1 /* $OpenBSD: dfa.c,v 1.9 2024/11/09 18:03:44 op Exp $ */ 2 3 /* dfa - DFA construction routines */ 4 5 /* Copyright (c) 1990 The Regents of the University of California. */ 6 /* All rights reserved. */ 7 8 /* This code is derived from software contributed to Berkeley by */ 9 /* Vern Paxson. */ 10 11 /* The United States Government has rights in this work pursuant */ 12 /* to contract no. DE-AC03-76SF00098 between the United States */ 13 /* Department of Energy and the University of California. */ 14 15 /* Redistribution and use in source and binary forms, with or without */ 16 /* modification, are permitted provided that the following conditions */ 17 /* are met: */ 18 19 /* 1. Redistributions of source code must retain the above copyright */ 20 /* notice, this list of conditions and the following disclaimer. */ 21 /* 2. Redistributions in binary form must reproduce the above copyright */ 22 /* notice, this list of conditions and the following disclaimer in the */ 23 /* documentation and/or other materials provided with the distribution. */ 24 25 /* Neither the name of the University nor the names of its contributors */ 26 /* may be used to endorse or promote products derived from this software */ 27 /* without specific prior written permission. */ 28 29 /* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */ 30 /* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */ 31 /* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */ 32 /* PURPOSE. */ 33 34 #include "flexdef.h" 35 #include "tables.h" 36 37 /* declare functions that have forward references */ 38 39 void dump_associated_rules PROTO ((FILE *, int)); 40 void dump_transitions PROTO ((FILE *, int[])); 41 void sympartition PROTO ((int[], int, int[], int[])); 42 int symfollowset PROTO ((int[], int, int, int[])); 43 44 45 /* check_for_backing_up - check a DFA state for backing up 46 * 47 * synopsis 48 * void check_for_backing_up( int ds, int state[numecs] ); 49 * 50 * ds is the number of the state to check and state[] is its out-transitions, 51 * indexed by equivalence class. 52 */ 53 54 void check_for_backing_up (int ds, int state[]) 55 { 56 if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) { /* state is non-accepting */ 57 ++num_backing_up; 58 59 if (backing_up_report) { 60 fprintf (backing_up_file, 61 _("State #%d is non-accepting -\n"), ds); 62 63 /* identify the state */ 64 dump_associated_rules (backing_up_file, ds); 65 66 /* Now identify it further using the out- and 67 * jam-transitions. 68 */ 69 dump_transitions (backing_up_file, state); 70 71 putc ('\n', backing_up_file); 72 } 73 } 74 } 75 76 77 /* check_trailing_context - check to see if NFA state set constitutes 78 * "dangerous" trailing context 79 * 80 * synopsis 81 * void check_trailing_context( int nfa_states[num_states+1], int num_states, 82 * int accset[nacc+1], int nacc ); 83 * 84 * NOTES 85 * Trailing context is "dangerous" if both the head and the trailing 86 * part are of variable size \and/ there's a DFA state which contains 87 * both an accepting state for the head part of the rule and NFA states 88 * which occur after the beginning of the trailing context. 89 * 90 * When such a rule is matched, it's impossible to tell if having been 91 * in the DFA state indicates the beginning of the trailing context or 92 * further-along scanning of the pattern. In these cases, a warning 93 * message is issued. 94 * 95 * nfa_states[1 .. num_states] is the list of NFA states in the DFA. 96 * accset[1 .. nacc] is the list of accepting numbers for the DFA state. 97 */ 98 99 void check_trailing_context (int *nfa_states, int num_states, 100 int *accset, int nacc) 101 { 102 int i, j; 103 104 for (i = 1; i <= num_states; ++i) { 105 int ns = nfa_states[i]; 106 int type = state_type[ns]; 107 int ar = assoc_rule[ns]; 108 109 if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) { /* do nothing */ 110 } 111 112 else if (type == STATE_TRAILING_CONTEXT) { 113 /* Potential trouble. Scan set of accepting numbers 114 * for the one marking the end of the "head". We 115 * assume that this looping will be fairly cheap 116 * since it's rare that an accepting number set 117 * is large. 118 */ 119 for (j = 1; j <= nacc; ++j) 120 if (accset[j] & YY_TRAILING_HEAD_MASK) { 121 line_warning (_ 122 ("dangerous trailing context"), 123 rule_linenum[ar]); 124 return; 125 } 126 } 127 } 128 } 129 130 131 /* dump_associated_rules - list the rules associated with a DFA state 132 * 133 * Goes through the set of NFA states associated with the DFA and 134 * extracts the first MAX_ASSOC_RULES unique rules, sorts them, 135 * and writes a report to the given file. 136 */ 137 138 void dump_associated_rules (FILE *file, int ds) 139 { 140 int i, j; 141 int num_associated_rules = 0; 142 int rule_set[MAX_ASSOC_RULES + 1]; 143 int *dset = dss[ds]; 144 int size = dfasiz[ds]; 145 146 for (i = 1; i <= size; ++i) { 147 int rule_num = rule_linenum[assoc_rule[dset[i]]]; 148 149 for (j = 1; j <= num_associated_rules; ++j) 150 if (rule_num == rule_set[j]) 151 break; 152 153 if (j > num_associated_rules) { /* new rule */ 154 if (num_associated_rules < MAX_ASSOC_RULES) 155 rule_set[++num_associated_rules] = 156 rule_num; 157 } 158 } 159 160 qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp); 161 162 fprintf (file, _(" associated rule line numbers:")); 163 164 for (i = 1; i <= num_associated_rules; ++i) { 165 if (i % 8 == 1) 166 putc ('\n', file); 167 168 fprintf (file, "\t%d", rule_set[i]); 169 } 170 171 putc ('\n', file); 172 } 173 174 175 /* dump_transitions - list the transitions associated with a DFA state 176 * 177 * synopsis 178 * dump_transitions( FILE *file, int state[numecs] ); 179 * 180 * Goes through the set of out-transitions and lists them in human-readable 181 * form (i.e., not as equivalence classes); also lists jam transitions 182 * (i.e., all those which are not out-transitions, plus EOF). The dump 183 * is done to the given file. 184 */ 185 186 void dump_transitions (FILE *file, int state[]) 187 { 188 int i, ec; 189 int out_char_set[CSIZE]; 190 191 for (i = 0; i < csize; ++i) { 192 ec = ABS (ecgroup[i]); 193 out_char_set[i] = state[ec]; 194 } 195 196 fprintf (file, _(" out-transitions: ")); 197 198 list_character_set (file, out_char_set); 199 200 /* now invert the members of the set to get the jam transitions */ 201 for (i = 0; i < csize; ++i) 202 out_char_set[i] = !out_char_set[i]; 203 204 fprintf (file, _("\n jam-transitions: EOF ")); 205 206 list_character_set (file, out_char_set); 207 208 putc ('\n', file); 209 } 210 211 212 /* epsclosure - construct the epsilon closure of a set of ndfa states 213 * 214 * synopsis 215 * int *epsclosure( int t[num_states], int *numstates_addr, 216 * int accset[num_rules+1], int *nacc_addr, 217 * int *hashval_addr ); 218 * 219 * NOTES 220 * The epsilon closure is the set of all states reachable by an arbitrary 221 * number of epsilon transitions, which themselves do not have epsilon 222 * transitions going out, unioned with the set of states which have non-null 223 * accepting numbers. t is an array of size numstates of nfa state numbers. 224 * Upon return, t holds the epsilon closure and *numstates_addr is updated. 225 * accset holds a list of the accepting numbers, and the size of accset is 226 * given by *nacc_addr. t may be subjected to reallocation if it is not 227 * large enough to hold the epsilon closure. 228 * 229 * hashval is the hash value for the dfa corresponding to the state set. 230 */ 231 232 int *epsclosure (int *t, int *ns_addr, int accset[], int *nacc_addr, 233 int *hv_addr) 234 { 235 int stkpos, ns, tsp; 236 int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum; 237 int stkend, nstate; 238 static int did_stk_init = false, *stk; 239 240 #define MARK_STATE(state) \ 241 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0) 242 243 #define IS_MARKED(state) (trans1[state] < 0) 244 245 #define UNMARK_STATE(state) \ 246 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0) 247 248 #define CHECK_ACCEPT(state) \ 249 do{ \ 250 nfaccnum = accptnum[state]; \ 251 if ( nfaccnum != NIL ) \ 252 accset[++nacc] = nfaccnum; \ 253 }while(0) 254 255 #define DO_REALLOCATION() \ 256 do { \ 257 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \ 258 ++num_reallocs; \ 259 t = reallocate_integer_array( t, current_max_dfa_size ); \ 260 stk = reallocate_integer_array( stk, current_max_dfa_size ); \ 261 }while(0) \ 262 263 #define PUT_ON_STACK(state) \ 264 do { \ 265 if ( ++stkend >= current_max_dfa_size ) \ 266 DO_REALLOCATION(); \ 267 stk[stkend] = state; \ 268 MARK_STATE(state); \ 269 }while(0) 270 271 #define ADD_STATE(state) \ 272 do { \ 273 if ( ++numstates >= current_max_dfa_size ) \ 274 DO_REALLOCATION(); \ 275 t[numstates] = state; \ 276 hashval += state; \ 277 }while(0) 278 279 #define STACK_STATE(state) \ 280 do { \ 281 PUT_ON_STACK(state); \ 282 CHECK_ACCEPT(state); \ 283 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \ 284 ADD_STATE(state); \ 285 }while(0) 286 287 288 if (!did_stk_init) { 289 stk = allocate_integer_array (current_max_dfa_size); 290 did_stk_init = true; 291 } 292 293 nacc = stkend = hashval = 0; 294 295 for (nstate = 1; nstate <= numstates; ++nstate) { 296 ns = t[nstate]; 297 298 /* The state could be marked if we've already pushed it onto 299 * the stack. 300 */ 301 if (!IS_MARKED (ns)) { 302 PUT_ON_STACK (ns); 303 CHECK_ACCEPT (ns); 304 hashval += ns; 305 } 306 } 307 308 for (stkpos = 1; stkpos <= stkend; ++stkpos) { 309 ns = stk[stkpos]; 310 transsym = transchar[ns]; 311 312 if (transsym == SYM_EPSILON) { 313 tsp = trans1[ns] + MARKER_DIFFERENCE; 314 315 if (tsp != NO_TRANSITION) { 316 if (!IS_MARKED (tsp)) 317 STACK_STATE (tsp); 318 319 tsp = trans2[ns]; 320 321 if (tsp != NO_TRANSITION 322 && !IS_MARKED (tsp)) 323 STACK_STATE (tsp); 324 } 325 } 326 } 327 328 /* Clear out "visit" markers. */ 329 330 for (stkpos = 1; stkpos <= stkend; ++stkpos) { 331 if (IS_MARKED (stk[stkpos])) 332 UNMARK_STATE (stk[stkpos]); 333 else 334 flexfatal (_ 335 ("consistency check failed in epsclosure()")); 336 } 337 338 *ns_addr = numstates; 339 *hv_addr = hashval; 340 *nacc_addr = nacc; 341 342 return t; 343 } 344 345 346 /* increase_max_dfas - increase the maximum number of DFAs */ 347 348 void increase_max_dfas (void) 349 { 350 current_max_dfas += MAX_DFAS_INCREMENT; 351 352 ++num_reallocs; 353 354 base = reallocate_integer_array (base, current_max_dfas); 355 def = reallocate_integer_array (def, current_max_dfas); 356 dfasiz = reallocate_integer_array (dfasiz, current_max_dfas); 357 accsiz = reallocate_integer_array (accsiz, current_max_dfas); 358 dhash = reallocate_integer_array (dhash, current_max_dfas); 359 dss = reallocate_int_ptr_array (dss, current_max_dfas); 360 dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas); 361 362 if (nultrans) 363 nultrans = 364 reallocate_integer_array (nultrans, 365 current_max_dfas); 366 } 367 368 369 /* ntod - convert an ndfa to a dfa 370 * 371 * Creates the dfa corresponding to the ndfa we've constructed. The 372 * dfa starts out in state #1. 373 */ 374 375 void ntod (void) 376 { 377 int *accset, ds, nacc, newds; 378 int sym, hashval, numstates, dsize; 379 int num_full_table_rows=0; /* used only for -f */ 380 int *nset, *dset; 381 int targptr, totaltrans, i, comstate, comfreq, targ; 382 int symlist[CSIZE + 1]; 383 int num_start_states; 384 int todo_head, todo_next; 385 386 struct yytbl_data *yynxt_tbl = 0; 387 flex_int32_t *yynxt_data = 0, yynxt_curr = 0; 388 389 /* Note that the following are indexed by *equivalence classes* 390 * and not by characters. Since equivalence classes are indexed 391 * beginning with 1, even if the scanner accepts NUL's, this 392 * means that (since every character is potentially in its own 393 * equivalence class) these arrays must have room for indices 394 * from 1 to CSIZE, so their size must be CSIZE + 1. 395 */ 396 int duplist[CSIZE + 1], state[CSIZE + 1]; 397 int targfreq[CSIZE + 1], targstate[CSIZE + 1]; 398 399 /* accset needs to be large enough to hold all of the rules present 400 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants. 401 */ 402 accset = allocate_integer_array ((num_rules + 1) * 2); 403 nset = allocate_integer_array (current_max_dfa_size); 404 405 /* The "todo" queue is represented by the head, which is the DFA 406 * state currently being processed, and the "next", which is the 407 * next DFA state number available (not in use). We depend on the 408 * fact that snstods() returns DFA's \in increasing order/, and thus 409 * need only know the bounds of the dfas to be processed. 410 */ 411 todo_head = todo_next = 0; 412 413 for (i = 0; i <= csize; ++i) { 414 duplist[i] = NIL; 415 symlist[i] = false; 416 } 417 418 for (i = 0; i <= num_rules; ++i) 419 accset[i] = NIL; 420 421 if (trace) { 422 dumpnfa (scset[1]); 423 fputs (_("\n\nDFA Dump:\n\n"), stderr); 424 } 425 426 inittbl (); 427 428 /* Check to see whether we should build a separate table for 429 * transitions on NUL characters. We don't do this for full-speed 430 * (-F) scanners, since for them we don't have a simple state 431 * number lying around with which to index the table. We also 432 * don't bother doing it for scanners unless (1) NUL is in its own 433 * equivalence class (indicated by a positive value of 434 * ecgroup[NUL]), (2) NUL's equivalence class is the last 435 * equivalence class, and (3) the number of equivalence classes is 436 * the same as the number of characters. This latter case comes 437 * about when useecs is false or when it's true but every character 438 * still manages to land in its own class (unlikely, but it's 439 * cheap to check for). If all these things are true then the 440 * character code needed to represent NUL's equivalence class for 441 * indexing the tables is going to take one more bit than the 442 * number of characters, and therefore we won't be assured of 443 * being able to fit it into a YY_CHAR variable. This rules out 444 * storing the transitions in a compressed table, since the code 445 * for interpreting them uses a YY_CHAR variable (perhaps it 446 * should just use an integer, though; this is worth pondering ... 447 * ###). 448 * 449 * Finally, for full tables, we want the number of entries in the 450 * table to be a power of two so the array references go fast (it 451 * will just take a shift to compute the major index). If 452 * encoding NUL's transitions in the table will spoil this, we 453 * give it its own table (note that this will be the case if we're 454 * not using equivalence classes). 455 */ 456 457 /* Note that the test for ecgroup[0] == numecs below accomplishes 458 * both (1) and (2) above 459 */ 460 if (!fullspd && ecgroup[0] == numecs) { 461 /* NUL is alone in its equivalence class, which is the 462 * last one. 463 */ 464 int use_NUL_table = (numecs == csize); 465 466 if (fulltbl && !use_NUL_table) { 467 /* We still may want to use the table if numecs 468 * is a power of 2. 469 */ 470 int power_of_two; 471 472 for (power_of_two = 1; power_of_two <= csize; 473 power_of_two *= 2) 474 if (numecs == power_of_two) { 475 use_NUL_table = true; 476 break; 477 } 478 } 479 480 if (use_NUL_table) 481 nultrans = 482 allocate_integer_array (current_max_dfas); 483 484 /* From now on, nultrans != nil indicates that we're 485 * saving null transitions for later, separate encoding. 486 */ 487 } 488 489 490 if (fullspd) { 491 for (i = 0; i <= numecs; ++i) 492 state[i] = 0; 493 494 place_state (state, 0, 0); 495 dfaacc[0].dfaacc_state = 0; 496 } 497 498 else if (fulltbl) { 499 if (nultrans) 500 /* We won't be including NUL's transitions in the 501 * table, so build it for entries from 0 .. numecs - 1. 502 */ 503 num_full_table_rows = numecs; 504 505 else 506 /* Take into account the fact that we'll be including 507 * the NUL entries in the transition table. Build it 508 * from 0 .. numecs. 509 */ 510 num_full_table_rows = numecs + 1; 511 512 /* Begin generating yy_nxt[][] 513 * This spans the entire LONG function. 514 * This table is tricky because we don't know how big it will be. 515 * So we'll have to realloc() on the way... 516 * we'll wait until we can calculate yynxt_tbl->td_hilen. 517 */ 518 yynxt_tbl = 519 (struct yytbl_data *) calloc (1, 520 sizeof (struct 521 yytbl_data)); 522 yytbl_data_init (yynxt_tbl, YYTD_ID_NXT); 523 yynxt_tbl->td_hilen = 1; 524 yynxt_tbl->td_lolen = num_full_table_rows; 525 yynxt_tbl->td_data = yynxt_data = 526 (flex_int32_t *) calloc (yynxt_tbl->td_lolen * 527 yynxt_tbl->td_hilen, 528 sizeof (flex_int32_t)); 529 yynxt_curr = 0; 530 531 buf_prints (&yydmap_buf, 532 "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n", 533 long_align ? "flex_int32_t" : "flex_int16_t"); 534 535 /* Unless -Ca, declare it "short" because it's a real 536 * long-shot that that won't be large enough. 537 */ 538 if (gentables) 539 out_str_dec 540 ("static yyconst %s yy_nxt[][%d] =\n {\n", 541 long_align ? "flex_int32_t" : "flex_int16_t", 542 num_full_table_rows); 543 else { 544 out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows); 545 out_str ("static yyconst %s *yy_nxt =0;\n", 546 long_align ? "flex_int32_t" : "flex_int16_t"); 547 } 548 549 550 if (gentables) 551 outn (" {"); 552 553 /* Generate 0 entries for state #0. */ 554 for (i = 0; i < num_full_table_rows; ++i) { 555 mk2data (0); 556 yynxt_data[yynxt_curr++] = 0; 557 } 558 559 dataflush (); 560 if (gentables) 561 outn (" },\n"); 562 } 563 564 /* Create the first states. */ 565 566 num_start_states = lastsc * 2; 567 568 for (i = 1; i <= num_start_states; ++i) { 569 numstates = 1; 570 571 /* For each start condition, make one state for the case when 572 * we're at the beginning of the line (the '^' operator) and 573 * one for the case when we're not. 574 */ 575 if (i % 2 == 1) 576 nset[numstates] = scset[(i / 2) + 1]; 577 else 578 nset[numstates] = 579 mkbranch (scbol[i / 2], scset[i / 2]); 580 581 nset = epsclosure (nset, &numstates, accset, &nacc, 582 &hashval); 583 584 if (snstods (nset, numstates, accset, nacc, hashval, &ds)) { 585 numas += nacc; 586 totnst += numstates; 587 ++todo_next; 588 589 if (variable_trailing_context_rules && nacc > 0) 590 check_trailing_context (nset, numstates, 591 accset, nacc); 592 } 593 } 594 595 if (!fullspd) { 596 if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state)) 597 flexfatal (_ 598 ("could not create unique end-of-buffer state")); 599 600 ++numas; 601 ++num_start_states; 602 ++todo_next; 603 } 604 605 606 while (todo_head < todo_next) { 607 targptr = 0; 608 totaltrans = 0; 609 610 for (i = 1; i <= numecs; ++i) 611 state[i] = 0; 612 613 ds = ++todo_head; 614 615 dset = dss[ds]; 616 dsize = dfasiz[ds]; 617 618 if (trace) 619 fprintf (stderr, _("state # %d:\n"), ds); 620 621 sympartition (dset, dsize, symlist, duplist); 622 623 for (sym = 1; sym <= numecs; ++sym) { 624 if (symlist[sym]) { 625 symlist[sym] = 0; 626 627 if (duplist[sym] == NIL) { 628 /* Symbol has unique out-transitions. */ 629 numstates = 630 symfollowset (dset, dsize, 631 sym, nset); 632 nset = epsclosure (nset, 633 &numstates, 634 accset, &nacc, 635 &hashval); 636 637 if (snstods 638 (nset, numstates, accset, nacc, 639 hashval, &newds)) { 640 totnst = totnst + 641 numstates; 642 ++todo_next; 643 numas += nacc; 644 645 if (variable_trailing_context_rules && nacc > 0) 646 check_trailing_context 647 (nset, 648 numstates, 649 accset, 650 nacc); 651 } 652 653 state[sym] = newds; 654 655 if (trace) 656 fprintf (stderr, 657 "\t%d\t%d\n", sym, 658 newds); 659 660 targfreq[++targptr] = 1; 661 targstate[targptr] = newds; 662 ++numuniq; 663 } 664 665 else { 666 /* sym's equivalence class has the same 667 * transitions as duplist(sym)'s 668 * equivalence class. 669 */ 670 targ = state[duplist[sym]]; 671 state[sym] = targ; 672 673 if (trace) 674 fprintf (stderr, 675 "\t%d\t%d\n", sym, 676 targ); 677 678 /* Update frequency count for 679 * destination state. 680 */ 681 682 i = 0; 683 while (targstate[++i] != targ) ; 684 685 ++targfreq[i]; 686 ++numdup; 687 } 688 689 ++totaltrans; 690 duplist[sym] = NIL; 691 } 692 } 693 694 695 numsnpairs += totaltrans; 696 697 if (ds > num_start_states) 698 check_for_backing_up (ds, state); 699 700 if (nultrans) { 701 nultrans[ds] = state[NUL_ec]; 702 state[NUL_ec] = 0; /* remove transition */ 703 } 704 705 if (fulltbl) { 706 707 /* Each time we hit here, it's another td_hilen, so we realloc. */ 708 yynxt_tbl->td_hilen++; 709 yynxt_tbl->td_data = yynxt_data = 710 (flex_int32_t *) realloc (yynxt_data, 711 yynxt_tbl->td_hilen * 712 yynxt_tbl->td_lolen * 713 sizeof (flex_int32_t)); 714 715 716 if (gentables) 717 outn (" {"); 718 719 /* Supply array's 0-element. */ 720 if (ds == end_of_buffer_state) { 721 mk2data (-end_of_buffer_state); 722 yynxt_data[yynxt_curr++] = 723 -end_of_buffer_state; 724 } 725 else { 726 mk2data (end_of_buffer_state); 727 yynxt_data[yynxt_curr++] = 728 end_of_buffer_state; 729 } 730 731 for (i = 1; i < num_full_table_rows; ++i) { 732 /* Jams are marked by negative of state 733 * number. 734 */ 735 mk2data (state[i] ? state[i] : -ds); 736 yynxt_data[yynxt_curr++] = 737 state[i] ? state[i] : -ds; 738 } 739 740 dataflush (); 741 if (gentables) 742 outn (" },\n"); 743 } 744 745 else if (fullspd) 746 place_state (state, ds, totaltrans); 747 748 else if (ds == end_of_buffer_state) 749 /* Special case this state to make sure it does what 750 * it's supposed to, i.e., jam on end-of-buffer. 751 */ 752 stack1 (ds, 0, 0, JAMSTATE); 753 754 else { /* normal, compressed state */ 755 756 /* Determine which destination state is the most 757 * common, and how many transitions to it there are. 758 */ 759 760 comfreq = 0; 761 comstate = 0; 762 763 for (i = 1; i <= targptr; ++i) 764 if (targfreq[i] > comfreq) { 765 comfreq = targfreq[i]; 766 comstate = targstate[i]; 767 } 768 769 bldtbl (state, ds, totaltrans, comstate, comfreq); 770 } 771 } 772 773 if (fulltbl) { 774 dataend (); 775 if (tablesext) { 776 yytbl_data_compress (yynxt_tbl); 777 if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0) 778 flexerror (_ 779 ("Could not write yynxt_tbl[][]")); 780 } 781 if (yynxt_tbl) { 782 yytbl_data_destroy (yynxt_tbl); 783 yynxt_tbl = 0; 784 } 785 } 786 787 else if (!fullspd) { 788 cmptmps (); /* create compressed template entries */ 789 790 /* Create tables for all the states with only one 791 * out-transition. 792 */ 793 while (onesp > 0) { 794 mk1tbl (onestate[onesp], onesym[onesp], 795 onenext[onesp], onedef[onesp]); 796 --onesp; 797 } 798 799 mkdeftbl (); 800 } 801 802 free ((void *) accset); 803 free ((void *) nset); 804 } 805 806 807 /* snstods - converts a set of ndfa states into a dfa state 808 * 809 * synopsis 810 * is_new_state = snstods( int sns[numstates], int numstates, 811 * int accset[num_rules+1], int nacc, 812 * int hashval, int *newds_addr ); 813 * 814 * On return, the dfa state number is in newds. 815 */ 816 817 int snstods (int sns[], int numstates, int accset[], int nacc, int hashval, 818 int *newds_addr) 819 { 820 int didsort = 0; 821 int i, j; 822 int newds, *oldsns; 823 824 for (i = 1; i <= lastdfa; ++i) 825 if (hashval == dhash[i]) { 826 if (numstates == dfasiz[i]) { 827 oldsns = dss[i]; 828 829 if (!didsort) { 830 /* We sort the states in sns so we 831 * can compare it to oldsns quickly. 832 */ 833 qsort (&sns [1], numstates, sizeof (sns [1]), intcmp); 834 didsort = 1; 835 } 836 837 for (j = 1; j <= numstates; ++j) 838 if (sns[j] != oldsns[j]) 839 break; 840 841 if (j > numstates) { 842 ++dfaeql; 843 *newds_addr = i; 844 return 0; 845 } 846 847 ++hshcol; 848 } 849 850 else 851 ++hshsave; 852 } 853 854 /* Make a new dfa. */ 855 856 if (++lastdfa >= current_max_dfas) 857 increase_max_dfas (); 858 859 newds = lastdfa; 860 861 dss[newds] = allocate_integer_array (numstates + 1); 862 863 /* If we haven't already sorted the states in sns, we do so now, 864 * so that future comparisons with it can be made quickly. 865 */ 866 867 if (!didsort) 868 qsort (&sns [1], numstates, sizeof (sns [1]), intcmp); 869 870 for (i = 1; i <= numstates; ++i) 871 dss[newds][i] = sns[i]; 872 873 dfasiz[newds] = numstates; 874 dhash[newds] = hashval; 875 876 if (nacc == 0) { 877 if (reject) 878 dfaacc[newds].dfaacc_set = (int *) 0; 879 else 880 dfaacc[newds].dfaacc_state = 0; 881 882 accsiz[newds] = 0; 883 } 884 885 else if (reject) { 886 /* We sort the accepting set in increasing order so the 887 * disambiguating rule that the first rule listed is considered 888 * match in the event of ties will work. 889 */ 890 891 qsort (&accset [1], nacc, sizeof (accset [1]), intcmp); 892 893 dfaacc[newds].dfaacc_set = 894 allocate_integer_array (nacc + 1); 895 896 /* Save the accepting set for later */ 897 for (i = 1; i <= nacc; ++i) { 898 dfaacc[newds].dfaacc_set[i] = accset[i]; 899 900 if (accset[i] <= num_rules) 901 /* Who knows, perhaps a REJECT can yield 902 * this rule. 903 */ 904 rule_useful[accset[i]] = true; 905 } 906 907 accsiz[newds] = nacc; 908 } 909 910 else { 911 /* Find lowest numbered rule so the disambiguating rule 912 * will work. 913 */ 914 j = num_rules + 1; 915 916 for (i = 1; i <= nacc; ++i) 917 if (accset[i] < j) 918 j = accset[i]; 919 920 dfaacc[newds].dfaacc_state = j; 921 922 if (j <= num_rules) 923 rule_useful[j] = true; 924 } 925 926 *newds_addr = newds; 927 928 return 1; 929 } 930 931 932 /* symfollowset - follow the symbol transitions one step 933 * 934 * synopsis 935 * numstates = symfollowset( int ds[current_max_dfa_size], int dsize, 936 * int transsym, int nset[current_max_dfa_size] ); 937 */ 938 939 int symfollowset (int ds[], int dsize, int transsym, int nset[]) 940 { 941 int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist; 942 943 numstates = 0; 944 945 for (i = 1; i <= dsize; ++i) { /* for each nfa state ns in the state set of ds */ 946 ns = ds[i]; 947 sym = transchar[ns]; 948 tsp = trans1[ns]; 949 950 if (sym < 0) { /* it's a character class */ 951 sym = -sym; 952 ccllist = cclmap[sym]; 953 lenccl = ccllen[sym]; 954 955 if (cclng[sym]) { 956 for (j = 0; j < lenccl; ++j) { 957 /* Loop through negated character 958 * class. 959 */ 960 ch = ccltbl[ccllist + j]; 961 962 if (ch == 0) 963 ch = NUL_ec; 964 965 if (ch > transsym) 966 /* Transsym isn't in negated 967 * ccl. 968 */ 969 break; 970 971 else if (ch == transsym) 972 /* next 2 */ 973 goto bottom; 974 } 975 976 /* Didn't find transsym in ccl. */ 977 nset[++numstates] = tsp; 978 } 979 980 else 981 for (j = 0; j < lenccl; ++j) { 982 ch = ccltbl[ccllist + j]; 983 984 if (ch == 0) 985 ch = NUL_ec; 986 987 if (ch > transsym) 988 break; 989 else if (ch == transsym) { 990 nset[++numstates] = tsp; 991 break; 992 } 993 } 994 } 995 996 else if (sym == SYM_EPSILON) { /* do nothing */ 997 } 998 999 else if (ABS (ecgroup[sym]) == transsym) 1000 nset[++numstates] = tsp; 1001 1002 bottom:; 1003 } 1004 1005 return numstates; 1006 } 1007 1008 1009 /* sympartition - partition characters with same out-transitions 1010 * 1011 * synopsis 1012 * sympartition( int ds[current_max_dfa_size], int numstates, 1013 * int symlist[numecs], int duplist[numecs] ); 1014 */ 1015 1016 void sympartition (int ds[], int numstates, int symlist[], int duplist[]) 1017 { 1018 int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich; 1019 1020 /* Partitioning is done by creating equivalence classes for those 1021 * characters which have out-transitions from the given state. Thus 1022 * we are really creating equivalence classes of equivalence classes. 1023 */ 1024 1025 for (i = 1; i <= numecs; ++i) { /* initialize equivalence class list */ 1026 duplist[i] = i - 1; 1027 dupfwd[i] = i + 1; 1028 } 1029 1030 duplist[1] = NIL; 1031 dupfwd[numecs] = NIL; 1032 1033 for (i = 1; i <= numstates; ++i) { 1034 ns = ds[i]; 1035 tch = transchar[ns]; 1036 1037 if (tch != SYM_EPSILON) { 1038 if (tch < -lastccl || tch >= csize) { 1039 flexfatal (_ 1040 ("bad transition character detected in sympartition()")); 1041 } 1042 1043 if (tch >= 0) { /* character transition */ 1044 int ec = ecgroup[tch]; 1045 1046 mkechar (ec, dupfwd, duplist); 1047 symlist[ec] = 1; 1048 } 1049 1050 else { /* character class */ 1051 tch = -tch; 1052 1053 lenccl = ccllen[tch]; 1054 cclp = cclmap[tch]; 1055 mkeccl (ccltbl + cclp, lenccl, dupfwd, 1056 duplist, numecs, NUL_ec); 1057 1058 if (cclng[tch]) { 1059 j = 0; 1060 1061 for (k = 0; k < lenccl; ++k) { 1062 ich = ccltbl[cclp + k]; 1063 1064 if (ich == 0) 1065 ich = NUL_ec; 1066 1067 for (++j; j < ich; ++j) 1068 symlist[j] = 1; 1069 } 1070 1071 for (++j; j <= numecs; ++j) 1072 symlist[j] = 1; 1073 } 1074 1075 else 1076 for (k = 0; k < lenccl; ++k) { 1077 ich = ccltbl[cclp + k]; 1078 1079 if (ich == 0) 1080 ich = NUL_ec; 1081 1082 symlist[ich] = 1; 1083 } 1084 } 1085 } 1086 } 1087 } 1088