1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for cast operations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/IR/DIBuilder.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21 #include "llvm/Transforms/InstCombine/InstCombiner.h"
22 #include <numeric>
23 using namespace llvm;
24 using namespace PatternMatch;
25
26 #define DEBUG_TYPE "instcombine"
27
28 /// Analyze 'Val', seeing if it is a simple linear expression.
29 /// If so, decompose it, returning some value X, such that Val is
30 /// X*Scale+Offset.
31 ///
decomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)32 static Value *decomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
33 uint64_t &Offset) {
34 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
35 Offset = CI->getZExtValue();
36 Scale = 0;
37 return ConstantInt::get(Val->getType(), 0);
38 }
39
40 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
41 // Cannot look past anything that might overflow.
42 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
43 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
44 Scale = 1;
45 Offset = 0;
46 return Val;
47 }
48
49 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
50 if (I->getOpcode() == Instruction::Shl) {
51 // This is a value scaled by '1 << the shift amt'.
52 Scale = UINT64_C(1) << RHS->getZExtValue();
53 Offset = 0;
54 return I->getOperand(0);
55 }
56
57 if (I->getOpcode() == Instruction::Mul) {
58 // This value is scaled by 'RHS'.
59 Scale = RHS->getZExtValue();
60 Offset = 0;
61 return I->getOperand(0);
62 }
63
64 if (I->getOpcode() == Instruction::Add) {
65 // We have X+C. Check to see if we really have (X*C2)+C1,
66 // where C1 is divisible by C2.
67 unsigned SubScale;
68 Value *SubVal =
69 decomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
70 Offset += RHS->getZExtValue();
71 Scale = SubScale;
72 return SubVal;
73 }
74 }
75 }
76
77 // Otherwise, we can't look past this.
78 Scale = 1;
79 Offset = 0;
80 return Val;
81 }
82
83 /// If we find a cast of an allocation instruction, try to eliminate the cast by
84 /// moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)85 Instruction *InstCombinerImpl::PromoteCastOfAllocation(BitCastInst &CI,
86 AllocaInst &AI) {
87 PointerType *PTy = cast<PointerType>(CI.getType());
88
89 IRBuilderBase::InsertPointGuard Guard(Builder);
90 Builder.SetInsertPoint(&AI);
91
92 // Get the type really allocated and the type casted to.
93 Type *AllocElTy = AI.getAllocatedType();
94 Type *CastElTy = PTy->getElementType();
95 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
96
97 // This optimisation does not work for cases where the cast type
98 // is scalable and the allocated type is not. This because we need to
99 // know how many times the casted type fits into the allocated type.
100 // For the opposite case where the allocated type is scalable and the
101 // cast type is not this leads to poor code quality due to the
102 // introduction of 'vscale' into the calculations. It seems better to
103 // bail out for this case too until we've done a proper cost-benefit
104 // analysis.
105 bool AllocIsScalable = isa<ScalableVectorType>(AllocElTy);
106 bool CastIsScalable = isa<ScalableVectorType>(CastElTy);
107 if (AllocIsScalable != CastIsScalable) return nullptr;
108
109 Align AllocElTyAlign = DL.getABITypeAlign(AllocElTy);
110 Align CastElTyAlign = DL.getABITypeAlign(CastElTy);
111 if (CastElTyAlign < AllocElTyAlign) return nullptr;
112
113 // If the allocation has multiple uses, only promote it if we are strictly
114 // increasing the alignment of the resultant allocation. If we keep it the
115 // same, we open the door to infinite loops of various kinds.
116 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
117
118 // The alloc and cast types should be either both fixed or both scalable.
119 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy).getKnownMinSize();
120 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy).getKnownMinSize();
121 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
122
123 // If the allocation has multiple uses, only promote it if we're not
124 // shrinking the amount of memory being allocated.
125 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy).getKnownMinSize();
126 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy).getKnownMinSize();
127 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
128
129 // See if we can satisfy the modulus by pulling a scale out of the array
130 // size argument.
131 unsigned ArraySizeScale;
132 uint64_t ArrayOffset;
133 Value *NumElements = // See if the array size is a decomposable linear expr.
134 decomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
135
136 // If we can now satisfy the modulus, by using a non-1 scale, we really can
137 // do the xform.
138 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
139 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
140
141 // We don't currently support arrays of scalable types.
142 assert(!AllocIsScalable || (ArrayOffset == 1 && ArraySizeScale == 0));
143
144 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
145 Value *Amt = nullptr;
146 if (Scale == 1) {
147 Amt = NumElements;
148 } else {
149 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
150 // Insert before the alloca, not before the cast.
151 Amt = Builder.CreateMul(Amt, NumElements);
152 }
153
154 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
155 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
156 Offset, true);
157 Amt = Builder.CreateAdd(Amt, Off);
158 }
159
160 AllocaInst *New = Builder.CreateAlloca(CastElTy, Amt);
161 New->setAlignment(AI.getAlign());
162 New->takeName(&AI);
163 New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
164
165 // If the allocation has multiple real uses, insert a cast and change all
166 // things that used it to use the new cast. This will also hack on CI, but it
167 // will die soon.
168 if (!AI.hasOneUse()) {
169 // New is the allocation instruction, pointer typed. AI is the original
170 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
171 Value *NewCast = Builder.CreateBitCast(New, AI.getType(), "tmpcast");
172 replaceInstUsesWith(AI, NewCast);
173 eraseInstFromFunction(AI);
174 }
175 return replaceInstUsesWith(CI, New);
176 }
177
178 /// Given an expression that CanEvaluateTruncated or CanEvaluateSExtd returns
179 /// true for, actually insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)180 Value *InstCombinerImpl::EvaluateInDifferentType(Value *V, Type *Ty,
181 bool isSigned) {
182 if (Constant *C = dyn_cast<Constant>(V)) {
183 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
184 // If we got a constantexpr back, try to simplify it with DL info.
185 return ConstantFoldConstant(C, DL, &TLI);
186 }
187
188 // Otherwise, it must be an instruction.
189 Instruction *I = cast<Instruction>(V);
190 Instruction *Res = nullptr;
191 unsigned Opc = I->getOpcode();
192 switch (Opc) {
193 case Instruction::Add:
194 case Instruction::Sub:
195 case Instruction::Mul:
196 case Instruction::And:
197 case Instruction::Or:
198 case Instruction::Xor:
199 case Instruction::AShr:
200 case Instruction::LShr:
201 case Instruction::Shl:
202 case Instruction::UDiv:
203 case Instruction::URem: {
204 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
205 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
206 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
207 break;
208 }
209 case Instruction::Trunc:
210 case Instruction::ZExt:
211 case Instruction::SExt:
212 // If the source type of the cast is the type we're trying for then we can
213 // just return the source. There's no need to insert it because it is not
214 // new.
215 if (I->getOperand(0)->getType() == Ty)
216 return I->getOperand(0);
217
218 // Otherwise, must be the same type of cast, so just reinsert a new one.
219 // This also handles the case of zext(trunc(x)) -> zext(x).
220 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
221 Opc == Instruction::SExt);
222 break;
223 case Instruction::Select: {
224 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
225 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
226 Res = SelectInst::Create(I->getOperand(0), True, False);
227 break;
228 }
229 case Instruction::PHI: {
230 PHINode *OPN = cast<PHINode>(I);
231 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
232 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
233 Value *V =
234 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
235 NPN->addIncoming(V, OPN->getIncomingBlock(i));
236 }
237 Res = NPN;
238 break;
239 }
240 default:
241 // TODO: Can handle more cases here.
242 llvm_unreachable("Unreachable!");
243 }
244
245 Res->takeName(I);
246 return InsertNewInstWith(Res, *I);
247 }
248
249 Instruction::CastOps
isEliminableCastPair(const CastInst * CI1,const CastInst * CI2)250 InstCombinerImpl::isEliminableCastPair(const CastInst *CI1,
251 const CastInst *CI2) {
252 Type *SrcTy = CI1->getSrcTy();
253 Type *MidTy = CI1->getDestTy();
254 Type *DstTy = CI2->getDestTy();
255
256 Instruction::CastOps firstOp = CI1->getOpcode();
257 Instruction::CastOps secondOp = CI2->getOpcode();
258 Type *SrcIntPtrTy =
259 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
260 Type *MidIntPtrTy =
261 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
262 Type *DstIntPtrTy =
263 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
264 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
265 DstTy, SrcIntPtrTy, MidIntPtrTy,
266 DstIntPtrTy);
267
268 // We don't want to form an inttoptr or ptrtoint that converts to an integer
269 // type that differs from the pointer size.
270 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
271 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
272 Res = 0;
273
274 return Instruction::CastOps(Res);
275 }
276
277 /// Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)278 Instruction *InstCombinerImpl::commonCastTransforms(CastInst &CI) {
279 Value *Src = CI.getOperand(0);
280
281 // Try to eliminate a cast of a cast.
282 if (auto *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
283 if (Instruction::CastOps NewOpc = isEliminableCastPair(CSrc, &CI)) {
284 // The first cast (CSrc) is eliminable so we need to fix up or replace
285 // the second cast (CI). CSrc will then have a good chance of being dead.
286 auto *Ty = CI.getType();
287 auto *Res = CastInst::Create(NewOpc, CSrc->getOperand(0), Ty);
288 // Point debug users of the dying cast to the new one.
289 if (CSrc->hasOneUse())
290 replaceAllDbgUsesWith(*CSrc, *Res, CI, DT);
291 return Res;
292 }
293 }
294
295 if (auto *Sel = dyn_cast<SelectInst>(Src)) {
296 // We are casting a select. Try to fold the cast into the select if the
297 // select does not have a compare instruction with matching operand types
298 // or the select is likely better done in a narrow type.
299 // Creating a select with operands that are different sizes than its
300 // condition may inhibit other folds and lead to worse codegen.
301 auto *Cmp = dyn_cast<CmpInst>(Sel->getCondition());
302 if (!Cmp || Cmp->getOperand(0)->getType() != Sel->getType() ||
303 (CI.getOpcode() == Instruction::Trunc &&
304 shouldChangeType(CI.getSrcTy(), CI.getType()))) {
305 if (Instruction *NV = FoldOpIntoSelect(CI, Sel)) {
306 replaceAllDbgUsesWith(*Sel, *NV, CI, DT);
307 return NV;
308 }
309 }
310 }
311
312 // If we are casting a PHI, then fold the cast into the PHI.
313 if (auto *PN = dyn_cast<PHINode>(Src)) {
314 // Don't do this if it would create a PHI node with an illegal type from a
315 // legal type.
316 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
317 shouldChangeType(CI.getSrcTy(), CI.getType()))
318 if (Instruction *NV = foldOpIntoPhi(CI, PN))
319 return NV;
320 }
321
322 return nullptr;
323 }
324
325 /// Constants and extensions/truncates from the destination type are always
326 /// free to be evaluated in that type. This is a helper for canEvaluate*.
canAlwaysEvaluateInType(Value * V,Type * Ty)327 static bool canAlwaysEvaluateInType(Value *V, Type *Ty) {
328 if (isa<Constant>(V))
329 return true;
330 Value *X;
331 if ((match(V, m_ZExtOrSExt(m_Value(X))) || match(V, m_Trunc(m_Value(X)))) &&
332 X->getType() == Ty)
333 return true;
334
335 return false;
336 }
337
338 /// Filter out values that we can not evaluate in the destination type for free.
339 /// This is a helper for canEvaluate*.
canNotEvaluateInType(Value * V,Type * Ty)340 static bool canNotEvaluateInType(Value *V, Type *Ty) {
341 assert(!isa<Constant>(V) && "Constant should already be handled.");
342 if (!isa<Instruction>(V))
343 return true;
344 // We don't extend or shrink something that has multiple uses -- doing so
345 // would require duplicating the instruction which isn't profitable.
346 if (!V->hasOneUse())
347 return true;
348
349 return false;
350 }
351
352 /// Return true if we can evaluate the specified expression tree as type Ty
353 /// instead of its larger type, and arrive with the same value.
354 /// This is used by code that tries to eliminate truncates.
355 ///
356 /// Ty will always be a type smaller than V. We should return true if trunc(V)
357 /// can be computed by computing V in the smaller type. If V is an instruction,
358 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
359 /// makes sense if x and y can be efficiently truncated.
360 ///
361 /// This function works on both vectors and scalars.
362 ///
canEvaluateTruncated(Value * V,Type * Ty,InstCombinerImpl & IC,Instruction * CxtI)363 static bool canEvaluateTruncated(Value *V, Type *Ty, InstCombinerImpl &IC,
364 Instruction *CxtI) {
365 if (canAlwaysEvaluateInType(V, Ty))
366 return true;
367 if (canNotEvaluateInType(V, Ty))
368 return false;
369
370 auto *I = cast<Instruction>(V);
371 Type *OrigTy = V->getType();
372 switch (I->getOpcode()) {
373 case Instruction::Add:
374 case Instruction::Sub:
375 case Instruction::Mul:
376 case Instruction::And:
377 case Instruction::Or:
378 case Instruction::Xor:
379 // These operators can all arbitrarily be extended or truncated.
380 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
381 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
382
383 case Instruction::UDiv:
384 case Instruction::URem: {
385 // UDiv and URem can be truncated if all the truncated bits are zero.
386 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
387 uint32_t BitWidth = Ty->getScalarSizeInBits();
388 assert(BitWidth < OrigBitWidth && "Unexpected bitwidths!");
389 APInt Mask = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
390 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
391 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
392 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
393 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
394 }
395 break;
396 }
397 case Instruction::Shl: {
398 // If we are truncating the result of this SHL, and if it's a shift of an
399 // inrange amount, we can always perform a SHL in a smaller type.
400 uint32_t BitWidth = Ty->getScalarSizeInBits();
401 KnownBits AmtKnownBits =
402 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
403 if (AmtKnownBits.getMaxValue().ult(BitWidth))
404 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
405 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
406 break;
407 }
408 case Instruction::LShr: {
409 // If this is a truncate of a logical shr, we can truncate it to a smaller
410 // lshr iff we know that the bits we would otherwise be shifting in are
411 // already zeros.
412 // TODO: It is enough to check that the bits we would be shifting in are
413 // zero - use AmtKnownBits.getMaxValue().
414 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
415 uint32_t BitWidth = Ty->getScalarSizeInBits();
416 KnownBits AmtKnownBits =
417 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
418 APInt ShiftedBits = APInt::getBitsSetFrom(OrigBitWidth, BitWidth);
419 if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
420 IC.MaskedValueIsZero(I->getOperand(0), ShiftedBits, 0, CxtI)) {
421 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
422 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
423 }
424 break;
425 }
426 case Instruction::AShr: {
427 // If this is a truncate of an arithmetic shr, we can truncate it to a
428 // smaller ashr iff we know that all the bits from the sign bit of the
429 // original type and the sign bit of the truncate type are similar.
430 // TODO: It is enough to check that the bits we would be shifting in are
431 // similar to sign bit of the truncate type.
432 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
433 uint32_t BitWidth = Ty->getScalarSizeInBits();
434 KnownBits AmtKnownBits =
435 llvm::computeKnownBits(I->getOperand(1), IC.getDataLayout());
436 unsigned ShiftedBits = OrigBitWidth - BitWidth;
437 if (AmtKnownBits.getMaxValue().ult(BitWidth) &&
438 ShiftedBits < IC.ComputeNumSignBits(I->getOperand(0), 0, CxtI))
439 return canEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
440 canEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
441 break;
442 }
443 case Instruction::Trunc:
444 // trunc(trunc(x)) -> trunc(x)
445 return true;
446 case Instruction::ZExt:
447 case Instruction::SExt:
448 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
449 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
450 return true;
451 case Instruction::Select: {
452 SelectInst *SI = cast<SelectInst>(I);
453 return canEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
454 canEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
455 }
456 case Instruction::PHI: {
457 // We can change a phi if we can change all operands. Note that we never
458 // get into trouble with cyclic PHIs here because we only consider
459 // instructions with a single use.
460 PHINode *PN = cast<PHINode>(I);
461 for (Value *IncValue : PN->incoming_values())
462 if (!canEvaluateTruncated(IncValue, Ty, IC, CxtI))
463 return false;
464 return true;
465 }
466 default:
467 // TODO: Can handle more cases here.
468 break;
469 }
470
471 return false;
472 }
473
474 /// Given a vector that is bitcast to an integer, optionally logically
475 /// right-shifted, and truncated, convert it to an extractelement.
476 /// Example (big endian):
477 /// trunc (lshr (bitcast <4 x i32> %X to i128), 32) to i32
478 /// --->
479 /// extractelement <4 x i32> %X, 1
foldVecTruncToExtElt(TruncInst & Trunc,InstCombinerImpl & IC)480 static Instruction *foldVecTruncToExtElt(TruncInst &Trunc,
481 InstCombinerImpl &IC) {
482 Value *TruncOp = Trunc.getOperand(0);
483 Type *DestType = Trunc.getType();
484 if (!TruncOp->hasOneUse() || !isa<IntegerType>(DestType))
485 return nullptr;
486
487 Value *VecInput = nullptr;
488 ConstantInt *ShiftVal = nullptr;
489 if (!match(TruncOp, m_CombineOr(m_BitCast(m_Value(VecInput)),
490 m_LShr(m_BitCast(m_Value(VecInput)),
491 m_ConstantInt(ShiftVal)))) ||
492 !isa<VectorType>(VecInput->getType()))
493 return nullptr;
494
495 VectorType *VecType = cast<VectorType>(VecInput->getType());
496 unsigned VecWidth = VecType->getPrimitiveSizeInBits();
497 unsigned DestWidth = DestType->getPrimitiveSizeInBits();
498 unsigned ShiftAmount = ShiftVal ? ShiftVal->getZExtValue() : 0;
499
500 if ((VecWidth % DestWidth != 0) || (ShiftAmount % DestWidth != 0))
501 return nullptr;
502
503 // If the element type of the vector doesn't match the result type,
504 // bitcast it to a vector type that we can extract from.
505 unsigned NumVecElts = VecWidth / DestWidth;
506 if (VecType->getElementType() != DestType) {
507 VecType = FixedVectorType::get(DestType, NumVecElts);
508 VecInput = IC.Builder.CreateBitCast(VecInput, VecType, "bc");
509 }
510
511 unsigned Elt = ShiftAmount / DestWidth;
512 if (IC.getDataLayout().isBigEndian())
513 Elt = NumVecElts - 1 - Elt;
514
515 return ExtractElementInst::Create(VecInput, IC.Builder.getInt32(Elt));
516 }
517
518 /// Funnel/Rotate left/right may occur in a wider type than necessary because of
519 /// type promotion rules. Try to narrow the inputs and convert to funnel shift.
narrowFunnelShift(TruncInst & Trunc)520 Instruction *InstCombinerImpl::narrowFunnelShift(TruncInst &Trunc) {
521 assert((isa<VectorType>(Trunc.getSrcTy()) ||
522 shouldChangeType(Trunc.getSrcTy(), Trunc.getType())) &&
523 "Don't narrow to an illegal scalar type");
524
525 // Bail out on strange types. It is possible to handle some of these patterns
526 // even with non-power-of-2 sizes, but it is not a likely scenario.
527 Type *DestTy = Trunc.getType();
528 unsigned NarrowWidth = DestTy->getScalarSizeInBits();
529 unsigned WideWidth = Trunc.getSrcTy()->getScalarSizeInBits();
530 if (!isPowerOf2_32(NarrowWidth))
531 return nullptr;
532
533 // First, find an or'd pair of opposite shifts:
534 // trunc (or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1))
535 BinaryOperator *Or0, *Or1;
536 if (!match(Trunc.getOperand(0), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
537 return nullptr;
538
539 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
540 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
541 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
542 Or0->getOpcode() == Or1->getOpcode())
543 return nullptr;
544
545 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
546 if (Or0->getOpcode() == BinaryOperator::LShr) {
547 std::swap(Or0, Or1);
548 std::swap(ShVal0, ShVal1);
549 std::swap(ShAmt0, ShAmt1);
550 }
551 assert(Or0->getOpcode() == BinaryOperator::Shl &&
552 Or1->getOpcode() == BinaryOperator::LShr &&
553 "Illegal or(shift,shift) pair");
554
555 // Match the shift amount operands for a funnel/rotate pattern. This always
556 // matches a subtraction on the R operand.
557 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
558 // The shift amounts may add up to the narrow bit width:
559 // (shl ShVal0, L) | (lshr ShVal1, Width - L)
560 // If this is a funnel shift (different operands are shifted), then the
561 // shift amount can not over-shift (create poison) in the narrow type.
562 unsigned MaxShiftAmountWidth = Log2_32(NarrowWidth);
563 APInt HiBitMask = ~APInt::getLowBitsSet(WideWidth, MaxShiftAmountWidth);
564 if (ShVal0 == ShVal1 || MaskedValueIsZero(L, HiBitMask))
565 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L)))))
566 return L;
567
568 // The following patterns currently only work for rotation patterns.
569 // TODO: Add more general funnel-shift compatible patterns.
570 if (ShVal0 != ShVal1)
571 return nullptr;
572
573 // The shift amount may be masked with negation:
574 // (shl ShVal0, (X & (Width - 1))) | (lshr ShVal1, ((-X) & (Width - 1)))
575 Value *X;
576 unsigned Mask = Width - 1;
577 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
578 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
579 return X;
580
581 // Same as above, but the shift amount may be extended after masking:
582 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
583 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
584 return X;
585
586 return nullptr;
587 };
588
589 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, NarrowWidth);
590 bool IsFshl = true; // Sub on LSHR.
591 if (!ShAmt) {
592 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, NarrowWidth);
593 IsFshl = false; // Sub on SHL.
594 }
595 if (!ShAmt)
596 return nullptr;
597
598 // The right-shifted value must have high zeros in the wide type (for example
599 // from 'zext', 'and' or 'shift'). High bits of the left-shifted value are
600 // truncated, so those do not matter.
601 APInt HiBitMask = APInt::getHighBitsSet(WideWidth, WideWidth - NarrowWidth);
602 if (!MaskedValueIsZero(ShVal1, HiBitMask, 0, &Trunc))
603 return nullptr;
604
605 // We have an unnecessarily wide rotate!
606 // trunc (or (shl ShVal0, ShAmt), (lshr ShVal1, BitWidth - ShAmt))
607 // Narrow the inputs and convert to funnel shift intrinsic:
608 // llvm.fshl.i8(trunc(ShVal), trunc(ShVal), trunc(ShAmt))
609 Value *NarrowShAmt = Builder.CreateTrunc(ShAmt, DestTy);
610 Value *X, *Y;
611 X = Y = Builder.CreateTrunc(ShVal0, DestTy);
612 if (ShVal0 != ShVal1)
613 Y = Builder.CreateTrunc(ShVal1, DestTy);
614 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
615 Function *F = Intrinsic::getDeclaration(Trunc.getModule(), IID, DestTy);
616 return CallInst::Create(F, {X, Y, NarrowShAmt});
617 }
618
619 /// Try to narrow the width of math or bitwise logic instructions by pulling a
620 /// truncate ahead of binary operators.
621 /// TODO: Transforms for truncated shifts should be moved into here.
narrowBinOp(TruncInst & Trunc)622 Instruction *InstCombinerImpl::narrowBinOp(TruncInst &Trunc) {
623 Type *SrcTy = Trunc.getSrcTy();
624 Type *DestTy = Trunc.getType();
625 if (!isa<VectorType>(SrcTy) && !shouldChangeType(SrcTy, DestTy))
626 return nullptr;
627
628 BinaryOperator *BinOp;
629 if (!match(Trunc.getOperand(0), m_OneUse(m_BinOp(BinOp))))
630 return nullptr;
631
632 Value *BinOp0 = BinOp->getOperand(0);
633 Value *BinOp1 = BinOp->getOperand(1);
634 switch (BinOp->getOpcode()) {
635 case Instruction::And:
636 case Instruction::Or:
637 case Instruction::Xor:
638 case Instruction::Add:
639 case Instruction::Sub:
640 case Instruction::Mul: {
641 Constant *C;
642 if (match(BinOp0, m_Constant(C))) {
643 // trunc (binop C, X) --> binop (trunc C', X)
644 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
645 Value *TruncX = Builder.CreateTrunc(BinOp1, DestTy);
646 return BinaryOperator::Create(BinOp->getOpcode(), NarrowC, TruncX);
647 }
648 if (match(BinOp1, m_Constant(C))) {
649 // trunc (binop X, C) --> binop (trunc X, C')
650 Constant *NarrowC = ConstantExpr::getTrunc(C, DestTy);
651 Value *TruncX = Builder.CreateTrunc(BinOp0, DestTy);
652 return BinaryOperator::Create(BinOp->getOpcode(), TruncX, NarrowC);
653 }
654 Value *X;
655 if (match(BinOp0, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
656 // trunc (binop (ext X), Y) --> binop X, (trunc Y)
657 Value *NarrowOp1 = Builder.CreateTrunc(BinOp1, DestTy);
658 return BinaryOperator::Create(BinOp->getOpcode(), X, NarrowOp1);
659 }
660 if (match(BinOp1, m_ZExtOrSExt(m_Value(X))) && X->getType() == DestTy) {
661 // trunc (binop Y, (ext X)) --> binop (trunc Y), X
662 Value *NarrowOp0 = Builder.CreateTrunc(BinOp0, DestTy);
663 return BinaryOperator::Create(BinOp->getOpcode(), NarrowOp0, X);
664 }
665 break;
666 }
667
668 default: break;
669 }
670
671 if (Instruction *NarrowOr = narrowFunnelShift(Trunc))
672 return NarrowOr;
673
674 return nullptr;
675 }
676
677 /// Try to narrow the width of a splat shuffle. This could be generalized to any
678 /// shuffle with a constant operand, but we limit the transform to avoid
679 /// creating a shuffle type that targets may not be able to lower effectively.
shrinkSplatShuffle(TruncInst & Trunc,InstCombiner::BuilderTy & Builder)680 static Instruction *shrinkSplatShuffle(TruncInst &Trunc,
681 InstCombiner::BuilderTy &Builder) {
682 auto *Shuf = dyn_cast<ShuffleVectorInst>(Trunc.getOperand(0));
683 if (Shuf && Shuf->hasOneUse() && match(Shuf->getOperand(1), m_Undef()) &&
684 is_splat(Shuf->getShuffleMask()) &&
685 Shuf->getType() == Shuf->getOperand(0)->getType()) {
686 // trunc (shuf X, Undef, SplatMask) --> shuf (trunc X), Undef, SplatMask
687 Constant *NarrowUndef = UndefValue::get(Trunc.getType());
688 Value *NarrowOp = Builder.CreateTrunc(Shuf->getOperand(0), Trunc.getType());
689 return new ShuffleVectorInst(NarrowOp, NarrowUndef, Shuf->getShuffleMask());
690 }
691
692 return nullptr;
693 }
694
695 /// Try to narrow the width of an insert element. This could be generalized for
696 /// any vector constant, but we limit the transform to insertion into undef to
697 /// avoid potential backend problems from unsupported insertion widths. This
698 /// could also be extended to handle the case of inserting a scalar constant
699 /// into a vector variable.
shrinkInsertElt(CastInst & Trunc,InstCombiner::BuilderTy & Builder)700 static Instruction *shrinkInsertElt(CastInst &Trunc,
701 InstCombiner::BuilderTy &Builder) {
702 Instruction::CastOps Opcode = Trunc.getOpcode();
703 assert((Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) &&
704 "Unexpected instruction for shrinking");
705
706 auto *InsElt = dyn_cast<InsertElementInst>(Trunc.getOperand(0));
707 if (!InsElt || !InsElt->hasOneUse())
708 return nullptr;
709
710 Type *DestTy = Trunc.getType();
711 Type *DestScalarTy = DestTy->getScalarType();
712 Value *VecOp = InsElt->getOperand(0);
713 Value *ScalarOp = InsElt->getOperand(1);
714 Value *Index = InsElt->getOperand(2);
715
716 if (match(VecOp, m_Undef())) {
717 // trunc (inselt undef, X, Index) --> inselt undef, (trunc X), Index
718 // fptrunc (inselt undef, X, Index) --> inselt undef, (fptrunc X), Index
719 UndefValue *NarrowUndef = UndefValue::get(DestTy);
720 Value *NarrowOp = Builder.CreateCast(Opcode, ScalarOp, DestScalarTy);
721 return InsertElementInst::Create(NarrowUndef, NarrowOp, Index);
722 }
723
724 return nullptr;
725 }
726
visitTrunc(TruncInst & Trunc)727 Instruction *InstCombinerImpl::visitTrunc(TruncInst &Trunc) {
728 if (Instruction *Result = commonCastTransforms(Trunc))
729 return Result;
730
731 Value *Src = Trunc.getOperand(0);
732 Type *DestTy = Trunc.getType(), *SrcTy = Src->getType();
733 unsigned DestWidth = DestTy->getScalarSizeInBits();
734 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
735
736 // Attempt to truncate the entire input expression tree to the destination
737 // type. Only do this if the dest type is a simple type, don't convert the
738 // expression tree to something weird like i93 unless the source is also
739 // strange.
740 if ((DestTy->isVectorTy() || shouldChangeType(SrcTy, DestTy)) &&
741 canEvaluateTruncated(Src, DestTy, *this, &Trunc)) {
742
743 // If this cast is a truncate, evaluting in a different type always
744 // eliminates the cast, so it is always a win.
745 LLVM_DEBUG(
746 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
747 " to avoid cast: "
748 << Trunc << '\n');
749 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
750 assert(Res->getType() == DestTy);
751 return replaceInstUsesWith(Trunc, Res);
752 }
753
754 // For integer types, check if we can shorten the entire input expression to
755 // DestWidth * 2, which won't allow removing the truncate, but reducing the
756 // width may enable further optimizations, e.g. allowing for larger
757 // vectorization factors.
758 if (auto *DestITy = dyn_cast<IntegerType>(DestTy)) {
759 if (DestWidth * 2 < SrcWidth) {
760 auto *NewDestTy = DestITy->getExtendedType();
761 if (shouldChangeType(SrcTy, NewDestTy) &&
762 canEvaluateTruncated(Src, NewDestTy, *this, &Trunc)) {
763 LLVM_DEBUG(
764 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
765 " to reduce the width of operand of"
766 << Trunc << '\n');
767 Value *Res = EvaluateInDifferentType(Src, NewDestTy, false);
768 return new TruncInst(Res, DestTy);
769 }
770 }
771 }
772
773 // Test if the trunc is the user of a select which is part of a
774 // minimum or maximum operation. If so, don't do any more simplification.
775 // Even simplifying demanded bits can break the canonical form of a
776 // min/max.
777 Value *LHS, *RHS;
778 if (SelectInst *Sel = dyn_cast<SelectInst>(Src))
779 if (matchSelectPattern(Sel, LHS, RHS).Flavor != SPF_UNKNOWN)
780 return nullptr;
781
782 // See if we can simplify any instructions used by the input whose sole
783 // purpose is to compute bits we don't care about.
784 if (SimplifyDemandedInstructionBits(Trunc))
785 return &Trunc;
786
787 if (DestWidth == 1) {
788 Value *Zero = Constant::getNullValue(SrcTy);
789 if (DestTy->isIntegerTy()) {
790 // Canonicalize trunc x to i1 -> icmp ne (and x, 1), 0 (scalar only).
791 // TODO: We canonicalize to more instructions here because we are probably
792 // lacking equivalent analysis for trunc relative to icmp. There may also
793 // be codegen concerns. If those trunc limitations were removed, we could
794 // remove this transform.
795 Value *And = Builder.CreateAnd(Src, ConstantInt::get(SrcTy, 1));
796 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
797 }
798
799 // For vectors, we do not canonicalize all truncs to icmp, so optimize
800 // patterns that would be covered within visitICmpInst.
801 Value *X;
802 Constant *C;
803 if (match(Src, m_OneUse(m_LShr(m_Value(X), m_Constant(C))))) {
804 // trunc (lshr X, C) to i1 --> icmp ne (and X, C'), 0
805 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
806 Constant *MaskC = ConstantExpr::getShl(One, C);
807 Value *And = Builder.CreateAnd(X, MaskC);
808 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
809 }
810 if (match(Src, m_OneUse(m_c_Or(m_LShr(m_Value(X), m_Constant(C)),
811 m_Deferred(X))))) {
812 // trunc (or (lshr X, C), X) to i1 --> icmp ne (and X, C'), 0
813 Constant *One = ConstantInt::get(SrcTy, APInt(SrcWidth, 1));
814 Constant *MaskC = ConstantExpr::getShl(One, C);
815 MaskC = ConstantExpr::getOr(MaskC, One);
816 Value *And = Builder.CreateAnd(X, MaskC);
817 return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
818 }
819 }
820
821 Value *A;
822 Constant *C;
823 if (match(Src, m_LShr(m_SExt(m_Value(A)), m_Constant(C)))) {
824 unsigned AWidth = A->getType()->getScalarSizeInBits();
825 unsigned MaxShiftAmt = SrcWidth - std::max(DestWidth, AWidth);
826 auto *OldSh = cast<Instruction>(Src);
827 bool IsExact = OldSh->isExact();
828
829 // If the shift is small enough, all zero bits created by the shift are
830 // removed by the trunc.
831 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
832 APInt(SrcWidth, MaxShiftAmt)))) {
833 // trunc (lshr (sext A), C) --> ashr A, C
834 if (A->getType() == DestTy) {
835 Constant *MaxAmt = ConstantInt::get(SrcTy, DestWidth - 1, false);
836 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
837 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
838 ShAmt = Constant::mergeUndefsWith(ShAmt, C);
839 return IsExact ? BinaryOperator::CreateExactAShr(A, ShAmt)
840 : BinaryOperator::CreateAShr(A, ShAmt);
841 }
842 // The types are mismatched, so create a cast after shifting:
843 // trunc (lshr (sext A), C) --> sext/trunc (ashr A, C)
844 if (Src->hasOneUse()) {
845 Constant *MaxAmt = ConstantInt::get(SrcTy, AWidth - 1, false);
846 Constant *ShAmt = ConstantExpr::getUMin(C, MaxAmt);
847 ShAmt = ConstantExpr::getTrunc(ShAmt, A->getType());
848 Value *Shift = Builder.CreateAShr(A, ShAmt, "", IsExact);
849 return CastInst::CreateIntegerCast(Shift, DestTy, true);
850 }
851 }
852 // TODO: Mask high bits with 'and'.
853 }
854
855 // trunc (*shr (trunc A), C) --> trunc(*shr A, C)
856 if (match(Src, m_OneUse(m_Shr(m_Trunc(m_Value(A)), m_Constant(C))))) {
857 unsigned MaxShiftAmt = SrcWidth - DestWidth;
858
859 // If the shift is small enough, all zero/sign bits created by the shift are
860 // removed by the trunc.
861 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULE,
862 APInt(SrcWidth, MaxShiftAmt)))) {
863 auto *OldShift = cast<Instruction>(Src);
864 bool IsExact = OldShift->isExact();
865 auto *ShAmt = ConstantExpr::getIntegerCast(C, A->getType(), true);
866 ShAmt = Constant::mergeUndefsWith(ShAmt, C);
867 Value *Shift =
868 OldShift->getOpcode() == Instruction::AShr
869 ? Builder.CreateAShr(A, ShAmt, OldShift->getName(), IsExact)
870 : Builder.CreateLShr(A, ShAmt, OldShift->getName(), IsExact);
871 return CastInst::CreateTruncOrBitCast(Shift, DestTy);
872 }
873 }
874
875 if (Instruction *I = narrowBinOp(Trunc))
876 return I;
877
878 if (Instruction *I = shrinkSplatShuffle(Trunc, Builder))
879 return I;
880
881 if (Instruction *I = shrinkInsertElt(Trunc, Builder))
882 return I;
883
884 if (Src->hasOneUse() &&
885 (isa<VectorType>(SrcTy) || shouldChangeType(SrcTy, DestTy))) {
886 // Transform "trunc (shl X, cst)" -> "shl (trunc X), cst" so long as the
887 // dest type is native and cst < dest size.
888 if (match(Src, m_Shl(m_Value(A), m_Constant(C))) &&
889 !match(A, m_Shr(m_Value(), m_Constant()))) {
890 // Skip shifts of shift by constants. It undoes a combine in
891 // FoldShiftByConstant and is the extend in reg pattern.
892 APInt Threshold = APInt(C->getType()->getScalarSizeInBits(), DestWidth);
893 if (match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold))) {
894 Value *NewTrunc = Builder.CreateTrunc(A, DestTy, A->getName() + ".tr");
895 return BinaryOperator::Create(Instruction::Shl, NewTrunc,
896 ConstantExpr::getTrunc(C, DestTy));
897 }
898 }
899 }
900
901 if (Instruction *I = foldVecTruncToExtElt(Trunc, *this))
902 return I;
903
904 // Whenever an element is extracted from a vector, and then truncated,
905 // canonicalize by converting it to a bitcast followed by an
906 // extractelement.
907 //
908 // Example (little endian):
909 // trunc (extractelement <4 x i64> %X, 0) to i32
910 // --->
911 // extractelement <8 x i32> (bitcast <4 x i64> %X to <8 x i32>), i32 0
912 Value *VecOp;
913 ConstantInt *Cst;
914 if (match(Src, m_OneUse(m_ExtractElt(m_Value(VecOp), m_ConstantInt(Cst))))) {
915 auto *VecOpTy = cast<VectorType>(VecOp->getType());
916 auto VecElts = VecOpTy->getElementCount();
917
918 // A badly fit destination size would result in an invalid cast.
919 if (SrcWidth % DestWidth == 0) {
920 uint64_t TruncRatio = SrcWidth / DestWidth;
921 uint64_t BitCastNumElts = VecElts.getKnownMinValue() * TruncRatio;
922 uint64_t VecOpIdx = Cst->getZExtValue();
923 uint64_t NewIdx = DL.isBigEndian() ? (VecOpIdx + 1) * TruncRatio - 1
924 : VecOpIdx * TruncRatio;
925 assert(BitCastNumElts <= std::numeric_limits<uint32_t>::max() &&
926 "overflow 32-bits");
927
928 auto *BitCastTo =
929 VectorType::get(DestTy, BitCastNumElts, VecElts.isScalable());
930 Value *BitCast = Builder.CreateBitCast(VecOp, BitCastTo);
931 return ExtractElementInst::Create(BitCast, Builder.getInt32(NewIdx));
932 }
933 }
934
935 return nullptr;
936 }
937
transformZExtICmp(ICmpInst * Cmp,ZExtInst & Zext,bool DoTransform)938 Instruction *InstCombinerImpl::transformZExtICmp(ICmpInst *Cmp, ZExtInst &Zext,
939 bool DoTransform) {
940 // If we are just checking for a icmp eq of a single bit and zext'ing it
941 // to an integer, then shift the bit to the appropriate place and then
942 // cast to integer to avoid the comparison.
943 const APInt *Op1CV;
944 if (match(Cmp->getOperand(1), m_APInt(Op1CV))) {
945
946 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
947 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
948 if ((Cmp->getPredicate() == ICmpInst::ICMP_SLT && Op1CV->isNullValue()) ||
949 (Cmp->getPredicate() == ICmpInst::ICMP_SGT && Op1CV->isAllOnesValue())) {
950 if (!DoTransform) return Cmp;
951
952 Value *In = Cmp->getOperand(0);
953 Value *Sh = ConstantInt::get(In->getType(),
954 In->getType()->getScalarSizeInBits() - 1);
955 In = Builder.CreateLShr(In, Sh, In->getName() + ".lobit");
956 if (In->getType() != Zext.getType())
957 In = Builder.CreateIntCast(In, Zext.getType(), false /*ZExt*/);
958
959 if (Cmp->getPredicate() == ICmpInst::ICMP_SGT) {
960 Constant *One = ConstantInt::get(In->getType(), 1);
961 In = Builder.CreateXor(In, One, In->getName() + ".not");
962 }
963
964 return replaceInstUsesWith(Zext, In);
965 }
966
967 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
968 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
969 // zext (X == 1) to i32 --> X iff X has only the low bit set.
970 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
971 // zext (X != 0) to i32 --> X iff X has only the low bit set.
972 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
973 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
974 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
975 if ((Op1CV->isNullValue() || Op1CV->isPowerOf2()) &&
976 // This only works for EQ and NE
977 Cmp->isEquality()) {
978 // If Op1C some other power of two, convert:
979 KnownBits Known = computeKnownBits(Cmp->getOperand(0), 0, &Zext);
980
981 APInt KnownZeroMask(~Known.Zero);
982 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
983 if (!DoTransform) return Cmp;
984
985 bool isNE = Cmp->getPredicate() == ICmpInst::ICMP_NE;
986 if (!Op1CV->isNullValue() && (*Op1CV != KnownZeroMask)) {
987 // (X&4) == 2 --> false
988 // (X&4) != 2 --> true
989 Constant *Res = ConstantInt::get(Zext.getType(), isNE);
990 return replaceInstUsesWith(Zext, Res);
991 }
992
993 uint32_t ShAmt = KnownZeroMask.logBase2();
994 Value *In = Cmp->getOperand(0);
995 if (ShAmt) {
996 // Perform a logical shr by shiftamt.
997 // Insert the shift to put the result in the low bit.
998 In = Builder.CreateLShr(In, ConstantInt::get(In->getType(), ShAmt),
999 In->getName() + ".lobit");
1000 }
1001
1002 if (!Op1CV->isNullValue() == isNE) { // Toggle the low bit.
1003 Constant *One = ConstantInt::get(In->getType(), 1);
1004 In = Builder.CreateXor(In, One);
1005 }
1006
1007 if (Zext.getType() == In->getType())
1008 return replaceInstUsesWith(Zext, In);
1009
1010 Value *IntCast = Builder.CreateIntCast(In, Zext.getType(), false);
1011 return replaceInstUsesWith(Zext, IntCast);
1012 }
1013 }
1014 }
1015
1016 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
1017 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
1018 // may lead to additional simplifications.
1019 if (Cmp->isEquality() && Zext.getType() == Cmp->getOperand(0)->getType()) {
1020 if (IntegerType *ITy = dyn_cast<IntegerType>(Zext.getType())) {
1021 Value *LHS = Cmp->getOperand(0);
1022 Value *RHS = Cmp->getOperand(1);
1023
1024 KnownBits KnownLHS = computeKnownBits(LHS, 0, &Zext);
1025 KnownBits KnownRHS = computeKnownBits(RHS, 0, &Zext);
1026
1027 if (KnownLHS.Zero == KnownRHS.Zero && KnownLHS.One == KnownRHS.One) {
1028 APInt KnownBits = KnownLHS.Zero | KnownLHS.One;
1029 APInt UnknownBit = ~KnownBits;
1030 if (UnknownBit.countPopulation() == 1) {
1031 if (!DoTransform) return Cmp;
1032
1033 Value *Result = Builder.CreateXor(LHS, RHS);
1034
1035 // Mask off any bits that are set and won't be shifted away.
1036 if (KnownLHS.One.uge(UnknownBit))
1037 Result = Builder.CreateAnd(Result,
1038 ConstantInt::get(ITy, UnknownBit));
1039
1040 // Shift the bit we're testing down to the lsb.
1041 Result = Builder.CreateLShr(
1042 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
1043
1044 if (Cmp->getPredicate() == ICmpInst::ICMP_EQ)
1045 Result = Builder.CreateXor(Result, ConstantInt::get(ITy, 1));
1046 Result->takeName(Cmp);
1047 return replaceInstUsesWith(Zext, Result);
1048 }
1049 }
1050 }
1051 }
1052
1053 return nullptr;
1054 }
1055
1056 /// Determine if the specified value can be computed in the specified wider type
1057 /// and produce the same low bits. If not, return false.
1058 ///
1059 /// If this function returns true, it can also return a non-zero number of bits
1060 /// (in BitsToClear) which indicates that the value it computes is correct for
1061 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
1062 /// out. For example, to promote something like:
1063 ///
1064 /// %B = trunc i64 %A to i32
1065 /// %C = lshr i32 %B, 8
1066 /// %E = zext i32 %C to i64
1067 ///
1068 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
1069 /// set to 8 to indicate that the promoted value needs to have bits 24-31
1070 /// cleared in addition to bits 32-63. Since an 'and' will be generated to
1071 /// clear the top bits anyway, doing this has no extra cost.
1072 ///
1073 /// This function works on both vectors and scalars.
canEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombinerImpl & IC,Instruction * CxtI)1074 static bool canEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
1075 InstCombinerImpl &IC, Instruction *CxtI) {
1076 BitsToClear = 0;
1077 if (canAlwaysEvaluateInType(V, Ty))
1078 return true;
1079 if (canNotEvaluateInType(V, Ty))
1080 return false;
1081
1082 auto *I = cast<Instruction>(V);
1083 unsigned Tmp;
1084 switch (I->getOpcode()) {
1085 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
1086 case Instruction::SExt: // zext(sext(x)) -> sext(x).
1087 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
1088 return true;
1089 case Instruction::And:
1090 case Instruction::Or:
1091 case Instruction::Xor:
1092 case Instruction::Add:
1093 case Instruction::Sub:
1094 case Instruction::Mul:
1095 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
1096 !canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
1097 return false;
1098 // These can all be promoted if neither operand has 'bits to clear'.
1099 if (BitsToClear == 0 && Tmp == 0)
1100 return true;
1101
1102 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
1103 // other side, BitsToClear is ok.
1104 if (Tmp == 0 && I->isBitwiseLogicOp()) {
1105 // We use MaskedValueIsZero here for generality, but the case we care
1106 // about the most is constant RHS.
1107 unsigned VSize = V->getType()->getScalarSizeInBits();
1108 if (IC.MaskedValueIsZero(I->getOperand(1),
1109 APInt::getHighBitsSet(VSize, BitsToClear),
1110 0, CxtI)) {
1111 // If this is an And instruction and all of the BitsToClear are
1112 // known to be zero we can reset BitsToClear.
1113 if (I->getOpcode() == Instruction::And)
1114 BitsToClear = 0;
1115 return true;
1116 }
1117 }
1118
1119 // Otherwise, we don't know how to analyze this BitsToClear case yet.
1120 return false;
1121
1122 case Instruction::Shl: {
1123 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
1124 // upper bits we can reduce BitsToClear by the shift amount.
1125 const APInt *Amt;
1126 if (match(I->getOperand(1), m_APInt(Amt))) {
1127 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1128 return false;
1129 uint64_t ShiftAmt = Amt->getZExtValue();
1130 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
1131 return true;
1132 }
1133 return false;
1134 }
1135 case Instruction::LShr: {
1136 // We can promote lshr(x, cst) if we can promote x. This requires the
1137 // ultimate 'and' to clear out the high zero bits we're clearing out though.
1138 const APInt *Amt;
1139 if (match(I->getOperand(1), m_APInt(Amt))) {
1140 if (!canEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
1141 return false;
1142 BitsToClear += Amt->getZExtValue();
1143 if (BitsToClear > V->getType()->getScalarSizeInBits())
1144 BitsToClear = V->getType()->getScalarSizeInBits();
1145 return true;
1146 }
1147 // Cannot promote variable LSHR.
1148 return false;
1149 }
1150 case Instruction::Select:
1151 if (!canEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
1152 !canEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
1153 // TODO: If important, we could handle the case when the BitsToClear are
1154 // known zero in the disagreeing side.
1155 Tmp != BitsToClear)
1156 return false;
1157 return true;
1158
1159 case Instruction::PHI: {
1160 // We can change a phi if we can change all operands. Note that we never
1161 // get into trouble with cyclic PHIs here because we only consider
1162 // instructions with a single use.
1163 PHINode *PN = cast<PHINode>(I);
1164 if (!canEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
1165 return false;
1166 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
1167 if (!canEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
1168 // TODO: If important, we could handle the case when the BitsToClear
1169 // are known zero in the disagreeing input.
1170 Tmp != BitsToClear)
1171 return false;
1172 return true;
1173 }
1174 default:
1175 // TODO: Can handle more cases here.
1176 return false;
1177 }
1178 }
1179
visitZExt(ZExtInst & CI)1180 Instruction *InstCombinerImpl::visitZExt(ZExtInst &CI) {
1181 // If this zero extend is only used by a truncate, let the truncate be
1182 // eliminated before we try to optimize this zext.
1183 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1184 return nullptr;
1185
1186 // If one of the common conversion will work, do it.
1187 if (Instruction *Result = commonCastTransforms(CI))
1188 return Result;
1189
1190 Value *Src = CI.getOperand(0);
1191 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1192
1193 // Try to extend the entire expression tree to the wide destination type.
1194 unsigned BitsToClear;
1195 if (shouldChangeType(SrcTy, DestTy) &&
1196 canEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
1197 assert(BitsToClear <= SrcTy->getScalarSizeInBits() &&
1198 "Can't clear more bits than in SrcTy");
1199
1200 // Okay, we can transform this! Insert the new expression now.
1201 LLVM_DEBUG(
1202 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1203 " to avoid zero extend: "
1204 << CI << '\n');
1205 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
1206 assert(Res->getType() == DestTy);
1207
1208 // Preserve debug values referring to Src if the zext is its last use.
1209 if (auto *SrcOp = dyn_cast<Instruction>(Src))
1210 if (SrcOp->hasOneUse())
1211 replaceAllDbgUsesWith(*SrcOp, *Res, CI, DT);
1212
1213 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
1214 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1215
1216 // If the high bits are already filled with zeros, just replace this
1217 // cast with the result.
1218 if (MaskedValueIsZero(Res,
1219 APInt::getHighBitsSet(DestBitSize,
1220 DestBitSize-SrcBitsKept),
1221 0, &CI))
1222 return replaceInstUsesWith(CI, Res);
1223
1224 // We need to emit an AND to clear the high bits.
1225 Constant *C = ConstantInt::get(Res->getType(),
1226 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
1227 return BinaryOperator::CreateAnd(Res, C);
1228 }
1229
1230 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
1231 // types and if the sizes are just right we can convert this into a logical
1232 // 'and' which will be much cheaper than the pair of casts.
1233 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
1234 // TODO: Subsume this into EvaluateInDifferentType.
1235
1236 // Get the sizes of the types involved. We know that the intermediate type
1237 // will be smaller than A or C, but don't know the relation between A and C.
1238 Value *A = CSrc->getOperand(0);
1239 unsigned SrcSize = A->getType()->getScalarSizeInBits();
1240 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
1241 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1242 // If we're actually extending zero bits, then if
1243 // SrcSize < DstSize: zext(a & mask)
1244 // SrcSize == DstSize: a & mask
1245 // SrcSize > DstSize: trunc(a) & mask
1246 if (SrcSize < DstSize) {
1247 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1248 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
1249 Value *And = Builder.CreateAnd(A, AndConst, CSrc->getName() + ".mask");
1250 return new ZExtInst(And, CI.getType());
1251 }
1252
1253 if (SrcSize == DstSize) {
1254 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
1255 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
1256 AndValue));
1257 }
1258 if (SrcSize > DstSize) {
1259 Value *Trunc = Builder.CreateTrunc(A, CI.getType());
1260 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
1261 return BinaryOperator::CreateAnd(Trunc,
1262 ConstantInt::get(Trunc->getType(),
1263 AndValue));
1264 }
1265 }
1266
1267 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(Src))
1268 return transformZExtICmp(Cmp, CI);
1269
1270 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
1271 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
1272 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp) if at least one
1273 // of the (zext icmp) can be eliminated. If so, immediately perform the
1274 // according elimination.
1275 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
1276 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
1277 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
1278 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType() &&
1279 (transformZExtICmp(LHS, CI, false) ||
1280 transformZExtICmp(RHS, CI, false))) {
1281 // zext (or icmp, icmp) -> or (zext icmp), (zext icmp)
1282 Value *LCast = Builder.CreateZExt(LHS, CI.getType(), LHS->getName());
1283 Value *RCast = Builder.CreateZExt(RHS, CI.getType(), RHS->getName());
1284 Value *Or = Builder.CreateOr(LCast, RCast, CI.getName());
1285 if (auto *OrInst = dyn_cast<Instruction>(Or))
1286 Builder.SetInsertPoint(OrInst);
1287
1288 // Perform the elimination.
1289 if (auto *LZExt = dyn_cast<ZExtInst>(LCast))
1290 transformZExtICmp(LHS, *LZExt);
1291 if (auto *RZExt = dyn_cast<ZExtInst>(RCast))
1292 transformZExtICmp(RHS, *RZExt);
1293
1294 return replaceInstUsesWith(CI, Or);
1295 }
1296 }
1297
1298 // zext(trunc(X) & C) -> (X & zext(C)).
1299 Constant *C;
1300 Value *X;
1301 if (SrcI &&
1302 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
1303 X->getType() == CI.getType())
1304 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
1305
1306 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
1307 Value *And;
1308 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
1309 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
1310 X->getType() == CI.getType()) {
1311 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
1312 return BinaryOperator::CreateXor(Builder.CreateAnd(X, ZC), ZC);
1313 }
1314
1315 return nullptr;
1316 }
1317
1318 /// Transform (sext icmp) to bitwise / integer operations to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)1319 Instruction *InstCombinerImpl::transformSExtICmp(ICmpInst *ICI,
1320 Instruction &CI) {
1321 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
1322 ICmpInst::Predicate Pred = ICI->getPredicate();
1323
1324 // Don't bother if Op1 isn't of vector or integer type.
1325 if (!Op1->getType()->isIntOrIntVectorTy())
1326 return nullptr;
1327
1328 if ((Pred == ICmpInst::ICMP_SLT && match(Op1, m_ZeroInt())) ||
1329 (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))) {
1330 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
1331 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
1332 Value *Sh = ConstantInt::get(Op0->getType(),
1333 Op0->getType()->getScalarSizeInBits() - 1);
1334 Value *In = Builder.CreateAShr(Op0, Sh, Op0->getName() + ".lobit");
1335 if (In->getType() != CI.getType())
1336 In = Builder.CreateIntCast(In, CI.getType(), true /*SExt*/);
1337
1338 if (Pred == ICmpInst::ICMP_SGT)
1339 In = Builder.CreateNot(In, In->getName() + ".not");
1340 return replaceInstUsesWith(CI, In);
1341 }
1342
1343 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1344 // If we know that only one bit of the LHS of the icmp can be set and we
1345 // have an equality comparison with zero or a power of 2, we can transform
1346 // the icmp and sext into bitwise/integer operations.
1347 if (ICI->hasOneUse() &&
1348 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
1349 KnownBits Known = computeKnownBits(Op0, 0, &CI);
1350
1351 APInt KnownZeroMask(~Known.Zero);
1352 if (KnownZeroMask.isPowerOf2()) {
1353 Value *In = ICI->getOperand(0);
1354
1355 // If the icmp tests for a known zero bit we can constant fold it.
1356 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
1357 Value *V = Pred == ICmpInst::ICMP_NE ?
1358 ConstantInt::getAllOnesValue(CI.getType()) :
1359 ConstantInt::getNullValue(CI.getType());
1360 return replaceInstUsesWith(CI, V);
1361 }
1362
1363 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
1364 // sext ((x & 2^n) == 0) -> (x >> n) - 1
1365 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
1366 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
1367 // Perform a right shift to place the desired bit in the LSB.
1368 if (ShiftAmt)
1369 In = Builder.CreateLShr(In,
1370 ConstantInt::get(In->getType(), ShiftAmt));
1371
1372 // At this point "In" is either 1 or 0. Subtract 1 to turn
1373 // {1, 0} -> {0, -1}.
1374 In = Builder.CreateAdd(In,
1375 ConstantInt::getAllOnesValue(In->getType()),
1376 "sext");
1377 } else {
1378 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
1379 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
1380 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
1381 // Perform a left shift to place the desired bit in the MSB.
1382 if (ShiftAmt)
1383 In = Builder.CreateShl(In,
1384 ConstantInt::get(In->getType(), ShiftAmt));
1385
1386 // Distribute the bit over the whole bit width.
1387 In = Builder.CreateAShr(In, ConstantInt::get(In->getType(),
1388 KnownZeroMask.getBitWidth() - 1), "sext");
1389 }
1390
1391 if (CI.getType() == In->getType())
1392 return replaceInstUsesWith(CI, In);
1393 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
1394 }
1395 }
1396 }
1397
1398 return nullptr;
1399 }
1400
1401 /// Return true if we can take the specified value and return it as type Ty
1402 /// without inserting any new casts and without changing the value of the common
1403 /// low bits. This is used by code that tries to promote integer operations to
1404 /// a wider types will allow us to eliminate the extension.
1405 ///
1406 /// This function works on both vectors and scalars.
1407 ///
canEvaluateSExtd(Value * V,Type * Ty)1408 static bool canEvaluateSExtd(Value *V, Type *Ty) {
1409 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
1410 "Can't sign extend type to a smaller type");
1411 if (canAlwaysEvaluateInType(V, Ty))
1412 return true;
1413 if (canNotEvaluateInType(V, Ty))
1414 return false;
1415
1416 auto *I = cast<Instruction>(V);
1417 switch (I->getOpcode()) {
1418 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1419 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1420 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1421 return true;
1422 case Instruction::And:
1423 case Instruction::Or:
1424 case Instruction::Xor:
1425 case Instruction::Add:
1426 case Instruction::Sub:
1427 case Instruction::Mul:
1428 // These operators can all arbitrarily be extended if their inputs can.
1429 return canEvaluateSExtd(I->getOperand(0), Ty) &&
1430 canEvaluateSExtd(I->getOperand(1), Ty);
1431
1432 //case Instruction::Shl: TODO
1433 //case Instruction::LShr: TODO
1434
1435 case Instruction::Select:
1436 return canEvaluateSExtd(I->getOperand(1), Ty) &&
1437 canEvaluateSExtd(I->getOperand(2), Ty);
1438
1439 case Instruction::PHI: {
1440 // We can change a phi if we can change all operands. Note that we never
1441 // get into trouble with cyclic PHIs here because we only consider
1442 // instructions with a single use.
1443 PHINode *PN = cast<PHINode>(I);
1444 for (Value *IncValue : PN->incoming_values())
1445 if (!canEvaluateSExtd(IncValue, Ty)) return false;
1446 return true;
1447 }
1448 default:
1449 // TODO: Can handle more cases here.
1450 break;
1451 }
1452
1453 return false;
1454 }
1455
visitSExt(SExtInst & CI)1456 Instruction *InstCombinerImpl::visitSExt(SExtInst &CI) {
1457 // If this sign extend is only used by a truncate, let the truncate be
1458 // eliminated before we try to optimize this sext.
1459 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1460 return nullptr;
1461
1462 if (Instruction *I = commonCastTransforms(CI))
1463 return I;
1464
1465 Value *Src = CI.getOperand(0);
1466 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1467
1468 // If we know that the value being extended is positive, we can use a zext
1469 // instead.
1470 KnownBits Known = computeKnownBits(Src, 0, &CI);
1471 if (Known.isNonNegative())
1472 return CastInst::Create(Instruction::ZExt, Src, DestTy);
1473
1474 // Try to extend the entire expression tree to the wide destination type.
1475 if (shouldChangeType(SrcTy, DestTy) && canEvaluateSExtd(Src, DestTy)) {
1476 // Okay, we can transform this! Insert the new expression now.
1477 LLVM_DEBUG(
1478 dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1479 " to avoid sign extend: "
1480 << CI << '\n');
1481 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1482 assert(Res->getType() == DestTy);
1483
1484 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1485 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1486
1487 // If the high bits are already filled with sign bit, just replace this
1488 // cast with the result.
1489 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1490 return replaceInstUsesWith(CI, Res);
1491
1492 // We need to emit a shl + ashr to do the sign extend.
1493 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1494 return BinaryOperator::CreateAShr(Builder.CreateShl(Res, ShAmt, "sext"),
1495 ShAmt);
1496 }
1497
1498 // If the input is a trunc from the destination type, then turn sext(trunc(x))
1499 // into shifts.
1500 Value *X;
1501 if (match(Src, m_OneUse(m_Trunc(m_Value(X)))) && X->getType() == DestTy) {
1502 // sext(trunc(X)) --> ashr(shl(X, C), C)
1503 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1504 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1505 Constant *ShAmt = ConstantInt::get(DestTy, DestBitSize - SrcBitSize);
1506 return BinaryOperator::CreateAShr(Builder.CreateShl(X, ShAmt), ShAmt);
1507 }
1508
1509 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1510 return transformSExtICmp(ICI, CI);
1511
1512 // If the input is a shl/ashr pair of a same constant, then this is a sign
1513 // extension from a smaller value. If we could trust arbitrary bitwidth
1514 // integers, we could turn this into a truncate to the smaller bit and then
1515 // use a sext for the whole extension. Since we don't, look deeper and check
1516 // for a truncate. If the source and dest are the same type, eliminate the
1517 // trunc and extend and just do shifts. For example, turn:
1518 // %a = trunc i32 %i to i8
1519 // %b = shl i8 %a, C
1520 // %c = ashr i8 %b, C
1521 // %d = sext i8 %c to i32
1522 // into:
1523 // %a = shl i32 %i, 32-(8-C)
1524 // %d = ashr i32 %a, 32-(8-C)
1525 Value *A = nullptr;
1526 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1527 Constant *BA = nullptr, *CA = nullptr;
1528 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_Constant(BA)),
1529 m_Constant(CA))) &&
1530 BA->isElementWiseEqual(CA) && A->getType() == DestTy) {
1531 Constant *WideCurrShAmt = ConstantExpr::getSExt(CA, DestTy);
1532 Constant *NumLowbitsLeft = ConstantExpr::getSub(
1533 ConstantInt::get(DestTy, SrcTy->getScalarSizeInBits()), WideCurrShAmt);
1534 Constant *NewShAmt = ConstantExpr::getSub(
1535 ConstantInt::get(DestTy, DestTy->getScalarSizeInBits()),
1536 NumLowbitsLeft);
1537 NewShAmt =
1538 Constant::mergeUndefsWith(Constant::mergeUndefsWith(NewShAmt, BA), CA);
1539 A = Builder.CreateShl(A, NewShAmt, CI.getName());
1540 return BinaryOperator::CreateAShr(A, NewShAmt);
1541 }
1542
1543 return nullptr;
1544 }
1545
1546 /// Return a Constant* for the specified floating-point constant if it fits
1547 /// in the specified FP type without changing its value.
fitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1548 static bool fitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1549 bool losesInfo;
1550 APFloat F = CFP->getValueAPF();
1551 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1552 return !losesInfo;
1553 }
1554
shrinkFPConstant(ConstantFP * CFP)1555 static Type *shrinkFPConstant(ConstantFP *CFP) {
1556 if (CFP->getType() == Type::getPPC_FP128Ty(CFP->getContext()))
1557 return nullptr; // No constant folding of this.
1558 // See if the value can be truncated to half and then reextended.
1559 if (fitsInFPType(CFP, APFloat::IEEEhalf()))
1560 return Type::getHalfTy(CFP->getContext());
1561 // See if the value can be truncated to float and then reextended.
1562 if (fitsInFPType(CFP, APFloat::IEEEsingle()))
1563 return Type::getFloatTy(CFP->getContext());
1564 if (CFP->getType()->isDoubleTy())
1565 return nullptr; // Won't shrink.
1566 if (fitsInFPType(CFP, APFloat::IEEEdouble()))
1567 return Type::getDoubleTy(CFP->getContext());
1568 // Don't try to shrink to various long double types.
1569 return nullptr;
1570 }
1571
1572 // Determine if this is a vector of ConstantFPs and if so, return the minimal
1573 // type we can safely truncate all elements to.
1574 // TODO: Make these support undef elements.
shrinkFPConstantVector(Value * V)1575 static Type *shrinkFPConstantVector(Value *V) {
1576 auto *CV = dyn_cast<Constant>(V);
1577 auto *CVVTy = dyn_cast<FixedVectorType>(V->getType());
1578 if (!CV || !CVVTy)
1579 return nullptr;
1580
1581 Type *MinType = nullptr;
1582
1583 unsigned NumElts = CVVTy->getNumElements();
1584
1585 // For fixed-width vectors we find the minimal type by looking
1586 // through the constant values of the vector.
1587 for (unsigned i = 0; i != NumElts; ++i) {
1588 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
1589 if (!CFP)
1590 return nullptr;
1591
1592 Type *T = shrinkFPConstant(CFP);
1593 if (!T)
1594 return nullptr;
1595
1596 // If we haven't found a type yet or this type has a larger mantissa than
1597 // our previous type, this is our new minimal type.
1598 if (!MinType || T->getFPMantissaWidth() > MinType->getFPMantissaWidth())
1599 MinType = T;
1600 }
1601
1602 // Make a vector type from the minimal type.
1603 return FixedVectorType::get(MinType, NumElts);
1604 }
1605
1606 /// Find the minimum FP type we can safely truncate to.
getMinimumFPType(Value * V)1607 static Type *getMinimumFPType(Value *V) {
1608 if (auto *FPExt = dyn_cast<FPExtInst>(V))
1609 return FPExt->getOperand(0)->getType();
1610
1611 // If this value is a constant, return the constant in the smallest FP type
1612 // that can accurately represent it. This allows us to turn
1613 // (float)((double)X+2.0) into x+2.0f.
1614 if (auto *CFP = dyn_cast<ConstantFP>(V))
1615 if (Type *T = shrinkFPConstant(CFP))
1616 return T;
1617
1618 // We can only correctly find a minimum type for a scalable vector when it is
1619 // a splat. For splats of constant values the fpext is wrapped up as a
1620 // ConstantExpr.
1621 if (auto *FPCExt = dyn_cast<ConstantExpr>(V))
1622 if (FPCExt->getOpcode() == Instruction::FPExt)
1623 return FPCExt->getOperand(0)->getType();
1624
1625 // Try to shrink a vector of FP constants. This returns nullptr on scalable
1626 // vectors
1627 if (Type *T = shrinkFPConstantVector(V))
1628 return T;
1629
1630 return V->getType();
1631 }
1632
1633 /// Return true if the cast from integer to FP can be proven to be exact for all
1634 /// possible inputs (the conversion does not lose any precision).
isKnownExactCastIntToFP(CastInst & I)1635 static bool isKnownExactCastIntToFP(CastInst &I) {
1636 CastInst::CastOps Opcode = I.getOpcode();
1637 assert((Opcode == CastInst::SIToFP || Opcode == CastInst::UIToFP) &&
1638 "Unexpected cast");
1639 Value *Src = I.getOperand(0);
1640 Type *SrcTy = Src->getType();
1641 Type *FPTy = I.getType();
1642 bool IsSigned = Opcode == Instruction::SIToFP;
1643 int SrcSize = (int)SrcTy->getScalarSizeInBits() - IsSigned;
1644
1645 // Easy case - if the source integer type has less bits than the FP mantissa,
1646 // then the cast must be exact.
1647 int DestNumSigBits = FPTy->getFPMantissaWidth();
1648 if (SrcSize <= DestNumSigBits)
1649 return true;
1650
1651 // Cast from FP to integer and back to FP is independent of the intermediate
1652 // integer width because of poison on overflow.
1653 Value *F;
1654 if (match(Src, m_FPToSI(m_Value(F))) || match(Src, m_FPToUI(m_Value(F)))) {
1655 // If this is uitofp (fptosi F), the source needs an extra bit to avoid
1656 // potential rounding of negative FP input values.
1657 int SrcNumSigBits = F->getType()->getFPMantissaWidth();
1658 if (!IsSigned && match(Src, m_FPToSI(m_Value())))
1659 SrcNumSigBits++;
1660
1661 // [su]itofp (fpto[su]i F) --> exact if the source type has less or equal
1662 // significant bits than the destination (and make sure neither type is
1663 // weird -- ppc_fp128).
1664 if (SrcNumSigBits > 0 && DestNumSigBits > 0 &&
1665 SrcNumSigBits <= DestNumSigBits)
1666 return true;
1667 }
1668
1669 // TODO:
1670 // Try harder to find if the source integer type has less significant bits.
1671 // For example, compute number of sign bits or compute low bit mask.
1672 return false;
1673 }
1674
visitFPTrunc(FPTruncInst & FPT)1675 Instruction *InstCombinerImpl::visitFPTrunc(FPTruncInst &FPT) {
1676 if (Instruction *I = commonCastTransforms(FPT))
1677 return I;
1678
1679 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1680 // simplify this expression to avoid one or more of the trunc/extend
1681 // operations if we can do so without changing the numerical results.
1682 //
1683 // The exact manner in which the widths of the operands interact to limit
1684 // what we can and cannot do safely varies from operation to operation, and
1685 // is explained below in the various case statements.
1686 Type *Ty = FPT.getType();
1687 auto *BO = dyn_cast<BinaryOperator>(FPT.getOperand(0));
1688 if (BO && BO->hasOneUse()) {
1689 Type *LHSMinType = getMinimumFPType(BO->getOperand(0));
1690 Type *RHSMinType = getMinimumFPType(BO->getOperand(1));
1691 unsigned OpWidth = BO->getType()->getFPMantissaWidth();
1692 unsigned LHSWidth = LHSMinType->getFPMantissaWidth();
1693 unsigned RHSWidth = RHSMinType->getFPMantissaWidth();
1694 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1695 unsigned DstWidth = Ty->getFPMantissaWidth();
1696 switch (BO->getOpcode()) {
1697 default: break;
1698 case Instruction::FAdd:
1699 case Instruction::FSub:
1700 // For addition and subtraction, the infinitely precise result can
1701 // essentially be arbitrarily wide; proving that double rounding
1702 // will not occur because the result of OpI is exact (as we will for
1703 // FMul, for example) is hopeless. However, we *can* nonetheless
1704 // frequently know that double rounding cannot occur (or that it is
1705 // innocuous) by taking advantage of the specific structure of
1706 // infinitely-precise results that admit double rounding.
1707 //
1708 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1709 // to represent both sources, we can guarantee that the double
1710 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1711 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1712 // for proof of this fact).
1713 //
1714 // Note: Figueroa does not consider the case where DstFormat !=
1715 // SrcFormat. It's possible (likely even!) that this analysis
1716 // could be tightened for those cases, but they are rare (the main
1717 // case of interest here is (float)((double)float + float)).
1718 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1719 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1720 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1721 Instruction *RI = BinaryOperator::Create(BO->getOpcode(), LHS, RHS);
1722 RI->copyFastMathFlags(BO);
1723 return RI;
1724 }
1725 break;
1726 case Instruction::FMul:
1727 // For multiplication, the infinitely precise result has at most
1728 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1729 // that such a value can be exactly represented, then no double
1730 // rounding can possibly occur; we can safely perform the operation
1731 // in the destination format if it can represent both sources.
1732 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1733 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1734 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1735 return BinaryOperator::CreateFMulFMF(LHS, RHS, BO);
1736 }
1737 break;
1738 case Instruction::FDiv:
1739 // For division, we use again use the bound from Figueroa's
1740 // dissertation. I am entirely certain that this bound can be
1741 // tightened in the unbalanced operand case by an analysis based on
1742 // the diophantine rational approximation bound, but the well-known
1743 // condition used here is a good conservative first pass.
1744 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1745 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1746 Value *LHS = Builder.CreateFPTrunc(BO->getOperand(0), Ty);
1747 Value *RHS = Builder.CreateFPTrunc(BO->getOperand(1), Ty);
1748 return BinaryOperator::CreateFDivFMF(LHS, RHS, BO);
1749 }
1750 break;
1751 case Instruction::FRem: {
1752 // Remainder is straightforward. Remainder is always exact, so the
1753 // type of OpI doesn't enter into things at all. We simply evaluate
1754 // in whichever source type is larger, then convert to the
1755 // destination type.
1756 if (SrcWidth == OpWidth)
1757 break;
1758 Value *LHS, *RHS;
1759 if (LHSWidth == SrcWidth) {
1760 LHS = Builder.CreateFPTrunc(BO->getOperand(0), LHSMinType);
1761 RHS = Builder.CreateFPTrunc(BO->getOperand(1), LHSMinType);
1762 } else {
1763 LHS = Builder.CreateFPTrunc(BO->getOperand(0), RHSMinType);
1764 RHS = Builder.CreateFPTrunc(BO->getOperand(1), RHSMinType);
1765 }
1766
1767 Value *ExactResult = Builder.CreateFRemFMF(LHS, RHS, BO);
1768 return CastInst::CreateFPCast(ExactResult, Ty);
1769 }
1770 }
1771 }
1772
1773 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1774 Value *X;
1775 Instruction *Op = dyn_cast<Instruction>(FPT.getOperand(0));
1776 if (Op && Op->hasOneUse()) {
1777 // FIXME: The FMF should propagate from the fptrunc, not the source op.
1778 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1779 if (isa<FPMathOperator>(Op))
1780 Builder.setFastMathFlags(Op->getFastMathFlags());
1781
1782 if (match(Op, m_FNeg(m_Value(X)))) {
1783 Value *InnerTrunc = Builder.CreateFPTrunc(X, Ty);
1784
1785 return UnaryOperator::CreateFNegFMF(InnerTrunc, Op);
1786 }
1787
1788 // If we are truncating a select that has an extended operand, we can
1789 // narrow the other operand and do the select as a narrow op.
1790 Value *Cond, *X, *Y;
1791 if (match(Op, m_Select(m_Value(Cond), m_FPExt(m_Value(X)), m_Value(Y))) &&
1792 X->getType() == Ty) {
1793 // fptrunc (select Cond, (fpext X), Y --> select Cond, X, (fptrunc Y)
1794 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1795 Value *Sel = Builder.CreateSelect(Cond, X, NarrowY, "narrow.sel", Op);
1796 return replaceInstUsesWith(FPT, Sel);
1797 }
1798 if (match(Op, m_Select(m_Value(Cond), m_Value(Y), m_FPExt(m_Value(X)))) &&
1799 X->getType() == Ty) {
1800 // fptrunc (select Cond, Y, (fpext X) --> select Cond, (fptrunc Y), X
1801 Value *NarrowY = Builder.CreateFPTrunc(Y, Ty);
1802 Value *Sel = Builder.CreateSelect(Cond, NarrowY, X, "narrow.sel", Op);
1803 return replaceInstUsesWith(FPT, Sel);
1804 }
1805 }
1806
1807 if (auto *II = dyn_cast<IntrinsicInst>(FPT.getOperand(0))) {
1808 switch (II->getIntrinsicID()) {
1809 default: break;
1810 case Intrinsic::ceil:
1811 case Intrinsic::fabs:
1812 case Intrinsic::floor:
1813 case Intrinsic::nearbyint:
1814 case Intrinsic::rint:
1815 case Intrinsic::round:
1816 case Intrinsic::roundeven:
1817 case Intrinsic::trunc: {
1818 Value *Src = II->getArgOperand(0);
1819 if (!Src->hasOneUse())
1820 break;
1821
1822 // Except for fabs, this transformation requires the input of the unary FP
1823 // operation to be itself an fpext from the type to which we're
1824 // truncating.
1825 if (II->getIntrinsicID() != Intrinsic::fabs) {
1826 FPExtInst *FPExtSrc = dyn_cast<FPExtInst>(Src);
1827 if (!FPExtSrc || FPExtSrc->getSrcTy() != Ty)
1828 break;
1829 }
1830
1831 // Do unary FP operation on smaller type.
1832 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1833 Value *InnerTrunc = Builder.CreateFPTrunc(Src, Ty);
1834 Function *Overload = Intrinsic::getDeclaration(FPT.getModule(),
1835 II->getIntrinsicID(), Ty);
1836 SmallVector<OperandBundleDef, 1> OpBundles;
1837 II->getOperandBundlesAsDefs(OpBundles);
1838 CallInst *NewCI =
1839 CallInst::Create(Overload, {InnerTrunc}, OpBundles, II->getName());
1840 NewCI->copyFastMathFlags(II);
1841 return NewCI;
1842 }
1843 }
1844 }
1845
1846 if (Instruction *I = shrinkInsertElt(FPT, Builder))
1847 return I;
1848
1849 Value *Src = FPT.getOperand(0);
1850 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1851 auto *FPCast = cast<CastInst>(Src);
1852 if (isKnownExactCastIntToFP(*FPCast))
1853 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1854 }
1855
1856 return nullptr;
1857 }
1858
visitFPExt(CastInst & FPExt)1859 Instruction *InstCombinerImpl::visitFPExt(CastInst &FPExt) {
1860 // If the source operand is a cast from integer to FP and known exact, then
1861 // cast the integer operand directly to the destination type.
1862 Type *Ty = FPExt.getType();
1863 Value *Src = FPExt.getOperand(0);
1864 if (isa<SIToFPInst>(Src) || isa<UIToFPInst>(Src)) {
1865 auto *FPCast = cast<CastInst>(Src);
1866 if (isKnownExactCastIntToFP(*FPCast))
1867 return CastInst::Create(FPCast->getOpcode(), FPCast->getOperand(0), Ty);
1868 }
1869
1870 return commonCastTransforms(FPExt);
1871 }
1872
1873 /// fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1874 /// This is safe if the intermediate type has enough bits in its mantissa to
1875 /// accurately represent all values of X. For example, this won't work with
1876 /// i64 -> float -> i64.
foldItoFPtoI(CastInst & FI)1877 Instruction *InstCombinerImpl::foldItoFPtoI(CastInst &FI) {
1878 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1879 return nullptr;
1880
1881 auto *OpI = cast<CastInst>(FI.getOperand(0));
1882 Value *X = OpI->getOperand(0);
1883 Type *XType = X->getType();
1884 Type *DestType = FI.getType();
1885 bool IsOutputSigned = isa<FPToSIInst>(FI);
1886
1887 // Since we can assume the conversion won't overflow, our decision as to
1888 // whether the input will fit in the float should depend on the minimum
1889 // of the input range and output range.
1890
1891 // This means this is also safe for a signed input and unsigned output, since
1892 // a negative input would lead to undefined behavior.
1893 if (!isKnownExactCastIntToFP(*OpI)) {
1894 // The first cast may not round exactly based on the source integer width
1895 // and FP width, but the overflow UB rules can still allow this to fold.
1896 // If the destination type is narrow, that means the intermediate FP value
1897 // must be large enough to hold the source value exactly.
1898 // For example, (uint8_t)((float)(uint32_t 16777217) is undefined behavior.
1899 int OutputSize = (int)DestType->getScalarSizeInBits() - IsOutputSigned;
1900 if (OutputSize > OpI->getType()->getFPMantissaWidth())
1901 return nullptr;
1902 }
1903
1904 if (DestType->getScalarSizeInBits() > XType->getScalarSizeInBits()) {
1905 bool IsInputSigned = isa<SIToFPInst>(OpI);
1906 if (IsInputSigned && IsOutputSigned)
1907 return new SExtInst(X, DestType);
1908 return new ZExtInst(X, DestType);
1909 }
1910 if (DestType->getScalarSizeInBits() < XType->getScalarSizeInBits())
1911 return new TruncInst(X, DestType);
1912
1913 assert(XType == DestType && "Unexpected types for int to FP to int casts");
1914 return replaceInstUsesWith(FI, X);
1915 }
1916
visitFPToUI(FPToUIInst & FI)1917 Instruction *InstCombinerImpl::visitFPToUI(FPToUIInst &FI) {
1918 if (Instruction *I = foldItoFPtoI(FI))
1919 return I;
1920
1921 return commonCastTransforms(FI);
1922 }
1923
visitFPToSI(FPToSIInst & FI)1924 Instruction *InstCombinerImpl::visitFPToSI(FPToSIInst &FI) {
1925 if (Instruction *I = foldItoFPtoI(FI))
1926 return I;
1927
1928 return commonCastTransforms(FI);
1929 }
1930
visitUIToFP(CastInst & CI)1931 Instruction *InstCombinerImpl::visitUIToFP(CastInst &CI) {
1932 return commonCastTransforms(CI);
1933 }
1934
visitSIToFP(CastInst & CI)1935 Instruction *InstCombinerImpl::visitSIToFP(CastInst &CI) {
1936 return commonCastTransforms(CI);
1937 }
1938
visitIntToPtr(IntToPtrInst & CI)1939 Instruction *InstCombinerImpl::visitIntToPtr(IntToPtrInst &CI) {
1940 // If the source integer type is not the intptr_t type for this target, do a
1941 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1942 // cast to be exposed to other transforms.
1943 unsigned AS = CI.getAddressSpace();
1944 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1945 DL.getPointerSizeInBits(AS)) {
1946 Type *Ty = CI.getOperand(0)->getType()->getWithNewType(
1947 DL.getIntPtrType(CI.getContext(), AS));
1948 Value *P = Builder.CreateZExtOrTrunc(CI.getOperand(0), Ty);
1949 return new IntToPtrInst(P, CI.getType());
1950 }
1951
1952 if (Instruction *I = commonCastTransforms(CI))
1953 return I;
1954
1955 return nullptr;
1956 }
1957
1958 /// Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1959 Instruction *InstCombinerImpl::commonPointerCastTransforms(CastInst &CI) {
1960 Value *Src = CI.getOperand(0);
1961
1962 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1963 // If casting the result of a getelementptr instruction with no offset, turn
1964 // this into a cast of the original pointer!
1965 if (GEP->hasAllZeroIndices() &&
1966 // If CI is an addrspacecast and GEP changes the poiner type, merging
1967 // GEP into CI would undo canonicalizing addrspacecast with different
1968 // pointer types, causing infinite loops.
1969 (!isa<AddrSpaceCastInst>(CI) ||
1970 GEP->getType() == GEP->getPointerOperandType())) {
1971 // Changing the cast operand is usually not a good idea but it is safe
1972 // here because the pointer operand is being replaced with another
1973 // pointer operand so the opcode doesn't need to change.
1974 return replaceOperand(CI, 0, GEP->getOperand(0));
1975 }
1976 }
1977
1978 return commonCastTransforms(CI);
1979 }
1980
visitPtrToInt(PtrToIntInst & CI)1981 Instruction *InstCombinerImpl::visitPtrToInt(PtrToIntInst &CI) {
1982 // If the destination integer type is not the intptr_t type for this target,
1983 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1984 // to be exposed to other transforms.
1985 Value *SrcOp = CI.getPointerOperand();
1986 Type *SrcTy = SrcOp->getType();
1987 Type *Ty = CI.getType();
1988 unsigned AS = CI.getPointerAddressSpace();
1989 unsigned TySize = Ty->getScalarSizeInBits();
1990 unsigned PtrSize = DL.getPointerSizeInBits(AS);
1991 if (TySize != PtrSize) {
1992 Type *IntPtrTy =
1993 SrcTy->getWithNewType(DL.getIntPtrType(CI.getContext(), AS));
1994 Value *P = Builder.CreatePtrToInt(SrcOp, IntPtrTy);
1995 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1996 }
1997
1998 Value *Vec, *Scalar, *Index;
1999 if (match(SrcOp, m_OneUse(m_InsertElt(m_IntToPtr(m_Value(Vec)),
2000 m_Value(Scalar), m_Value(Index)))) &&
2001 Vec->getType() == Ty) {
2002 assert(Vec->getType()->getScalarSizeInBits() == PtrSize && "Wrong type");
2003 // Convert the scalar to int followed by insert to eliminate one cast:
2004 // p2i (ins (i2p Vec), Scalar, Index --> ins Vec, (p2i Scalar), Index
2005 Value *NewCast = Builder.CreatePtrToInt(Scalar, Ty->getScalarType());
2006 return InsertElementInst::Create(Vec, NewCast, Index);
2007 }
2008
2009 return commonPointerCastTransforms(CI);
2010 }
2011
2012 /// This input value (which is known to have vector type) is being zero extended
2013 /// or truncated to the specified vector type. Since the zext/trunc is done
2014 /// using an integer type, we have a (bitcast(cast(bitcast))) pattern,
2015 /// endianness will impact which end of the vector that is extended or
2016 /// truncated.
2017 ///
2018 /// A vector is always stored with index 0 at the lowest address, which
2019 /// corresponds to the most significant bits for a big endian stored integer and
2020 /// the least significant bits for little endian. A trunc/zext of an integer
2021 /// impacts the big end of the integer. Thus, we need to add/remove elements at
2022 /// the front of the vector for big endian targets, and the back of the vector
2023 /// for little endian targets.
2024 ///
2025 /// Try to replace it with a shuffle (and vector/vector bitcast) if possible.
2026 ///
2027 /// The source and destination vector types may have different element types.
2028 static Instruction *
optimizeVectorResizeWithIntegerBitCasts(Value * InVal,VectorType * DestTy,InstCombinerImpl & IC)2029 optimizeVectorResizeWithIntegerBitCasts(Value *InVal, VectorType *DestTy,
2030 InstCombinerImpl &IC) {
2031 // We can only do this optimization if the output is a multiple of the input
2032 // element size, or the input is a multiple of the output element size.
2033 // Convert the input type to have the same element type as the output.
2034 VectorType *SrcTy = cast<VectorType>(InVal->getType());
2035
2036 if (SrcTy->getElementType() != DestTy->getElementType()) {
2037 // The input types don't need to be identical, but for now they must be the
2038 // same size. There is no specific reason we couldn't handle things like
2039 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
2040 // there yet.
2041 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
2042 DestTy->getElementType()->getPrimitiveSizeInBits())
2043 return nullptr;
2044
2045 SrcTy =
2046 FixedVectorType::get(DestTy->getElementType(),
2047 cast<FixedVectorType>(SrcTy)->getNumElements());
2048 InVal = IC.Builder.CreateBitCast(InVal, SrcTy);
2049 }
2050
2051 bool IsBigEndian = IC.getDataLayout().isBigEndian();
2052 unsigned SrcElts = cast<FixedVectorType>(SrcTy)->getNumElements();
2053 unsigned DestElts = cast<FixedVectorType>(DestTy)->getNumElements();
2054
2055 assert(SrcElts != DestElts && "Element counts should be different.");
2056
2057 // Now that the element types match, get the shuffle mask and RHS of the
2058 // shuffle to use, which depends on whether we're increasing or decreasing the
2059 // size of the input.
2060 SmallVector<int, 16> ShuffleMaskStorage;
2061 ArrayRef<int> ShuffleMask;
2062 Value *V2;
2063
2064 // Produce an identify shuffle mask for the src vector.
2065 ShuffleMaskStorage.resize(SrcElts);
2066 std::iota(ShuffleMaskStorage.begin(), ShuffleMaskStorage.end(), 0);
2067
2068 if (SrcElts > DestElts) {
2069 // If we're shrinking the number of elements (rewriting an integer
2070 // truncate), just shuffle in the elements corresponding to the least
2071 // significant bits from the input and use undef as the second shuffle
2072 // input.
2073 V2 = UndefValue::get(SrcTy);
2074 // Make sure the shuffle mask selects the "least significant bits" by
2075 // keeping elements from back of the src vector for big endian, and from the
2076 // front for little endian.
2077 ShuffleMask = ShuffleMaskStorage;
2078 if (IsBigEndian)
2079 ShuffleMask = ShuffleMask.take_back(DestElts);
2080 else
2081 ShuffleMask = ShuffleMask.take_front(DestElts);
2082 } else {
2083 // If we're increasing the number of elements (rewriting an integer zext),
2084 // shuffle in all of the elements from InVal. Fill the rest of the result
2085 // elements with zeros from a constant zero.
2086 V2 = Constant::getNullValue(SrcTy);
2087 // Use first elt from V2 when indicating zero in the shuffle mask.
2088 uint32_t NullElt = SrcElts;
2089 // Extend with null values in the "most significant bits" by adding elements
2090 // in front of the src vector for big endian, and at the back for little
2091 // endian.
2092 unsigned DeltaElts = DestElts - SrcElts;
2093 if (IsBigEndian)
2094 ShuffleMaskStorage.insert(ShuffleMaskStorage.begin(), DeltaElts, NullElt);
2095 else
2096 ShuffleMaskStorage.append(DeltaElts, NullElt);
2097 ShuffleMask = ShuffleMaskStorage;
2098 }
2099
2100 return new ShuffleVectorInst(InVal, V2, ShuffleMask);
2101 }
2102
isMultipleOfTypeSize(unsigned Value,Type * Ty)2103 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
2104 return Value % Ty->getPrimitiveSizeInBits() == 0;
2105 }
2106
getTypeSizeIndex(unsigned Value,Type * Ty)2107 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
2108 return Value / Ty->getPrimitiveSizeInBits();
2109 }
2110
2111 /// V is a value which is inserted into a vector of VecEltTy.
2112 /// Look through the value to see if we can decompose it into
2113 /// insertions into the vector. See the example in the comment for
2114 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
2115 /// The type of V is always a non-zero multiple of VecEltTy's size.
2116 /// Shift is the number of bits between the lsb of V and the lsb of
2117 /// the vector.
2118 ///
2119 /// This returns false if the pattern can't be matched or true if it can,
2120 /// filling in Elements with the elements found here.
collectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)2121 static bool collectInsertionElements(Value *V, unsigned Shift,
2122 SmallVectorImpl<Value *> &Elements,
2123 Type *VecEltTy, bool isBigEndian) {
2124 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
2125 "Shift should be a multiple of the element type size");
2126
2127 // Undef values never contribute useful bits to the result.
2128 if (isa<UndefValue>(V)) return true;
2129
2130 // If we got down to a value of the right type, we win, try inserting into the
2131 // right element.
2132 if (V->getType() == VecEltTy) {
2133 // Inserting null doesn't actually insert any elements.
2134 if (Constant *C = dyn_cast<Constant>(V))
2135 if (C->isNullValue())
2136 return true;
2137
2138 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
2139 if (isBigEndian)
2140 ElementIndex = Elements.size() - ElementIndex - 1;
2141
2142 // Fail if multiple elements are inserted into this slot.
2143 if (Elements[ElementIndex])
2144 return false;
2145
2146 Elements[ElementIndex] = V;
2147 return true;
2148 }
2149
2150 if (Constant *C = dyn_cast<Constant>(V)) {
2151 // Figure out the # elements this provides, and bitcast it or slice it up
2152 // as required.
2153 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
2154 VecEltTy);
2155 // If the constant is the size of a vector element, we just need to bitcast
2156 // it to the right type so it gets properly inserted.
2157 if (NumElts == 1)
2158 return collectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
2159 Shift, Elements, VecEltTy, isBigEndian);
2160
2161 // Okay, this is a constant that covers multiple elements. Slice it up into
2162 // pieces and insert each element-sized piece into the vector.
2163 if (!isa<IntegerType>(C->getType()))
2164 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
2165 C->getType()->getPrimitiveSizeInBits()));
2166 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
2167 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
2168
2169 for (unsigned i = 0; i != NumElts; ++i) {
2170 unsigned ShiftI = Shift+i*ElementSize;
2171 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
2172 ShiftI));
2173 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
2174 if (!collectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
2175 isBigEndian))
2176 return false;
2177 }
2178 return true;
2179 }
2180
2181 if (!V->hasOneUse()) return false;
2182
2183 Instruction *I = dyn_cast<Instruction>(V);
2184 if (!I) return false;
2185 switch (I->getOpcode()) {
2186 default: return false; // Unhandled case.
2187 case Instruction::BitCast:
2188 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2189 isBigEndian);
2190 case Instruction::ZExt:
2191 if (!isMultipleOfTypeSize(
2192 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
2193 VecEltTy))
2194 return false;
2195 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2196 isBigEndian);
2197 case Instruction::Or:
2198 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2199 isBigEndian) &&
2200 collectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
2201 isBigEndian);
2202 case Instruction::Shl: {
2203 // Must be shifting by a constant that is a multiple of the element size.
2204 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
2205 if (!CI) return false;
2206 Shift += CI->getZExtValue();
2207 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
2208 return collectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
2209 isBigEndian);
2210 }
2211
2212 }
2213 }
2214
2215
2216 /// If the input is an 'or' instruction, we may be doing shifts and ors to
2217 /// assemble the elements of the vector manually.
2218 /// Try to rip the code out and replace it with insertelements. This is to
2219 /// optimize code like this:
2220 ///
2221 /// %tmp37 = bitcast float %inc to i32
2222 /// %tmp38 = zext i32 %tmp37 to i64
2223 /// %tmp31 = bitcast float %inc5 to i32
2224 /// %tmp32 = zext i32 %tmp31 to i64
2225 /// %tmp33 = shl i64 %tmp32, 32
2226 /// %ins35 = or i64 %tmp33, %tmp38
2227 /// %tmp43 = bitcast i64 %ins35 to <2 x float>
2228 ///
2229 /// Into two insertelements that do "buildvector{%inc, %inc5}".
optimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombinerImpl & IC)2230 static Value *optimizeIntegerToVectorInsertions(BitCastInst &CI,
2231 InstCombinerImpl &IC) {
2232 auto *DestVecTy = cast<FixedVectorType>(CI.getType());
2233 Value *IntInput = CI.getOperand(0);
2234
2235 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
2236 if (!collectInsertionElements(IntInput, 0, Elements,
2237 DestVecTy->getElementType(),
2238 IC.getDataLayout().isBigEndian()))
2239 return nullptr;
2240
2241 // If we succeeded, we know that all of the element are specified by Elements
2242 // or are zero if Elements has a null entry. Recast this as a set of
2243 // insertions.
2244 Value *Result = Constant::getNullValue(CI.getType());
2245 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
2246 if (!Elements[i]) continue; // Unset element.
2247
2248 Result = IC.Builder.CreateInsertElement(Result, Elements[i],
2249 IC.Builder.getInt32(i));
2250 }
2251
2252 return Result;
2253 }
2254
2255 /// Canonicalize scalar bitcasts of extracted elements into a bitcast of the
2256 /// vector followed by extract element. The backend tends to handle bitcasts of
2257 /// vectors better than bitcasts of scalars because vector registers are
2258 /// usually not type-specific like scalar integer or scalar floating-point.
canonicalizeBitCastExtElt(BitCastInst & BitCast,InstCombinerImpl & IC)2259 static Instruction *canonicalizeBitCastExtElt(BitCastInst &BitCast,
2260 InstCombinerImpl &IC) {
2261 // TODO: Create and use a pattern matcher for ExtractElementInst.
2262 auto *ExtElt = dyn_cast<ExtractElementInst>(BitCast.getOperand(0));
2263 if (!ExtElt || !ExtElt->hasOneUse())
2264 return nullptr;
2265
2266 // The bitcast must be to a vectorizable type, otherwise we can't make a new
2267 // type to extract from.
2268 Type *DestType = BitCast.getType();
2269 if (!VectorType::isValidElementType(DestType))
2270 return nullptr;
2271
2272 auto *NewVecType = VectorType::get(DestType, ExtElt->getVectorOperandType());
2273 auto *NewBC = IC.Builder.CreateBitCast(ExtElt->getVectorOperand(),
2274 NewVecType, "bc");
2275 return ExtractElementInst::Create(NewBC, ExtElt->getIndexOperand());
2276 }
2277
2278 /// Change the type of a bitwise logic operation if we can eliminate a bitcast.
foldBitCastBitwiseLogic(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2279 static Instruction *foldBitCastBitwiseLogic(BitCastInst &BitCast,
2280 InstCombiner::BuilderTy &Builder) {
2281 Type *DestTy = BitCast.getType();
2282 BinaryOperator *BO;
2283 if (!DestTy->isIntOrIntVectorTy() ||
2284 !match(BitCast.getOperand(0), m_OneUse(m_BinOp(BO))) ||
2285 !BO->isBitwiseLogicOp())
2286 return nullptr;
2287
2288 // FIXME: This transform is restricted to vector types to avoid backend
2289 // problems caused by creating potentially illegal operations. If a fix-up is
2290 // added to handle that situation, we can remove this check.
2291 if (!DestTy->isVectorTy() || !BO->getType()->isVectorTy())
2292 return nullptr;
2293
2294 Value *X;
2295 if (match(BO->getOperand(0), m_OneUse(m_BitCast(m_Value(X)))) &&
2296 X->getType() == DestTy && !isa<Constant>(X)) {
2297 // bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
2298 Value *CastedOp1 = Builder.CreateBitCast(BO->getOperand(1), DestTy);
2299 return BinaryOperator::Create(BO->getOpcode(), X, CastedOp1);
2300 }
2301
2302 if (match(BO->getOperand(1), m_OneUse(m_BitCast(m_Value(X)))) &&
2303 X->getType() == DestTy && !isa<Constant>(X)) {
2304 // bitcast(logic(Y, bitcast(X))) --> logic'(bitcast(Y), X)
2305 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2306 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, X);
2307 }
2308
2309 // Canonicalize vector bitcasts to come before vector bitwise logic with a
2310 // constant. This eases recognition of special constants for later ops.
2311 // Example:
2312 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
2313 Constant *C;
2314 if (match(BO->getOperand(1), m_Constant(C))) {
2315 // bitcast (logic X, C) --> logic (bitcast X, C')
2316 Value *CastedOp0 = Builder.CreateBitCast(BO->getOperand(0), DestTy);
2317 Value *CastedC = Builder.CreateBitCast(C, DestTy);
2318 return BinaryOperator::Create(BO->getOpcode(), CastedOp0, CastedC);
2319 }
2320
2321 return nullptr;
2322 }
2323
2324 /// Change the type of a select if we can eliminate a bitcast.
foldBitCastSelect(BitCastInst & BitCast,InstCombiner::BuilderTy & Builder)2325 static Instruction *foldBitCastSelect(BitCastInst &BitCast,
2326 InstCombiner::BuilderTy &Builder) {
2327 Value *Cond, *TVal, *FVal;
2328 if (!match(BitCast.getOperand(0),
2329 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
2330 return nullptr;
2331
2332 // A vector select must maintain the same number of elements in its operands.
2333 Type *CondTy = Cond->getType();
2334 Type *DestTy = BitCast.getType();
2335 if (auto *CondVTy = dyn_cast<VectorType>(CondTy))
2336 if (!DestTy->isVectorTy() ||
2337 CondVTy->getElementCount() !=
2338 cast<VectorType>(DestTy)->getElementCount())
2339 return nullptr;
2340
2341 // FIXME: This transform is restricted from changing the select between
2342 // scalars and vectors to avoid backend problems caused by creating
2343 // potentially illegal operations. If a fix-up is added to handle that
2344 // situation, we can remove this check.
2345 if (DestTy->isVectorTy() != TVal->getType()->isVectorTy())
2346 return nullptr;
2347
2348 auto *Sel = cast<Instruction>(BitCast.getOperand(0));
2349 Value *X;
2350 if (match(TVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2351 !isa<Constant>(X)) {
2352 // bitcast(select(Cond, bitcast(X), Y)) --> select'(Cond, X, bitcast(Y))
2353 Value *CastedVal = Builder.CreateBitCast(FVal, DestTy);
2354 return SelectInst::Create(Cond, X, CastedVal, "", nullptr, Sel);
2355 }
2356
2357 if (match(FVal, m_OneUse(m_BitCast(m_Value(X)))) && X->getType() == DestTy &&
2358 !isa<Constant>(X)) {
2359 // bitcast(select(Cond, Y, bitcast(X))) --> select'(Cond, bitcast(Y), X)
2360 Value *CastedVal = Builder.CreateBitCast(TVal, DestTy);
2361 return SelectInst::Create(Cond, CastedVal, X, "", nullptr, Sel);
2362 }
2363
2364 return nullptr;
2365 }
2366
2367 /// Check if all users of CI are StoreInsts.
hasStoreUsersOnly(CastInst & CI)2368 static bool hasStoreUsersOnly(CastInst &CI) {
2369 for (User *U : CI.users()) {
2370 if (!isa<StoreInst>(U))
2371 return false;
2372 }
2373 return true;
2374 }
2375
2376 /// This function handles following case
2377 ///
2378 /// A -> B cast
2379 /// PHI
2380 /// B -> A cast
2381 ///
2382 /// All the related PHI nodes can be replaced by new PHI nodes with type A.
2383 /// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
optimizeBitCastFromPhi(CastInst & CI,PHINode * PN)2384 Instruction *InstCombinerImpl::optimizeBitCastFromPhi(CastInst &CI,
2385 PHINode *PN) {
2386 // BitCast used by Store can be handled in InstCombineLoadStoreAlloca.cpp.
2387 if (hasStoreUsersOnly(CI))
2388 return nullptr;
2389
2390 Value *Src = CI.getOperand(0);
2391 Type *SrcTy = Src->getType(); // Type B
2392 Type *DestTy = CI.getType(); // Type A
2393
2394 SmallVector<PHINode *, 4> PhiWorklist;
2395 SmallSetVector<PHINode *, 4> OldPhiNodes;
2396
2397 // Find all of the A->B casts and PHI nodes.
2398 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
2399 // OldPhiNodes is used to track all known PHI nodes, before adding a new
2400 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
2401 PhiWorklist.push_back(PN);
2402 OldPhiNodes.insert(PN);
2403 while (!PhiWorklist.empty()) {
2404 auto *OldPN = PhiWorklist.pop_back_val();
2405 for (Value *IncValue : OldPN->incoming_values()) {
2406 if (isa<Constant>(IncValue))
2407 continue;
2408
2409 if (auto *LI = dyn_cast<LoadInst>(IncValue)) {
2410 // If there is a sequence of one or more load instructions, each loaded
2411 // value is used as address of later load instruction, bitcast is
2412 // necessary to change the value type, don't optimize it. For
2413 // simplicity we give up if the load address comes from another load.
2414 Value *Addr = LI->getOperand(0);
2415 if (Addr == &CI || isa<LoadInst>(Addr))
2416 return nullptr;
2417 // Don't tranform "load <256 x i32>, <256 x i32>*" to
2418 // "load x86_amx, x86_amx*", because x86_amx* is invalid.
2419 // TODO: Remove this check when bitcast between vector and x86_amx
2420 // is replaced with a specific intrinsic.
2421 if (DestTy->isX86_AMXTy())
2422 return nullptr;
2423 if (LI->hasOneUse() && LI->isSimple())
2424 continue;
2425 // If a LoadInst has more than one use, changing the type of loaded
2426 // value may create another bitcast.
2427 return nullptr;
2428 }
2429
2430 if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
2431 if (OldPhiNodes.insert(PNode))
2432 PhiWorklist.push_back(PNode);
2433 continue;
2434 }
2435
2436 auto *BCI = dyn_cast<BitCastInst>(IncValue);
2437 // We can't handle other instructions.
2438 if (!BCI)
2439 return nullptr;
2440
2441 // Verify it's a A->B cast.
2442 Type *TyA = BCI->getOperand(0)->getType();
2443 Type *TyB = BCI->getType();
2444 if (TyA != DestTy || TyB != SrcTy)
2445 return nullptr;
2446 }
2447 }
2448
2449 // Check that each user of each old PHI node is something that we can
2450 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
2451 for (auto *OldPN : OldPhiNodes) {
2452 for (User *V : OldPN->users()) {
2453 if (auto *SI = dyn_cast<StoreInst>(V)) {
2454 if (!SI->isSimple() || SI->getOperand(0) != OldPN)
2455 return nullptr;
2456 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2457 // Verify it's a B->A cast.
2458 Type *TyB = BCI->getOperand(0)->getType();
2459 Type *TyA = BCI->getType();
2460 if (TyA != DestTy || TyB != SrcTy)
2461 return nullptr;
2462 } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2463 // As long as the user is another old PHI node, then even if we don't
2464 // rewrite it, the PHI web we're considering won't have any users
2465 // outside itself, so it'll be dead.
2466 if (OldPhiNodes.count(PHI) == 0)
2467 return nullptr;
2468 } else {
2469 return nullptr;
2470 }
2471 }
2472 }
2473
2474 // For each old PHI node, create a corresponding new PHI node with a type A.
2475 SmallDenseMap<PHINode *, PHINode *> NewPNodes;
2476 for (auto *OldPN : OldPhiNodes) {
2477 Builder.SetInsertPoint(OldPN);
2478 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
2479 NewPNodes[OldPN] = NewPN;
2480 }
2481
2482 // Fill in the operands of new PHI nodes.
2483 for (auto *OldPN : OldPhiNodes) {
2484 PHINode *NewPN = NewPNodes[OldPN];
2485 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
2486 Value *V = OldPN->getOperand(j);
2487 Value *NewV = nullptr;
2488 if (auto *C = dyn_cast<Constant>(V)) {
2489 NewV = ConstantExpr::getBitCast(C, DestTy);
2490 } else if (auto *LI = dyn_cast<LoadInst>(V)) {
2491 // Explicitly perform load combine to make sure no opposing transform
2492 // can remove the bitcast in the meantime and trigger an infinite loop.
2493 Builder.SetInsertPoint(LI);
2494 NewV = combineLoadToNewType(*LI, DestTy);
2495 // Remove the old load and its use in the old phi, which itself becomes
2496 // dead once the whole transform finishes.
2497 replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
2498 eraseInstFromFunction(*LI);
2499 } else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2500 NewV = BCI->getOperand(0);
2501 } else if (auto *PrevPN = dyn_cast<PHINode>(V)) {
2502 NewV = NewPNodes[PrevPN];
2503 }
2504 assert(NewV);
2505 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
2506 }
2507 }
2508
2509 // Traverse all accumulated PHI nodes and process its users,
2510 // which are Stores and BitcCasts. Without this processing
2511 // NewPHI nodes could be replicated and could lead to extra
2512 // moves generated after DeSSA.
2513 // If there is a store with type B, change it to type A.
2514
2515
2516 // Replace users of BitCast B->A with NewPHI. These will help
2517 // later to get rid off a closure formed by OldPHI nodes.
2518 Instruction *RetVal = nullptr;
2519 for (auto *OldPN : OldPhiNodes) {
2520 PHINode *NewPN = NewPNodes[OldPN];
2521 for (User *V : make_early_inc_range(OldPN->users())) {
2522 if (auto *SI = dyn_cast<StoreInst>(V)) {
2523 assert(SI->isSimple() && SI->getOperand(0) == OldPN);
2524 Builder.SetInsertPoint(SI);
2525 auto *NewBC =
2526 cast<BitCastInst>(Builder.CreateBitCast(NewPN, SrcTy));
2527 SI->setOperand(0, NewBC);
2528 Worklist.push(SI);
2529 assert(hasStoreUsersOnly(*NewBC));
2530 }
2531 else if (auto *BCI = dyn_cast<BitCastInst>(V)) {
2532 Type *TyB = BCI->getOperand(0)->getType();
2533 Type *TyA = BCI->getType();
2534 assert(TyA == DestTy && TyB == SrcTy);
2535 (void) TyA;
2536 (void) TyB;
2537 Instruction *I = replaceInstUsesWith(*BCI, NewPN);
2538 if (BCI == &CI)
2539 RetVal = I;
2540 } else if (auto *PHI = dyn_cast<PHINode>(V)) {
2541 assert(OldPhiNodes.contains(PHI));
2542 (void) PHI;
2543 } else {
2544 llvm_unreachable("all uses should be handled");
2545 }
2546 }
2547 }
2548
2549 return RetVal;
2550 }
2551
visitBitCast(BitCastInst & CI)2552 Instruction *InstCombinerImpl::visitBitCast(BitCastInst &CI) {
2553 // If the operands are integer typed then apply the integer transforms,
2554 // otherwise just apply the common ones.
2555 Value *Src = CI.getOperand(0);
2556 Type *SrcTy = Src->getType();
2557 Type *DestTy = CI.getType();
2558
2559 // Get rid of casts from one type to the same type. These are useless and can
2560 // be replaced by the operand.
2561 if (DestTy == Src->getType())
2562 return replaceInstUsesWith(CI, Src);
2563
2564 if (isa<PointerType>(SrcTy) && isa<PointerType>(DestTy)) {
2565 PointerType *SrcPTy = cast<PointerType>(SrcTy);
2566 PointerType *DstPTy = cast<PointerType>(DestTy);
2567 Type *DstElTy = DstPTy->getElementType();
2568 Type *SrcElTy = SrcPTy->getElementType();
2569
2570 // Casting pointers between the same type, but with different address spaces
2571 // is an addrspace cast rather than a bitcast.
2572 if ((DstElTy == SrcElTy) &&
2573 (DstPTy->getAddressSpace() != SrcPTy->getAddressSpace()))
2574 return new AddrSpaceCastInst(Src, DestTy);
2575
2576 // If we are casting a alloca to a pointer to a type of the same
2577 // size, rewrite the allocation instruction to allocate the "right" type.
2578 // There is no need to modify malloc calls because it is their bitcast that
2579 // needs to be cleaned up.
2580 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
2581 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
2582 return V;
2583
2584 // When the type pointed to is not sized the cast cannot be
2585 // turned into a gep.
2586 Type *PointeeType =
2587 cast<PointerType>(Src->getType()->getScalarType())->getElementType();
2588 if (!PointeeType->isSized())
2589 return nullptr;
2590
2591 // If the source and destination are pointers, and this cast is equivalent
2592 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
2593 // This can enhance SROA and other transforms that want type-safe pointers.
2594 unsigned NumZeros = 0;
2595 while (SrcElTy && SrcElTy != DstElTy) {
2596 SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
2597 ++NumZeros;
2598 }
2599
2600 // If we found a path from the src to dest, create the getelementptr now.
2601 if (SrcElTy == DstElTy) {
2602 SmallVector<Value *, 8> Idxs(NumZeros + 1, Builder.getInt32(0));
2603 GetElementPtrInst *GEP =
2604 GetElementPtrInst::Create(SrcPTy->getElementType(), Src, Idxs);
2605
2606 // If the source pointer is dereferenceable, then assume it points to an
2607 // allocated object and apply "inbounds" to the GEP.
2608 bool CanBeNull, CanBeFreed;
2609 if (Src->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed)) {
2610 // In a non-default address space (not 0), a null pointer can not be
2611 // assumed inbounds, so ignore that case (dereferenceable_or_null).
2612 // The reason is that 'null' is not treated differently in these address
2613 // spaces, and we consequently ignore the 'gep inbounds' special case
2614 // for 'null' which allows 'inbounds' on 'null' if the indices are
2615 // zeros.
2616 if (SrcPTy->getAddressSpace() == 0 || !CanBeNull)
2617 GEP->setIsInBounds();
2618 }
2619 return GEP;
2620 }
2621 }
2622
2623 if (FixedVectorType *DestVTy = dyn_cast<FixedVectorType>(DestTy)) {
2624 // Beware: messing with this target-specific oddity may cause trouble.
2625 if (DestVTy->getNumElements() == 1 && SrcTy->isX86_MMXTy()) {
2626 Value *Elem = Builder.CreateBitCast(Src, DestVTy->getElementType());
2627 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
2628 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2629 }
2630
2631 if (isa<IntegerType>(SrcTy)) {
2632 // If this is a cast from an integer to vector, check to see if the input
2633 // is a trunc or zext of a bitcast from vector. If so, we can replace all
2634 // the casts with a shuffle and (potentially) a bitcast.
2635 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
2636 CastInst *SrcCast = cast<CastInst>(Src);
2637 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
2638 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
2639 if (Instruction *I = optimizeVectorResizeWithIntegerBitCasts(
2640 BCIn->getOperand(0), cast<VectorType>(DestTy), *this))
2641 return I;
2642 }
2643
2644 // If the input is an 'or' instruction, we may be doing shifts and ors to
2645 // assemble the elements of the vector manually. Try to rip the code out
2646 // and replace it with insertelements.
2647 if (Value *V = optimizeIntegerToVectorInsertions(CI, *this))
2648 return replaceInstUsesWith(CI, V);
2649 }
2650 }
2651
2652 if (FixedVectorType *SrcVTy = dyn_cast<FixedVectorType>(SrcTy)) {
2653 if (SrcVTy->getNumElements() == 1) {
2654 // If our destination is not a vector, then make this a straight
2655 // scalar-scalar cast.
2656 if (!DestTy->isVectorTy()) {
2657 Value *Elem =
2658 Builder.CreateExtractElement(Src,
2659 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
2660 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
2661 }
2662
2663 // Otherwise, see if our source is an insert. If so, then use the scalar
2664 // component directly:
2665 // bitcast (inselt <1 x elt> V, X, 0) to <n x m> --> bitcast X to <n x m>
2666 if (auto *InsElt = dyn_cast<InsertElementInst>(Src))
2667 return new BitCastInst(InsElt->getOperand(1), DestTy);
2668 }
2669 }
2670
2671 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Src)) {
2672 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
2673 // a bitcast to a vector with the same # elts.
2674 Value *ShufOp0 = Shuf->getOperand(0);
2675 Value *ShufOp1 = Shuf->getOperand(1);
2676 auto ShufElts = cast<VectorType>(Shuf->getType())->getElementCount();
2677 auto SrcVecElts = cast<VectorType>(ShufOp0->getType())->getElementCount();
2678 if (Shuf->hasOneUse() && DestTy->isVectorTy() &&
2679 cast<VectorType>(DestTy)->getElementCount() == ShufElts &&
2680 ShufElts == SrcVecElts) {
2681 BitCastInst *Tmp;
2682 // If either of the operands is a cast from CI.getType(), then
2683 // evaluating the shuffle in the casted destination's type will allow
2684 // us to eliminate at least one cast.
2685 if (((Tmp = dyn_cast<BitCastInst>(ShufOp0)) &&
2686 Tmp->getOperand(0)->getType() == DestTy) ||
2687 ((Tmp = dyn_cast<BitCastInst>(ShufOp1)) &&
2688 Tmp->getOperand(0)->getType() == DestTy)) {
2689 Value *LHS = Builder.CreateBitCast(ShufOp0, DestTy);
2690 Value *RHS = Builder.CreateBitCast(ShufOp1, DestTy);
2691 // Return a new shuffle vector. Use the same element ID's, as we
2692 // know the vector types match #elts.
2693 return new ShuffleVectorInst(LHS, RHS, Shuf->getShuffleMask());
2694 }
2695 }
2696
2697 // A bitcasted-to-scalar and byte-reversing shuffle is better recognized as
2698 // a byte-swap:
2699 // bitcast <N x i8> (shuf X, undef, <N, N-1,...0>) --> bswap (bitcast X)
2700 // TODO: We should match the related pattern for bitreverse.
2701 if (DestTy->isIntegerTy() &&
2702 DL.isLegalInteger(DestTy->getScalarSizeInBits()) &&
2703 SrcTy->getScalarSizeInBits() == 8 &&
2704 ShufElts.getKnownMinValue() % 2 == 0 && Shuf->hasOneUse() &&
2705 Shuf->isReverse()) {
2706 assert(ShufOp0->getType() == SrcTy && "Unexpected shuffle mask");
2707 assert(match(ShufOp1, m_Undef()) && "Unexpected shuffle op");
2708 Function *Bswap =
2709 Intrinsic::getDeclaration(CI.getModule(), Intrinsic::bswap, DestTy);
2710 Value *ScalarX = Builder.CreateBitCast(ShufOp0, DestTy);
2711 return CallInst::Create(Bswap, { ScalarX });
2712 }
2713 }
2714
2715 // Handle the A->B->A cast, and there is an intervening PHI node.
2716 if (PHINode *PN = dyn_cast<PHINode>(Src))
2717 if (Instruction *I = optimizeBitCastFromPhi(CI, PN))
2718 return I;
2719
2720 if (Instruction *I = canonicalizeBitCastExtElt(CI, *this))
2721 return I;
2722
2723 if (Instruction *I = foldBitCastBitwiseLogic(CI, Builder))
2724 return I;
2725
2726 if (Instruction *I = foldBitCastSelect(CI, Builder))
2727 return I;
2728
2729 if (SrcTy->isPointerTy())
2730 return commonPointerCastTransforms(CI);
2731 return commonCastTransforms(CI);
2732 }
2733
visitAddrSpaceCast(AddrSpaceCastInst & CI)2734 Instruction *InstCombinerImpl::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
2735 // If the destination pointer element type is not the same as the source's
2736 // first do a bitcast to the destination type, and then the addrspacecast.
2737 // This allows the cast to be exposed to other transforms.
2738 Value *Src = CI.getOperand(0);
2739 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
2740 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
2741
2742 Type *DestElemTy = DestTy->getElementType();
2743 if (SrcTy->getElementType() != DestElemTy) {
2744 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
2745 // Handle vectors of pointers.
2746 if (VectorType *VT = dyn_cast<VectorType>(CI.getType()))
2747 MidTy = VectorType::get(MidTy, VT->getElementCount());
2748
2749 Value *NewBitCast = Builder.CreateBitCast(Src, MidTy);
2750 return new AddrSpaceCastInst(NewBitCast, CI.getType());
2751 }
2752
2753 return commonPointerCastTransforms(CI);
2754 }
2755