xref: /llvm-project/lld/ELF/SyntheticSections.h (revision 9178708c3bf926fe0d7767e26344f3f98b1e92ec)
1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Synthetic sections represent chunks of linker-created data. If you
10 // need to create a chunk of data that to be included in some section
11 // in the result, you probably want to create that as a synthetic section.
12 //
13 // Synthetic sections are designed as input sections as opposed to
14 // output sections because we want to allow them to be manipulated
15 // using linker scripts just like other input sections from regular
16 // files.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21 #define LLD_ELF_SYNTHETIC_SECTIONS_H
22 
23 #include "Config.h"
24 #include "DWARF.h"
25 #include "InputSection.h"
26 #include "Symbols.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/FoldingSet.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/STLFunctionalExtras.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
33 #include "llvm/MC/StringTableBuilder.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Endian.h"
37 #include "llvm/Support/Parallel.h"
38 #include "llvm/Support/Threading.h"
39 
40 namespace lld::elf {
41 class Defined;
42 struct PhdrEntry;
43 class SymbolTableBaseSection;
44 
45 struct CieRecord {
46   EhSectionPiece *cie = nullptr;
47   SmallVector<EhSectionPiece *, 0> fdes;
48 };
49 
50 // Section for .eh_frame.
51 class EhFrameSection final : public SyntheticSection {
52 public:
53   EhFrameSection(Ctx &);
54   void writeTo(uint8_t *buf) override;
55   void finalizeContents() override;
56   bool isNeeded() const override { return !sections.empty(); }
57   size_t getSize() const override { return size; }
58 
59   static bool classof(const SectionBase *d) {
60     return SyntheticSection::classof(d) && d->name == ".eh_frame";
61   }
62 
63   SmallVector<EhInputSection *, 0> sections;
64   size_t numFdes = 0;
65 
66   struct FdeData {
67     uint32_t pcRel;
68     uint32_t fdeVARel;
69   };
70 
71   SmallVector<FdeData, 0> getFdeData() const;
72   ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
73   template <class ELFT>
74   void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn);
75 
76 private:
77   // This is used only when parsing EhInputSection. We keep it here to avoid
78   // allocating one for each EhInputSection.
79   llvm::DenseMap<size_t, CieRecord *> offsetToCie;
80 
81   uint64_t size = 0;
82 
83   template <class ELFT, class RelTy>
84   void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
85   template <class ELFT> void addSectionAux(EhInputSection *s);
86   template <class ELFT, class RelTy>
87   void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels,
88                              llvm::DenseSet<size_t> &ciesWithLSDA,
89                              llvm::function_ref<void(InputSection &)> fn);
90 
91   template <class ELFT, class RelTy>
92   CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
93 
94   template <class ELFT, class RelTy>
95   Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
96 
97   uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
98 
99   SmallVector<CieRecord *, 0> cieRecords;
100 
101   // CIE records are uniquified by their contents and personality functions.
102   llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
103 };
104 
105 class GotSection final : public SyntheticSection {
106 public:
107   GotSection(Ctx &);
108   size_t getSize() const override { return size; }
109   void finalizeContents() override;
110   bool isNeeded() const override;
111   void writeTo(uint8_t *buf) override;
112 
113   void addConstant(const Relocation &r);
114   void addEntry(const Symbol &sym);
115   void addAuthEntry(const Symbol &sym);
116   bool addTlsDescEntry(const Symbol &sym);
117   void addTlsDescAuthEntry();
118   bool addDynTlsEntry(const Symbol &sym);
119   bool addTlsIndex();
120   uint32_t getTlsDescOffset(const Symbol &sym) const;
121   uint64_t getTlsDescAddr(const Symbol &sym) const;
122   uint64_t getGlobalDynAddr(const Symbol &b) const;
123   uint64_t getGlobalDynOffset(const Symbol &b) const;
124 
125   uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
126   uint32_t getTlsIndexOff() const { return tlsIndexOff; }
127 
128   // Flag to force GOT to be in output if we have relocations
129   // that relies on its address.
130   std::atomic<bool> hasGotOffRel = false;
131 
132 protected:
133   size_t numEntries = 0;
134   uint32_t tlsIndexOff = -1;
135   uint64_t size = 0;
136   struct AuthEntryInfo {
137     size_t offset;
138     bool isSymbolFunc;
139   };
140   SmallVector<AuthEntryInfo, 0> authEntries;
141 };
142 
143 // .note.GNU-stack section.
144 class GnuStackSection : public SyntheticSection {
145 public:
146   GnuStackSection(Ctx &ctx)
147       : SyntheticSection(ctx, ".note.GNU-stack", llvm::ELF::SHT_PROGBITS, 0,
148                          1) {}
149   void writeTo(uint8_t *buf) override {}
150   size_t getSize() const override { return 0; }
151 };
152 
153 class GnuPropertySection final : public SyntheticSection {
154 public:
155   GnuPropertySection(Ctx &);
156   void writeTo(uint8_t *buf) override;
157   size_t getSize() const override;
158 };
159 
160 // .note.gnu.build-id section.
161 class BuildIdSection : public SyntheticSection {
162   // First 16 bytes are a header.
163   static const unsigned headerSize = 16;
164 
165 public:
166   const size_t hashSize;
167   BuildIdSection(Ctx &);
168   void writeTo(uint8_t *buf) override;
169   size_t getSize() const override { return headerSize + hashSize; }
170   void writeBuildId(llvm::ArrayRef<uint8_t> buf);
171 
172 private:
173   uint8_t *hashBuf;
174 };
175 
176 // BssSection is used to reserve space for copy relocations and common symbols.
177 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
178 // that are used for writable symbols, read-only symbols and common symbols,
179 // respectively.
180 class BssSection final : public SyntheticSection {
181 public:
182   BssSection(Ctx &, StringRef name, uint64_t size, uint32_t addralign);
183   void writeTo(uint8_t *) override {}
184   bool isNeeded() const override { return size != 0; }
185   size_t getSize() const override { return size; }
186 
187   static bool classof(const SectionBase *s) {
188     return isa<SyntheticSection>(s) && cast<SyntheticSection>(s)->bss;
189   }
190   uint64_t size;
191 };
192 
193 class MipsGotSection final : public SyntheticSection {
194 public:
195   MipsGotSection(Ctx &);
196   void writeTo(uint8_t *buf) override;
197   size_t getSize() const override { return size; }
198   bool updateAllocSize(Ctx &) override;
199   void finalizeContents() override;
200   bool isNeeded() const override;
201 
202   // Join separate GOTs built for each input file to generate
203   // primary and optional multiple secondary GOTs.
204   void build();
205 
206   void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
207   void addDynTlsEntry(InputFile &file, Symbol &sym);
208   void addTlsIndex(InputFile &file);
209 
210   uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
211                               int64_t addend) const;
212   uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
213                              int64_t addend) const;
214   uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
215   uint64_t getTlsIndexOffset(const InputFile *f) const;
216 
217   // Returns the symbol which corresponds to the first entry of the global part
218   // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
219   // table properties.
220   // Returns nullptr if the global part is empty.
221   const Symbol *getFirstGlobalEntry() const;
222 
223   // Returns the number of entries in the local part of GOT including
224   // the number of reserved entries.
225   unsigned getLocalEntriesNum() const;
226 
227   // Return _gp value for primary GOT (nullptr) or particular input file.
228   uint64_t getGp(const InputFile *f = nullptr) const;
229 
230 private:
231   // MIPS GOT consists of three parts: local, global and tls. Each part
232   // contains different types of entries. Here is a layout of GOT:
233   // - Header entries                |
234   // - Page entries                  |   Local part
235   // - Local entries (16-bit access) |
236   // - Local entries (32-bit access) |
237   // - Normal global entries         ||  Global part
238   // - Reloc-only global entries     ||
239   // - TLS entries                   ||| TLS part
240   //
241   // Header:
242   //   Two entries hold predefined value 0x0 and 0x80000000.
243   // Page entries:
244   //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
245   //   relocation against local symbols. They are initialized by higher 16-bit
246   //   of the corresponding symbol's value. So each 64kb of address space
247   //   requires a single GOT entry.
248   // Local entries (16-bit access):
249   //   These entries created by GOT relocations against global non-preemptible
250   //   symbols so dynamic linker is not necessary to resolve the symbol's
251   //   values. "16-bit access" means that corresponding relocations address
252   //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
253   //   GOT entry.
254   // Local entries (32-bit access):
255   //   These entries are the same as above but created by relocations which
256   //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
257   // Normal global entries:
258   //   These entries created by GOT relocations against preemptible global
259   //   symbols. They need to be initialized by dynamic linker and they ordered
260   //   exactly as the corresponding entries in the dynamic symbols table.
261   // Reloc-only global entries:
262   //   These entries created for symbols that are referenced by dynamic
263   //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
264   //   addressing, but MIPS ABI requires that these entries be present in GOT.
265   // TLS entries:
266   //   Entries created by TLS relocations.
267   //
268   // If the sum of local, global and tls entries is less than 64K only single
269   // got is enough. Otherwise, multi-got is created. Series of primary and
270   // multiple secondary GOTs have the following layout:
271   // - Primary GOT
272   //     Header
273   //     Local entries
274   //     Global entries
275   //     Relocation only entries
276   //     TLS entries
277   //
278   // - Secondary GOT
279   //     Local entries
280   //     Global entries
281   //     TLS entries
282   // ...
283   //
284   // All GOT entries required by relocations from a single input file entirely
285   // belong to either primary or one of secondary GOTs. To reference GOT entries
286   // each GOT has its own _gp value points to the "middle" of the GOT.
287   // In the code this value loaded to the register which is used for GOT access.
288   //
289   // MIPS 32 function's prologue:
290   //   lui     v0,0x0
291   //   0: R_MIPS_HI16  _gp_disp
292   //   addiu   v0,v0,0
293   //   4: R_MIPS_LO16  _gp_disp
294   //
295   // MIPS 64:
296   //   lui     at,0x0
297   //   14: R_MIPS_GPREL16  main
298   //
299   // Dynamic linker does not know anything about secondary GOTs and cannot
300   // use a regular MIPS mechanism for GOT entries initialization. So we have
301   // to use an approach accepted by other architectures and create dynamic
302   // relocations R_MIPS_REL32 to initialize global entries (and local in case
303   // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
304   // requires GOT entries and correspondingly ordered dynamic symbol table
305   // entries to deal with dynamic relocations. To handle this problem
306   // relocation-only section in the primary GOT contains entries for all
307   // symbols referenced in global parts of secondary GOTs. Although the sum
308   // of local and normal global entries of the primary got should be less
309   // than 64K, the size of the primary got (including relocation-only entries
310   // can be greater than 64K, because parts of the primary got that overflow
311   // the 64K limit are used only by the dynamic linker at dynamic link-time
312   // and not by 16-bit gp-relative addressing at run-time.
313   //
314   // For complete multi-GOT description see the following link
315   // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
316 
317   // Number of "Header" entries.
318   static const unsigned headerEntriesNum = 2;
319 
320   uint64_t size = 0;
321 
322   // Symbol and addend.
323   using GotEntry = std::pair<Symbol *, int64_t>;
324 
325   struct FileGot {
326     InputFile *file = nullptr;
327     size_t startIndex = 0;
328 
329     struct PageBlock {
330       size_t firstIndex;
331       size_t count;
332       PageBlock() : firstIndex(0), count(0) {}
333     };
334 
335     // Map output sections referenced by MIPS GOT relocations
336     // to the description (index/count) "page" entries allocated
337     // for this section.
338     llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
339     // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
340     llvm::MapVector<GotEntry, size_t> local16;
341     llvm::MapVector<GotEntry, size_t> local32;
342     llvm::MapVector<Symbol *, size_t> global;
343     llvm::MapVector<Symbol *, size_t> relocs;
344     llvm::MapVector<Symbol *, size_t> tls;
345     // Set of symbols referenced by dynamic TLS relocations.
346     llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
347 
348     // Total number of all entries.
349     size_t getEntriesNum() const;
350     // Number of "page" entries.
351     size_t getPageEntriesNum() const;
352     // Number of entries require 16-bit index to access.
353     size_t getIndexedEntriesNum() const;
354   };
355 
356   // Container of GOT created for each input file.
357   // After building a final series of GOTs this container
358   // holds primary and secondary GOT's.
359   std::vector<FileGot> gots;
360 
361   // Return (and create if necessary) `FileGot`.
362   FileGot &getGot(InputFile &f);
363 
364   // Try to merge two GOTs. In case of success the `Dst` contains
365   // result of merging and the function returns true. In case of
366   // overflow the `Dst` is unchanged and the function returns false.
367   bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
368 };
369 
370 class GotPltSection final : public SyntheticSection {
371 public:
372   GotPltSection(Ctx &);
373   void addEntry(Symbol &sym);
374   size_t getSize() const override;
375   void writeTo(uint8_t *buf) override;
376   bool isNeeded() const override;
377 
378   // Flag to force GotPlt to be in output if we have relocations
379   // that relies on its address.
380   std::atomic<bool> hasGotPltOffRel = false;
381 
382 private:
383   SmallVector<const Symbol *, 0> entries;
384 };
385 
386 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
387 // Symbols that will be relocated by Target->IRelativeRel.
388 // On most Targets the IgotPltSection will immediately follow the GotPltSection
389 // on ARM the IgotPltSection will immediately follow the GotSection.
390 class IgotPltSection final : public SyntheticSection {
391 public:
392   IgotPltSection(Ctx &);
393   void addEntry(Symbol &sym);
394   size_t getSize() const override;
395   void writeTo(uint8_t *buf) override;
396   bool isNeeded() const override { return !entries.empty(); }
397 
398 private:
399   SmallVector<const Symbol *, 0> entries;
400 };
401 
402 class StringTableSection final : public SyntheticSection {
403 public:
404   StringTableSection(Ctx &, StringRef name, bool dynamic);
405   unsigned addString(StringRef s, bool hashIt = true);
406   void writeTo(uint8_t *buf) override;
407   size_t getSize() const override { return size; }
408   bool isDynamic() const { return dynamic; }
409 
410 private:
411   const bool dynamic;
412 
413   uint64_t size = 0;
414 
415   llvm::DenseMap<llvm::CachedHashStringRef, unsigned> stringMap;
416   SmallVector<StringRef, 0> strings;
417 };
418 
419 class DynamicReloc {
420 public:
421   enum Kind {
422     /// The resulting dynamic relocation does not reference a symbol (#sym must
423     /// be nullptr) and uses #addend as the result of computeAddend(ctx).
424     AddendOnly,
425     /// The resulting dynamic relocation will not reference a symbol: #sym is
426     /// only used to compute the addend with InputSection::getRelocTargetVA().
427     /// Useful for various relative and TLS relocations (e.g. R_X86_64_TPOFF64).
428     AddendOnlyWithTargetVA,
429     /// The resulting dynamic relocation references symbol #sym from the dynamic
430     /// symbol table and uses #addend as the value of computeAddend(ctx).
431     AgainstSymbol,
432     /// The resulting dynamic relocation references symbol #sym from the dynamic
433     /// symbol table and uses InputSection::getRelocTargetVA() + #addend for the
434     /// final addend. It can be used for relocations that write the symbol VA as
435     // the addend (e.g. R_MIPS_TLS_TPREL64) but still reference the symbol.
436     AgainstSymbolWithTargetVA,
437     /// This is used by the MIPS multi-GOT implementation. It relocates
438     /// addresses of 64kb pages that lie inside the output section.
439     MipsMultiGotPage,
440   };
441   /// This constructor records a relocation against a symbol.
442   DynamicReloc(RelType type, const InputSectionBase *inputSec,
443                uint64_t offsetInSec, Kind kind, Symbol &sym, int64_t addend,
444                RelExpr expr)
445       : sym(&sym), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
446         addend(addend), kind(kind), expr(expr) {}
447   /// This constructor records a relative relocation with no symbol.
448   DynamicReloc(RelType type, const InputSectionBase *inputSec,
449                uint64_t offsetInSec, int64_t addend = 0)
450       : sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec), type(type),
451         addend(addend), kind(AddendOnly), expr(R_ADDEND) {}
452   /// This constructor records dynamic relocation settings used by the MIPS
453   /// multi-GOT implementation.
454   DynamicReloc(RelType type, const InputSectionBase *inputSec,
455                uint64_t offsetInSec, const OutputSection *outputSec,
456                int64_t addend)
457       : sym(nullptr), outputSec(outputSec), inputSec(inputSec),
458         offsetInSec(offsetInSec), type(type), addend(addend),
459         kind(MipsMultiGotPage), expr(R_ADDEND) {}
460 
461   uint64_t getOffset() const;
462   uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
463   bool needsDynSymIndex() const {
464     return kind == AgainstSymbol || kind == AgainstSymbolWithTargetVA;
465   }
466 
467   /// Computes the addend of the dynamic relocation. Note that this is not the
468   /// same as the #addend member variable as it may also include the symbol
469   /// address/the address of the corresponding GOT entry/etc.
470   int64_t computeAddend(Ctx &) const;
471 
472   void computeRaw(Ctx &, SymbolTableBaseSection *symt);
473 
474   Symbol *sym;
475   const OutputSection *outputSec = nullptr;
476   const InputSectionBase *inputSec;
477   uint64_t offsetInSec;
478   uint64_t r_offset;
479   RelType type;
480   uint32_t r_sym;
481   // Initially input addend, then the output addend after
482   // RelocationSection<ELFT>::writeTo.
483   int64_t addend;
484 
485 private:
486   Kind kind;
487   // The kind of expression used to calculate the added (required e.g. for
488   // relative GOT relocations).
489   RelExpr expr;
490 };
491 
492 template <class ELFT> class DynamicSection final : public SyntheticSection {
493   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
494 
495 public:
496   DynamicSection(Ctx &);
497   void finalizeContents() override;
498   void writeTo(uint8_t *buf) override;
499   size_t getSize() const override { return size; }
500 
501 private:
502   std::vector<std::pair<int32_t, uint64_t>> computeContents();
503   uint64_t size = 0;
504 };
505 
506 class RelocationBaseSection : public SyntheticSection {
507 public:
508   RelocationBaseSection(Ctx &, StringRef name, uint32_t type,
509                         int32_t dynamicTag, int32_t sizeDynamicTag,
510                         bool combreloc, unsigned concurrency);
511   /// Add a dynamic relocation without writing an addend to the output section.
512   /// This overload can be used if the addends are written directly instead of
513   /// using relocations on the input section (e.g. MipsGotSection::writeTo()).
514   template <bool shard = false> void addReloc(const DynamicReloc &reloc) {
515     relocs.push_back(reloc);
516   }
517   /// Add a dynamic relocation against \p sym with an optional addend.
518   void addSymbolReloc(RelType dynType, InputSectionBase &isec,
519                       uint64_t offsetInSec, Symbol &sym, int64_t addend = 0,
520                       std::optional<RelType> addendRelType = {});
521   /// Add a relative dynamic relocation that uses the target address of \p sym
522   /// (i.e. InputSection::getRelocTargetVA()) + \p addend as the addend.
523   /// This function should only be called for non-preemptible symbols or
524   /// RelExpr values that refer to an address inside the output file (e.g. the
525   /// address of the GOT entry for a potentially preemptible symbol).
526   template <bool shard = false>
527   void addRelativeReloc(RelType dynType, InputSectionBase &isec,
528                         uint64_t offsetInSec, Symbol &sym, int64_t addend,
529                         RelType addendRelType, RelExpr expr) {
530     assert(expr != R_ADDEND && "expected non-addend relocation expression");
531     addReloc<shard>(DynamicReloc::AddendOnlyWithTargetVA, dynType, isec,
532                     offsetInSec, sym, addend, expr, addendRelType);
533   }
534   /// Add a dynamic relocation using the target address of \p sym as the addend
535   /// if \p sym is non-preemptible. Otherwise add a relocation against \p sym.
536   void addAddendOnlyRelocIfNonPreemptible(RelType dynType,
537                                           InputSectionBase &isec,
538                                           uint64_t offsetInSec, Symbol &sym,
539                                           RelType addendRelType);
540   template <bool shard = false>
541   void addReloc(DynamicReloc::Kind kind, RelType dynType, InputSectionBase &sec,
542                 uint64_t offsetInSec, Symbol &sym, int64_t addend, RelExpr expr,
543                 RelType addendRelType) {
544     // Write the addends to the relocated address if required. We skip
545     // it if the written value would be zero.
546     if (ctx.arg.writeAddends && (expr != R_ADDEND || addend != 0))
547       sec.addReloc({expr, addendRelType, offsetInSec, addend, &sym});
548     addReloc<shard>({dynType, &sec, offsetInSec, kind, sym, addend, expr});
549   }
550   bool isNeeded() const override {
551     return !relocs.empty() ||
552            llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); });
553   }
554   size_t getSize() const override { return relocs.size() * this->entsize; }
555   size_t getRelativeRelocCount() const { return numRelativeRelocs; }
556   void mergeRels();
557   void partitionRels();
558   void finalizeContents() override;
559 
560   int32_t dynamicTag, sizeDynamicTag;
561   SmallVector<DynamicReloc, 0> relocs;
562 
563 protected:
564   void computeRels();
565   // Used when parallel relocation scanning adds relocations. The elements
566   // will be moved into relocs by mergeRel().
567   SmallVector<SmallVector<DynamicReloc, 0>, 0> relocsVec;
568   size_t numRelativeRelocs = 0; // used by -z combreloc
569   bool combreloc;
570 };
571 
572 template <>
573 inline void RelocationBaseSection::addReloc<true>(const DynamicReloc &reloc) {
574   relocsVec[llvm::parallel::getThreadIndex()].push_back(reloc);
575 }
576 
577 template <class ELFT>
578 class RelocationSection final : public RelocationBaseSection {
579   using Elf_Rel = typename ELFT::Rel;
580   using Elf_Rela = typename ELFT::Rela;
581 
582 public:
583   RelocationSection(Ctx &, StringRef name, bool combreloc,
584                     unsigned concurrency);
585   void writeTo(uint8_t *buf) override;
586 };
587 
588 template <class ELFT>
589 class AndroidPackedRelocationSection final : public RelocationBaseSection {
590   using Elf_Rel = typename ELFT::Rel;
591   using Elf_Rela = typename ELFT::Rela;
592 
593 public:
594   AndroidPackedRelocationSection(Ctx &, StringRef name, unsigned concurrency);
595 
596   bool updateAllocSize(Ctx &) override;
597   size_t getSize() const override { return relocData.size(); }
598   void writeTo(uint8_t *buf) override {
599     memcpy(buf, relocData.data(), relocData.size());
600   }
601 
602 private:
603   SmallVector<char, 0> relocData;
604 };
605 
606 struct RelativeReloc {
607   uint64_t getOffset() const {
608     return inputSec->getVA(inputSec->relocs()[relocIdx].offset);
609   }
610 
611   const InputSectionBase *inputSec;
612   size_t relocIdx;
613 };
614 
615 class RelrBaseSection : public SyntheticSection {
616 public:
617   RelrBaseSection(Ctx &, unsigned concurrency, bool isAArch64Auth = false);
618   void mergeRels();
619   bool isNeeded() const override {
620     return !relocs.empty() ||
621            llvm::any_of(relocsVec, [](auto &v) { return !v.empty(); });
622   }
623   SmallVector<RelativeReloc, 0> relocs;
624   SmallVector<SmallVector<RelativeReloc, 0>, 0> relocsVec;
625 };
626 
627 // RelrSection is used to encode offsets for relative relocations.
628 // Proposal for adding SHT_RELR sections to generic-abi is here:
629 //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
630 // For more details, see the comment in RelrSection::updateAllocSize(Ctx &ctx).
631 template <class ELFT> class RelrSection final : public RelrBaseSection {
632   using Elf_Relr = typename ELFT::Relr;
633 
634 public:
635   RelrSection(Ctx &, unsigned concurrency, bool isAArch64Auth = false);
636 
637   bool updateAllocSize(Ctx &) override;
638   size_t getSize() const override { return relrRelocs.size() * this->entsize; }
639   void writeTo(uint8_t *buf) override {
640     memcpy(buf, relrRelocs.data(), getSize());
641   }
642 
643 private:
644   SmallVector<Elf_Relr, 0> relrRelocs;
645 };
646 
647 struct SymbolTableEntry {
648   Symbol *sym;
649   size_t strTabOffset;
650 };
651 
652 class SymbolTableBaseSection : public SyntheticSection {
653 public:
654   SymbolTableBaseSection(Ctx &ctx, StringTableSection &strTabSec);
655   void finalizeContents() override;
656   size_t getSize() const override { return getNumSymbols() * entsize; }
657   void addSymbol(Symbol *sym);
658   unsigned getNumSymbols() const { return symbols.size() + 1; }
659   size_t getSymbolIndex(const Symbol &sym);
660   ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
661 
662 protected:
663   void sortSymTabSymbols();
664 
665   // A vector of symbols and their string table offsets.
666   SmallVector<SymbolTableEntry, 0> symbols;
667 
668   StringTableSection &strTabSec;
669 
670   llvm::once_flag onceFlag;
671   llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
672   llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
673 };
674 
675 template <class ELFT>
676 class SymbolTableSection final : public SymbolTableBaseSection {
677   using Elf_Sym = typename ELFT::Sym;
678 
679 public:
680   SymbolTableSection(Ctx &, StringTableSection &strTabSec);
681   void writeTo(uint8_t *buf) override;
682 };
683 
684 class SymtabShndxSection final : public SyntheticSection {
685 public:
686   SymtabShndxSection(Ctx &);
687 
688   void writeTo(uint8_t *buf) override;
689   size_t getSize() const override;
690   bool isNeeded() const override;
691   void finalizeContents() override;
692 };
693 
694 // Outputs GNU Hash section. For detailed explanation see:
695 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
696 class GnuHashTableSection final : public SyntheticSection {
697 public:
698   GnuHashTableSection(Ctx &);
699   void finalizeContents() override;
700   void writeTo(uint8_t *buf) override;
701   size_t getSize() const override { return size; }
702 
703   // Adds symbols to the hash table.
704   // Sorts the input to satisfy GNU hash section requirements.
705   void addSymbols(llvm::SmallVectorImpl<SymbolTableEntry> &symbols);
706 
707 private:
708   // See the comment in writeBloomFilter.
709   enum { Shift2 = 26 };
710 
711   struct Entry {
712     Symbol *sym;
713     size_t strTabOffset;
714     uint32_t hash;
715     uint32_t bucketIdx;
716   };
717 
718   SmallVector<Entry, 0> symbols;
719   size_t maskWords;
720   size_t nBuckets = 0;
721   size_t size = 0;
722 };
723 
724 class HashTableSection final : public SyntheticSection {
725 public:
726   HashTableSection(Ctx &);
727   void finalizeContents() override;
728   void writeTo(uint8_t *buf) override;
729   size_t getSize() const override { return size; }
730 
731 private:
732   size_t size = 0;
733 };
734 
735 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
736 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
737 // at runtime.
738 //
739 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction
740 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
741 // lazy symbol resolver.
742 //
743 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
744 // A call instruction jumps to a .plt.sec entry, which will then jump to the
745 // target (BIND_NOW) or a .plt entry.
746 class PltSection : public SyntheticSection {
747 public:
748   PltSection(Ctx &);
749   void writeTo(uint8_t *buf) override;
750   size_t getSize() const override;
751   bool isNeeded() const override;
752   void addSymbols();
753   void addEntry(Symbol &sym);
754   size_t getNumEntries() const { return entries.size(); }
755 
756   size_t headerSize;
757 
758   SmallVector<const Symbol *, 0> entries;
759 };
760 
761 // Used for non-preemptible ifuncs. It does not have a header. Each entry is
762 // associated with an IRELATIVE relocation, which will be resolved eagerly at
763 // runtime. PltSection can only contain entries associated with JUMP_SLOT
764 // relocations, so IPLT entries are in a separate section.
765 class IpltSection final : public SyntheticSection {
766   SmallVector<const Symbol *, 0> entries;
767 
768 public:
769   IpltSection(Ctx &);
770   void writeTo(uint8_t *buf) override;
771   size_t getSize() const override;
772   bool isNeeded() const override { return !entries.empty(); }
773   void addSymbols();
774   void addEntry(Symbol &sym);
775 };
776 
777 class PPC32GlinkSection : public PltSection {
778 public:
779   PPC32GlinkSection(Ctx &);
780   void writeTo(uint8_t *buf) override;
781   size_t getSize() const override;
782 
783   SmallVector<const Symbol *, 0> canonical_plts;
784   static constexpr size_t footerSize = 64;
785 };
786 
787 // This is x86-only.
788 class IBTPltSection : public SyntheticSection {
789 public:
790   IBTPltSection(Ctx &);
791   void writeTo(uint8_t *Buf) override;
792   bool isNeeded() const override;
793   size_t getSize() const override;
794 };
795 
796 // Used to align the end of the PT_GNU_RELRO segment and the associated PT_LOAD
797 // segment to a common-page-size boundary. This padding section ensures that all
798 // pages in the PT_LOAD segment is covered by at least one section.
799 class RelroPaddingSection final : public SyntheticSection {
800 public:
801   RelroPaddingSection(Ctx &);
802   size_t getSize() const override { return 0; }
803   void writeTo(uint8_t *buf) override {}
804 };
805 
806 class RandomizePaddingSection final : public SyntheticSection {
807   uint64_t size;
808 
809 public:
810   RandomizePaddingSection(Ctx &ctx, uint64_t size, OutputSection *parent);
811   size_t getSize() const override { return size; }
812   void writeTo(uint8_t *buf) override;
813 };
814 
815 // Used by the merged DWARF32 .debug_names (a per-module index). If we
816 // move to DWARF64, most of this data will need to be re-sized.
817 class DebugNamesBaseSection : public SyntheticSection {
818 public:
819   struct Abbrev : llvm::FoldingSetNode {
820     uint32_t code;
821     uint32_t tag;
822     SmallVector<llvm::DWARFDebugNames::AttributeEncoding, 2> attributes;
823 
824     void Profile(llvm::FoldingSetNodeID &id) const;
825   };
826 
827   struct AttrValue {
828     uint32_t attrValue;
829     uint8_t attrSize;
830   };
831 
832   struct IndexEntry {
833     uint32_t abbrevCode;
834     uint32_t poolOffset;
835     union {
836       uint64_t parentOffset = 0;
837       IndexEntry *parentEntry;
838     };
839     SmallVector<AttrValue, 3> attrValues;
840   };
841 
842   struct NameEntry {
843     const char *name;
844     uint32_t hashValue;
845     uint32_t stringOffset;
846     uint32_t entryOffset;
847     // Used to relocate `stringOffset` in the merged section.
848     uint32_t chunkIdx;
849     SmallVector<IndexEntry *, 0> indexEntries;
850 
851     llvm::iterator_range<
852         llvm::pointee_iterator<typename SmallVector<IndexEntry *, 0>::iterator>>
853     entries() {
854       return llvm::make_pointee_range(indexEntries);
855     }
856   };
857 
858   // The contents of one input .debug_names section. An InputChunk
859   // typically contains one NameData, but might contain more, especially
860   // in LTO builds.
861   struct NameData {
862     llvm::DWARFDebugNames::Header hdr;
863     llvm::DenseMap<uint32_t, uint32_t> abbrevCodeMap;
864     SmallVector<NameEntry, 0> nameEntries;
865   };
866 
867   // InputChunk and OutputChunk hold per-file contributions to the merged index.
868   // InputChunk instances will be discarded after `init` completes.
869   struct InputChunk {
870     uint32_t baseCuIdx;
871     LLDDWARFSection section;
872     SmallVector<NameData, 0> nameData;
873     std::optional<llvm::DWARFDebugNames> llvmDebugNames;
874   };
875 
876   struct OutputChunk {
877     // Pointer to the .debug_info section that contains compile units, used to
878     // compute the relocated CU offsets.
879     InputSection *infoSec;
880     // This initially holds section offsets. After relocation, the section
881     // offsets are changed to CU offsets relative the the output section.
882     SmallVector<uint32_t, 0> compUnits;
883   };
884 
885   DebugNamesBaseSection(Ctx &);
886   size_t getSize() const override { return size; }
887   bool isNeeded() const override { return numChunks > 0; }
888 
889 protected:
890   void init(llvm::function_ref<void(InputFile *, InputChunk &, OutputChunk &)>);
891   static void
892   parseDebugNames(Ctx &, InputChunk &inputChunk, OutputChunk &chunk,
893                   llvm::DWARFDataExtractor &namesExtractor,
894                   llvm::DataExtractor &strExtractor,
895                   llvm::function_ref<SmallVector<uint32_t, 0>(
896                       uint32_t numCUs, const llvm::DWARFDebugNames::Header &hdr,
897                       const llvm::DWARFDebugNames::DWARFDebugNamesOffsets &)>
898                       readOffsets);
899   void computeHdrAndAbbrevTable(MutableArrayRef<InputChunk> inputChunks);
900   std::pair<uint32_t, uint32_t>
901   computeEntryPool(MutableArrayRef<InputChunk> inputChunks);
902 
903   // Input .debug_names sections for relocating string offsets in the name table
904   // in `finalizeContents`.
905   SmallVector<InputSection *, 0> inputSections;
906 
907   llvm::DWARFDebugNames::Header hdr;
908   size_t numChunks;
909   std::unique_ptr<OutputChunk[]> chunks;
910   llvm::SpecificBumpPtrAllocator<Abbrev> abbrevAlloc;
911   SmallVector<Abbrev *, 0> abbrevTable;
912   SmallVector<char, 0> abbrevTableBuf;
913 
914   ArrayRef<OutputChunk> getChunks() const {
915     return ArrayRef(chunks.get(), numChunks);
916   }
917 
918   // Sharded name entries that will be used to compute bucket_count and the
919   // count name table.
920   static constexpr size_t numShards = 32;
921   SmallVector<NameEntry, 0> nameVecs[numShards];
922 };
923 
924 // Complement DebugNamesBaseSection for ELFT-aware code: reading offsets,
925 // relocating string offsets, and writeTo.
926 template <class ELFT>
927 class DebugNamesSection final : public DebugNamesBaseSection {
928 public:
929   DebugNamesSection(Ctx &);
930   void finalizeContents() override;
931   void writeTo(uint8_t *buf) override;
932 
933   template <class RelTy>
934   void getNameRelocs(const InputFile &file,
935                      llvm::DenseMap<uint32_t, uint32_t> &relocs,
936                      Relocs<RelTy> rels);
937 
938 private:
939   static void readOffsets(InputChunk &inputChunk, OutputChunk &chunk,
940                           llvm::DWARFDataExtractor &namesExtractor,
941                           llvm::DataExtractor &strExtractor);
942 };
943 
944 class GdbIndexSection final : public SyntheticSection {
945 public:
946   struct AddressEntry {
947     InputSection *section;
948     uint64_t lowAddress;
949     uint64_t highAddress;
950     uint32_t cuIndex;
951   };
952 
953   struct CuEntry {
954     uint64_t cuOffset;
955     uint64_t cuLength;
956   };
957 
958   struct NameAttrEntry {
959     llvm::CachedHashStringRef name;
960     uint32_t cuIndexAndAttrs;
961   };
962 
963   struct GdbChunk {
964     InputSection *sec;
965     SmallVector<AddressEntry, 0> addressAreas;
966     SmallVector<CuEntry, 0> compilationUnits;
967   };
968 
969   struct GdbSymbol {
970     llvm::CachedHashStringRef name;
971     SmallVector<uint32_t, 0> cuVector;
972     uint32_t nameOff;
973     uint32_t cuVectorOff;
974   };
975 
976   GdbIndexSection(Ctx &);
977   template <typename ELFT>
978   static std::unique_ptr<GdbIndexSection> create(Ctx &);
979   void writeTo(uint8_t *buf) override;
980   size_t getSize() const override { return size; }
981   bool isNeeded() const override;
982 
983 private:
984   struct GdbIndexHeader {
985     llvm::support::ulittle32_t version;
986     llvm::support::ulittle32_t cuListOff;
987     llvm::support::ulittle32_t cuTypesOff;
988     llvm::support::ulittle32_t addressAreaOff;
989     llvm::support::ulittle32_t symtabOff;
990     llvm::support::ulittle32_t constantPoolOff;
991   };
992 
993   size_t computeSymtabSize() const;
994 
995   // Each chunk contains information gathered from debug sections of a
996   // single object file.
997   SmallVector<GdbChunk, 0> chunks;
998 
999   // A symbol table for this .gdb_index section.
1000   SmallVector<GdbSymbol, 0> symbols;
1001 
1002   size_t size;
1003 };
1004 
1005 // --eh-frame-hdr option tells linker to construct a header for all the
1006 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr
1007 // and also to a PT_GNU_EH_FRAME segment.
1008 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
1009 // calling dl_iterate_phdr.
1010 // This section contains a lookup table for quick binary search of FDEs.
1011 // Detailed info about internals can be found in Ian Lance Taylor's blog:
1012 // http://www.airs.com/blog/archives/460 (".eh_frame")
1013 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
1014 class EhFrameHeader final : public SyntheticSection {
1015 public:
1016   EhFrameHeader(Ctx &);
1017   void write();
1018   void writeTo(uint8_t *buf) override;
1019   size_t getSize() const override;
1020   bool isNeeded() const override;
1021 };
1022 
1023 // For more information about .gnu.version and .gnu.version_r see:
1024 // https://www.akkadia.org/drepper/symbol-versioning
1025 
1026 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
1027 // contain symbol version definitions. The number of entries in this section
1028 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
1029 // The section shall contain an array of Elf_Verdef structures, optionally
1030 // followed by an array of Elf_Verdaux structures.
1031 class VersionDefinitionSection final : public SyntheticSection {
1032 public:
1033   VersionDefinitionSection(Ctx &);
1034   void finalizeContents() override;
1035   size_t getSize() const override;
1036   void writeTo(uint8_t *buf) override;
1037 
1038 private:
1039   enum { EntrySize = 28 };
1040   void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
1041   StringRef getFileDefName();
1042 
1043   unsigned fileDefNameOff;
1044   SmallVector<unsigned, 0> verDefNameOffs;
1045 };
1046 
1047 // The .gnu.version section specifies the required version of each symbol in the
1048 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
1049 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version
1050 // identifier defined in the either .gnu.version_r or .gnu.version_d section.
1051 // The values 0 and 1 are reserved. All other values are used for versions in
1052 // the own object or in any of the dependencies.
1053 class VersionTableSection final : public SyntheticSection {
1054 public:
1055   VersionTableSection(Ctx &);
1056   void finalizeContents() override;
1057   size_t getSize() const override;
1058   void writeTo(uint8_t *buf) override;
1059   bool isNeeded() const override;
1060 };
1061 
1062 // The .gnu.version_r section defines the version identifiers used by
1063 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
1064 // Elf_Verneed specifies the version requirements for a single DSO, and contains
1065 // a reference to a linked list of Elf_Vernaux data structures which define the
1066 // mapping from version identifiers to version names.
1067 template <class ELFT>
1068 class VersionNeedSection final : public SyntheticSection {
1069   using Elf_Verneed = typename ELFT::Verneed;
1070   using Elf_Vernaux = typename ELFT::Vernaux;
1071 
1072   struct Vernaux {
1073     uint64_t hash;
1074     uint32_t verneedIndex;
1075     uint64_t nameStrTab;
1076   };
1077 
1078   struct Verneed {
1079     uint64_t nameStrTab;
1080     std::vector<Vernaux> vernauxs;
1081   };
1082 
1083   SmallVector<Verneed, 0> verneeds;
1084 
1085 public:
1086   VersionNeedSection(Ctx &);
1087   void finalizeContents() override;
1088   void writeTo(uint8_t *buf) override;
1089   size_t getSize() const override;
1090   bool isNeeded() const override;
1091 };
1092 
1093 // MergeSyntheticSection is a class that allows us to put mergeable sections
1094 // with different attributes in a single output sections. To do that
1095 // we put them into MergeSyntheticSection synthetic input sections which are
1096 // attached to regular output sections.
1097 class MergeSyntheticSection : public SyntheticSection {
1098 public:
1099   void addSection(MergeInputSection *ms);
1100   SmallVector<MergeInputSection *, 0> sections;
1101 
1102 protected:
1103   MergeSyntheticSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags,
1104                         uint32_t addralign)
1105       : SyntheticSection(ctx, name, type, flags, addralign) {}
1106 };
1107 
1108 class MergeTailSection final : public MergeSyntheticSection {
1109 public:
1110   MergeTailSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags,
1111                    uint32_t addralign);
1112 
1113   size_t getSize() const override;
1114   void writeTo(uint8_t *buf) override;
1115   void finalizeContents() override;
1116 
1117 private:
1118   llvm::StringTableBuilder builder;
1119 };
1120 
1121 class MergeNoTailSection final : public MergeSyntheticSection {
1122 public:
1123   MergeNoTailSection(Ctx &ctx, StringRef name, uint32_t type, uint64_t flags,
1124                      uint32_t addralign)
1125       : MergeSyntheticSection(ctx, name, type, flags, addralign) {}
1126 
1127   size_t getSize() const override { return size; }
1128   void writeTo(uint8_t *buf) override;
1129   void finalizeContents() override;
1130 
1131 private:
1132   // We use the most significant bits of a hash as a shard ID.
1133   // The reason why we don't want to use the least significant bits is
1134   // because DenseMap also uses lower bits to determine a bucket ID.
1135   // If we use lower bits, it significantly increases the probability of
1136   // hash collisions.
1137   size_t getShardId(uint32_t hash) {
1138     assert((hash >> 31) == 0);
1139     return hash >> (31 - llvm::countr_zero(numShards));
1140   }
1141 
1142   // Section size
1143   size_t size;
1144 
1145   // String table contents
1146   constexpr static size_t numShards = 32;
1147   SmallVector<llvm::StringTableBuilder, 0> shards;
1148   size_t shardOffsets[numShards];
1149 };
1150 
1151 // .MIPS.abiflags section.
1152 template <class ELFT>
1153 class MipsAbiFlagsSection final : public SyntheticSection {
1154   using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
1155 
1156 public:
1157   static std::unique_ptr<MipsAbiFlagsSection> create(Ctx &);
1158 
1159   MipsAbiFlagsSection(Ctx &, Elf_Mips_ABIFlags flags);
1160   size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
1161   void writeTo(uint8_t *buf) override;
1162 
1163 private:
1164   Elf_Mips_ABIFlags flags;
1165 };
1166 
1167 // .MIPS.options section.
1168 template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
1169   using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
1170   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1171 
1172 public:
1173   static std::unique_ptr<MipsOptionsSection<ELFT>> create(Ctx &);
1174 
1175   MipsOptionsSection(Ctx &, Elf_Mips_RegInfo reginfo);
1176   void writeTo(uint8_t *buf) override;
1177 
1178   size_t getSize() const override {
1179     return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
1180   }
1181 
1182 private:
1183   Elf_Mips_RegInfo reginfo;
1184 };
1185 
1186 // MIPS .reginfo section.
1187 template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
1188   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1189 
1190 public:
1191   static std::unique_ptr<MipsReginfoSection> create(Ctx &);
1192 
1193   MipsReginfoSection(Ctx &, Elf_Mips_RegInfo reginfo);
1194   size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
1195   void writeTo(uint8_t *buf) override;
1196 
1197 private:
1198   Elf_Mips_RegInfo reginfo;
1199 };
1200 
1201 // This is a MIPS specific section to hold a space within the data segment
1202 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
1203 // See "Dynamic section" in Chapter 5 in the following document:
1204 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1205 class MipsRldMapSection final : public SyntheticSection {
1206 public:
1207   MipsRldMapSection(Ctx &);
1208   size_t getSize() const override { return ctx.arg.wordsize; }
1209   void writeTo(uint8_t *buf) override {}
1210 };
1211 
1212 // Representation of the combined .ARM.Exidx input sections. We process these
1213 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries
1214 // and add terminating sentinel entries.
1215 //
1216 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
1217 // a table that the unwinder can derive (Addresses are encoded as offsets from
1218 // table):
1219 // | Address of function | Unwind instructions for function |
1220 // where the unwind instructions are either a small number of unwind or the
1221 // special EXIDX_CANTUNWIND entry representing no unwinding information.
1222 // When an exception is thrown from an address A, the unwinder searches the
1223 // table for the closest table entry with Address of function <= A. This means
1224 // that for two consecutive table entries:
1225 // | A1 | U1 |
1226 // | A2 | U2 |
1227 // The range of addresses described by U1 is [A1, A2)
1228 //
1229 // There are two cases where we need a linker generated table entry to fixup
1230 // the address ranges in the table
1231 // Case 1:
1232 // - A sentinel entry added with an address higher than all
1233 // executable sections. This was needed to work around libunwind bug pr31091.
1234 // - After address assignment we need to find the highest addressed executable
1235 // section and use the limit of that section so that the unwinder never
1236 // matches it.
1237 // Case 2:
1238 // - InputSections without a .ARM.exidx section (usually from Assembly)
1239 // need a table entry so that they terminate the range of the previously
1240 // function. This is pr40277.
1241 //
1242 // Instead of storing pointers to the .ARM.exidx InputSections from
1243 // InputObjects, we store pointers to the executable sections that need
1244 // .ARM.exidx sections. We can then use the dependentSections of these to
1245 // either find the .ARM.exidx section or know that we need to generate one.
1246 class ARMExidxSyntheticSection : public SyntheticSection {
1247 public:
1248   ARMExidxSyntheticSection(Ctx &);
1249 
1250   // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1251   // section needs to be removed from the main input section list.
1252   bool addSection(InputSection *isec);
1253 
1254   size_t getSize() const override { return size; }
1255   void writeTo(uint8_t *buf) override;
1256   bool isNeeded() const override;
1257   // Sort and remove duplicate entries.
1258   void finalizeContents() override;
1259   InputSection *getLinkOrderDep() const;
1260 
1261   static bool classof(const SectionBase *sec) {
1262     return sec->kind() == InputSectionBase::Synthetic &&
1263            sec->type == llvm::ELF::SHT_ARM_EXIDX;
1264   }
1265 
1266   // Links to the ARMExidxSections so we can transfer the relocations once the
1267   // layout is known.
1268   SmallVector<InputSection *, 0> exidxSections;
1269 
1270 private:
1271   size_t size = 0;
1272 
1273   // Instead of storing pointers to the .ARM.exidx InputSections from
1274   // InputObjects, we store pointers to the executable sections that need
1275   // .ARM.exidx sections. We can then use the dependentSections of these to
1276   // either find the .ARM.exidx section or know that we need to generate one.
1277   SmallVector<InputSection *, 0> executableSections;
1278 
1279   // Value of executableSecitons before finalizeContents(), so that it can be
1280   // run repeateadly during fixed point iteration.
1281   SmallVector<InputSection *, 0> originalExecutableSections;
1282 
1283   // The executable InputSection with the highest address to use for the
1284   // sentinel. We store separately from ExecutableSections as merging of
1285   // duplicate entries may mean this InputSection is removed from
1286   // ExecutableSections.
1287   InputSection *sentinel = nullptr;
1288 };
1289 
1290 // A container for one or more linker generated thunks. Instances of these
1291 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1292 class ThunkSection final : public SyntheticSection {
1293 public:
1294   // ThunkSection in OS, with desired outSecOff of Off
1295   ThunkSection(Ctx &, OutputSection *os, uint64_t off);
1296 
1297   // Add a newly created Thunk to this container:
1298   // Thunk is given offset from start of this InputSection
1299   // Thunk defines a symbol in this InputSection that can be used as target
1300   // of a relocation
1301   void addThunk(Thunk *t);
1302   size_t getSize() const override;
1303   void writeTo(uint8_t *buf) override;
1304   InputSection *getTargetInputSection() const;
1305   bool assignOffsets();
1306 
1307   // When true, round up reported size of section to 4 KiB. See comment
1308   // in addThunkSection() for more details.
1309   bool roundUpSizeForErrata = false;
1310 
1311 private:
1312   SmallVector<Thunk *, 0> thunks;
1313   size_t size = 0;
1314 };
1315 
1316 // Cortex-M Security Extensions. Prefix for functions that should be exported
1317 // for the non-secure world.
1318 const char ACLESESYM_PREFIX[] = "__acle_se_";
1319 const int ACLESESYM_SIZE = 8;
1320 
1321 class ArmCmseSGVeneer {
1322 public:
1323   ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym,
1324                   std::optional<uint64_t> addr = std::nullopt)
1325       : sym(sym), acleSeSym(acleSeSym), entAddr{addr} {}
1326   static const size_t size{ACLESESYM_SIZE};
1327   const std::optional<uint64_t> getAddr() const { return entAddr; };
1328 
1329   Symbol *sym;
1330   Symbol *acleSeSym;
1331   uint64_t offset = 0;
1332 
1333 private:
1334   const std::optional<uint64_t> entAddr;
1335 };
1336 
1337 class ArmCmseSGSection final : public SyntheticSection {
1338 public:
1339   ArmCmseSGSection(Ctx &ctx);
1340   bool isNeeded() const override { return !entries.empty(); }
1341   size_t getSize() const override;
1342   void writeTo(uint8_t *buf) override;
1343   void addSGVeneer(Symbol *sym, Symbol *ext_sym);
1344   void addMappingSymbol();
1345   void finalizeContents() override;
1346   void exportEntries(SymbolTableBaseSection *symTab);
1347   uint64_t impLibMaxAddr = 0;
1348 
1349 private:
1350   SmallVector<std::pair<Symbol *, Symbol *>, 0> entries;
1351   SmallVector<std::unique_ptr<ArmCmseSGVeneer>, 0> sgVeneers;
1352   uint64_t newEntries = 0;
1353 };
1354 
1355 // Used to compute outSecOff of .got2 in each object file. This is needed to
1356 // synthesize PLT entries for PPC32 Secure PLT ABI.
1357 class PPC32Got2Section final : public SyntheticSection {
1358 public:
1359   PPC32Got2Section(Ctx &);
1360   size_t getSize() const override { return 0; }
1361   bool isNeeded() const override;
1362   void finalizeContents() override;
1363   void writeTo(uint8_t *buf) override {}
1364 };
1365 
1366 // This section is used to store the addresses of functions that are called
1367 // in range-extending thunks on PowerPC64. When producing position dependent
1368 // code the addresses are link-time constants and the table is written out to
1369 // the binary. When producing position-dependent code the table is allocated and
1370 // filled in by the dynamic linker.
1371 class PPC64LongBranchTargetSection final : public SyntheticSection {
1372 public:
1373   PPC64LongBranchTargetSection(Ctx &);
1374   uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1375   std::optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1376   size_t getSize() const override;
1377   void writeTo(uint8_t *buf) override;
1378   bool isNeeded() const override;
1379   void finalizeContents() override { finalized = true; }
1380 
1381 private:
1382   SmallVector<std::pair<const Symbol *, int64_t>, 0> entries;
1383   llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1384   bool finalized = false;
1385 };
1386 
1387 template <typename ELFT>
1388 class PartitionElfHeaderSection final : public SyntheticSection {
1389 public:
1390   PartitionElfHeaderSection(Ctx &);
1391   size_t getSize() const override;
1392   void writeTo(uint8_t *buf) override;
1393 };
1394 
1395 template <typename ELFT>
1396 class PartitionProgramHeadersSection final : public SyntheticSection {
1397 public:
1398   PartitionProgramHeadersSection(Ctx &);
1399   size_t getSize() const override;
1400   void writeTo(uint8_t *buf) override;
1401 };
1402 
1403 class PartitionIndexSection final : public SyntheticSection {
1404 public:
1405   PartitionIndexSection(Ctx &);
1406   size_t getSize() const override;
1407   void finalizeContents() override;
1408   void writeTo(uint8_t *buf) override;
1409 };
1410 
1411 // See the following link for the Android-specific loader code that operates on
1412 // this section:
1413 // https://cs.android.com/android/platform/superproject/+/master:bionic/libc/bionic/libc_init_static.cpp;drc=9425b16978f9c5aa8f2c50c873db470819480d1d;l=192
1414 class MemtagAndroidNote final : public SyntheticSection {
1415 public:
1416   MemtagAndroidNote(Ctx &ctx)
1417       : SyntheticSection(ctx, ".note.android.memtag", llvm::ELF::SHT_NOTE,
1418                          llvm::ELF::SHF_ALLOC, /*addralign=*/4) {}
1419   void writeTo(uint8_t *buf) override;
1420   size_t getSize() const override;
1421 };
1422 
1423 class PackageMetadataNote final : public SyntheticSection {
1424 public:
1425   PackageMetadataNote(Ctx &ctx)
1426       : SyntheticSection(ctx, ".note.package", llvm::ELF::SHT_NOTE,
1427                          llvm::ELF::SHF_ALLOC, /*addralign=*/4) {}
1428   void writeTo(uint8_t *buf) override;
1429   size_t getSize() const override;
1430 };
1431 
1432 class MemtagGlobalDescriptors final : public SyntheticSection {
1433 public:
1434   MemtagGlobalDescriptors(Ctx &ctx)
1435       : SyntheticSection(ctx, ".memtag.globals.dynamic",
1436                          llvm::ELF::SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC,
1437                          llvm::ELF::SHF_ALLOC, /*addralign=*/4) {}
1438   void writeTo(uint8_t *buf) override;
1439   // The size of the section is non-computable until all addresses are
1440   // synthetized, because the section's contents contain a sorted
1441   // varint-compressed list of pointers to global variables. We only know the
1442   // final size after `finalizeAddressDependentContent()`.
1443   size_t getSize() const override;
1444   bool updateAllocSize(Ctx &) override;
1445 
1446   void addSymbol(const Symbol &sym) {
1447     symbols.push_back(&sym);
1448   }
1449 
1450   bool isNeeded() const override { return !symbols.empty(); }
1451 
1452 private:
1453   SmallVector<const Symbol *, 0> symbols;
1454 };
1455 
1456 template <class ELFT> void createSyntheticSections(Ctx &);
1457 InputSection *createInterpSection(Ctx &);
1458 MergeInputSection *createCommentSection(Ctx &);
1459 template <class ELFT> void splitSections(Ctx &);
1460 void combineEhSections(Ctx &);
1461 
1462 bool hasMemtag(Ctx &);
1463 bool canHaveMemtagGlobals(Ctx &);
1464 
1465 template <typename ELFT> void writeEhdr(Ctx &, uint8_t *buf, Partition &part);
1466 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1467 
1468 Defined *addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type,
1469                            uint64_t value, uint64_t size,
1470                            InputSectionBase &section);
1471 
1472 void addVerneed(Ctx &, Symbol &ss);
1473 
1474 // This describes a program header entry.
1475 // Each contains type, access flags and range of output sections that will be
1476 // placed in it.
1477 struct PhdrEntry {
1478   PhdrEntry(Ctx &ctx, unsigned type, unsigned flags)
1479       : p_align(type == llvm::ELF::PT_LOAD ? ctx.arg.maxPageSize : 0),
1480         p_type(type), p_flags(flags) {}
1481   void add(OutputSection *sec);
1482 
1483   uint64_t p_paddr = 0;
1484   uint64_t p_vaddr = 0;
1485   uint64_t p_memsz = 0;
1486   uint64_t p_filesz = 0;
1487   uint64_t p_offset = 0;
1488   uint32_t p_align = 0;
1489   uint32_t p_type = 0;
1490   uint32_t p_flags = 0;
1491 
1492   OutputSection *firstSec = nullptr;
1493   OutputSection *lastSec = nullptr;
1494   bool hasLMA = false;
1495 
1496   uint64_t lmaOffset = 0;
1497 };
1498 
1499 // Linker generated per-partition sections.
1500 struct Partition {
1501   Ctx &ctx;
1502   StringRef name;
1503   uint64_t nameStrTab;
1504 
1505   std::unique_ptr<SyntheticSection> elfHeader;
1506   std::unique_ptr<SyntheticSection> programHeaders;
1507   SmallVector<std::unique_ptr<PhdrEntry>, 0> phdrs;
1508 
1509   std::unique_ptr<ARMExidxSyntheticSection> armExidx;
1510   std::unique_ptr<BuildIdSection> buildId;
1511   std::unique_ptr<SyntheticSection> dynamic;
1512   std::unique_ptr<StringTableSection> dynStrTab;
1513   std::unique_ptr<SymbolTableBaseSection> dynSymTab;
1514   std::unique_ptr<EhFrameHeader> ehFrameHdr;
1515   std::unique_ptr<EhFrameSection> ehFrame;
1516   std::unique_ptr<GnuHashTableSection> gnuHashTab;
1517   std::unique_ptr<HashTableSection> hashTab;
1518   std::unique_ptr<MemtagAndroidNote> memtagAndroidNote;
1519   std::unique_ptr<MemtagGlobalDescriptors> memtagGlobalDescriptors;
1520   std::unique_ptr<PackageMetadataNote> packageMetadataNote;
1521   std::unique_ptr<RelocationBaseSection> relaDyn;
1522   std::unique_ptr<RelrBaseSection> relrDyn;
1523   std::unique_ptr<RelrBaseSection> relrAuthDyn;
1524   std::unique_ptr<VersionDefinitionSection> verDef;
1525   std::unique_ptr<SyntheticSection> verNeed;
1526   std::unique_ptr<VersionTableSection> verSym;
1527 
1528   Partition(Ctx &ctx) : ctx(ctx) {}
1529   unsigned getNumber(Ctx &ctx) const { return this - &ctx.partitions[0] + 1; }
1530 };
1531 
1532 inline Partition &SectionBase::getPartition(Ctx &ctx) const {
1533   assert(isLive());
1534   return ctx.partitions[partition - 1];
1535 }
1536 
1537 } // namespace lld::elf
1538 
1539 #endif
1540