 OverloadedOperatorKind k = OCE->getOperator();
416 if (k == OO_Star || k == OO_Arrow) {
417 auto *E = translate(OCE->getArg(0), Ctx);
418 return new (Arena) til::Cast(til::CAST_objToPtr, E);
419 // return E;
420 }
421 }
422 return translateCallExpr(cast<CallExpr>(OCE), Ctx);
423 }
424
425
translateUnaryOperator(const UnaryOperator * UO,CallingContext * Ctx)426 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
427 CallingContext *Ctx) {
428 switch (UO->getOpcode()) {
429 case UO_PostInc:
430 case UO_PostDec:
431 case UO_PreInc:
432 case UO_PreDec:
433 return new (Arena) til::Undefined(UO);
434
435 case UO_AddrOf: {
436 if (CapabilityExprMode) {
437 // interpret &Graph::mu_ as an existential.
438 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
439 if (DRE->getDecl()->isCXXInstanceMember()) {
440 // This is a pointer-to-member expression, e.g. &MyClass::mu_.
441 // We interpret this syntax specially, as a wildcard.
442 auto *W = new (Arena) til::Wildcard();
443 return new (Arena) til::Project(W, DRE->getDecl());
444 }
445 }
446 }
447 // otherwise, & is a no-op
448 return translate(UO->getSubExpr(), Ctx);
449 }
450
451 // We treat these as no-ops
452 case UO_Deref:
453 case UO_Plus:
454 return translate(UO->getSubExpr(), Ctx);
455
456 case UO_Minus:
457 return new (Arena)
458 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
459 case UO_Not:
460 return new (Arena)
461 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
462 case UO_LNot:
463 return new (Arena)
464 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
465
466 // Currently unsupported
467 case UO_Real:
468 case UO_Imag:
469 case UO_Extension:
470 return new (Arena) til::Undefined(UO);
471 }
472 return new (Arena) til::Undefined(UO);
473 }
474
475
translateBinOp(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Reverse)476 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
477 const BinaryOperator *BO,
478 CallingContext *Ctx, bool Reverse) {
479 til::SExpr *E0 = translate(BO->getLHS(), Ctx);
480 til::SExpr *E1 = translate(BO->getRHS(), Ctx);
481 if (Reverse)
482 return new (Arena) til::BinaryOp(Op, E1, E0);
483 else
484 return new (Arena) til::BinaryOp(Op, E0, E1);
485 }
486
487
translateBinAssign(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Assign)488 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
489 const BinaryOperator *BO,
490 CallingContext *Ctx,
491 bool Assign) {
492 const Expr *LHS = BO->getLHS();
493 const Expr *RHS = BO->getRHS();
494 til::SExpr *E0 = translate(LHS, Ctx);
495 til::SExpr *E1 = translate(RHS, Ctx);
496
497 const ValueDecl *VD = nullptr;
498 til::SExpr *CV = nullptr;
499 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
500 VD = DRE->getDecl();
501 CV = lookupVarDecl(VD);
502 }
503
504 if (!Assign) {
505 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
506 E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
507 E1 = addStatement(E1, nullptr, VD);
508 }
509 if (VD && CV)
510 return updateVarDecl(VD, E1);
511 return new (Arena) til::Store(E0, E1);
512 }
513
514
translateBinaryOperator(const BinaryOperator * BO,CallingContext * Ctx)515 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
516 CallingContext *Ctx) {
517 switch (BO->getOpcode()) {
518 case BO_PtrMemD:
519 case BO_PtrMemI:
520 return new (Arena) til::Undefined(BO);
521
522 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
523 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
524 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
525 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
526 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
527 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
528 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
529 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
530 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
531 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
532 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
533 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
534 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
535 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
536 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
537 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
538 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
539 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
540
541 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
542 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
543 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
544 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
545 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
546 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
547 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
548 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
549 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
550 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
551 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
552
553 case BO_Comma:
554 // The clang CFG should have already processed both sides.
555 return translate(BO->getRHS(), Ctx);
556 }
557 return new (Arena) til::Undefined(BO);
558 }
559
560
translateCastExpr(const CastExpr * CE,CallingContext * Ctx)561 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
562 CallingContext *Ctx) {
563 clang::CastKind K = CE->getCastKind();
564 switch (K) {
565 case CK_LValueToRValue: {
566 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
567 til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
568 if (E0)
569 return E0;
570 }
571 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
572 return E0;
573 // FIXME!! -- get Load working properly
574 // return new (Arena) til::Load(E0);
575 }
576 case CK_NoOp:
577 case CK_DerivedToBase:
578 case CK_UncheckedDerivedToBase:
579 case CK_ArrayToPointerDecay:
580 case CK_FunctionToPointerDecay: {
581 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
582 return E0;
583 }
584 default: {
585 // FIXME: handle different kinds of casts.
586 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
587 if (CapabilityExprMode)
588 return E0;
589 return new (Arena) til::Cast(til::CAST_none, E0);
590 }
591 }
592 }
593
594
595 til::SExpr *
translateArraySubscriptExpr(const ArraySubscriptExpr * E,CallingContext * Ctx)596 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
597 CallingContext *Ctx) {
598 til::SExpr *E0 = translate(E->getBase(), Ctx);
599 til::SExpr *E1 = translate(E->getIdx(), Ctx);
600 return new (Arena) til::ArrayIndex(E0, E1);
601 }
602
603
604 til::SExpr *
translateAbstractConditionalOperator(const AbstractConditionalOperator * CO,CallingContext * Ctx)605 SExprBuilder::translateAbstractConditionalOperator(
606 const AbstractConditionalOperator *CO, CallingContext *Ctx) {
607 auto *C = translate(CO->getCond(), Ctx);
608 auto *T = translate(CO->getTrueExpr(), Ctx);
609 auto *E = translate(CO->getFalseExpr(), Ctx);
610 return new (Arena) til::IfThenElse(C, T, E);
611 }
612
613
614 til::SExpr *
translateDeclStmt(const DeclStmt * S,CallingContext * Ctx)615 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
616 DeclGroupRef DGrp = S->getDeclGroup();
617 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
618 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
619 Expr *E = VD->getInit();
620 til::SExpr* SE = translate(E, Ctx);
621
622 // Add local variables with trivial type to the variable map
623 QualType T = VD->getType();
624 if (T.isTrivialType(VD->getASTContext())) {
625 return addVarDecl(VD, SE);
626 }
627 else {
628 // TODO: add alloca
629 }
630 }
631 }
632 return nullptr;
633 }
634
635
636
637 // If (E) is non-trivial, then add it to the current basic block, and
638 // update the statement map so that S refers to E. Returns a new variable
639 // that refers to E.
640 // If E is trivial returns E.
addStatement(til::SExpr * E,const Stmt * S,const ValueDecl * VD)641 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
642 const ValueDecl *VD) {
643 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
644 return E;
645 if (VD)
646 E = new (Arena) til::Variable(E, VD);
647 CurrentInstructions.push_back(E);
648 if (S)
649 insertStmt(S, E);
650 return E;
651 }
652
653
654 // Returns the current value of VD, if known, and nullptr otherwise.
lookupVarDecl(const ValueDecl * VD)655 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
656 auto It = LVarIdxMap.find(VD);
657 if (It != LVarIdxMap.end()) {
658 assert(CurrentLVarMap[It->second].first == VD);
659 return CurrentLVarMap[It->second].second;
660 }
661 return nullptr;
662 }
663
664
665 // if E is a til::Variable, update its clangDecl.
maybeUpdateVD(til::SExpr * E,const ValueDecl * VD)666 inline void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
667 if (!E)
668 return;
669 if (til::Variable *V = dyn_cast<til::Variable>(E)) {
670 if (!V->clangDecl())
671 V->setClangDecl(VD);
672 }
673 }
674
675 // Adds a new variable declaration.
addVarDecl(const ValueDecl * VD,til::SExpr * E)676 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
677 maybeUpdateVD(E, VD);
678 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
679 CurrentLVarMap.makeWritable();
680 CurrentLVarMap.push_back(std::make_pair(VD, E));
681 return E;
682 }
683
684
685 // Updates a current variable declaration. (E.g. by assignment)
updateVarDecl(const ValueDecl * VD,til::SExpr * E)686 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
687 maybeUpdateVD(E, VD);
688 auto It = LVarIdxMap.find(VD);
689 if (It == LVarIdxMap.end()) {
690 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
691 til::SExpr *St = new (Arena) til::Store(Ptr, E);
692 return St;
693 }
694 CurrentLVarMap.makeWritable();
695 CurrentLVarMap.elem(It->second).second = E;
696 return E;
697 }
698
699
700 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
701 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
702 // If E == null, this is a backedge and will be set later.
makePhiNodeVar(unsigned i,unsigned NPreds,til::SExpr * E)703 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
704 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
705 assert(ArgIndex > 0 && ArgIndex < NPreds);
706
707 til::SExpr *CurrE = CurrentLVarMap[i].second;
708 if (CurrE->block() == CurrentBB) {
709 // We already have a Phi node in the current block,
710 // so just add the new variable to the Phi node.
711 til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
712 assert(Ph && "Expecting Phi node.");
713 if (E)
714 Ph->values()[ArgIndex] = E;
715 return;
716 }
717
718 // Make a new phi node: phi(..., E)
719 // All phi args up to the current index are set to the current value.
720 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
721 Ph->values().setValues(NPreds, nullptr);
722 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
723 Ph->values()[PIdx] = CurrE;
724 if (E)
725 Ph->values()[ArgIndex] = E;
726 Ph->setClangDecl(CurrentLVarMap[i].first);
727 // If E is from a back-edge, or either E or CurrE are incomplete, then
728 // mark this node as incomplete; we may need to remove it later.
729 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
730 Ph->setStatus(til::Phi::PH_Incomplete);
731 }
732
733 // Add Phi node to current block, and update CurrentLVarMap[i]
734 CurrentArguments.push_back(Ph);
735 if (Ph->status() == til::Phi::PH_Incomplete)
736 IncompleteArgs.push_back(Ph);
737
738 CurrentLVarMap.makeWritable();
739 CurrentLVarMap.elem(i).second = Ph;
740 }
741
742
743 // Merge values from Map into the current variable map.
744 // This will construct Phi nodes in the current basic block as necessary.
mergeEntryMap(LVarDefinitionMap Map)745 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
746 assert(CurrentBlockInfo && "Not processing a block!");
747
748 if (!CurrentLVarMap.valid()) {
749 // Steal Map, using copy-on-write.
750 CurrentLVarMap = std::move(Map);
751 return;
752 }
753 if (CurrentLVarMap.sameAs(Map))
754 return; // Easy merge: maps from different predecessors are unchanged.
755
756 unsigned NPreds = CurrentBB->numPredecessors();
757 unsigned ESz = CurrentLVarMap.size();
758 unsigned MSz = Map.size();
759 unsigned Sz = std::min(ESz, MSz);
760
761 for (unsigned i=0; i<Sz; ++i) {
762 if (CurrentLVarMap[i].first != Map[i].first) {
763 // We've reached the end of variables in common.
764 CurrentLVarMap.makeWritable();
765 CurrentLVarMap.downsize(i);
766 break;
767 }
768 if (CurrentLVarMap[i].second != Map[i].second)
769 makePhiNodeVar(i, NPreds, Map[i].second);
770 }
771 if (ESz > MSz) {
772 CurrentLVarMap.makeWritable();
773 CurrentLVarMap.downsize(Map.size());
774 }
775 }
776
777
778 // Merge a back edge into the current variable map.
779 // This will create phi nodes for all variables in the variable map.
mergeEntryMapBackEdge()780 void SExprBuilder::mergeEntryMapBackEdge() {
781 // We don't have definitions for variables on the backedge, because we
782 // haven't gotten that far in the CFG. Thus, when encountering a back edge,
783 // we conservatively create Phi nodes for all variables. Unnecessary Phi
784 // nodes will be marked as incomplete, and stripped out at the end.
785 //
786 // An Phi node is unnecessary if it only refers to itself and one other
787 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
788
789 assert(CurrentBlockInfo && "Not processing a block!");
790
791 if (CurrentBlockInfo->HasBackEdges)
792 return;
793 CurrentBlockInfo->HasBackEdges = true;
794
795 CurrentLVarMap.makeWritable();
796 unsigned Sz = CurrentLVarMap.size();
797 unsigned NPreds = CurrentBB->numPredecessors();
798
799 for (unsigned i=0; i < Sz; ++i) {
800 makePhiNodeVar(i, NPreds, nullptr);
801 }
802 }
803
804
805 // Update the phi nodes that were initially created for a back edge
806 // once the variable definitions have been computed.
807 // I.e., merge the current variable map into the phi nodes for Blk.
mergePhiNodesBackEdge(const CFGBlock * Blk)808 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
809 til::BasicBlock *BB = lookupBlock(Blk);
810 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
811 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
812
813 for (til::SExpr *PE : BB->arguments()) {
814 til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
815 assert(Ph && "Expecting Phi Node.");
816 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
817
818 til::SExpr *E = lookupVarDecl(Ph->clangDecl());
819 assert(E && "Couldn't find local variable for Phi node.");
820 Ph->values()[ArgIndex] = E;
821 }
822 }
823
enterCFG(CFG * Cfg,const NamedDecl * D,const CFGBlock * First)824 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
825 const CFGBlock *First) {
826 // Perform initial setup operations.
827 unsigned NBlocks = Cfg->getNumBlockIDs();
828 Scfg = new (Arena) til::SCFG(Arena, NBlocks);
829
830 // allocate all basic blocks immediately, to handle forward references.
831 BBInfo.resize(NBlocks);
832 BlockMap.resize(NBlocks, nullptr);
833 // create map from clang blockID to til::BasicBlocks
834 for (auto *B : *Cfg) {
835 auto *BB = new (Arena) til::BasicBlock(Arena);
836 BB->reserveInstructions(B->size());
837 BlockMap[B->getBlockID()] = BB;
838 }
839
840 CurrentBB = lookupBlock(&Cfg->getEntry());
841 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
842 : cast<FunctionDecl>(D)->parameters();
843 for (auto *Pm : Parms) {
844 QualType T = Pm->getType();
845 if (!T.isTrivialType(Pm->getASTContext()))
846 continue;
847
848 // Add parameters to local variable map.
849 // FIXME: right now we emulate params with loads; that should be fixed.
850 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
851 til::SExpr *Ld = new (Arena) til::Load(Lp);
852 til::SExpr *V = addStatement(Ld, nullptr, Pm);
853 addVarDecl(Pm, V);
854 }
855 }
856
857
enterCFGBlock(const CFGBlock * B)858 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
859 // Intialize TIL basic block and add it to the CFG.
860 CurrentBB = lookupBlock(B);
861 CurrentBB->reservePredecessors(B->pred_size());
862 Scfg->add(CurrentBB);
863
864 CurrentBlockInfo = &BBInfo[B->getBlockID()];
865
866 // CurrentLVarMap is moved to ExitMap on block exit.
867 // FIXME: the entry block will hold function parameters.
868 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
869 }
870
871
handlePredecessor(const CFGBlock * Pred)872 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
873 // Compute CurrentLVarMap on entry from ExitMaps of predecessors
874
875 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
876 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
877 assert(PredInfo->UnprocessedSuccessors > 0);
878
879 if (--PredInfo->UnprocessedSuccessors == 0)
880 mergeEntryMap(std::move(PredInfo->ExitMap));
881 else
882 mergeEntryMap(PredInfo->ExitMap.clone());
883
884 ++CurrentBlockInfo->ProcessedPredecessors;
885 }
886
887
handlePredecessorBackEdge(const CFGBlock * Pred)888 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
889 mergeEntryMapBackEdge();
890 }
891
892
enterCFGBlockBody(const CFGBlock * B)893 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
894 // The merge*() methods have created arguments.
895 // Push those arguments onto the basic block.
896 CurrentBB->arguments().reserve(
897 static_cast<unsigned>(CurrentArguments.size()), Arena);
898 for (auto *A : CurrentArguments)
899 CurrentBB->addArgument(A);
900 }
901
902
handleStatement(const Stmt * S)903 void SExprBuilder::handleStatement(const Stmt *S) {
904 til::SExpr *E = translate(S, nullptr);
905 addStatement(E, S);
906 }
907
908
handleDestructorCall(const VarDecl * VD,const CXXDestructorDecl * DD)909 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
910 const CXXDestructorDecl *DD) {
911 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
912 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
913 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
914 til::SExpr *E = new (Arena) til::Call(Ap);
915 addStatement(E, nullptr);
916 }
917
918
919
exitCFGBlockBody(const CFGBlock * B)920 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
921 CurrentBB->instructions().reserve(
922 static_cast<unsigned>(CurrentInstructions.size()), Arena);
923 for (auto *V : CurrentInstructions)
924 CurrentBB->addInstruction(V);
925
926 // Create an appropriate terminator
927 unsigned N = B->succ_size();
928 auto It = B->succ_begin();
929 if (N == 1) {
930 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
931 // TODO: set index
932 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
933 auto *Tm = new (Arena) til::Goto(BB, Idx);
934 CurrentBB->setTerminator(Tm);
935 }
936 else if (N == 2) {
937 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
938 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
939 ++It;
940 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
941 // FIXME: make sure these arent' critical edges.
942 auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
943 CurrentBB->setTerminator(Tm);
944 }
945 }
946
947
handleSuccessor(const CFGBlock * Succ)948 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
949 ++CurrentBlockInfo->UnprocessedSuccessors;
950 }
951
952
handleSuccessorBackEdge(const CFGBlock * Succ)953 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
954 mergePhiNodesBackEdge(Succ);
955 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
956 }
957
958
exitCFGBlock(const CFGBlock * B)959 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
960 CurrentArguments.clear();
961 CurrentInstructions.clear();
962 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
963 CurrentBB = nullptr;
964 CurrentBlockInfo = nullptr;
965 }
966
967
exitCFG(const CFGBlock * Last)968 void SExprBuilder::exitCFG(const CFGBlock *Last) {
969 for (auto *Ph : IncompleteArgs) {
970 if (Ph->status() == til::Phi::PH_Incomplete)
971 simplifyIncompleteArg(Ph);
972 }
973
974 CurrentArguments.clear();
975 CurrentInstructions.clear();
976 IncompleteArgs.clear();
977 }
978
979
980 /*
981 void printSCFG(CFGWalker &Walker) {
982 llvm::BumpPtrAllocator Bpa;
983 til::MemRegionRef Arena(&Bpa);
984 SExprBuilder SxBuilder(Arena);
985 til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
986 TILPrinter::print(Scfg, llvm::errs());
987 }
988 */
989
990
991 } // end namespace threadSafety
992
993 } // end namespace clang
994