1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Synthetic sections represent chunks of linker-created data. If you 10 // need to create a chunk of data that to be included in some section 11 // in the result, you probably want to create that as a synthetic section. 12 // 13 // Synthetic sections are designed as input sections as opposed to 14 // output sections because we want to allow them to be manipulated 15 // using linker scripts just like other input sections from regular 16 // files. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H 21 #define LLD_ELF_SYNTHETIC_SECTIONS_H 22 23 #include "Config.h" 24 #include "DWARF.h" 25 #include "InputSection.h" 26 #include "Symbols.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/FoldingSet.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/STLFunctionalExtras.h" 31 #include "llvm/BinaryFormat/ELF.h" 32 #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" 33 #include "llvm/MC/StringTableBuilder.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Endian.h" 37 #include "llvm/Support/Parallel.h" 38 #include "llvm/Support/Threading.h" 39 40 namespace lld::elf { 41 class Defined; 42 struct PhdrEntry; 43 class SymbolTableBaseSection; 44 45 struct CieRecord { 46 EhSectionPiece *cie = nullptr; 47 SmallVector<EhSectionPiece *, 0> fdes; 48 }; 49 50 // Section for .eh_frame. 51 class EhFrameSection final : public SyntheticSection { 52 public: 53 EhFrameSection(Ctx &); 54 void writeTo(uint8_t *buf) override; 55 void finalizeContents() override; 56 bool isNeeded() const override { return !sections.empty(); } 57 size_t getSize() const override { return size; } 58 59 static bool classof(const SectionBase *d) { 60 return SyntheticSection::classof(d) && d->name == ".eh_frame"; 61 } 62 63 SmallVector<EhInputSection *, 0> sections; 64 size_t numFdes = 0; 65 66 struct FdeData { 67 uint32_t pcRel; 68 uint32_t fdeVARel; 69 }; 70 71 SmallVector<FdeData, 0> getFdeData() const; 72 ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; } 73 template <class ELFT> 74 void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn); 75 76 private: 77 // This is used only when parsing EhInputSection. We keep it here to avoid 78 // allocating one for each EhInputSection. 79 llvm::DenseMap<size_t, CieRecord *> offsetToCie; 80 81 uint64_t size = 0; 82 83 template <class ELFT, class RelTy> 84 void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels); 85 template <class ELFT> void addSectionAux(EhInputSection *s); 86 template <class ELFT, class RelTy> 87 void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels, 88 llvm::DenseSet<size_t> &ciesWithLSDA, 89 llvm::function_ref<void(InputSection &)> fn); 90 91 template <class ELFT, class RelTy> 92 CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels); 93 94 template <class ELFT, class RelTy> 95 Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels); 96 97 uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const; 98 99 SmallVector<CieRecord *, 0> cieRecords; 100 101 // CIE records are uniquified by their contents and personality functions. 102 llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap; 103 }; 104 105 class GotSection final : public SyntheticSection { 106 public: 107 GotSection(Ctx &); 108 size_t getSize() const override { return size; } 109 void finalizeContents() override; 110 bool isNeeded() const override; 111 void writeTo(uint8_t *buf) override; 112 113 void addConstant(const Relocation &r); 114 void addEntry(const Symbol &sym); 115 void addAuthEntry(const Symbol &sym); 116 bool addTlsDescEntry(const Symbol &sym); 117 void addTlsDescAuthEntry(); 118 bool addDynTlsEntry(const Symbol &sym); 119 bool addTlsIndex(); 120 uint32_t getTlsDescOffset(const Symbol &sym) const; 121 uint64_t getTlsDescAddr(const Symbol &sym) const; 122 uint64_t getGlobalDynAddr(const Symbol &b) const; 123 uint64_t getGlobalDynOffset(const Symbol &b) const; 124 125 uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; } 126 uint32_t getTlsIndexOff() const { return tlsIndexOff; } 127 128 // Flag to force GOT to be in output if we have relocations 129 // that relies on its address. 130 std::atomic<bool> hasGotOffRel = false; 131 132 protected: 133 size_t numEntries = 0; 134 uint32_t tlsIndexOff = -1; 135 uint64_t size = 0; 136 struct AuthEntryInfo { 137 size_t offset; 138 bool isSymbolFunc; 139 }; 140 SmallVector<AuthEntryInfo, 0> authEntries; 141 }; 142 143 // .note.GNU-stack section. 144 class GnuStackSection : public SyntheticSection { 145 public: 146 GnuStackSection(Ctx &ctx) 147 : SyntheticSection(ctx, ".note.GNU-stack", llvm::ELF::SHT_PROGBITS, 0, 148 1) {} 149 void writeTo(uint8_t *buf) override {} 150 size_t getSize() const override { return 0; } 151 }; 152 153 class GnuPropertySection final : public SyntheticSection { 154 public: 155 GnuPropertySection(Ctx &); 156 void writeTo(uint8_t *buf) override; 157 size_t getSize() const override; 158 }; 159 160 // .note.gnu.build-id section. 161 class BuildIdSection : public SyntheticSection { 162 // First 16 bytes are a header. 163 static const unsigned headerSize = 16; 164 165 public: 166 const size_t hashSize; 167 BuildIdSection(Ctx &); 168 void writeTo(uint8_t *buf) override; 169 size_t getSize() const override { return headerSize + hashSize; } 170 void writeBuildId(llvm::ArrayRef<uint8_t> buf); 171 172 private: 173 uint8_t *hashBuf; 174 }; 175 176 // BssSection is used to reserve space for copy relocations and common symbols. 177 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON", 178 // that are used for writable symbols, read-only symbols and common symbols, 179 // respectively. 180 class BssSection final : public SyntheticSection { 181 public: 182 BssSection(Ctx &, StringRef name, uint64_t size, uint32_t addralign); 183 void writeTo(uint8_t *) override {} 184 bool isNeeded() const override { return size != 0; } 185 size_t getSize() const override { return size; } 186 187 static bool classof(const SectionBase *s) { 188 return isa<SyntheticSection>(s) && cast<SyntheticSection>(s)->bss; 189 } 190 uint64_t size; 191 }; 192 193 class MipsGotSection final : public SyntheticSection { 194 public: 195 MipsGotSection(Ctx &); 196 void writeTo(uint8_t *buf) override; 197 size_t getSize() const override { return size; } 198 bool updateAllocSize(Ctx &) override; 199 void finalizeContents() override; 200 bool isNeeded() const override; 201 202 // Join separate GOTs built for each input file to generate 203 // primary and optional multiple secondary GOTs. 204 void build(); 205 206 void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr); 207 void addDynTlsEntry(InputFile &file, Symbol &sym); 208 void addTlsIndex(InputFile &file); 209 210 uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s, 211 int64_t addend) const; 212 uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s, 213 int64_t addend) const; 214 uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const; 215 uint64_t getTlsIndexOffset(const InputFile *f) const; 216 217 // Returns the symbol which corresponds to the first entry of the global part 218 // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic 219 // table properties. 220 // Returns nullptr if the global part is empty. 221 const Symbol *getFirstGlobalEntry() const; 222 223 // Returns the number of entries in the local part of GOT including 224 // the number of reserved entries. 225 unsigned getLocalEntriesNum() const; 226 227 // Return _gp value for primary GOT (nullptr) or particular input file. 228 uint64_t getGp(const InputFile *f = nullptr) const; 229 230 private: 231 // MIPS GOT consists of three parts: local, global and tls. Each part 232 // contains different types of entries. Here is a layout of GOT: 233 // - Header entries | 234 // - Page entries | Local part 235 // - Local entries (16-bit access) | 236 // - Local entries (32-bit access) | 237 // - Normal global entries || Global part 238 // - Reloc-only global entries || 239 // - TLS entries ||| TLS part 240 // 241 // Header: 242 // Two entries hold predefined value 0x0 and 0x80000000. 243 // Page entries: 244 // These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16 245 // relocation against local symbols. They are initialized by higher 16-bit 246 // of the corresponding symbol's value. So each 64kb of address space 247 // requires a single GOT entry. 248 // Local entries (16-bit access): 249 // These entries created by GOT relocations against global non-preemptible 250 // symbols so dynamic linker is not necessary to resolve the symbol's 251 // values. "16-bit access" means that corresponding relocations address 252 // GOT using 16-bit index. Each unique Symbol-Addend pair has its own 253 // GOT entry. 254 // Local entries (32-bit access): 255 // These entries are the same as above but created by relocations which 256 // address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc). 257 // Normal global entries: 258 // These entries created by GOT relocations against preemptible global 259 // symbols. They need to be initialized by dynamic linker and they ordered 260 // exactly as the corresponding entries in the dynamic symbols table. 261 // Reloc-only global entries: 262 // These entries created for symbols that are referenced by dynamic 263 // relocations R_MIPS_REL32. These entries are not accessed with gp-relative 264 // addressing, but MIPS ABI requires that these entries be present in GOT. 265 // TLS entries: 266 // Entries created by TLS relocations. 267 // 268 // If the sum of local, global and tls entries is less than 64K only single 269 // got is enough. Otherwise, multi-got is created. Series of primary and 270 // multiple secondary GOTs have the following layout: 271 // - Primary GOT 272 // Header 273 // Local entries 274 // Global entries 275 // Relocation only entries 276 // TLS entries 277 // 278 // - Secondary GOT 279 // Local entries 280 // Global entries 281 // TLS entries 282 // ... 283 // 284 // All GOT entries required by relocations from a single input file entirely 285 // belong to either primary or one of secondary GOTs. To reference GOT entries 286 // each GOT has its own _gp value points to the "middle" of the GOT. 287 // In the code this value loaded to the register which is used for GOT access. 288 // 289 // MIPS 32 function's prologue: 290 // lui v0,0x0 291 // 0: R_MIPS_HI16 _gp_disp 292 // addiu v0,v0,0 293 // 4: R_MIPS_LO16 _gp_disp 294 // 295 // MIPS 64: 296 // lui at,0x0 297 // 14: R_MIPS_GPREL16 main 298 // 299 // Dynamic linker does not know anything about secondary GOTs and cannot 300 // use a regular MIPS mechanism for GOT entries initialization. So we have 301 // to use an approach accepted by other architectures and create dynamic 302 // relocations R_MIPS_REL32 to initialize global entries (and local in case 303 // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker 304 // requires GOT entries and correspondingly ordered dynamic symbol table 305 // entries to deal with dynamic relocations. To handle this problem 306 // relocation-only section in the primary GOT contains entries for all 307 // symbols referenced in global parts of secondary GOTs. Although the sum 308 // of local and normal global entries of the primary got should be less 309 // than 64K, the size of the primary got (including relocation-only entries 310 // can be greater than 64K, because parts of the primary got that overflow 311 // the 64K limit are used only by the dynamic linker at dynamic link-time 312 // and not by 16-bit gp-relative addressing at run-time. 313 // 314 // For complete multi-GOT description see the following link 315 // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT 316 317 // Number of "Header" entries. 318 static const unsigned headerEntriesNum = 2; 319 320 uint64_t size = 0; 321 322 // Symbol and addend. 323 using GotEntry = std::pair<Symbol *, int64_t>; 324 325 struct FileGot { 326 InputFile *file = nullptr; 327 size_t startIndex = 0; 328 329 struct PageBlock { 330 size_t firstIndex; 331 size_t count; 332 PageBlock() : firstIndex(0), count(0) {} 333 }; 334 335 // Map output sections referenced by MIPS GOT relocations 336 // to the description (index/count) "page" entries allocated 337 // for this section. 338 llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap; 339 // Maps from Symbol+Addend pair or just Symbol to the GOT entry index. 340 llvm::MapVector<GotEntry, size_t> local16; 341 llvm::MapVector<GotEntry, size_t> local32; 342 llvm::MapVector<Symbol *, size_t> global; 343 llvm::MapVector<Symbol *, size_t> relocs; 344 llvm::MapVector<Symbol *, size_t> tls; 345 // Set of symbols referenced by dynamic TLS relocations. 346 llvm::MapVector<Symbol *, size_t> dynTlsSymbols; 347 348 // Total number of all entries. 349 size_t getEntriesNum() const; 350 // Number of "page" entries. 351 size_t getPageEntriesNum() const; 352 // Number of entries require 16-bit index to access. 353 size_t getIndexedEntriesNum() const; 354 }; 355 356 // Container of GOT created for each input file. 357 // After building a final series of GOTs this container 358 // holds primary and secondary GOT's. 359 std::vector<FileGot> gots; 360 361 // Return (and create if necessary) `FileGot`. 362 FileGot &getGot(InputFile &f); 363 364 // Try to merge two GOTs. In case of success the `Dst` contains 365 // result of merging and the function returns true. In case of 366 // overflow the `Dst` is unchanged and the function returns false. 367 bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary); 368 }; 369 370 class GotPltSection final : public SyntheticSection { 371 public: 372 GotPltSection(Ctx &); 373 void addEntry(Symbol &sym); 374 size_t getSize() const override; 375 void writeTo(uint8_t *buf) override; 376 bool isNeeded() const override; 377 378 // Flag to force GotPlt to be in output if we have relocations 379 // that relies on its address. 380 std::atomic<bool> hasGotPltOffRel = false; 381 382 private: 383 SmallVector<const Symbol *, 0> entries; 384 }; 385 386 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc 387 // Symbols that will be relocated by Target->IRelativeRel. 388 // On most Targets the IgotPltSection will immediately follow the GotPltSection 389 // on ARM the IgotPltSection will immediately follow the GotSection. 390 class IgotPltSection final : public SyntheticSection { 391 public: 392 IgotPltSection(Ctx &); 393 void addEntry(Symbol &sym); 394 size_t getSize() const override; 395 void writeTo(uint8_t *buf) override; 396 bool isNeeded() const override { return !entries.empty(); } 397 398 private: 399 SmallVector<const Symbol *, 0> entries; 400 }; 401 402 class StringTableSection final : public SyntheticSection { 403 public: 404 StringTableSection(Ctx &, StringRef name, bool dynamic); 405 unsigned addString(StringRef s, bool hashIt = true); 406 void writeTo(uint8_t *buf) override; 407 size_t getSize() const override { return size; } 408 bool isDynamic() const { return dynamic; } 409 410 private: 411 const bool dynamic; 412 413 uint64_t size = 0; 414 415 llvm::DenseMap<llvm::CachedHashStringRef, unsigned> stringMap; 416 SmallVector<StringRef, 0> strings; 417 }; 418 419 class DynamicReloc { 420 public: 421 enum Kind { 422 /// The resulting dynamic relocation does not reference a symbol (#sym must 423 /// be nullptr) and uses #addend as the result of computeAddend(ctx). 424 AddendOnly, 425 /// The resulting dynamic relocation will not reference a symbol: #sym is 426 /// only used to compute the addend with InputSection::getRelocTargetVA(). 427 /// Useful for various relative and TLS relocations (e.g. R_X86_64_TPOFF64). 428 AddendOnlyWithTargetVA, 429 /// The resulting dynamic relocation references symbol #sym from the dynamic 430 /// symbol table and uses #addend as the value of computeAddend(ctx). 431 AgainstSymbol, 432 /// The resulting dynamic relocation references symbol #sym from the dynamic 433 /// symbol table and uses InputSection::getRelocTargetVA() + #addend for the 434 /// final addend. It can be used for relocations that write the symbol VA as 435 // the addend (e.g. R_MIPS_TLS_TPREL64) but still reference the symbol. 436 AgainstSymbolWithTargetVA, 437 /// This is used by the MIPS multi-GOT implementation. It relocates 438 /// addresses of 64kb pages that lie inside the output section. 439 MipsMultiGotPage, 440 }; 441 /// This constructor records a relocation against a symbol. 442 DynamicReloc(RelType type, const InputSectionBase *inputSec, 443 uint64_t offsetInSec, Kind kind, Symbol &sym, int64_t addend, 444 RelExpr expr) 445 : sym(&sym), inputSec(inputSec), offsetInSec(offsetInSec), type(type), 446 addend(addend), kind(kind), expr(expr) {} 447 /// This constructor records a relative relocation with no symbol. 448 DynamicReloc(RelType type, const InputSectionBase *inputSec, 449 uint64_t offsetInSec, int64_t addend = 0) 450 : sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec), type(type), 451 addend(addend), kind(AddendOnly), expr(R_ADDEND) {} 452 /// This constructor records dynamic relocation settings used by the MIPS 453 /// multi-GOT implementation. 454 DynamicReloc(RelType type, const InputSectionBase *inputSec, 455 uint64_t offsetInSec, const OutputSection *outputSec, 456 int64_t addend) 457 : sym(nullptr), outputSec(outputSec), inputSec(inputSec), 458 offsetInSec(offsetInSec), type(type), addend(addend), 459 kind(MipsMultiGotPage), expr(R_ADDEND) {} 460 461 uint64_t getOffset() const; 462 uint32_t getSymIndex(SymbolTableBaseSection *symTab) const; 463 bool needsDynSymIndex() const { 464 return kind == AgainstSymbol || kind == AgainstSymbolWithTargetVA; 465 } 466 467 /// Computes the addend of the dynamic relocation. Note that this is not the 468 /// same as the #addend member variable as it may also include the symbol 469 /// address/the address of the corresponding GOT entry/etc. 470 int64_t computeAddend(Ctx &) const; 471 472 void computeRaw(Ctx &, SymbolTableBaseSection *symt); 473 474 Symbol *sym; 475 const OutputSection *outputSec = nullptr; 476 const InputSectionBase *inputSec; 477 uint64_t offsetInSec; 478 uint64_t r_offset; 479 RelType type; 480 uint32_t r_sym; 481 // Initially input addend, then the output addend after 482 // RelocationSection<ELFT>::writeTo. 483 int64_t addend; 484 485 private: 486 Kind kind; 487 // The kind of expression used to calculate the added (required e.g. for 488 // relative GOT relocations). 489 RelExpr expr; 490 }; 491 492 template <class ELFT> class DynamicSection final : public SyntheticSection { 493 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 494 495 public: 496 DynamicSection(Ctx &); 497 void finalizeContents() override; 498 void writeTo(uint8_t *buf) override; 499 size_t getSize() const override { return size; } 500 501 private: 502 std::vector<std::pair<int32_t, uint64_t>> computeContents(); 503 uint64_t size = 0; 504 }; 505 506 class RelocationBaseSection : public SyntheticSection { 507 public: 508 RelocationBaseSection(Ctx &, StringRef name, uint32_t type, 509 int32_t dynamicTag, int32_t sizeDynamicTag, 510 bool combreloc, unsigned concurrency); 511 /// Add a dynamic relocation without writing an addend to the output section. 512 /// This overload can be used if the addends are written directly instead of 513 /// using relocations on the input section (e.g. MipsGotSection::writeTo()). 514 template <bool shard = false> void addReloc(const DynamicReloc &reloc) { 515 relocs.push_back(reloc); 516 } 517 /// Add a dynamic relocation against \p sym with an optional addend. 518 void addSymbolReloc(RelType dynType, InputSectionBase &isec, 519 uint64_t offsetInSec, Symbol &sym, int64_t addend = 0, 520 std::optional<RelType> addendRelType = {}); 521 /// Add a relative dynamic relocation that uses the target address of \p sym 522 /// (i.e. InputSection::getRelocTargetVA()) + \p addend as the addend. 523 /// This function should only be called for non-preemptible symbols or 524 /// RelExpr values that refer to an address inside the output file (e.g. the 525 /// address of the GOT entry for a potentially preemptible symbol). 526 template <bool shard = false> 527 void addRelativeReloc(RelType dynType, InputSectionBase &isec, 528 uint64_t offsetInSec, Symbol &sym, int64_t addend, 529 RelType addendRelType, RelExpr expr) { 530 assert(expr != R_ADDEND && "expected non-addend relocation expression"); 531 addReloc<shard>(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec, 532 offsetInSec, sym, addend, expr, addendRelType); 533 } 534 /// Add a dynamic relocation using the target address of \p sym as the addend 535 /// if \p sym is non-preemptible. Otherwise add a relocation against \p sym. 536 void addAddendOnlyRelocIfNonPreemptible(RelType dynType, 537 InputSectionBase &isec, 538 uint64_t offsetInSec, Symbol &sym, 539 RelType addendRelType); 540 template <bool shard = false> 541 void addReloc(DynamicReloc::Kind kind, RelType dynType, InputSectionBase &sec, 542 uint64_t offsetInSec, Symbol &sym, int64_t addend, RelExpr expr, 543 RelType addendRelType) { 544 // Write the addends to the relocated address if required. We skip 545 // it if the written value would be zero. 546 if (ctx.arg.writeAddends && (expr != R_ADDEND || addend != 0)) 547 sec.addReloc({expr, addendRelType, offsetInSec, addend, &sym}); 548 addReloc<shard>({dynType, &sec, offsetInSec, kind, sym, addend, expr}); 549 } 550 bool isNeeded() const override { 551 return !relocs.empty() || 552 llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); }); 553 } 554 size_t getSize() const override { return relocs.size() * this->entsize; } 555 size_t getRelativeRelocCount() const { return numRelativeRelocs; } 556 void mergeRels(); 557 void partitionRels(); 558 void finalizeContents() override; 559 560 int32_t dynamicTag, sizeDynamicTag; 561 SmallVector<DynamicReloc, 0> relocs; 562 563 protected: 564 void computeRels(); 565 // Used when parallel relocation scanning adds relocations. The elements 566 // will be moved into relocs by mergeRel(). 567 SmallVector<SmallVector<DynamicReloc, 0>, 0> relocsVec; 568 size_t numRelativeRelocs = 0; // used by -z combreloc 569 bool combreloc; 570 }; 571 572 template <> 573 inline void RelocationBaseSection::addReloc<true>(const DynamicReloc &reloc) { 574 relocsVec[llvm::parallel::getThreadIndex()].push_back(reloc); 575 } 576 577 template <class ELFT> 578 class RelocationSection final : public RelocationBaseSection { 579 using Elf_Rel = typename ELFT::Rel; 580 using Elf_Rela = typename ELFT::Rela; 581 582 public: 583 RelocationSection(Ctx &, StringRef name, bool combreloc, 584 unsigned concurrency); 585 void writeTo(uint8_t *buf) override; 586 }; 587 588 template <class ELFT> 589 class AndroidPackedRelocationSection final : public RelocationBaseSection { 590 using Elf_Rel = typename ELFT::Rel; 591 using Elf_Rela = typename ELFT::Rela; 592 593 public: 594 AndroidPackedRelocationSection(Ctx &, StringRef name, unsigned concurrency); 595 596 bool updateAllocSize(Ctx &) override; 597 size_t getSize() const override { return relocData.size(); } 598 void writeTo(uint8_t *buf) override { 599 memcpy(buf, relocData.data(), relocData.size()); 600 } 601 602 private: 603 SmallVector<char, 0> relocData; 604 }; 605 606 struct RelativeReloc { 607 uint64_t getOffset() const { 608 return inputSec->getVA(inputSec->relocs()[relocIdx].offset); 609 } 610 611 const InputSectionBase *inputSec; 612 size_t relocIdx; 613 }; 614 615 class RelrBaseSection : public SyntheticSection { 616 public: 617 RelrBaseSection(Ctx &, unsigned concurrency, bool isAArch64Auth = false); 618 void mergeRels(); 619 bool isNeeded() const override { 620 return !relocs.empty() || 621 llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); }); 622 } 623 SmallVector<RelativeReloc, 0> relocs; 624 SmallVector<SmallVector<RelativeReloc, 0>, 0> relocsVec; 625 }; 626 627 // RelrSection is used to encode offsets for relative relocations. 628 // Proposal for adding SHT_RELR sections to generic-abi is here: 629 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 630 // For more details, see the comment in RelrSection::updateAllocSize(Ctx &ctx). 631 template <class ELFT> class RelrSection final : public RelrBaseSection { 632 using Elf_Relr = typename ELFT::Relr; 633 634 public: 635 RelrSection(Ctx &, unsigned concurrency, bool isAArch64Auth = false); 636 637 bool updateAllocSize(Ctx &) override; 638 size_t getSize() const override { return relrRelocs.size() * this->entsize; } 639 void writeTo(uint8_t *buf) override { 640 memcpy(buf, relrRelocs.data(), getSize()); 641 } 642 643 private: 644 SmallVector<Elf_Relr, 0> relrRelocs; 645 }; 646 647 struct SymbolTableEntry { 648 Symbol *sym; 649 size_t strTabOffset; 650 }; 651 652 class SymbolTableBaseSection : public SyntheticSection { 653 public: 654 SymbolTableBaseSection(Ctx &ctx, StringTableSection &strTabSec); 655 void finalizeContents() override; 656 size_t getSize() const override { return getNumSymbols() * entsize; } 657 void addSymbol(Symbol *sym); 658 unsigned getNumSymbols() const { return symbols.size() + 1; } 659 size_t getSymbolIndex(const Symbol &sym); 660 ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; } 661 662 protected: 663 void sortSymTabSymbols(); 664 665 // A vector of symbols and their string table offsets. 666 SmallVector<SymbolTableEntry, 0> symbols; 667 668 StringTableSection &strTabSec; 669 670 llvm::once_flag onceFlag; 671 llvm::DenseMap<Symbol *, size_t> symbolIndexMap; 672 llvm::DenseMap<OutputSection *, size_t> sectionIndexMap; 673 }; 674 675 template <class ELFT> 676 class SymbolTableSection final : public SymbolTableBaseSection { 677 using Elf_Sym = typename ELFT::Sym; 678 679 public: 680 SymbolTableSection(Ctx &, StringTableSection &strTabSec); 681 void writeTo(uint8_t *buf) override; 682 }; 683 684 class SymtabShndxSection final : public SyntheticSection { 685 public: 686 SymtabShndxSection(Ctx &); 687 688 void writeTo(uint8_t *buf) override; 689 size_t getSize() const override; 690 bool isNeeded() const override; 691 void finalizeContents() override; 692 }; 693 694 // Outputs GNU Hash section. For detailed explanation see: 695 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections 696 class GnuHashTableSection final : public SyntheticSection { 697 public: 698 GnuHashTableSection(Ctx &); 699 void finalizeContents() override; 700 void writeTo(uint8_t *buf) override; 701 size_t getSize() const override { return size; } 702 703 // Adds symbols to the hash table. 704 // Sorts the input to satisfy GNU hash section requirements. 705 void addSymbols(llvm::SmallVectorImpl<SymbolTableEntry> &symbols); 706 707 private: 708 // See the comment in writeBloomFilter. 709 enum { Shift2 = 26 }; 710 711 struct Entry { 712 Symbol *sym; 713 size_t strTabOffset; 714 uint32_t hash; 715 uint32_t bucketIdx; 716 }; 717 718 SmallVector<Entry, 0> symbols; 719 size_t maskWords; 720 size_t nBuckets = 0; 721 size_t size = 0; 722 }; 723 724 class HashTableSection final : public SyntheticSection { 725 public: 726 HashTableSection(Ctx &); 727 void finalizeContents() override; 728 void writeTo(uint8_t *buf) override; 729 size_t getSize() const override { return size; } 730 731 private: 732 size_t size = 0; 733 }; 734 735 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT 736 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily 737 // at runtime. 738 // 739 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction 740 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a 741 // lazy symbol resolver. 742 // 743 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs. 744 // A call instruction jumps to a .plt.sec entry, which will then jump to the 745 // target (BIND_NOW) or a .plt entry. 746 class PltSection : public SyntheticSection { 747 public: 748 PltSection(Ctx &); 749 void writeTo(uint8_t *buf) override; 750 size_t getSize() const override; 751 bool isNeeded() const override; 752 void addSymbols(); 753 void addEntry(Symbol &sym); 754 size_t getNumEntries() const { return entries.size(); } 755 756 size_t headerSize; 757 758 SmallVector<const Symbol *, 0> entries; 759 }; 760 761 // Used for non-preemptible ifuncs. It does not have a header. Each entry is 762 // associated with an IRELATIVE relocation, which will be resolved eagerly at 763 // runtime. PltSection can only contain entries associated with JUMP_SLOT 764 // relocations, so IPLT entries are in a separate section. 765 class IpltSection final : public SyntheticSection { 766 SmallVector<const Symbol *, 0> entries; 767 768 public: 769 IpltSection(Ctx &); 770 void writeTo(uint8_t *buf) override; 771 size_t getSize() const override; 772 bool isNeeded() const override { return !entries.empty(); } 773 void addSymbols(); 774 void addEntry(Symbol &sym); 775 }; 776 777 class PPC32GlinkSection : public PltSection { 778 public: 779 PPC32GlinkSection(Ctx &); 780 void writeTo(uint8_t *buf) override; 781 size_t getSize() const override; 782 783 SmallVector<const Symbol *, 0> canonical_plts; 784 static constexpr size_t footerSize = 64; 785 }; 786 787 // This is x86-only. 788 class IBTPltSection : public SyntheticSection { 789 public: 790 IBTPltSection(Ctx &); 791 void writeTo(uint8_t *Buf) override; 792 bool isNeeded() const override; 793 size_t getSize() const override; 794 }; 795 796 // Used to align the end of the PT_GNU_RELRO segment and the associated PT_LOAD 797 // segment to a common-page-size boundary. This padding section ensures that all 798 // pages in the PT_LOAD segment is covered by at least one section. 799 class RelroPaddingSection final : public SyntheticSection { 800 public: 801 RelroPaddingSection(Ctx &); 802 size_t getSize() const override { return 0; } 803 void writeTo(uint8_t *buf) override {} 804 }; 805 806 class RandomizePaddingSection final : public SyntheticSection { 807 uint64_t size; 808 809 public: 810 RandomizePaddingSection(Ctx &ctx, uint64_t size, OutputSection *parent); 811 size_t getSize() const override { return size; } 812 void writeTo(uint8_t *buf) override; 813 }; 814 815 // Used by the merged DWARF32 .debug_names (a per-module index). If we 816 // move to DWARF64, most of this data will need to be re-sized. 817 class DebugNamesBaseSection : public SyntheticSection { 818 public: 819 struct Abbrev : llvm::FoldingSetNode { 820 uint32_t code; 821 uint32_t tag; 822 SmallVector<llvm::DWARFDebugNames::AttributeEncoding, 2> attributes; 823 824 void Profile(llvm::FoldingSetNodeID &id) const; 825 }; 826 827 struct AttrValue { 828 uint32_t attrValue; 829 uint8_t attrSize; 830 }; 831 832 struct IndexEntry { 833 uint32_t abbrevCode; 834 uint32_t poolOffset; 835 union { 836 uint64_t parentOffset = 0; 837 IndexEntry *parentEntry; 838 }; 839 SmallVector<AttrValue, 3> attrValues; 840 }; 841 842 struct NameEntry { 843 const char *name; 844 uint32_t hashValue; 845 uint32_t stringOffset; 846 uint32_t entryOffset; 847 // Used to relocate `stringOffset` in the merged section. 848 uint32_t chunkIdx; 849 SmallVector<IndexEntry *, 0> indexEntries; 850 851 llvm::iterator_range< 852 llvm::pointee_iterator<typename SmallVector<IndexEntry *, 0>::iterator>> 853 entries() { 854 return llvm::make_pointee_range(indexEntries); 855 } 856 }; 857 858 // The contents of one input .debug_names section. An InputChunk 859 // typically contains one NameData, but might contain more, especially 860 // in LTO builds. 861 struct NameData { 862 llvm::DWARFDebugNames::Header hdr; 863 llvm::DenseMap<uint32_t, uint32_t> abbrevCodeMap; 864 SmallVector<NameEntry, 0> nameEntries; 865 }; 866 867 // InputChunk and OutputChunk hold per-file contributions to the merged index. 868 // InputChunk instances will be discarded after `init` completes. 869 struct InputChunk { 870 uint32_t baseCuIdx; 871 LLDDWARFSection section; 872 SmallVector<NameData, 0> nameData; 873 std::optional<llvm::DWARFDebugNames> llvmDebugNames; 874 }; 875 876 struct OutputChunk { 877 // Pointer to the .debug_info section that contains compile units, used to 878 // compute the relocated CU offsets. 879 InputSection *infoSec; 880 // This initially holds section offsets. After relocation, the section 881 // offsets are changed to CU offsets relative the the output section. 882 SmallVector<uint32_t, 0> compUnits; 883 }; 884 885 DebugNamesBaseSection(Ctx &); 886 size_t getSize() const override { return size; } 887 bool isNeeded() const override { return numChunks > 0; } 888 889 protected: 890 void init(llvm::function_ref<void(InputFile *, InputChunk &, OutputChunk &)>); 891 static void 892 parseDebugNames(Ctx &, InputChunk &inputChunk, OutputChunk &chunk, 893 llvm::DWARFDataExtractor &namesExtractor, 894 llvm::DataExtractor &strExtractor, 895 llvm::function_ref<SmallVector<uint32_t, 0>( 896 uint32_t numCUs, const llvm::DWARFDebugNames::Header &hdr, 897 const llvm::DWARFDebugNames::DWARFDebugNamesOffsets &)> 898 readOffsets); 899 void computeHdrAndAbbrevTable(MutableArrayRef<InputChunk> inputChunks); 900 std::pair<uint32_t, uint32_t> 901 computeEntryPool(MutableArrayRef<InputChunk> inputChunks); 902 903 // Input .debug_names sections for relocating string offsets in the name table 904 // in `finalizeContents`. 905 SmallVector<InputSection *, 0> inputSections; 906 907 llvm::DWARFDebugNames::Header hdr; 908 size_t numChunks; 909 std::unique_ptr<OutputChunk[]> chunks; 910 llvm::SpecificBumpPtrAllocator<Abbrev> abbrevAlloc; 911 SmallVector<Abbrev *, 0> abbrevTable; 912 SmallVector<char, 0> abbrevTableBuf; 913 914 ArrayRef<OutputChunk> getChunks() const { 915 return ArrayRef(chunks.get(), numChunks); 916 } 917 918 // Sharded name entries that will be used to compute bucket_count and the 919 // count name table. 920 static constexpr size_t numShards = 32; 921 SmallVector<NameEntry, 0> nameVecs[numShards]; 922 }; 923 924 // Complement DebugNamesBaseSection for ELFT-aware code: reading offsets, 925 // relocating string offsets, and writeTo. 926 template <class ELFT> 927 class DebugNamesSection final : public DebugNamesBaseSection { 928 public: 929 DebugNamesSection(Ctx &); 930 void finalizeContents() override; 931 void writeTo(uint8_t *buf) override; 932 933 template <class RelTy> 934 void getNameRelocs(const InputFile &file, 935 llvm::DenseMap<uint32_t, uint32_t> &relocs, 936 Relocs<RelTy> rels); 937 938 private: 939 static void readOffsets(InputChunk &inputChunk, OutputChunk &chunk, 940 llvm::DWARFDataExtractor &namesExtractor, 941 llvm::DataExtractor &strExtractor); 942 }; 943 944 class GdbIndexSection final : public SyntheticSection { 945 public: 946 struct AddressEntry { 947 InputSection *section; 948 uint64_t lowAddress; 949 uint64_t highAddress; 950 uint32_t cuIndex; 951 }; 952 953 struct CuEntry { 954 uint64_t cuOffset; 955 uint64_t cuLength; 956 }; 957 958 struct NameAttrEntry { 959 llvm::CachedHashStringRef name; 960 uint32_t cuIndexAndAttrs; 961 }; 962 963 struct GdbChunk { 964 InputSection *sec; 965 SmallVector<AddressEntry, 0> addressAreas; 966 SmallVector<CuEntry, 0> compilationUnits; 967 }; 968 969 struct GdbSymbol { 970 llvm::CachedHashStringRef name; 971 SmallVector<uint32_t, 0> cuVector; 972 uint32_t nameOff; 973 uint32_t cuVectorOff; 974 }; 975 976 GdbIndexSection(Ctx &); 977 template <typename ELFT> 978 static std::unique_ptr<GdbIndexSection> create(Ctx &); 979 void writeTo(uint8_t *buf) override; 980 size_t getSize() const override { return size; } 981 bool isNeeded() const override; 982 983 private: 984 struct GdbIndexHeader { 985 llvm::support::ulittle32_t version; 986 llvm::support::ulittle32_t cuListOff; 987 llvm::support::ulittle32_t cuTypesOff; 988 llvm::support::ulittle32_t addressAreaOff; 989 llvm::support::ulittle32_t symtabOff; 990 llvm::support::ulittle32_t constantPoolOff; 991 }; 992 993 size_t computeSymtabSize() const; 994 995 // Each chunk contains information gathered from debug sections of a 996 // single object file. 997 SmallVector<GdbChunk, 0> chunks; 998 999 // A symbol table for this .gdb_index section. 1000 SmallVector<GdbSymbol, 0> symbols; 1001 1002 size_t size; 1003 }; 1004 1005 // --eh-frame-hdr option tells linker to construct a header for all the 1006 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr 1007 // and also to a PT_GNU_EH_FRAME segment. 1008 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by 1009 // calling dl_iterate_phdr. 1010 // This section contains a lookup table for quick binary search of FDEs. 1011 // Detailed info about internals can be found in Ian Lance Taylor's blog: 1012 // http://www.airs.com/blog/archives/460 (".eh_frame") 1013 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr") 1014 class EhFrameHeader final : public SyntheticSection { 1015 public: 1016 EhFrameHeader(Ctx &); 1017 void write(); 1018 void writeTo(uint8_t *buf) override; 1019 size_t getSize() const override; 1020 bool isNeeded() const override; 1021 }; 1022 1023 // For more information about .gnu.version and .gnu.version_r see: 1024 // https://www.akkadia.org/drepper/symbol-versioning 1025 1026 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall 1027 // contain symbol version definitions. The number of entries in this section 1028 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section. 1029 // The section shall contain an array of Elf_Verdef structures, optionally 1030 // followed by an array of Elf_Verdaux structures. 1031 class VersionDefinitionSection final : public SyntheticSection { 1032 public: 1033 VersionDefinitionSection(Ctx &); 1034 void finalizeContents() override; 1035 size_t getSize() const override; 1036 void writeTo(uint8_t *buf) override; 1037 1038 private: 1039 enum { EntrySize = 28 }; 1040 void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff); 1041 StringRef getFileDefName(); 1042 1043 unsigned fileDefNameOff; 1044 SmallVector<unsigned, 0> verDefNameOffs; 1045 }; 1046 1047 // The .gnu.version section specifies the required version of each symbol in the 1048 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol 1049 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version 1050 // identifier defined in the either .gnu.version_r or .gnu.version_d section. 1051 // The values 0 and 1 are reserved. All other values are used for versions in 1052 // the own object or in any of the dependencies. 1053 class VersionTableSection final : public SyntheticSection { 1054 public: 1055 VersionTableSection(Ctx &); 1056 void finalizeContents() override; 1057 size_t getSize() const override; 1058 void writeTo(uint8_t *buf) override; 1059 bool isNeeded() const override; 1060 }; 1061 1062 // The .gnu.version_r section defines the version identifiers used by 1063 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each 1064 // Elf_Verneed specifies the version requirements for a single DSO, and contains 1065 // a reference to a linked list of Elf_Vernaux data structures which define the 1066 // mapping from version identifiers to version names. 1067 template <class ELFT> 1068 class VersionNeedSection final : public SyntheticSection { 1069 using Elf_Verneed = typename ELFT::Verneed; 1070 using Elf_Vernaux = typename ELFT::Vernaux; 1071 1072 struct Vernaux { 1073 uint64_t hash; 1074 uint32_t verneedIndex; 1075 uint64_t nameStrTab; 1076 }; 1077 1078 struct Verneed { 1079 uint64_t nameStrTab; 1080 std::vector<Vernaux> vernauxs; 1081 }; 1082 1083 SmallVector<Verneed, 0> verneeds; 1084 1085 public: 1086 VersionNeedSection(Ctx &); 1087 void finalizeContents() override; 1088 void writeTo(uint8_t *buf) override; 1089 size_t getSize() const override; 1090 bool isNeeded() const override; 1091 }; 1092 1093 // MergeSyntheticSection is a class that allows us to put mergeable sections 1094 // with different attributes in a single output sections. To do that 1095 // we put them into MergeSyntheticSection synthetic input sections which are 1096 // attached to regular output sections. 1097 class MergeSyntheticSection : public SyntheticSection { 1098 public: 1099 void addSection(MergeInputSection *ms); 1100 SmallVector<MergeInputSection *, 0> sections; 1101 1102 protected: 1103 MergeSyntheticSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags, 1104 uint32_t addralign) 1105 : SyntheticSection(ctx, name, type, flags, addralign) {} 1106 }; 1107 1108 class MergeTailSection final : public MergeSyntheticSection { 1109 public: 1110 MergeTailSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags, 1111 uint32_t addralign); 1112 1113 size_t getSize() const override; 1114 void writeTo(uint8_t *buf) override; 1115 void finalizeContents() override; 1116 1117 private: 1118 llvm::StringTableBuilder builder; 1119 }; 1120 1121 class MergeNoTailSection final : public MergeSyntheticSection { 1122 public: 1123 MergeNoTailSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags, 1124 uint32_t addralign) 1125 : MergeSyntheticSection(ctx, name, type, flags, addralign) {} 1126 1127 size_t getSize() const override { return size; } 1128 void writeTo(uint8_t *buf) override; 1129 void finalizeContents() override; 1130 1131 private: 1132 // We use the most significant bits of a hash as a shard ID. 1133 // The reason why we don't want to use the least significant bits is 1134 // because DenseMap also uses lower bits to determine a bucket ID. 1135 // If we use lower bits, it significantly increases the probability of 1136 // hash collisions. 1137 size_t getShardId(uint32_t hash) { 1138 assert((hash >> 31) == 0); 1139 return hash >> (31 - llvm::countr_zero(numShards)); 1140 } 1141 1142 // Section size 1143 size_t size; 1144 1145 // String table contents 1146 constexpr static size_t numShards = 32; 1147 SmallVector<llvm::StringTableBuilder, 0> shards; 1148 size_t shardOffsets[numShards]; 1149 }; 1150 1151 // .MIPS.abiflags section. 1152 template <class ELFT> 1153 class MipsAbiFlagsSection final : public SyntheticSection { 1154 using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>; 1155 1156 public: 1157 static std::unique_ptr<MipsAbiFlagsSection> create(Ctx &); 1158 1159 MipsAbiFlagsSection(Ctx &, Elf_Mips_ABIFlags flags); 1160 size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); } 1161 void writeTo(uint8_t *buf) override; 1162 1163 private: 1164 Elf_Mips_ABIFlags flags; 1165 }; 1166 1167 // .MIPS.options section. 1168 template <class ELFT> class MipsOptionsSection final : public SyntheticSection { 1169 using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>; 1170 using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>; 1171 1172 public: 1173 static std::unique_ptr<MipsOptionsSection<ELFT>> create(Ctx &); 1174 1175 MipsOptionsSection(Ctx &, Elf_Mips_RegInfo reginfo); 1176 void writeTo(uint8_t *buf) override; 1177 1178 size_t getSize() const override { 1179 return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); 1180 } 1181 1182 private: 1183 Elf_Mips_RegInfo reginfo; 1184 }; 1185 1186 // MIPS .reginfo section. 1187 template <class ELFT> class MipsReginfoSection final : public SyntheticSection { 1188 using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>; 1189 1190 public: 1191 static std::unique_ptr<MipsReginfoSection> create(Ctx &); 1192 1193 MipsReginfoSection(Ctx &, Elf_Mips_RegInfo reginfo); 1194 size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); } 1195 void writeTo(uint8_t *buf) override; 1196 1197 private: 1198 Elf_Mips_RegInfo reginfo; 1199 }; 1200 1201 // This is a MIPS specific section to hold a space within the data segment 1202 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. 1203 // See "Dynamic section" in Chapter 5 in the following document: 1204 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 1205 class MipsRldMapSection final : public SyntheticSection { 1206 public: 1207 MipsRldMapSection(Ctx &); 1208 size_t getSize() const override { return ctx.arg.wordsize; } 1209 void writeTo(uint8_t *buf) override {} 1210 }; 1211 1212 // Representation of the combined .ARM.Exidx input sections. We process these 1213 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries 1214 // and add terminating sentinel entries. 1215 // 1216 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form 1217 // a table that the unwinder can derive (Addresses are encoded as offsets from 1218 // table): 1219 // | Address of function | Unwind instructions for function | 1220 // where the unwind instructions are either a small number of unwind or the 1221 // special EXIDX_CANTUNWIND entry representing no unwinding information. 1222 // When an exception is thrown from an address A, the unwinder searches the 1223 // table for the closest table entry with Address of function <= A. This means 1224 // that for two consecutive table entries: 1225 // | A1 | U1 | 1226 // | A2 | U2 | 1227 // The range of addresses described by U1 is [A1, A2) 1228 // 1229 // There are two cases where we need a linker generated table entry to fixup 1230 // the address ranges in the table 1231 // Case 1: 1232 // - A sentinel entry added with an address higher than all 1233 // executable sections. This was needed to work around libunwind bug pr31091. 1234 // - After address assignment we need to find the highest addressed executable 1235 // section and use the limit of that section so that the unwinder never 1236 // matches it. 1237 // Case 2: 1238 // - InputSections without a .ARM.exidx section (usually from Assembly) 1239 // need a table entry so that they terminate the range of the previously 1240 // function. This is pr40277. 1241 // 1242 // Instead of storing pointers to the .ARM.exidx InputSections from 1243 // InputObjects, we store pointers to the executable sections that need 1244 // .ARM.exidx sections. We can then use the dependentSections of these to 1245 // either find the .ARM.exidx section or know that we need to generate one. 1246 class ARMExidxSyntheticSection : public SyntheticSection { 1247 public: 1248 ARMExidxSyntheticSection(Ctx &); 1249 1250 // Add an input section to the ARMExidxSyntheticSection. Returns whether the 1251 // section needs to be removed from the main input section list. 1252 bool addSection(InputSection *isec); 1253 1254 size_t getSize() const override { return size; } 1255 void writeTo(uint8_t *buf) override; 1256 bool isNeeded() const override; 1257 // Sort and remove duplicate entries. 1258 void finalizeContents() override; 1259 InputSection *getLinkOrderDep() const; 1260 1261 static bool classof(const SectionBase *sec) { 1262 return sec->kind() == InputSectionBase::Synthetic && 1263 sec->type == llvm::ELF::SHT_ARM_EXIDX; 1264 } 1265 1266 // Links to the ARMExidxSections so we can transfer the relocations once the 1267 // layout is known. 1268 SmallVector<InputSection *, 0> exidxSections; 1269 1270 private: 1271 size_t size = 0; 1272 1273 // Instead of storing pointers to the .ARM.exidx InputSections from 1274 // InputObjects, we store pointers to the executable sections that need 1275 // .ARM.exidx sections. We can then use the dependentSections of these to 1276 // either find the .ARM.exidx section or know that we need to generate one. 1277 SmallVector<InputSection *, 0> executableSections; 1278 1279 // Value of executableSecitons before finalizeContents(), so that it can be 1280 // run repeateadly during fixed point iteration. 1281 SmallVector<InputSection *, 0> originalExecutableSections; 1282 1283 // The executable InputSection with the highest address to use for the 1284 // sentinel. We store separately from ExecutableSections as merging of 1285 // duplicate entries may mean this InputSection is removed from 1286 // ExecutableSections. 1287 InputSection *sentinel = nullptr; 1288 }; 1289 1290 // A container for one or more linker generated thunks. Instances of these 1291 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks. 1292 class ThunkSection final : public SyntheticSection { 1293 public: 1294 // ThunkSection in OS, with desired outSecOff of Off 1295 ThunkSection(Ctx &, OutputSection *os, uint64_t off); 1296 1297 // Add a newly created Thunk to this container: 1298 // Thunk is given offset from start of this InputSection 1299 // Thunk defines a symbol in this InputSection that can be used as target 1300 // of a relocation 1301 void addThunk(Thunk *t); 1302 size_t getSize() const override; 1303 void writeTo(uint8_t *buf) override; 1304 InputSection *getTargetInputSection() const; 1305 bool assignOffsets(); 1306 1307 // When true, round up reported size of section to 4 KiB. See comment 1308 // in addThunkSection() for more details. 1309 bool roundUpSizeForErrata = false; 1310 1311 private: 1312 SmallVector<Thunk *, 0> thunks; 1313 size_t size = 0; 1314 }; 1315 1316 // Cortex-M Security Extensions. Prefix for functions that should be exported 1317 // for the non-secure world. 1318 const char ACLESESYM_PREFIX[] = "__acle_se_"; 1319 const int ACLESESYM_SIZE = 8; 1320 1321 class ArmCmseSGVeneer { 1322 public: 1323 ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym, 1324 std::optional<uint64_t> addr = std::nullopt) 1325 : sym(sym), acleSeSym(acleSeSym), entAddr{addr} {} 1326 static const size_t size{ACLESESYM_SIZE}; 1327 const std::optional<uint64_t> getAddr() const { return entAddr; }; 1328 1329 Symbol *sym; 1330 Symbol *acleSeSym; 1331 uint64_t offset = 0; 1332 1333 private: 1334 const std::optional<uint64_t> entAddr; 1335 }; 1336 1337 class ArmCmseSGSection final : public SyntheticSection { 1338 public: 1339 ArmCmseSGSection(Ctx &ctx); 1340 bool isNeeded() const override { return !entries.empty(); } 1341 size_t getSize() const override; 1342 void writeTo(uint8_t *buf) override; 1343 void addSGVeneer(Symbol *sym, Symbol *ext_sym); 1344 void addMappingSymbol(); 1345 void finalizeContents() override; 1346 void exportEntries(SymbolTableBaseSection *symTab); 1347 uint64_t impLibMaxAddr = 0; 1348 1349 private: 1350 SmallVector<std::pair<Symbol *, Symbol *>, 0> entries; 1351 SmallVector<std::unique_ptr<ArmCmseSGVeneer>, 0> sgVeneers; 1352 uint64_t newEntries = 0; 1353 }; 1354 1355 // Used to compute outSecOff of .got2 in each object file. This is needed to 1356 // synthesize PLT entries for PPC32 Secure PLT ABI. 1357 class PPC32Got2Section final : public SyntheticSection { 1358 public: 1359 PPC32Got2Section(Ctx &); 1360 size_t getSize() const override { return 0; } 1361 bool isNeeded() const override; 1362 void finalizeContents() override; 1363 void writeTo(uint8_t *buf) override {} 1364 }; 1365 1366 // This section is used to store the addresses of functions that are called 1367 // in range-extending thunks on PowerPC64. When producing position dependent 1368 // code the addresses are link-time constants and the table is written out to 1369 // the binary. When producing position-dependent code the table is allocated and 1370 // filled in by the dynamic linker. 1371 class PPC64LongBranchTargetSection final : public SyntheticSection { 1372 public: 1373 PPC64LongBranchTargetSection(Ctx &); 1374 uint64_t getEntryVA(const Symbol *sym, int64_t addend); 1375 std::optional<uint32_t> addEntry(const Symbol *sym, int64_t addend); 1376 size_t getSize() const override; 1377 void writeTo(uint8_t *buf) override; 1378 bool isNeeded() const override; 1379 void finalizeContents() override { finalized = true; } 1380 1381 private: 1382 SmallVector<std::pair<const Symbol *, int64_t>, 0> entries; 1383 llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index; 1384 bool finalized = false; 1385 }; 1386 1387 template <typename ELFT> 1388 class PartitionElfHeaderSection final : public SyntheticSection { 1389 public: 1390 PartitionElfHeaderSection(Ctx &); 1391 size_t getSize() const override; 1392 void writeTo(uint8_t *buf) override; 1393 }; 1394 1395 template <typename ELFT> 1396 class PartitionProgramHeadersSection final : public SyntheticSection { 1397 public: 1398 PartitionProgramHeadersSection(Ctx &); 1399 size_t getSize() const override; 1400 void writeTo(uint8_t *buf) override; 1401 }; 1402 1403 class PartitionIndexSection final : public SyntheticSection { 1404 public: 1405 PartitionIndexSection(Ctx &); 1406 size_t getSize() const override; 1407 void finalizeContents() override; 1408 void writeTo(uint8_t *buf) override; 1409 }; 1410 1411 // See the following link for the Android-specific loader code that operates on 1412 // this section: 1413 // https://cs.android.com/android/platform/superproject/+/master:bionic/libc/bionic/libc_init_static.cpp;drc=9425b16978f9c5aa8f2c50c873db470819480d1d;l=192 1414 class MemtagAndroidNote final : public SyntheticSection { 1415 public: 1416 MemtagAndroidNote(Ctx &ctx) 1417 : SyntheticSection(ctx, ".note.android.memtag", llvm::ELF::SHT_NOTE, 1418 llvm::ELF::SHF_ALLOC, /*addralign=*/4) {} 1419 void writeTo(uint8_t *buf) override; 1420 size_t getSize() const override; 1421 }; 1422 1423 class PackageMetadataNote final : public SyntheticSection { 1424 public: 1425 PackageMetadataNote(Ctx &ctx) 1426 : SyntheticSection(ctx, ".note.package", llvm::ELF::SHT_NOTE, 1427 llvm::ELF::SHF_ALLOC, /*addralign=*/4) {} 1428 void writeTo(uint8_t *buf) override; 1429 size_t getSize() const override; 1430 }; 1431 1432 class MemtagGlobalDescriptors final : public SyntheticSection { 1433 public: 1434 MemtagGlobalDescriptors(Ctx &ctx) 1435 : SyntheticSection(ctx, ".memtag.globals.dynamic", 1436 llvm::ELF::SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC, 1437 llvm::ELF::SHF_ALLOC, /*addralign=*/4) {} 1438 void writeTo(uint8_t *buf) override; 1439 // The size of the section is non-computable until all addresses are 1440 // synthetized, because the section's contents contain a sorted 1441 // varint-compressed list of pointers to global variables. We only know the 1442 // final size after `finalizeAddressDependentContent()`. 1443 size_t getSize() const override; 1444 bool updateAllocSize(Ctx &) override; 1445 1446 void addSymbol(const Symbol &sym) { 1447 symbols.push_back(&sym); 1448 } 1449 1450 bool isNeeded() const override { return !symbols.empty(); } 1451 1452 private: 1453 SmallVector<const Symbol *, 0> symbols; 1454 }; 1455 1456 template <class ELFT> void createSyntheticSections(Ctx &); 1457 InputSection *createInterpSection(Ctx &); 1458 MergeInputSection *createCommentSection(Ctx &); 1459 template <class ELFT> void splitSections(Ctx &); 1460 void combineEhSections(Ctx &); 1461 1462 bool hasMemtag(Ctx &); 1463 bool canHaveMemtagGlobals(Ctx &); 1464 1465 template <typename ELFT> void writeEhdr(Ctx &, uint8_t *buf, Partition &part); 1466 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part); 1467 1468 Defined *addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type, 1469 uint64_t value, uint64_t size, 1470 InputSectionBase §ion); 1471 1472 void addVerneed(Ctx &, Symbol &ss); 1473 1474 // This describes a program header entry. 1475 // Each contains type, access flags and range of output sections that will be 1476 // placed in it. 1477 struct PhdrEntry { 1478 PhdrEntry(Ctx &ctx, unsigned type, unsigned flags) 1479 : p_align(type == llvm::ELF::PT_LOAD ? ctx.arg.maxPageSize : 0), 1480 p_type(type), p_flags(flags) {} 1481 void add(OutputSection *sec); 1482 1483 uint64_t p_paddr = 0; 1484 uint64_t p_vaddr = 0; 1485 uint64_t p_memsz = 0; 1486 uint64_t p_filesz = 0; 1487 uint64_t p_offset = 0; 1488 uint32_t p_align = 0; 1489 uint32_t p_type = 0; 1490 uint32_t p_flags = 0; 1491 1492 OutputSection *firstSec = nullptr; 1493 OutputSection *lastSec = nullptr; 1494 bool hasLMA = false; 1495 1496 uint64_t lmaOffset = 0; 1497 }; 1498 1499 // Linker generated per-partition sections. 1500 struct Partition { 1501 Ctx &ctx; 1502 StringRef name; 1503 uint64_t nameStrTab; 1504 1505 std::unique_ptr<SyntheticSection> elfHeader; 1506 std::unique_ptr<SyntheticSection> programHeaders; 1507 SmallVector<std::unique_ptr<PhdrEntry>, 0> phdrs; 1508 1509 std::unique_ptr<ARMExidxSyntheticSection> armExidx; 1510 std::unique_ptr<BuildIdSection> buildId; 1511 std::unique_ptr<SyntheticSection> dynamic; 1512 std::unique_ptr<StringTableSection> dynStrTab; 1513 std::unique_ptr<SymbolTableBaseSection> dynSymTab; 1514 std::unique_ptr<EhFrameHeader> ehFrameHdr; 1515 std::unique_ptr<EhFrameSection> ehFrame; 1516 std::unique_ptr<GnuHashTableSection> gnuHashTab; 1517 std::unique_ptr<HashTableSection> hashTab; 1518 std::unique_ptr<MemtagAndroidNote> memtagAndroidNote; 1519 std::unique_ptr<MemtagGlobalDescriptors> memtagGlobalDescriptors; 1520 std::unique_ptr<PackageMetadataNote> packageMetadataNote; 1521 std::unique_ptr<RelocationBaseSection> relaDyn; 1522 std::unique_ptr<RelrBaseSection> relrDyn; 1523 std::unique_ptr<RelrBaseSection> relrAuthDyn; 1524 std::unique_ptr<VersionDefinitionSection> verDef; 1525 std::unique_ptr<SyntheticSection> verNeed; 1526 std::unique_ptr<VersionTableSection> verSym; 1527 1528 Partition(Ctx &ctx) : ctx(ctx) {} 1529 unsigned getNumber(Ctx &ctx) const { return this - &ctx.partitions[0] + 1; } 1530 }; 1531 1532 inline Partition &SectionBase::getPartition(Ctx &ctx) const { 1533 assert(isLive()); 1534 return ctx.partitions[partition - 1]; 1535 } 1536 1537 } // namespace lld::elf 1538 1539 #endif 1540