xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Scalar/SROA.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
14 ///
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
18 ///
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
22 ///
23 //===----------------------------------------------------------------------===//
24 
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantFolder.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DIBuilder.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalAlias.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <chrono>
88 #include <cstddef>
89 #include <cstdint>
90 #include <cstring>
91 #include <iterator>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96 
97 using namespace llvm;
98 using namespace llvm::sroa;
99 
100 #define DEBUG_TYPE "sroa"
101 
102 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
103 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
104 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
105 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
106 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
107 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
108 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
109 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
110 STATISTIC(NumDeleted, "Number of instructions deleted");
111 STATISTIC(NumVectorized, "Number of vectorized aggregates");
112 
113 /// Hidden option to experiment with completely strict handling of inbounds
114 /// GEPs.
115 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
116                                         cl::Hidden);
117 
118 namespace {
119 
120 /// A custom IRBuilder inserter which prefixes all names, but only in
121 /// Assert builds.
122 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter {
123   std::string Prefix;
124 
getNameWithPrefix(const Twine & Name) const125   const Twine getNameWithPrefix(const Twine &Name) const {
126     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
127   }
128 
129 public:
SetNamePrefix(const Twine & P)130   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
131 
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt) const132   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
133                     BasicBlock::iterator InsertPt) const override {
134     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
135                                            InsertPt);
136   }
137 };
138 
139 /// Provide a type for IRBuilder that drops names in release builds.
140 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
141 
142 /// A used slice of an alloca.
143 ///
144 /// This structure represents a slice of an alloca used by some instruction. It
145 /// stores both the begin and end offsets of this use, a pointer to the use
146 /// itself, and a flag indicating whether we can classify the use as splittable
147 /// or not when forming partitions of the alloca.
148 class Slice {
149   /// The beginning offset of the range.
150   uint64_t BeginOffset = 0;
151 
152   /// The ending offset, not included in the range.
153   uint64_t EndOffset = 0;
154 
155   /// Storage for both the use of this slice and whether it can be
156   /// split.
157   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
158 
159 public:
160   Slice() = default;
161 
Slice(uint64_t BeginOffset,uint64_t EndOffset,Use * U,bool IsSplittable)162   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
163       : BeginOffset(BeginOffset), EndOffset(EndOffset),
164         UseAndIsSplittable(U, IsSplittable) {}
165 
beginOffset() const166   uint64_t beginOffset() const { return BeginOffset; }
endOffset() const167   uint64_t endOffset() const { return EndOffset; }
168 
isSplittable() const169   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
makeUnsplittable()170   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
171 
getUse() const172   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
173 
isDead() const174   bool isDead() const { return getUse() == nullptr; }
kill()175   void kill() { UseAndIsSplittable.setPointer(nullptr); }
176 
177   /// Support for ordering ranges.
178   ///
179   /// This provides an ordering over ranges such that start offsets are
180   /// always increasing, and within equal start offsets, the end offsets are
181   /// decreasing. Thus the spanning range comes first in a cluster with the
182   /// same start position.
operator <(const Slice & RHS) const183   bool operator<(const Slice &RHS) const {
184     if (beginOffset() < RHS.beginOffset())
185       return true;
186     if (beginOffset() > RHS.beginOffset())
187       return false;
188     if (isSplittable() != RHS.isSplittable())
189       return !isSplittable();
190     if (endOffset() > RHS.endOffset())
191       return true;
192     return false;
193   }
194 
195   /// Support comparison with a single offset to allow binary searches.
operator <(const Slice & LHS,uint64_t RHSOffset)196   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
197                                               uint64_t RHSOffset) {
198     return LHS.beginOffset() < RHSOffset;
199   }
operator <(uint64_t LHSOffset,const Slice & RHS)200   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
201                                               const Slice &RHS) {
202     return LHSOffset < RHS.beginOffset();
203   }
204 
operator ==(const Slice & RHS) const205   bool operator==(const Slice &RHS) const {
206     return isSplittable() == RHS.isSplittable() &&
207            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
208   }
operator !=(const Slice & RHS) const209   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
210 };
211 
212 } // end anonymous namespace
213 
214 /// Representation of the alloca slices.
215 ///
216 /// This class represents the slices of an alloca which are formed by its
217 /// various uses. If a pointer escapes, we can't fully build a representation
218 /// for the slices used and we reflect that in this structure. The uses are
219 /// stored, sorted by increasing beginning offset and with unsplittable slices
220 /// starting at a particular offset before splittable slices.
221 class llvm::sroa::AllocaSlices {
222 public:
223   /// Construct the slices of a particular alloca.
224   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
225 
226   /// Test whether a pointer to the allocation escapes our analysis.
227   ///
228   /// If this is true, the slices are never fully built and should be
229   /// ignored.
isEscaped() const230   bool isEscaped() const { return PointerEscapingInstr; }
231 
232   /// Support for iterating over the slices.
233   /// @{
234   using iterator = SmallVectorImpl<Slice>::iterator;
235   using range = iterator_range<iterator>;
236 
begin()237   iterator begin() { return Slices.begin(); }
end()238   iterator end() { return Slices.end(); }
239 
240   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
241   using const_range = iterator_range<const_iterator>;
242 
begin() const243   const_iterator begin() const { return Slices.begin(); }
end() const244   const_iterator end() const { return Slices.end(); }
245   /// @}
246 
247   /// Erase a range of slices.
erase(iterator Start,iterator Stop)248   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
249 
250   /// Insert new slices for this alloca.
251   ///
252   /// This moves the slices into the alloca's slices collection, and re-sorts
253   /// everything so that the usual ordering properties of the alloca's slices
254   /// hold.
insert(ArrayRef<Slice> NewSlices)255   void insert(ArrayRef<Slice> NewSlices) {
256     int OldSize = Slices.size();
257     Slices.append(NewSlices.begin(), NewSlices.end());
258     auto SliceI = Slices.begin() + OldSize;
259     llvm::sort(SliceI, Slices.end());
260     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
261   }
262 
263   // Forward declare the iterator and range accessor for walking the
264   // partitions.
265   class partition_iterator;
266   iterator_range<partition_iterator> partitions();
267 
268   /// Access the dead users for this alloca.
getDeadUsers() const269   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
270 
271   /// Access Uses that should be dropped if the alloca is promotable.
getDeadUsesIfPromotable() const272   ArrayRef<Use *> getDeadUsesIfPromotable() const {
273     return DeadUseIfPromotable;
274   }
275 
276   /// Access the dead operands referring to this alloca.
277   ///
278   /// These are operands which have cannot actually be used to refer to the
279   /// alloca as they are outside its range and the user doesn't correct for
280   /// that. These mostly consist of PHI node inputs and the like which we just
281   /// need to replace with undef.
getDeadOperands() const282   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
283 
284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
285   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
286   void printSlice(raw_ostream &OS, const_iterator I,
287                   StringRef Indent = "  ") const;
288   void printUse(raw_ostream &OS, const_iterator I,
289                 StringRef Indent = "  ") const;
290   void print(raw_ostream &OS) const;
291   void dump(const_iterator I) const;
292   void dump() const;
293 #endif
294 
295 private:
296   template <typename DerivedT, typename RetT = void> class BuilderBase;
297   class SliceBuilder;
298 
299   friend class AllocaSlices::SliceBuilder;
300 
301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
302   /// Handle to alloca instruction to simplify method interfaces.
303   AllocaInst &AI;
304 #endif
305 
306   /// The instruction responsible for this alloca not having a known set
307   /// of slices.
308   ///
309   /// When an instruction (potentially) escapes the pointer to the alloca, we
310   /// store a pointer to that here and abort trying to form slices of the
311   /// alloca. This will be null if the alloca slices are analyzed successfully.
312   Instruction *PointerEscapingInstr;
313 
314   /// The slices of the alloca.
315   ///
316   /// We store a vector of the slices formed by uses of the alloca here. This
317   /// vector is sorted by increasing begin offset, and then the unsplittable
318   /// slices before the splittable ones. See the Slice inner class for more
319   /// details.
320   SmallVector<Slice, 8> Slices;
321 
322   /// Instructions which will become dead if we rewrite the alloca.
323   ///
324   /// Note that these are not separated by slice. This is because we expect an
325   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
326   /// all these instructions can simply be removed and replaced with undef as
327   /// they come from outside of the allocated space.
328   SmallVector<Instruction *, 8> DeadUsers;
329 
330   /// Uses which will become dead if can promote the alloca.
331   SmallVector<Use *, 8> DeadUseIfPromotable;
332 
333   /// Operands which will become dead if we rewrite the alloca.
334   ///
335   /// These are operands that in their particular use can be replaced with
336   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
337   /// to PHI nodes and the like. They aren't entirely dead (there might be
338   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
339   /// want to swap this particular input for undef to simplify the use lists of
340   /// the alloca.
341   SmallVector<Use *, 8> DeadOperands;
342 };
343 
344 /// A partition of the slices.
345 ///
346 /// An ephemeral representation for a range of slices which can be viewed as
347 /// a partition of the alloca. This range represents a span of the alloca's
348 /// memory which cannot be split, and provides access to all of the slices
349 /// overlapping some part of the partition.
350 ///
351 /// Objects of this type are produced by traversing the alloca's slices, but
352 /// are only ephemeral and not persistent.
353 class llvm::sroa::Partition {
354 private:
355   friend class AllocaSlices;
356   friend class AllocaSlices::partition_iterator;
357 
358   using iterator = AllocaSlices::iterator;
359 
360   /// The beginning and ending offsets of the alloca for this
361   /// partition.
362   uint64_t BeginOffset = 0, EndOffset = 0;
363 
364   /// The start and end iterators of this partition.
365   iterator SI, SJ;
366 
367   /// A collection of split slice tails overlapping the partition.
368   SmallVector<Slice *, 4> SplitTails;
369 
370   /// Raw constructor builds an empty partition starting and ending at
371   /// the given iterator.
Partition(iterator SI)372   Partition(iterator SI) : SI(SI), SJ(SI) {}
373 
374 public:
375   /// The start offset of this partition.
376   ///
377   /// All of the contained slices start at or after this offset.
beginOffset() const378   uint64_t beginOffset() const { return BeginOffset; }
379 
380   /// The end offset of this partition.
381   ///
382   /// All of the contained slices end at or before this offset.
endOffset() const383   uint64_t endOffset() const { return EndOffset; }
384 
385   /// The size of the partition.
386   ///
387   /// Note that this can never be zero.
size() const388   uint64_t size() const {
389     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
390     return EndOffset - BeginOffset;
391   }
392 
393   /// Test whether this partition contains no slices, and merely spans
394   /// a region occupied by split slices.
empty() const395   bool empty() const { return SI == SJ; }
396 
397   /// \name Iterate slices that start within the partition.
398   /// These may be splittable or unsplittable. They have a begin offset >= the
399   /// partition begin offset.
400   /// @{
401   // FIXME: We should probably define a "concat_iterator" helper and use that
402   // to stitch together pointee_iterators over the split tails and the
403   // contiguous iterators of the partition. That would give a much nicer
404   // interface here. We could then additionally expose filtered iterators for
405   // split, unsplit, and unsplittable splices based on the usage patterns.
begin() const406   iterator begin() const { return SI; }
end() const407   iterator end() const { return SJ; }
408   /// @}
409 
410   /// Get the sequence of split slice tails.
411   ///
412   /// These tails are of slices which start before this partition but are
413   /// split and overlap into the partition. We accumulate these while forming
414   /// partitions.
splitSliceTails() const415   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
416 };
417 
418 /// An iterator over partitions of the alloca's slices.
419 ///
420 /// This iterator implements the core algorithm for partitioning the alloca's
421 /// slices. It is a forward iterator as we don't support backtracking for
422 /// efficiency reasons, and re-use a single storage area to maintain the
423 /// current set of split slices.
424 ///
425 /// It is templated on the slice iterator type to use so that it can operate
426 /// with either const or non-const slice iterators.
427 class AllocaSlices::partition_iterator
428     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
429                                   Partition> {
430   friend class AllocaSlices;
431 
432   /// Most of the state for walking the partitions is held in a class
433   /// with a nice interface for examining them.
434   Partition P;
435 
436   /// We need to keep the end of the slices to know when to stop.
437   AllocaSlices::iterator SE;
438 
439   /// We also need to keep track of the maximum split end offset seen.
440   /// FIXME: Do we really?
441   uint64_t MaxSplitSliceEndOffset = 0;
442 
443   /// Sets the partition to be empty at given iterator, and sets the
444   /// end iterator.
partition_iterator(AllocaSlices::iterator SI,AllocaSlices::iterator SE)445   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
446       : P(SI), SE(SE) {
447     // If not already at the end, advance our state to form the initial
448     // partition.
449     if (SI != SE)
450       advance();
451   }
452 
453   /// Advance the iterator to the next partition.
454   ///
455   /// Requires that the iterator not be at the end of the slices.
advance()456   void advance() {
457     assert((P.SI != SE || !P.SplitTails.empty()) &&
458            "Cannot advance past the end of the slices!");
459 
460     // Clear out any split uses which have ended.
461     if (!P.SplitTails.empty()) {
462       if (P.EndOffset >= MaxSplitSliceEndOffset) {
463         // If we've finished all splits, this is easy.
464         P.SplitTails.clear();
465         MaxSplitSliceEndOffset = 0;
466       } else {
467         // Remove the uses which have ended in the prior partition. This
468         // cannot change the max split slice end because we just checked that
469         // the prior partition ended prior to that max.
470         llvm::erase_if(P.SplitTails,
471                        [&](Slice *S) { return S->endOffset() <= P.EndOffset; });
472         assert(llvm::any_of(P.SplitTails,
473                             [&](Slice *S) {
474                               return S->endOffset() == MaxSplitSliceEndOffset;
475                             }) &&
476                "Could not find the current max split slice offset!");
477         assert(llvm::all_of(P.SplitTails,
478                             [&](Slice *S) {
479                               return S->endOffset() <= MaxSplitSliceEndOffset;
480                             }) &&
481                "Max split slice end offset is not actually the max!");
482       }
483     }
484 
485     // If P.SI is already at the end, then we've cleared the split tail and
486     // now have an end iterator.
487     if (P.SI == SE) {
488       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
489       return;
490     }
491 
492     // If we had a non-empty partition previously, set up the state for
493     // subsequent partitions.
494     if (P.SI != P.SJ) {
495       // Accumulate all the splittable slices which started in the old
496       // partition into the split list.
497       for (Slice &S : P)
498         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
499           P.SplitTails.push_back(&S);
500           MaxSplitSliceEndOffset =
501               std::max(S.endOffset(), MaxSplitSliceEndOffset);
502         }
503 
504       // Start from the end of the previous partition.
505       P.SI = P.SJ;
506 
507       // If P.SI is now at the end, we at most have a tail of split slices.
508       if (P.SI == SE) {
509         P.BeginOffset = P.EndOffset;
510         P.EndOffset = MaxSplitSliceEndOffset;
511         return;
512       }
513 
514       // If the we have split slices and the next slice is after a gap and is
515       // not splittable immediately form an empty partition for the split
516       // slices up until the next slice begins.
517       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
518           !P.SI->isSplittable()) {
519         P.BeginOffset = P.EndOffset;
520         P.EndOffset = P.SI->beginOffset();
521         return;
522       }
523     }
524 
525     // OK, we need to consume new slices. Set the end offset based on the
526     // current slice, and step SJ past it. The beginning offset of the
527     // partition is the beginning offset of the next slice unless we have
528     // pre-existing split slices that are continuing, in which case we begin
529     // at the prior end offset.
530     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
531     P.EndOffset = P.SI->endOffset();
532     ++P.SJ;
533 
534     // There are two strategies to form a partition based on whether the
535     // partition starts with an unsplittable slice or a splittable slice.
536     if (!P.SI->isSplittable()) {
537       // When we're forming an unsplittable region, it must always start at
538       // the first slice and will extend through its end.
539       assert(P.BeginOffset == P.SI->beginOffset());
540 
541       // Form a partition including all of the overlapping slices with this
542       // unsplittable slice.
543       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
544         if (!P.SJ->isSplittable())
545           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
546         ++P.SJ;
547       }
548 
549       // We have a partition across a set of overlapping unsplittable
550       // partitions.
551       return;
552     }
553 
554     // If we're starting with a splittable slice, then we need to form
555     // a synthetic partition spanning it and any other overlapping splittable
556     // splices.
557     assert(P.SI->isSplittable() && "Forming a splittable partition!");
558 
559     // Collect all of the overlapping splittable slices.
560     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
561            P.SJ->isSplittable()) {
562       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
563       ++P.SJ;
564     }
565 
566     // Back upiP.EndOffset if we ended the span early when encountering an
567     // unsplittable slice. This synthesizes the early end offset of
568     // a partition spanning only splittable slices.
569     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
570       assert(!P.SJ->isSplittable());
571       P.EndOffset = P.SJ->beginOffset();
572     }
573   }
574 
575 public:
operator ==(const partition_iterator & RHS) const576   bool operator==(const partition_iterator &RHS) const {
577     assert(SE == RHS.SE &&
578            "End iterators don't match between compared partition iterators!");
579 
580     // The observed positions of partitions is marked by the P.SI iterator and
581     // the emptiness of the split slices. The latter is only relevant when
582     // P.SI == SE, as the end iterator will additionally have an empty split
583     // slices list, but the prior may have the same P.SI and a tail of split
584     // slices.
585     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
586       assert(P.SJ == RHS.P.SJ &&
587              "Same set of slices formed two different sized partitions!");
588       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
589              "Same slice position with differently sized non-empty split "
590              "slice tails!");
591       return true;
592     }
593     return false;
594   }
595 
operator ++()596   partition_iterator &operator++() {
597     advance();
598     return *this;
599   }
600 
operator *()601   Partition &operator*() { return P; }
602 };
603 
604 /// A forward range over the partitions of the alloca's slices.
605 ///
606 /// This accesses an iterator range over the partitions of the alloca's
607 /// slices. It computes these partitions on the fly based on the overlapping
608 /// offsets of the slices and the ability to split them. It will visit "empty"
609 /// partitions to cover regions of the alloca only accessed via split
610 /// slices.
partitions()611 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
612   return make_range(partition_iterator(begin(), end()),
613                     partition_iterator(end(), end()));
614 }
615 
foldSelectInst(SelectInst & SI)616 static Value *foldSelectInst(SelectInst &SI) {
617   // If the condition being selected on is a constant or the same value is
618   // being selected between, fold the select. Yes this does (rarely) happen
619   // early on.
620   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
621     return SI.getOperand(1 + CI->isZero());
622   if (SI.getOperand(1) == SI.getOperand(2))
623     return SI.getOperand(1);
624 
625   return nullptr;
626 }
627 
628 /// A helper that folds a PHI node or a select.
foldPHINodeOrSelectInst(Instruction & I)629 static Value *foldPHINodeOrSelectInst(Instruction &I) {
630   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
631     // If PN merges together the same value, return that value.
632     return PN->hasConstantValue();
633   }
634   return foldSelectInst(cast<SelectInst>(I));
635 }
636 
637 /// Builder for the alloca slices.
638 ///
639 /// This class builds a set of alloca slices by recursively visiting the uses
640 /// of an alloca and making a slice for each load and store at each offset.
641 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
642   friend class PtrUseVisitor<SliceBuilder>;
643   friend class InstVisitor<SliceBuilder>;
644 
645   using Base = PtrUseVisitor<SliceBuilder>;
646 
647   const uint64_t AllocSize;
648   AllocaSlices &AS;
649 
650   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
651   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
652 
653   /// Set to de-duplicate dead instructions found in the use walk.
654   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
655 
656 public:
SliceBuilder(const DataLayout & DL,AllocaInst & AI,AllocaSlices & AS)657   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
658       : PtrUseVisitor<SliceBuilder>(DL),
659         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize()),
660         AS(AS) {}
661 
662 private:
markAsDead(Instruction & I)663   void markAsDead(Instruction &I) {
664     if (VisitedDeadInsts.insert(&I).second)
665       AS.DeadUsers.push_back(&I);
666   }
667 
insertUse(Instruction & I,const APInt & Offset,uint64_t Size,bool IsSplittable=false)668   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
669                  bool IsSplittable = false) {
670     // Completely skip uses which have a zero size or start either before or
671     // past the end of the allocation.
672     if (Size == 0 || Offset.uge(AllocSize)) {
673       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
674                         << Offset
675                         << " which has zero size or starts outside of the "
676                         << AllocSize << " byte alloca:\n"
677                         << "    alloca: " << AS.AI << "\n"
678                         << "       use: " << I << "\n");
679       return markAsDead(I);
680     }
681 
682     uint64_t BeginOffset = Offset.getZExtValue();
683     uint64_t EndOffset = BeginOffset + Size;
684 
685     // Clamp the end offset to the end of the allocation. Note that this is
686     // formulated to handle even the case where "BeginOffset + Size" overflows.
687     // This may appear superficially to be something we could ignore entirely,
688     // but that is not so! There may be widened loads or PHI-node uses where
689     // some instructions are dead but not others. We can't completely ignore
690     // them, and so have to record at least the information here.
691     assert(AllocSize >= BeginOffset); // Established above.
692     if (Size > AllocSize - BeginOffset) {
693       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
694                         << Offset << " to remain within the " << AllocSize
695                         << " byte alloca:\n"
696                         << "    alloca: " << AS.AI << "\n"
697                         << "       use: " << I << "\n");
698       EndOffset = AllocSize;
699     }
700 
701     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
702   }
703 
visitBitCastInst(BitCastInst & BC)704   void visitBitCastInst(BitCastInst &BC) {
705     if (BC.use_empty())
706       return markAsDead(BC);
707 
708     return Base::visitBitCastInst(BC);
709   }
710 
visitAddrSpaceCastInst(AddrSpaceCastInst & ASC)711   void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
712     if (ASC.use_empty())
713       return markAsDead(ASC);
714 
715     return Base::visitAddrSpaceCastInst(ASC);
716   }
717 
visitGetElementPtrInst(GetElementPtrInst & GEPI)718   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
719     if (GEPI.use_empty())
720       return markAsDead(GEPI);
721 
722     if (SROAStrictInbounds && GEPI.isInBounds()) {
723       // FIXME: This is a manually un-factored variant of the basic code inside
724       // of GEPs with checking of the inbounds invariant specified in the
725       // langref in a very strict sense. If we ever want to enable
726       // SROAStrictInbounds, this code should be factored cleanly into
727       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
728       // by writing out the code here where we have the underlying allocation
729       // size readily available.
730       APInt GEPOffset = Offset;
731       const DataLayout &DL = GEPI.getModule()->getDataLayout();
732       for (gep_type_iterator GTI = gep_type_begin(GEPI),
733                              GTE = gep_type_end(GEPI);
734            GTI != GTE; ++GTI) {
735         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
736         if (!OpC)
737           break;
738 
739         // Handle a struct index, which adds its field offset to the pointer.
740         if (StructType *STy = GTI.getStructTypeOrNull()) {
741           unsigned ElementIdx = OpC->getZExtValue();
742           const StructLayout *SL = DL.getStructLayout(STy);
743           GEPOffset +=
744               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
745         } else {
746           // For array or vector indices, scale the index by the size of the
747           // type.
748           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
749           GEPOffset +=
750               Index *
751               APInt(Offset.getBitWidth(),
752                     DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
753         }
754 
755         // If this index has computed an intermediate pointer which is not
756         // inbounds, then the result of the GEP is a poison value and we can
757         // delete it and all uses.
758         if (GEPOffset.ugt(AllocSize))
759           return markAsDead(GEPI);
760       }
761     }
762 
763     return Base::visitGetElementPtrInst(GEPI);
764   }
765 
handleLoadOrStore(Type * Ty,Instruction & I,const APInt & Offset,uint64_t Size,bool IsVolatile)766   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
767                          uint64_t Size, bool IsVolatile) {
768     // We allow splitting of non-volatile loads and stores where the type is an
769     // integer type. These may be used to implement 'memcpy' or other "transfer
770     // of bits" patterns.
771     bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
772 
773     insertUse(I, Offset, Size, IsSplittable);
774   }
775 
visitLoadInst(LoadInst & LI)776   void visitLoadInst(LoadInst &LI) {
777     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
778            "All simple FCA loads should have been pre-split");
779 
780     if (!IsOffsetKnown)
781       return PI.setAborted(&LI);
782 
783     if (LI.isVolatile() &&
784         LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
785       return PI.setAborted(&LI);
786 
787     if (isa<ScalableVectorType>(LI.getType()))
788       return PI.setAborted(&LI);
789 
790     uint64_t Size = DL.getTypeStoreSize(LI.getType()).getFixedSize();
791     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
792   }
793 
visitStoreInst(StoreInst & SI)794   void visitStoreInst(StoreInst &SI) {
795     Value *ValOp = SI.getValueOperand();
796     if (ValOp == *U)
797       return PI.setEscapedAndAborted(&SI);
798     if (!IsOffsetKnown)
799       return PI.setAborted(&SI);
800 
801     if (SI.isVolatile() &&
802         SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
803       return PI.setAborted(&SI);
804 
805     if (isa<ScalableVectorType>(ValOp->getType()))
806       return PI.setAborted(&SI);
807 
808     uint64_t Size = DL.getTypeStoreSize(ValOp->getType()).getFixedSize();
809 
810     // If this memory access can be shown to *statically* extend outside the
811     // bounds of the allocation, it's behavior is undefined, so simply
812     // ignore it. Note that this is more strict than the generic clamping
813     // behavior of insertUse. We also try to handle cases which might run the
814     // risk of overflow.
815     // FIXME: We should instead consider the pointer to have escaped if this
816     // function is being instrumented for addressing bugs or race conditions.
817     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
818       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
819                         << Offset << " which extends past the end of the "
820                         << AllocSize << " byte alloca:\n"
821                         << "    alloca: " << AS.AI << "\n"
822                         << "       use: " << SI << "\n");
823       return markAsDead(SI);
824     }
825 
826     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
827            "All simple FCA stores should have been pre-split");
828     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
829   }
830 
visitMemSetInst(MemSetInst & II)831   void visitMemSetInst(MemSetInst &II) {
832     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
833     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
834     if ((Length && Length->getValue() == 0) ||
835         (IsOffsetKnown && Offset.uge(AllocSize)))
836       // Zero-length mem transfer intrinsics can be ignored entirely.
837       return markAsDead(II);
838 
839     if (!IsOffsetKnown)
840       return PI.setAborted(&II);
841 
842     // Don't replace this with a store with a different address space.  TODO:
843     // Use a store with the casted new alloca?
844     if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
845       return PI.setAborted(&II);
846 
847     insertUse(II, Offset, Length ? Length->getLimitedValue()
848                                  : AllocSize - Offset.getLimitedValue(),
849               (bool)Length);
850   }
851 
visitMemTransferInst(MemTransferInst & II)852   void visitMemTransferInst(MemTransferInst &II) {
853     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
854     if (Length && Length->getValue() == 0)
855       // Zero-length mem transfer intrinsics can be ignored entirely.
856       return markAsDead(II);
857 
858     // Because we can visit these intrinsics twice, also check to see if the
859     // first time marked this instruction as dead. If so, skip it.
860     if (VisitedDeadInsts.count(&II))
861       return;
862 
863     if (!IsOffsetKnown)
864       return PI.setAborted(&II);
865 
866     // Don't replace this with a load/store with a different address space.
867     // TODO: Use a store with the casted new alloca?
868     if (II.isVolatile() &&
869         (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
870          II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
871       return PI.setAborted(&II);
872 
873     // This side of the transfer is completely out-of-bounds, and so we can
874     // nuke the entire transfer. However, we also need to nuke the other side
875     // if already added to our partitions.
876     // FIXME: Yet another place we really should bypass this when
877     // instrumenting for ASan.
878     if (Offset.uge(AllocSize)) {
879       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
880           MemTransferSliceMap.find(&II);
881       if (MTPI != MemTransferSliceMap.end())
882         AS.Slices[MTPI->second].kill();
883       return markAsDead(II);
884     }
885 
886     uint64_t RawOffset = Offset.getLimitedValue();
887     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
888 
889     // Check for the special case where the same exact value is used for both
890     // source and dest.
891     if (*U == II.getRawDest() && *U == II.getRawSource()) {
892       // For non-volatile transfers this is a no-op.
893       if (!II.isVolatile())
894         return markAsDead(II);
895 
896       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
897     }
898 
899     // If we have seen both source and destination for a mem transfer, then
900     // they both point to the same alloca.
901     bool Inserted;
902     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
903     std::tie(MTPI, Inserted) =
904         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
905     unsigned PrevIdx = MTPI->second;
906     if (!Inserted) {
907       Slice &PrevP = AS.Slices[PrevIdx];
908 
909       // Check if the begin offsets match and this is a non-volatile transfer.
910       // In that case, we can completely elide the transfer.
911       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
912         PrevP.kill();
913         return markAsDead(II);
914       }
915 
916       // Otherwise we have an offset transfer within the same alloca. We can't
917       // split those.
918       PrevP.makeUnsplittable();
919     }
920 
921     // Insert the use now that we've fixed up the splittable nature.
922     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
923 
924     // Check that we ended up with a valid index in the map.
925     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
926            "Map index doesn't point back to a slice with this user.");
927   }
928 
929   // Disable SRoA for any intrinsics except for lifetime invariants and
930   // invariant group.
931   // FIXME: What about debug intrinsics? This matches old behavior, but
932   // doesn't make sense.
visitIntrinsicInst(IntrinsicInst & II)933   void visitIntrinsicInst(IntrinsicInst &II) {
934     if (II.isDroppable()) {
935       AS.DeadUseIfPromotable.push_back(U);
936       return;
937     }
938 
939     if (!IsOffsetKnown)
940       return PI.setAborted(&II);
941 
942     if (II.isLifetimeStartOrEnd()) {
943       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
944       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
945                                Length->getLimitedValue());
946       insertUse(II, Offset, Size, true);
947       return;
948     }
949 
950     if (II.isLaunderOrStripInvariantGroup()) {
951       enqueueUsers(II);
952       return;
953     }
954 
955     Base::visitIntrinsicInst(II);
956   }
957 
hasUnsafePHIOrSelectUse(Instruction * Root,uint64_t & Size)958   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
959     // We consider any PHI or select that results in a direct load or store of
960     // the same offset to be a viable use for slicing purposes. These uses
961     // are considered unsplittable and the size is the maximum loaded or stored
962     // size.
963     SmallPtrSet<Instruction *, 4> Visited;
964     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
965     Visited.insert(Root);
966     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
967     const DataLayout &DL = Root->getModule()->getDataLayout();
968     // If there are no loads or stores, the access is dead. We mark that as
969     // a size zero access.
970     Size = 0;
971     do {
972       Instruction *I, *UsedI;
973       std::tie(UsedI, I) = Uses.pop_back_val();
974 
975       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
976         Size = std::max(Size,
977                         DL.getTypeStoreSize(LI->getType()).getFixedSize());
978         continue;
979       }
980       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
981         Value *Op = SI->getOperand(0);
982         if (Op == UsedI)
983           return SI;
984         Size = std::max(Size,
985                         DL.getTypeStoreSize(Op->getType()).getFixedSize());
986         continue;
987       }
988 
989       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
990         if (!GEP->hasAllZeroIndices())
991           return GEP;
992       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
993                  !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
994         return I;
995       }
996 
997       for (User *U : I->users())
998         if (Visited.insert(cast<Instruction>(U)).second)
999           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
1000     } while (!Uses.empty());
1001 
1002     return nullptr;
1003   }
1004 
visitPHINodeOrSelectInst(Instruction & I)1005   void visitPHINodeOrSelectInst(Instruction &I) {
1006     assert(isa<PHINode>(I) || isa<SelectInst>(I));
1007     if (I.use_empty())
1008       return markAsDead(I);
1009 
1010     // TODO: We could use SimplifyInstruction here to fold PHINodes and
1011     // SelectInsts. However, doing so requires to change the current
1012     // dead-operand-tracking mechanism. For instance, suppose neither loading
1013     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1014     // trap either.  However, if we simply replace %U with undef using the
1015     // current dead-operand-tracking mechanism, "load (select undef, undef,
1016     // %other)" may trap because the select may return the first operand
1017     // "undef".
1018     if (Value *Result = foldPHINodeOrSelectInst(I)) {
1019       if (Result == *U)
1020         // If the result of the constant fold will be the pointer, recurse
1021         // through the PHI/select as if we had RAUW'ed it.
1022         enqueueUsers(I);
1023       else
1024         // Otherwise the operand to the PHI/select is dead, and we can replace
1025         // it with undef.
1026         AS.DeadOperands.push_back(U);
1027 
1028       return;
1029     }
1030 
1031     if (!IsOffsetKnown)
1032       return PI.setAborted(&I);
1033 
1034     // See if we already have computed info on this node.
1035     uint64_t &Size = PHIOrSelectSizes[&I];
1036     if (!Size) {
1037       // This is a new PHI/Select, check for an unsafe use of it.
1038       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1039         return PI.setAborted(UnsafeI);
1040     }
1041 
1042     // For PHI and select operands outside the alloca, we can't nuke the entire
1043     // phi or select -- the other side might still be relevant, so we special
1044     // case them here and use a separate structure to track the operands
1045     // themselves which should be replaced with undef.
1046     // FIXME: This should instead be escaped in the event we're instrumenting
1047     // for address sanitization.
1048     if (Offset.uge(AllocSize)) {
1049       AS.DeadOperands.push_back(U);
1050       return;
1051     }
1052 
1053     insertUse(I, Offset, Size);
1054   }
1055 
visitPHINode(PHINode & PN)1056   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1057 
visitSelectInst(SelectInst & SI)1058   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1059 
1060   /// Disable SROA entirely if there are unhandled users of the alloca.
visitInstruction(Instruction & I)1061   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1062 };
1063 
AllocaSlices(const DataLayout & DL,AllocaInst & AI)1064 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1065     :
1066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1067       AI(AI),
1068 #endif
1069       PointerEscapingInstr(nullptr) {
1070   SliceBuilder PB(DL, AI, *this);
1071   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1072   if (PtrI.isEscaped() || PtrI.isAborted()) {
1073     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1074     // possibly by just storing the PtrInfo in the AllocaSlices.
1075     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1076                                                   : PtrI.getAbortingInst();
1077     assert(PointerEscapingInstr && "Did not track a bad instruction");
1078     return;
1079   }
1080 
1081   llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); });
1082 
1083   // Sort the uses. This arranges for the offsets to be in ascending order,
1084   // and the sizes to be in descending order.
1085   llvm::stable_sort(Slices);
1086 }
1087 
1088 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1089 
print(raw_ostream & OS,const_iterator I,StringRef Indent) const1090 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1091                          StringRef Indent) const {
1092   printSlice(OS, I, Indent);
1093   OS << "\n";
1094   printUse(OS, I, Indent);
1095 }
1096 
printSlice(raw_ostream & OS,const_iterator I,StringRef Indent) const1097 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1098                               StringRef Indent) const {
1099   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1100      << " slice #" << (I - begin())
1101      << (I->isSplittable() ? " (splittable)" : "");
1102 }
1103 
printUse(raw_ostream & OS,const_iterator I,StringRef Indent) const1104 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1105                             StringRef Indent) const {
1106   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1107 }
1108 
print(raw_ostream & OS) const1109 void AllocaSlices::print(raw_ostream &OS) const {
1110   if (PointerEscapingInstr) {
1111     OS << "Can't analyze slices for alloca: " << AI << "\n"
1112        << "  A pointer to this alloca escaped by:\n"
1113        << "  " << *PointerEscapingInstr << "\n";
1114     return;
1115   }
1116 
1117   OS << "Slices of alloca: " << AI << "\n";
1118   for (const_iterator I = begin(), E = end(); I != E; ++I)
1119     print(OS, I);
1120 }
1121 
dump(const_iterator I) const1122 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1123   print(dbgs(), I);
1124 }
dump() const1125 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1126 
1127 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1128 
1129 /// Walk the range of a partitioning looking for a common type to cover this
1130 /// sequence of slices.
1131 static std::pair<Type *, IntegerType *>
findCommonType(AllocaSlices::const_iterator B,AllocaSlices::const_iterator E,uint64_t EndOffset)1132 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E,
1133                uint64_t EndOffset) {
1134   Type *Ty = nullptr;
1135   bool TyIsCommon = true;
1136   IntegerType *ITy = nullptr;
1137 
1138   // Note that we need to look at *every* alloca slice's Use to ensure we
1139   // always get consistent results regardless of the order of slices.
1140   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1141     Use *U = I->getUse();
1142     if (isa<IntrinsicInst>(*U->getUser()))
1143       continue;
1144     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1145       continue;
1146 
1147     Type *UserTy = nullptr;
1148     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1149       UserTy = LI->getType();
1150     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1151       UserTy = SI->getValueOperand()->getType();
1152     }
1153 
1154     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1155       // If the type is larger than the partition, skip it. We only encounter
1156       // this for split integer operations where we want to use the type of the
1157       // entity causing the split. Also skip if the type is not a byte width
1158       // multiple.
1159       if (UserITy->getBitWidth() % 8 != 0 ||
1160           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1161         continue;
1162 
1163       // Track the largest bitwidth integer type used in this way in case there
1164       // is no common type.
1165       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1166         ITy = UserITy;
1167     }
1168 
1169     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1170     // depend on types skipped above.
1171     if (!UserTy || (Ty && Ty != UserTy))
1172       TyIsCommon = false; // Give up on anything but an iN type.
1173     else
1174       Ty = UserTy;
1175   }
1176 
1177   return {TyIsCommon ? Ty : nullptr, ITy};
1178 }
1179 
1180 /// PHI instructions that use an alloca and are subsequently loaded can be
1181 /// rewritten to load both input pointers in the pred blocks and then PHI the
1182 /// results, allowing the load of the alloca to be promoted.
1183 /// From this:
1184 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1185 ///   %V = load i32* %P2
1186 /// to:
1187 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1188 ///   ...
1189 ///   %V2 = load i32* %Other
1190 ///   ...
1191 ///   %V = phi [i32 %V1, i32 %V2]
1192 ///
1193 /// We can do this to a select if its only uses are loads and if the operands
1194 /// to the select can be loaded unconditionally.
1195 ///
1196 /// FIXME: This should be hoisted into a generic utility, likely in
1197 /// Transforms/Util/Local.h
isSafePHIToSpeculate(PHINode & PN)1198 static bool isSafePHIToSpeculate(PHINode &PN) {
1199   const DataLayout &DL = PN.getModule()->getDataLayout();
1200 
1201   // For now, we can only do this promotion if the load is in the same block
1202   // as the PHI, and if there are no stores between the phi and load.
1203   // TODO: Allow recursive phi users.
1204   // TODO: Allow stores.
1205   BasicBlock *BB = PN.getParent();
1206   Align MaxAlign;
1207   uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1208   APInt MaxSize(APWidth, 0);
1209   bool HaveLoad = false;
1210   for (User *U : PN.users()) {
1211     LoadInst *LI = dyn_cast<LoadInst>(U);
1212     if (!LI || !LI->isSimple())
1213       return false;
1214 
1215     // For now we only allow loads in the same block as the PHI.  This is
1216     // a common case that happens when instcombine merges two loads through
1217     // a PHI.
1218     if (LI->getParent() != BB)
1219       return false;
1220 
1221     // Ensure that there are no instructions between the PHI and the load that
1222     // could store.
1223     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1224       if (BBI->mayWriteToMemory())
1225         return false;
1226 
1227     uint64_t Size = DL.getTypeStoreSize(LI->getType()).getFixedSize();
1228     MaxAlign = std::max(MaxAlign, LI->getAlign());
1229     MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1230     HaveLoad = true;
1231   }
1232 
1233   if (!HaveLoad)
1234     return false;
1235 
1236   // We can only transform this if it is safe to push the loads into the
1237   // predecessor blocks. The only thing to watch out for is that we can't put
1238   // a possibly trapping load in the predecessor if it is a critical edge.
1239   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1240     Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1241     Value *InVal = PN.getIncomingValue(Idx);
1242 
1243     // If the value is produced by the terminator of the predecessor (an
1244     // invoke) or it has side-effects, there is no valid place to put a load
1245     // in the predecessor.
1246     if (TI == InVal || TI->mayHaveSideEffects())
1247       return false;
1248 
1249     // If the predecessor has a single successor, then the edge isn't
1250     // critical.
1251     if (TI->getNumSuccessors() == 1)
1252       continue;
1253 
1254     // If this pointer is always safe to load, or if we can prove that there
1255     // is already a load in the block, then we can move the load to the pred
1256     // block.
1257     if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1258       continue;
1259 
1260     return false;
1261   }
1262 
1263   return true;
1264 }
1265 
speculatePHINodeLoads(PHINode & PN)1266 static void speculatePHINodeLoads(PHINode &PN) {
1267   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1268 
1269   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1270   Type *LoadTy = SomeLoad->getType();
1271   IRBuilderTy PHIBuilder(&PN);
1272   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1273                                         PN.getName() + ".sroa.speculated");
1274 
1275   // Get the AA tags and alignment to use from one of the loads. It does not
1276   // matter which one we get and if any differ.
1277   AAMDNodes AATags;
1278   SomeLoad->getAAMetadata(AATags);
1279   Align Alignment = SomeLoad->getAlign();
1280 
1281   // Rewrite all loads of the PN to use the new PHI.
1282   while (!PN.use_empty()) {
1283     LoadInst *LI = cast<LoadInst>(PN.user_back());
1284     LI->replaceAllUsesWith(NewPN);
1285     LI->eraseFromParent();
1286   }
1287 
1288   // Inject loads into all of the pred blocks.
1289   DenseMap<BasicBlock*, Value*> InjectedLoads;
1290   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1291     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1292     Value *InVal = PN.getIncomingValue(Idx);
1293 
1294     // A PHI node is allowed to have multiple (duplicated) entries for the same
1295     // basic block, as long as the value is the same. So if we already injected
1296     // a load in the predecessor, then we should reuse the same load for all
1297     // duplicated entries.
1298     if (Value* V = InjectedLoads.lookup(Pred)) {
1299       NewPN->addIncoming(V, Pred);
1300       continue;
1301     }
1302 
1303     Instruction *TI = Pred->getTerminator();
1304     IRBuilderTy PredBuilder(TI);
1305 
1306     LoadInst *Load = PredBuilder.CreateAlignedLoad(
1307         LoadTy, InVal, Alignment,
1308         (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1309     ++NumLoadsSpeculated;
1310     if (AATags)
1311       Load->setAAMetadata(AATags);
1312     NewPN->addIncoming(Load, Pred);
1313     InjectedLoads[Pred] = Load;
1314   }
1315 
1316   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1317   PN.eraseFromParent();
1318 }
1319 
1320 /// Select instructions that use an alloca and are subsequently loaded can be
1321 /// rewritten to load both input pointers and then select between the result,
1322 /// allowing the load of the alloca to be promoted.
1323 /// From this:
1324 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1325 ///   %V = load i32* %P2
1326 /// to:
1327 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1328 ///   %V2 = load i32* %Other
1329 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1330 ///
1331 /// We can do this to a select if its only uses are loads and if the operand
1332 /// to the select can be loaded unconditionally.
isSafeSelectToSpeculate(SelectInst & SI)1333 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1334   Value *TValue = SI.getTrueValue();
1335   Value *FValue = SI.getFalseValue();
1336   const DataLayout &DL = SI.getModule()->getDataLayout();
1337 
1338   for (User *U : SI.users()) {
1339     LoadInst *LI = dyn_cast<LoadInst>(U);
1340     if (!LI || !LI->isSimple())
1341       return false;
1342 
1343     // Both operands to the select need to be dereferenceable, either
1344     // absolutely (e.g. allocas) or at this point because we can see other
1345     // accesses to it.
1346     if (!isSafeToLoadUnconditionally(TValue, LI->getType(),
1347                                      LI->getAlign(), DL, LI))
1348       return false;
1349     if (!isSafeToLoadUnconditionally(FValue, LI->getType(),
1350                                      LI->getAlign(), DL, LI))
1351       return false;
1352   }
1353 
1354   return true;
1355 }
1356 
speculateSelectInstLoads(SelectInst & SI)1357 static void speculateSelectInstLoads(SelectInst &SI) {
1358   LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1359 
1360   IRBuilderTy IRB(&SI);
1361   Value *TV = SI.getTrueValue();
1362   Value *FV = SI.getFalseValue();
1363   // Replace the loads of the select with a select of two loads.
1364   while (!SI.use_empty()) {
1365     LoadInst *LI = cast<LoadInst>(SI.user_back());
1366     assert(LI->isSimple() && "We only speculate simple loads");
1367 
1368     IRB.SetInsertPoint(LI);
1369     LoadInst *TL = IRB.CreateLoad(LI->getType(), TV,
1370                                   LI->getName() + ".sroa.speculate.load.true");
1371     LoadInst *FL = IRB.CreateLoad(LI->getType(), FV,
1372                                   LI->getName() + ".sroa.speculate.load.false");
1373     NumLoadsSpeculated += 2;
1374 
1375     // Transfer alignment and AA info if present.
1376     TL->setAlignment(LI->getAlign());
1377     FL->setAlignment(LI->getAlign());
1378 
1379     AAMDNodes Tags;
1380     LI->getAAMetadata(Tags);
1381     if (Tags) {
1382       TL->setAAMetadata(Tags);
1383       FL->setAAMetadata(Tags);
1384     }
1385 
1386     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1387                                 LI->getName() + ".sroa.speculated");
1388 
1389     LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1390     LI->replaceAllUsesWith(V);
1391     LI->eraseFromParent();
1392   }
1393   SI.eraseFromParent();
1394 }
1395 
1396 /// Build a GEP out of a base pointer and indices.
1397 ///
1398 /// This will return the BasePtr if that is valid, or build a new GEP
1399 /// instruction using the IRBuilder if GEP-ing is needed.
buildGEP(IRBuilderTy & IRB,Value * BasePtr,SmallVectorImpl<Value * > & Indices,const Twine & NamePrefix)1400 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1401                        SmallVectorImpl<Value *> &Indices,
1402                        const Twine &NamePrefix) {
1403   if (Indices.empty())
1404     return BasePtr;
1405 
1406   // A single zero index is a no-op, so check for this and avoid building a GEP
1407   // in that case.
1408   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1409     return BasePtr;
1410 
1411   return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1412                                BasePtr, Indices, NamePrefix + "sroa_idx");
1413 }
1414 
1415 /// Get a natural GEP off of the BasePtr walking through Ty toward
1416 /// TargetTy without changing the offset of the pointer.
1417 ///
1418 /// This routine assumes we've already established a properly offset GEP with
1419 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1420 /// zero-indices down through type layers until we find one the same as
1421 /// TargetTy. If we can't find one with the same type, we at least try to use
1422 /// one with the same size. If none of that works, we just produce the GEP as
1423 /// indicated by Indices to have the correct offset.
getNaturalGEPWithType(IRBuilderTy & IRB,const DataLayout & DL,Value * BasePtr,Type * Ty,Type * TargetTy,SmallVectorImpl<Value * > & Indices,const Twine & NamePrefix)1424 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1425                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1426                                     SmallVectorImpl<Value *> &Indices,
1427                                     const Twine &NamePrefix) {
1428   if (Ty == TargetTy)
1429     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1430 
1431   // Offset size to use for the indices.
1432   unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1433 
1434   // See if we can descend into a struct and locate a field with the correct
1435   // type.
1436   unsigned NumLayers = 0;
1437   Type *ElementTy = Ty;
1438   do {
1439     if (ElementTy->isPointerTy())
1440       break;
1441 
1442     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1443       ElementTy = ArrayTy->getElementType();
1444       Indices.push_back(IRB.getIntN(OffsetSize, 0));
1445     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1446       ElementTy = VectorTy->getElementType();
1447       Indices.push_back(IRB.getInt32(0));
1448     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1449       if (STy->element_begin() == STy->element_end())
1450         break; // Nothing left to descend into.
1451       ElementTy = *STy->element_begin();
1452       Indices.push_back(IRB.getInt32(0));
1453     } else {
1454       break;
1455     }
1456     ++NumLayers;
1457   } while (ElementTy != TargetTy);
1458   if (ElementTy != TargetTy)
1459     Indices.erase(Indices.end() - NumLayers, Indices.end());
1460 
1461   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1462 }
1463 
1464 /// Recursively compute indices for a natural GEP.
1465 ///
1466 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1467 /// element types adding appropriate indices for the GEP.
getNaturalGEPRecursively(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,Type * Ty,APInt & Offset,Type * TargetTy,SmallVectorImpl<Value * > & Indices,const Twine & NamePrefix)1468 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1469                                        Value *Ptr, Type *Ty, APInt &Offset,
1470                                        Type *TargetTy,
1471                                        SmallVectorImpl<Value *> &Indices,
1472                                        const Twine &NamePrefix) {
1473   if (Offset == 0)
1474     return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1475                                  NamePrefix);
1476 
1477   // We can't recurse through pointer types.
1478   if (Ty->isPointerTy())
1479     return nullptr;
1480 
1481   // We try to analyze GEPs over vectors here, but note that these GEPs are
1482   // extremely poorly defined currently. The long-term goal is to remove GEPing
1483   // over a vector from the IR completely.
1484   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1485     unsigned ElementSizeInBits =
1486         DL.getTypeSizeInBits(VecTy->getScalarType()).getFixedSize();
1487     if (ElementSizeInBits % 8 != 0) {
1488       // GEPs over non-multiple of 8 size vector elements are invalid.
1489       return nullptr;
1490     }
1491     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1492     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1493     if (NumSkippedElements.ugt(cast<FixedVectorType>(VecTy)->getNumElements()))
1494       return nullptr;
1495     Offset -= NumSkippedElements * ElementSize;
1496     Indices.push_back(IRB.getInt(NumSkippedElements));
1497     return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1498                                     Offset, TargetTy, Indices, NamePrefix);
1499   }
1500 
1501   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1502     Type *ElementTy = ArrTy->getElementType();
1503     APInt ElementSize(Offset.getBitWidth(),
1504                       DL.getTypeAllocSize(ElementTy).getFixedSize());
1505     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1506     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1507       return nullptr;
1508 
1509     Offset -= NumSkippedElements * ElementSize;
1510     Indices.push_back(IRB.getInt(NumSkippedElements));
1511     return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1512                                     Indices, NamePrefix);
1513   }
1514 
1515   StructType *STy = dyn_cast<StructType>(Ty);
1516   if (!STy)
1517     return nullptr;
1518 
1519   const StructLayout *SL = DL.getStructLayout(STy);
1520   uint64_t StructOffset = Offset.getZExtValue();
1521   if (StructOffset >= SL->getSizeInBytes())
1522     return nullptr;
1523   unsigned Index = SL->getElementContainingOffset(StructOffset);
1524   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1525   Type *ElementTy = STy->getElementType(Index);
1526   if (Offset.uge(DL.getTypeAllocSize(ElementTy).getFixedSize()))
1527     return nullptr; // The offset points into alignment padding.
1528 
1529   Indices.push_back(IRB.getInt32(Index));
1530   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1531                                   Indices, NamePrefix);
1532 }
1533 
1534 /// Get a natural GEP from a base pointer to a particular offset and
1535 /// resulting in a particular type.
1536 ///
1537 /// The goal is to produce a "natural" looking GEP that works with the existing
1538 /// composite types to arrive at the appropriate offset and element type for
1539 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1540 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1541 /// Indices, and setting Ty to the result subtype.
1542 ///
1543 /// If no natural GEP can be constructed, this function returns null.
getNaturalGEPWithOffset(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,APInt Offset,Type * TargetTy,SmallVectorImpl<Value * > & Indices,const Twine & NamePrefix)1544 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1545                                       Value *Ptr, APInt Offset, Type *TargetTy,
1546                                       SmallVectorImpl<Value *> &Indices,
1547                                       const Twine &NamePrefix) {
1548   PointerType *Ty = cast<PointerType>(Ptr->getType());
1549 
1550   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1551   // an i8.
1552   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1553     return nullptr;
1554 
1555   Type *ElementTy = Ty->getElementType();
1556   if (!ElementTy->isSized())
1557     return nullptr; // We can't GEP through an unsized element.
1558   if (isa<ScalableVectorType>(ElementTy))
1559     return nullptr;
1560   APInt ElementSize(Offset.getBitWidth(),
1561                     DL.getTypeAllocSize(ElementTy).getFixedSize());
1562   if (ElementSize == 0)
1563     return nullptr; // Zero-length arrays can't help us build a natural GEP.
1564   APInt NumSkippedElements = Offset.sdiv(ElementSize);
1565 
1566   Offset -= NumSkippedElements * ElementSize;
1567   Indices.push_back(IRB.getInt(NumSkippedElements));
1568   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1569                                   Indices, NamePrefix);
1570 }
1571 
1572 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1573 /// resulting pointer has PointerTy.
1574 ///
1575 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1576 /// and produces the pointer type desired. Where it cannot, it will try to use
1577 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1578 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1579 /// bitcast to the type.
1580 ///
1581 /// The strategy for finding the more natural GEPs is to peel off layers of the
1582 /// pointer, walking back through bit casts and GEPs, searching for a base
1583 /// pointer from which we can compute a natural GEP with the desired
1584 /// properties. The algorithm tries to fold as many constant indices into
1585 /// a single GEP as possible, thus making each GEP more independent of the
1586 /// surrounding code.
getAdjustedPtr(IRBuilderTy & IRB,const DataLayout & DL,Value * Ptr,APInt Offset,Type * PointerTy,const Twine & NamePrefix)1587 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1588                              APInt Offset, Type *PointerTy,
1589                              const Twine &NamePrefix) {
1590   // Even though we don't look through PHI nodes, we could be called on an
1591   // instruction in an unreachable block, which may be on a cycle.
1592   SmallPtrSet<Value *, 4> Visited;
1593   Visited.insert(Ptr);
1594   SmallVector<Value *, 4> Indices;
1595 
1596   // We may end up computing an offset pointer that has the wrong type. If we
1597   // never are able to compute one directly that has the correct type, we'll
1598   // fall back to it, so keep it and the base it was computed from around here.
1599   Value *OffsetPtr = nullptr;
1600   Value *OffsetBasePtr;
1601 
1602   // Remember any i8 pointer we come across to re-use if we need to do a raw
1603   // byte offset.
1604   Value *Int8Ptr = nullptr;
1605   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1606 
1607   PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1608   Type *TargetTy = TargetPtrTy->getElementType();
1609 
1610   // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1611   // address space from the expected `PointerTy` (the pointer to be used).
1612   // Adjust the pointer type based the original storage pointer.
1613   auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1614   PointerTy = TargetTy->getPointerTo(AS);
1615 
1616   do {
1617     // First fold any existing GEPs into the offset.
1618     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1619       APInt GEPOffset(Offset.getBitWidth(), 0);
1620       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1621         break;
1622       Offset += GEPOffset;
1623       Ptr = GEP->getPointerOperand();
1624       if (!Visited.insert(Ptr).second)
1625         break;
1626     }
1627 
1628     // See if we can perform a natural GEP here.
1629     Indices.clear();
1630     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1631                                            Indices, NamePrefix)) {
1632       // If we have a new natural pointer at the offset, clear out any old
1633       // offset pointer we computed. Unless it is the base pointer or
1634       // a non-instruction, we built a GEP we don't need. Zap it.
1635       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1636         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1637           assert(I->use_empty() && "Built a GEP with uses some how!");
1638           I->eraseFromParent();
1639         }
1640       OffsetPtr = P;
1641       OffsetBasePtr = Ptr;
1642       // If we also found a pointer of the right type, we're done.
1643       if (P->getType() == PointerTy)
1644         break;
1645     }
1646 
1647     // Stash this pointer if we've found an i8*.
1648     if (Ptr->getType()->isIntegerTy(8)) {
1649       Int8Ptr = Ptr;
1650       Int8PtrOffset = Offset;
1651     }
1652 
1653     // Peel off a layer of the pointer and update the offset appropriately.
1654     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1655       Ptr = cast<Operator>(Ptr)->getOperand(0);
1656     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1657       if (GA->isInterposable())
1658         break;
1659       Ptr = GA->getAliasee();
1660     } else {
1661       break;
1662     }
1663     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1664   } while (Visited.insert(Ptr).second);
1665 
1666   if (!OffsetPtr) {
1667     if (!Int8Ptr) {
1668       Int8Ptr = IRB.CreateBitCast(
1669           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1670           NamePrefix + "sroa_raw_cast");
1671       Int8PtrOffset = Offset;
1672     }
1673 
1674     OffsetPtr = Int8PtrOffset == 0
1675                     ? Int8Ptr
1676                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1677                                             IRB.getInt(Int8PtrOffset),
1678                                             NamePrefix + "sroa_raw_idx");
1679   }
1680   Ptr = OffsetPtr;
1681 
1682   // On the off chance we were targeting i8*, guard the bitcast here.
1683   if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1684     Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1685                                                   TargetPtrTy,
1686                                                   NamePrefix + "sroa_cast");
1687   }
1688 
1689   return Ptr;
1690 }
1691 
1692 /// Compute the adjusted alignment for a load or store from an offset.
getAdjustedAlignment(Instruction * I,uint64_t Offset)1693 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) {
1694   return commonAlignment(getLoadStoreAlignment(I), Offset);
1695 }
1696 
1697 /// Test whether we can convert a value from the old to the new type.
1698 ///
1699 /// This predicate should be used to guard calls to convertValue in order to
1700 /// ensure that we only try to convert viable values. The strategy is that we
1701 /// will peel off single element struct and array wrappings to get to an
1702 /// underlying value, and convert that value.
canConvertValue(const DataLayout & DL,Type * OldTy,Type * NewTy)1703 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1704   if (OldTy == NewTy)
1705     return true;
1706 
1707   // For integer types, we can't handle any bit-width differences. This would
1708   // break both vector conversions with extension and introduce endianness
1709   // issues when in conjunction with loads and stores.
1710   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1711     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1712                cast<IntegerType>(NewTy)->getBitWidth() &&
1713            "We can't have the same bitwidth for different int types");
1714     return false;
1715   }
1716 
1717   if (DL.getTypeSizeInBits(NewTy).getFixedSize() !=
1718       DL.getTypeSizeInBits(OldTy).getFixedSize())
1719     return false;
1720   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1721     return false;
1722 
1723   // We can convert pointers to integers and vice-versa. Same for vectors
1724   // of pointers and integers.
1725   OldTy = OldTy->getScalarType();
1726   NewTy = NewTy->getScalarType();
1727   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1728     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1729       unsigned OldAS = OldTy->getPointerAddressSpace();
1730       unsigned NewAS = NewTy->getPointerAddressSpace();
1731       // Convert pointers if they are pointers from the same address space or
1732       // different integral (not non-integral) address spaces with the same
1733       // pointer size.
1734       return OldAS == NewAS ||
1735              (!DL.isNonIntegralAddressSpace(OldAS) &&
1736               !DL.isNonIntegralAddressSpace(NewAS) &&
1737               DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1738     }
1739 
1740     // We can convert integers to integral pointers, but not to non-integral
1741     // pointers.
1742     if (OldTy->isIntegerTy())
1743       return !DL.isNonIntegralPointerType(NewTy);
1744 
1745     // We can convert integral pointers to integers, but non-integral pointers
1746     // need to remain pointers.
1747     if (!DL.isNonIntegralPointerType(OldTy))
1748       return NewTy->isIntegerTy();
1749 
1750     return false;
1751   }
1752 
1753   return true;
1754 }
1755 
1756 /// Generic routine to convert an SSA value to a value of a different
1757 /// type.
1758 ///
1759 /// This will try various different casting techniques, such as bitcasts,
1760 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1761 /// two types for viability with this routine.
convertValue(const DataLayout & DL,IRBuilderTy & IRB,Value * V,Type * NewTy)1762 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1763                            Type *NewTy) {
1764   Type *OldTy = V->getType();
1765   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1766 
1767   if (OldTy == NewTy)
1768     return V;
1769 
1770   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1771          "Integer types must be the exact same to convert.");
1772 
1773   // See if we need inttoptr for this type pair. May require additional bitcast.
1774   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1775     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1776     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1777     // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1778     // Directly handle i64 to i8*
1779     return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1780                               NewTy);
1781   }
1782 
1783   // See if we need ptrtoint for this type pair. May require additional bitcast.
1784   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1785     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1786     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1787     // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1788     // Expand i8* to i64 --> i8* to i64 to i64
1789     return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1790                              NewTy);
1791   }
1792 
1793   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1794     unsigned OldAS = OldTy->getPointerAddressSpace();
1795     unsigned NewAS = NewTy->getPointerAddressSpace();
1796     // To convert pointers with different address spaces (they are already
1797     // checked convertible, i.e. they have the same pointer size), so far we
1798     // cannot use `bitcast` (which has restrict on the same address space) or
1799     // `addrspacecast` (which is not always no-op casting). Instead, use a pair
1800     // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
1801     // size.
1802     if (OldAS != NewAS) {
1803       assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS));
1804       return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1805                                 NewTy);
1806     }
1807   }
1808 
1809   return IRB.CreateBitCast(V, NewTy);
1810 }
1811 
1812 /// Test whether the given slice use can be promoted to a vector.
1813 ///
1814 /// This function is called to test each entry in a partition which is slated
1815 /// for a single slice.
isVectorPromotionViableForSlice(Partition & P,const Slice & S,VectorType * Ty,uint64_t ElementSize,const DataLayout & DL)1816 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1817                                             VectorType *Ty,
1818                                             uint64_t ElementSize,
1819                                             const DataLayout &DL) {
1820   // First validate the slice offsets.
1821   uint64_t BeginOffset =
1822       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1823   uint64_t BeginIndex = BeginOffset / ElementSize;
1824   if (BeginIndex * ElementSize != BeginOffset ||
1825       BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements())
1826     return false;
1827   uint64_t EndOffset =
1828       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1829   uint64_t EndIndex = EndOffset / ElementSize;
1830   if (EndIndex * ElementSize != EndOffset ||
1831       EndIndex > cast<FixedVectorType>(Ty)->getNumElements())
1832     return false;
1833 
1834   assert(EndIndex > BeginIndex && "Empty vector!");
1835   uint64_t NumElements = EndIndex - BeginIndex;
1836   Type *SliceTy = (NumElements == 1)
1837                       ? Ty->getElementType()
1838                       : FixedVectorType::get(Ty->getElementType(), NumElements);
1839 
1840   Type *SplitIntTy =
1841       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1842 
1843   Use *U = S.getUse();
1844 
1845   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1846     if (MI->isVolatile())
1847       return false;
1848     if (!S.isSplittable())
1849       return false; // Skip any unsplittable intrinsics.
1850   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1851     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
1852       return false;
1853   } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1854     // Disable vector promotion when there are loads or stores of an FCA.
1855     return false;
1856   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1857     if (LI->isVolatile())
1858       return false;
1859     Type *LTy = LI->getType();
1860     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1861       assert(LTy->isIntegerTy());
1862       LTy = SplitIntTy;
1863     }
1864     if (!canConvertValue(DL, SliceTy, LTy))
1865       return false;
1866   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1867     if (SI->isVolatile())
1868       return false;
1869     Type *STy = SI->getValueOperand()->getType();
1870     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1871       assert(STy->isIntegerTy());
1872       STy = SplitIntTy;
1873     }
1874     if (!canConvertValue(DL, STy, SliceTy))
1875       return false;
1876   } else {
1877     return false;
1878   }
1879 
1880   return true;
1881 }
1882 
1883 /// Test whether the given alloca partitioning and range of slices can be
1884 /// promoted to a vector.
1885 ///
1886 /// This is a quick test to check whether we can rewrite a particular alloca
1887 /// partition (and its newly formed alloca) into a vector alloca with only
1888 /// whole-vector loads and stores such that it could be promoted to a vector
1889 /// SSA value. We only can ensure this for a limited set of operations, and we
1890 /// don't want to do the rewrites unless we are confident that the result will
1891 /// be promotable, so we have an early test here.
isVectorPromotionViable(Partition & P,const DataLayout & DL)1892 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1893   // Collect the candidate types for vector-based promotion. Also track whether
1894   // we have different element types.
1895   SmallVector<VectorType *, 4> CandidateTys;
1896   Type *CommonEltTy = nullptr;
1897   bool HaveCommonEltTy = true;
1898   auto CheckCandidateType = [&](Type *Ty) {
1899     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1900       // Return if bitcast to vectors is different for total size in bits.
1901       if (!CandidateTys.empty()) {
1902         VectorType *V = CandidateTys[0];
1903         if (DL.getTypeSizeInBits(VTy).getFixedSize() !=
1904             DL.getTypeSizeInBits(V).getFixedSize()) {
1905           CandidateTys.clear();
1906           return;
1907         }
1908       }
1909       CandidateTys.push_back(VTy);
1910       if (!CommonEltTy)
1911         CommonEltTy = VTy->getElementType();
1912       else if (CommonEltTy != VTy->getElementType())
1913         HaveCommonEltTy = false;
1914     }
1915   };
1916   // Consider any loads or stores that are the exact size of the slice.
1917   for (const Slice &S : P)
1918     if (S.beginOffset() == P.beginOffset() &&
1919         S.endOffset() == P.endOffset()) {
1920       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1921         CheckCandidateType(LI->getType());
1922       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1923         CheckCandidateType(SI->getValueOperand()->getType());
1924     }
1925 
1926   // If we didn't find a vector type, nothing to do here.
1927   if (CandidateTys.empty())
1928     return nullptr;
1929 
1930   // Remove non-integer vector types if we had multiple common element types.
1931   // FIXME: It'd be nice to replace them with integer vector types, but we can't
1932   // do that until all the backends are known to produce good code for all
1933   // integer vector types.
1934   if (!HaveCommonEltTy) {
1935     llvm::erase_if(CandidateTys, [](VectorType *VTy) {
1936       return !VTy->getElementType()->isIntegerTy();
1937     });
1938 
1939     // If there were no integer vector types, give up.
1940     if (CandidateTys.empty())
1941       return nullptr;
1942 
1943     // Rank the remaining candidate vector types. This is easy because we know
1944     // they're all integer vectors. We sort by ascending number of elements.
1945     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1946       (void)DL;
1947       assert(DL.getTypeSizeInBits(RHSTy).getFixedSize() ==
1948                  DL.getTypeSizeInBits(LHSTy).getFixedSize() &&
1949              "Cannot have vector types of different sizes!");
1950       assert(RHSTy->getElementType()->isIntegerTy() &&
1951              "All non-integer types eliminated!");
1952       assert(LHSTy->getElementType()->isIntegerTy() &&
1953              "All non-integer types eliminated!");
1954       return cast<FixedVectorType>(RHSTy)->getNumElements() <
1955              cast<FixedVectorType>(LHSTy)->getNumElements();
1956     };
1957     llvm::sort(CandidateTys, RankVectorTypes);
1958     CandidateTys.erase(
1959         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1960         CandidateTys.end());
1961   } else {
1962 // The only way to have the same element type in every vector type is to
1963 // have the same vector type. Check that and remove all but one.
1964 #ifndef NDEBUG
1965     for (VectorType *VTy : CandidateTys) {
1966       assert(VTy->getElementType() == CommonEltTy &&
1967              "Unaccounted for element type!");
1968       assert(VTy == CandidateTys[0] &&
1969              "Different vector types with the same element type!");
1970     }
1971 #endif
1972     CandidateTys.resize(1);
1973   }
1974 
1975   // Try each vector type, and return the one which works.
1976   auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1977     uint64_t ElementSize =
1978         DL.getTypeSizeInBits(VTy->getElementType()).getFixedSize();
1979 
1980     // While the definition of LLVM vectors is bitpacked, we don't support sizes
1981     // that aren't byte sized.
1982     if (ElementSize % 8)
1983       return false;
1984     assert((DL.getTypeSizeInBits(VTy).getFixedSize() % 8) == 0 &&
1985            "vector size not a multiple of element size?");
1986     ElementSize /= 8;
1987 
1988     for (const Slice &S : P)
1989       if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1990         return false;
1991 
1992     for (const Slice *S : P.splitSliceTails())
1993       if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1994         return false;
1995 
1996     return true;
1997   };
1998   for (VectorType *VTy : CandidateTys)
1999     if (CheckVectorTypeForPromotion(VTy))
2000       return VTy;
2001 
2002   return nullptr;
2003 }
2004 
2005 /// Test whether a slice of an alloca is valid for integer widening.
2006 ///
2007 /// This implements the necessary checking for the \c isIntegerWideningViable
2008 /// test below on a single slice of the alloca.
isIntegerWideningViableForSlice(const Slice & S,uint64_t AllocBeginOffset,Type * AllocaTy,const DataLayout & DL,bool & WholeAllocaOp)2009 static bool isIntegerWideningViableForSlice(const Slice &S,
2010                                             uint64_t AllocBeginOffset,
2011                                             Type *AllocaTy,
2012                                             const DataLayout &DL,
2013                                             bool &WholeAllocaOp) {
2014   uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedSize();
2015 
2016   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2017   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2018 
2019   // We can't reasonably handle cases where the load or store extends past
2020   // the end of the alloca's type and into its padding.
2021   if (RelEnd > Size)
2022     return false;
2023 
2024   Use *U = S.getUse();
2025 
2026   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2027     if (LI->isVolatile())
2028       return false;
2029     // We can't handle loads that extend past the allocated memory.
2030     if (DL.getTypeStoreSize(LI->getType()).getFixedSize() > Size)
2031       return false;
2032     // So far, AllocaSliceRewriter does not support widening split slice tails
2033     // in rewriteIntegerLoad.
2034     if (S.beginOffset() < AllocBeginOffset)
2035       return false;
2036     // Note that we don't count vector loads or stores as whole-alloca
2037     // operations which enable integer widening because we would prefer to use
2038     // vector widening instead.
2039     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2040       WholeAllocaOp = true;
2041     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2042       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2043         return false;
2044     } else if (RelBegin != 0 || RelEnd != Size ||
2045                !canConvertValue(DL, AllocaTy, LI->getType())) {
2046       // Non-integer loads need to be convertible from the alloca type so that
2047       // they are promotable.
2048       return false;
2049     }
2050   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2051     Type *ValueTy = SI->getValueOperand()->getType();
2052     if (SI->isVolatile())
2053       return false;
2054     // We can't handle stores that extend past the allocated memory.
2055     if (DL.getTypeStoreSize(ValueTy).getFixedSize() > Size)
2056       return false;
2057     // So far, AllocaSliceRewriter does not support widening split slice tails
2058     // in rewriteIntegerStore.
2059     if (S.beginOffset() < AllocBeginOffset)
2060       return false;
2061     // Note that we don't count vector loads or stores as whole-alloca
2062     // operations which enable integer widening because we would prefer to use
2063     // vector widening instead.
2064     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2065       WholeAllocaOp = true;
2066     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2067       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedSize())
2068         return false;
2069     } else if (RelBegin != 0 || RelEnd != Size ||
2070                !canConvertValue(DL, ValueTy, AllocaTy)) {
2071       // Non-integer stores need to be convertible to the alloca type so that
2072       // they are promotable.
2073       return false;
2074     }
2075   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2076     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2077       return false;
2078     if (!S.isSplittable())
2079       return false; // Skip any unsplittable intrinsics.
2080   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2081     if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
2082       return false;
2083   } else {
2084     return false;
2085   }
2086 
2087   return true;
2088 }
2089 
2090 /// Test whether the given alloca partition's integer operations can be
2091 /// widened to promotable ones.
2092 ///
2093 /// This is a quick test to check whether we can rewrite the integer loads and
2094 /// stores to a particular alloca into wider loads and stores and be able to
2095 /// promote the resulting alloca.
isIntegerWideningViable(Partition & P,Type * AllocaTy,const DataLayout & DL)2096 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2097                                     const DataLayout &DL) {
2098   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedSize();
2099   // Don't create integer types larger than the maximum bitwidth.
2100   if (SizeInBits > IntegerType::MAX_INT_BITS)
2101     return false;
2102 
2103   // Don't try to handle allocas with bit-padding.
2104   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedSize())
2105     return false;
2106 
2107   // We need to ensure that an integer type with the appropriate bitwidth can
2108   // be converted to the alloca type, whatever that is. We don't want to force
2109   // the alloca itself to have an integer type if there is a more suitable one.
2110   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2111   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2112       !canConvertValue(DL, IntTy, AllocaTy))
2113     return false;
2114 
2115   // While examining uses, we ensure that the alloca has a covering load or
2116   // store. We don't want to widen the integer operations only to fail to
2117   // promote due to some other unsplittable entry (which we may make splittable
2118   // later). However, if there are only splittable uses, go ahead and assume
2119   // that we cover the alloca.
2120   // FIXME: We shouldn't consider split slices that happen to start in the
2121   // partition here...
2122   bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits);
2123 
2124   for (const Slice &S : P)
2125     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2126                                          WholeAllocaOp))
2127       return false;
2128 
2129   for (const Slice *S : P.splitSliceTails())
2130     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2131                                          WholeAllocaOp))
2132       return false;
2133 
2134   return WholeAllocaOp;
2135 }
2136 
extractInteger(const DataLayout & DL,IRBuilderTy & IRB,Value * V,IntegerType * Ty,uint64_t Offset,const Twine & Name)2137 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2138                              IntegerType *Ty, uint64_t Offset,
2139                              const Twine &Name) {
2140   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2141   IntegerType *IntTy = cast<IntegerType>(V->getType());
2142   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2143              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2144          "Element extends past full value");
2145   uint64_t ShAmt = 8 * Offset;
2146   if (DL.isBigEndian())
2147     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2148                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2149   if (ShAmt) {
2150     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2151     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2152   }
2153   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2154          "Cannot extract to a larger integer!");
2155   if (Ty != IntTy) {
2156     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2157     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2158   }
2159   return V;
2160 }
2161 
insertInteger(const DataLayout & DL,IRBuilderTy & IRB,Value * Old,Value * V,uint64_t Offset,const Twine & Name)2162 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2163                             Value *V, uint64_t Offset, const Twine &Name) {
2164   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2165   IntegerType *Ty = cast<IntegerType>(V->getType());
2166   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2167          "Cannot insert a larger integer!");
2168   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2169   if (Ty != IntTy) {
2170     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2171     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2172   }
2173   assert(DL.getTypeStoreSize(Ty).getFixedSize() + Offset <=
2174              DL.getTypeStoreSize(IntTy).getFixedSize() &&
2175          "Element store outside of alloca store");
2176   uint64_t ShAmt = 8 * Offset;
2177   if (DL.isBigEndian())
2178     ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedSize() -
2179                  DL.getTypeStoreSize(Ty).getFixedSize() - Offset);
2180   if (ShAmt) {
2181     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2182     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2183   }
2184 
2185   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2186     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2187     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2188     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2189     V = IRB.CreateOr(Old, V, Name + ".insert");
2190     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2191   }
2192   return V;
2193 }
2194 
extractVector(IRBuilderTy & IRB,Value * V,unsigned BeginIndex,unsigned EndIndex,const Twine & Name)2195 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2196                             unsigned EndIndex, const Twine &Name) {
2197   auto *VecTy = cast<FixedVectorType>(V->getType());
2198   unsigned NumElements = EndIndex - BeginIndex;
2199   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2200 
2201   if (NumElements == VecTy->getNumElements())
2202     return V;
2203 
2204   if (NumElements == 1) {
2205     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2206                                  Name + ".extract");
2207     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2208     return V;
2209   }
2210 
2211   SmallVector<int, 8> Mask;
2212   Mask.reserve(NumElements);
2213   for (unsigned i = BeginIndex; i != EndIndex; ++i)
2214     Mask.push_back(i);
2215   V = IRB.CreateShuffleVector(V, Mask, Name + ".extract");
2216   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2217   return V;
2218 }
2219 
insertVector(IRBuilderTy & IRB,Value * Old,Value * V,unsigned BeginIndex,const Twine & Name)2220 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2221                            unsigned BeginIndex, const Twine &Name) {
2222   VectorType *VecTy = cast<VectorType>(Old->getType());
2223   assert(VecTy && "Can only insert a vector into a vector");
2224 
2225   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2226   if (!Ty) {
2227     // Single element to insert.
2228     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2229                                 Name + ".insert");
2230     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2231     return V;
2232   }
2233 
2234   assert(cast<FixedVectorType>(Ty)->getNumElements() <=
2235              cast<FixedVectorType>(VecTy)->getNumElements() &&
2236          "Too many elements!");
2237   if (cast<FixedVectorType>(Ty)->getNumElements() ==
2238       cast<FixedVectorType>(VecTy)->getNumElements()) {
2239     assert(V->getType() == VecTy && "Vector type mismatch");
2240     return V;
2241   }
2242   unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements();
2243 
2244   // When inserting a smaller vector into the larger to store, we first
2245   // use a shuffle vector to widen it with undef elements, and then
2246   // a second shuffle vector to select between the loaded vector and the
2247   // incoming vector.
2248   SmallVector<int, 8> Mask;
2249   Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2250   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2251     if (i >= BeginIndex && i < EndIndex)
2252       Mask.push_back(i - BeginIndex);
2253     else
2254       Mask.push_back(-1);
2255   V = IRB.CreateShuffleVector(V, Mask, Name + ".expand");
2256   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2257 
2258   SmallVector<Constant *, 8> Mask2;
2259   Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements());
2260   for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i)
2261     Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2262 
2263   V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend");
2264 
2265   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2266   return V;
2267 }
2268 
2269 /// Visitor to rewrite instructions using p particular slice of an alloca
2270 /// to use a new alloca.
2271 ///
2272 /// Also implements the rewriting to vector-based accesses when the partition
2273 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2274 /// lives here.
2275 class llvm::sroa::AllocaSliceRewriter
2276     : public InstVisitor<AllocaSliceRewriter, bool> {
2277   // Befriend the base class so it can delegate to private visit methods.
2278   friend class InstVisitor<AllocaSliceRewriter, bool>;
2279 
2280   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2281 
2282   const DataLayout &DL;
2283   AllocaSlices &AS;
2284   SROA &Pass;
2285   AllocaInst &OldAI, &NewAI;
2286   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2287   Type *NewAllocaTy;
2288 
2289   // This is a convenience and flag variable that will be null unless the new
2290   // alloca's integer operations should be widened to this integer type due to
2291   // passing isIntegerWideningViable above. If it is non-null, the desired
2292   // integer type will be stored here for easy access during rewriting.
2293   IntegerType *IntTy;
2294 
2295   // If we are rewriting an alloca partition which can be written as pure
2296   // vector operations, we stash extra information here. When VecTy is
2297   // non-null, we have some strict guarantees about the rewritten alloca:
2298   //   - The new alloca is exactly the size of the vector type here.
2299   //   - The accesses all either map to the entire vector or to a single
2300   //     element.
2301   //   - The set of accessing instructions is only one of those handled above
2302   //     in isVectorPromotionViable. Generally these are the same access kinds
2303   //     which are promotable via mem2reg.
2304   VectorType *VecTy;
2305   Type *ElementTy;
2306   uint64_t ElementSize;
2307 
2308   // The original offset of the slice currently being rewritten relative to
2309   // the original alloca.
2310   uint64_t BeginOffset = 0;
2311   uint64_t EndOffset = 0;
2312 
2313   // The new offsets of the slice currently being rewritten relative to the
2314   // original alloca.
2315   uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2316 
2317   uint64_t SliceSize = 0;
2318   bool IsSplittable = false;
2319   bool IsSplit = false;
2320   Use *OldUse = nullptr;
2321   Instruction *OldPtr = nullptr;
2322 
2323   // Track post-rewrite users which are PHI nodes and Selects.
2324   SmallSetVector<PHINode *, 8> &PHIUsers;
2325   SmallSetVector<SelectInst *, 8> &SelectUsers;
2326 
2327   // Utility IR builder, whose name prefix is setup for each visited use, and
2328   // the insertion point is set to point to the user.
2329   IRBuilderTy IRB;
2330 
2331 public:
AllocaSliceRewriter(const DataLayout & DL,AllocaSlices & AS,SROA & Pass,AllocaInst & OldAI,AllocaInst & NewAI,uint64_t NewAllocaBeginOffset,uint64_t NewAllocaEndOffset,bool IsIntegerPromotable,VectorType * PromotableVecTy,SmallSetVector<PHINode *,8> & PHIUsers,SmallSetVector<SelectInst *,8> & SelectUsers)2332   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2333                       AllocaInst &OldAI, AllocaInst &NewAI,
2334                       uint64_t NewAllocaBeginOffset,
2335                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2336                       VectorType *PromotableVecTy,
2337                       SmallSetVector<PHINode *, 8> &PHIUsers,
2338                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2339       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2340         NewAllocaBeginOffset(NewAllocaBeginOffset),
2341         NewAllocaEndOffset(NewAllocaEndOffset),
2342         NewAllocaTy(NewAI.getAllocatedType()),
2343         IntTy(
2344             IsIntegerPromotable
2345                 ? Type::getIntNTy(NewAI.getContext(),
2346                                   DL.getTypeSizeInBits(NewAI.getAllocatedType())
2347                                       .getFixedSize())
2348                 : nullptr),
2349         VecTy(PromotableVecTy),
2350         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2351         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8
2352                           : 0),
2353         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2354         IRB(NewAI.getContext(), ConstantFolder()) {
2355     if (VecTy) {
2356       assert((DL.getTypeSizeInBits(ElementTy).getFixedSize() % 8) == 0 &&
2357              "Only multiple-of-8 sized vector elements are viable");
2358       ++NumVectorized;
2359     }
2360     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2361   }
2362 
visit(AllocaSlices::const_iterator I)2363   bool visit(AllocaSlices::const_iterator I) {
2364     bool CanSROA = true;
2365     BeginOffset = I->beginOffset();
2366     EndOffset = I->endOffset();
2367     IsSplittable = I->isSplittable();
2368     IsSplit =
2369         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2370     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2371     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2372     LLVM_DEBUG(dbgs() << "\n");
2373 
2374     // Compute the intersecting offset range.
2375     assert(BeginOffset < NewAllocaEndOffset);
2376     assert(EndOffset > NewAllocaBeginOffset);
2377     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2378     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2379 
2380     SliceSize = NewEndOffset - NewBeginOffset;
2381 
2382     OldUse = I->getUse();
2383     OldPtr = cast<Instruction>(OldUse->get());
2384 
2385     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2386     IRB.SetInsertPoint(OldUserI);
2387     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2388     IRB.getInserter().SetNamePrefix(
2389         Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2390 
2391     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2392     if (VecTy || IntTy)
2393       assert(CanSROA);
2394     return CanSROA;
2395   }
2396 
2397 private:
2398   // Make sure the other visit overloads are visible.
2399   using Base::visit;
2400 
2401   // Every instruction which can end up as a user must have a rewrite rule.
visitInstruction(Instruction & I)2402   bool visitInstruction(Instruction &I) {
2403     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2404     llvm_unreachable("No rewrite rule for this instruction!");
2405   }
2406 
getNewAllocaSlicePtr(IRBuilderTy & IRB,Type * PointerTy)2407   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2408     // Note that the offset computation can use BeginOffset or NewBeginOffset
2409     // interchangeably for unsplit slices.
2410     assert(IsSplit || BeginOffset == NewBeginOffset);
2411     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2412 
2413 #ifndef NDEBUG
2414     StringRef OldName = OldPtr->getName();
2415     // Skip through the last '.sroa.' component of the name.
2416     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2417     if (LastSROAPrefix != StringRef::npos) {
2418       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2419       // Look for an SROA slice index.
2420       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2421       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2422         // Strip the index and look for the offset.
2423         OldName = OldName.substr(IndexEnd + 1);
2424         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2425         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2426           // Strip the offset.
2427           OldName = OldName.substr(OffsetEnd + 1);
2428       }
2429     }
2430     // Strip any SROA suffixes as well.
2431     OldName = OldName.substr(0, OldName.find(".sroa_"));
2432 #endif
2433 
2434     return getAdjustedPtr(IRB, DL, &NewAI,
2435                           APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2436                           PointerTy,
2437 #ifndef NDEBUG
2438                           Twine(OldName) + "."
2439 #else
2440                           Twine()
2441 #endif
2442                           );
2443   }
2444 
2445   /// Compute suitable alignment to access this slice of the *new*
2446   /// alloca.
2447   ///
2448   /// You can optionally pass a type to this routine and if that type's ABI
2449   /// alignment is itself suitable, this will return zero.
getSliceAlign()2450   Align getSliceAlign() {
2451     return commonAlignment(NewAI.getAlign(),
2452                            NewBeginOffset - NewAllocaBeginOffset);
2453   }
2454 
getIndex(uint64_t Offset)2455   unsigned getIndex(uint64_t Offset) {
2456     assert(VecTy && "Can only call getIndex when rewriting a vector");
2457     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2458     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2459     uint32_t Index = RelOffset / ElementSize;
2460     assert(Index * ElementSize == RelOffset);
2461     return Index;
2462   }
2463 
deleteIfTriviallyDead(Value * V)2464   void deleteIfTriviallyDead(Value *V) {
2465     Instruction *I = cast<Instruction>(V);
2466     if (isInstructionTriviallyDead(I))
2467       Pass.DeadInsts.push_back(I);
2468   }
2469 
rewriteVectorizedLoadInst()2470   Value *rewriteVectorizedLoadInst() {
2471     unsigned BeginIndex = getIndex(NewBeginOffset);
2472     unsigned EndIndex = getIndex(NewEndOffset);
2473     assert(EndIndex > BeginIndex && "Empty vector!");
2474 
2475     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2476                                      NewAI.getAlign(), "load");
2477     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2478   }
2479 
rewriteIntegerLoad(LoadInst & LI)2480   Value *rewriteIntegerLoad(LoadInst &LI) {
2481     assert(IntTy && "We cannot insert an integer to the alloca");
2482     assert(!LI.isVolatile());
2483     Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2484                                      NewAI.getAlign(), "load");
2485     V = convertValue(DL, IRB, V, IntTy);
2486     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2487     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2488     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2489       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2490       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2491     }
2492     // It is possible that the extracted type is not the load type. This
2493     // happens if there is a load past the end of the alloca, and as
2494     // a consequence the slice is narrower but still a candidate for integer
2495     // lowering. To handle this case, we just zero extend the extracted
2496     // integer.
2497     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2498            "Can only handle an extract for an overly wide load");
2499     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2500       V = IRB.CreateZExt(V, LI.getType());
2501     return V;
2502   }
2503 
visitLoadInst(LoadInst & LI)2504   bool visitLoadInst(LoadInst &LI) {
2505     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2506     Value *OldOp = LI.getOperand(0);
2507     assert(OldOp == OldPtr);
2508 
2509     AAMDNodes AATags;
2510     LI.getAAMetadata(AATags);
2511 
2512     unsigned AS = LI.getPointerAddressSpace();
2513 
2514     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2515                              : LI.getType();
2516     const bool IsLoadPastEnd =
2517         DL.getTypeStoreSize(TargetTy).getFixedSize() > SliceSize;
2518     bool IsPtrAdjusted = false;
2519     Value *V;
2520     if (VecTy) {
2521       V = rewriteVectorizedLoadInst();
2522     } else if (IntTy && LI.getType()->isIntegerTy()) {
2523       V = rewriteIntegerLoad(LI);
2524     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2525                NewEndOffset == NewAllocaEndOffset &&
2526                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2527                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2528                  TargetTy->isIntegerTy()))) {
2529       LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2530                                               NewAI.getAlign(), LI.isVolatile(),
2531                                               LI.getName());
2532       if (AATags)
2533         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2534       if (LI.isVolatile())
2535         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2536       if (NewLI->isAtomic())
2537         NewLI->setAlignment(LI.getAlign());
2538 
2539       // Any !nonnull metadata or !range metadata on the old load is also valid
2540       // on the new load. This is even true in some cases even when the loads
2541       // are different types, for example by mapping !nonnull metadata to
2542       // !range metadata by modeling the null pointer constant converted to the
2543       // integer type.
2544       // FIXME: Add support for range metadata here. Currently the utilities
2545       // for this don't propagate range metadata in trivial cases from one
2546       // integer load to another, don't handle non-addrspace-0 null pointers
2547       // correctly, and don't have any support for mapping ranges as the
2548       // integer type becomes winder or narrower.
2549       if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2550         copyNonnullMetadata(LI, N, *NewLI);
2551 
2552       // Try to preserve nonnull metadata
2553       V = NewLI;
2554 
2555       // If this is an integer load past the end of the slice (which means the
2556       // bytes outside the slice are undef or this load is dead) just forcibly
2557       // fix the integer size with correct handling of endianness.
2558       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2559         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2560           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2561             V = IRB.CreateZExt(V, TITy, "load.ext");
2562             if (DL.isBigEndian())
2563               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2564                                 "endian_shift");
2565           }
2566     } else {
2567       Type *LTy = TargetTy->getPointerTo(AS);
2568       LoadInst *NewLI =
2569           IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy),
2570                                 getSliceAlign(), LI.isVolatile(), LI.getName());
2571       if (AATags)
2572         NewLI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2573       if (LI.isVolatile())
2574         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2575 
2576       V = NewLI;
2577       IsPtrAdjusted = true;
2578     }
2579     V = convertValue(DL, IRB, V, TargetTy);
2580 
2581     if (IsSplit) {
2582       assert(!LI.isVolatile());
2583       assert(LI.getType()->isIntegerTy() &&
2584              "Only integer type loads and stores are split");
2585       assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedSize() &&
2586              "Split load isn't smaller than original load");
2587       assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2588              "Non-byte-multiple bit width");
2589       // Move the insertion point just past the load so that we can refer to it.
2590       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2591       // Create a placeholder value with the same type as LI to use as the
2592       // basis for the new value. This allows us to replace the uses of LI with
2593       // the computed value, and then replace the placeholder with LI, leaving
2594       // LI only used for this computation.
2595       Value *Placeholder = new LoadInst(
2596           LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)), "",
2597           false, Align(1));
2598       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2599                         "insert");
2600       LI.replaceAllUsesWith(V);
2601       Placeholder->replaceAllUsesWith(&LI);
2602       Placeholder->deleteValue();
2603     } else {
2604       LI.replaceAllUsesWith(V);
2605     }
2606 
2607     Pass.DeadInsts.push_back(&LI);
2608     deleteIfTriviallyDead(OldOp);
2609     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2610     return !LI.isVolatile() && !IsPtrAdjusted;
2611   }
2612 
rewriteVectorizedStoreInst(Value * V,StoreInst & SI,Value * OldOp,AAMDNodes AATags)2613   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2614                                   AAMDNodes AATags) {
2615     if (V->getType() != VecTy) {
2616       unsigned BeginIndex = getIndex(NewBeginOffset);
2617       unsigned EndIndex = getIndex(NewEndOffset);
2618       assert(EndIndex > BeginIndex && "Empty vector!");
2619       unsigned NumElements = EndIndex - BeginIndex;
2620       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2621              "Too many elements!");
2622       Type *SliceTy = (NumElements == 1)
2623                           ? ElementTy
2624                           : FixedVectorType::get(ElementTy, NumElements);
2625       if (V->getType() != SliceTy)
2626         V = convertValue(DL, IRB, V, SliceTy);
2627 
2628       // Mix in the existing elements.
2629       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2630                                          NewAI.getAlign(), "load");
2631       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2632     }
2633     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2634     if (AATags)
2635       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2636     Pass.DeadInsts.push_back(&SI);
2637 
2638     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2639     return true;
2640   }
2641 
rewriteIntegerStore(Value * V,StoreInst & SI,AAMDNodes AATags)2642   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2643     assert(IntTy && "We cannot extract an integer from the alloca");
2644     assert(!SI.isVolatile());
2645     if (DL.getTypeSizeInBits(V->getType()).getFixedSize() !=
2646         IntTy->getBitWidth()) {
2647       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2648                                          NewAI.getAlign(), "oldload");
2649       Old = convertValue(DL, IRB, Old, IntTy);
2650       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2651       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2652       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2653     }
2654     V = convertValue(DL, IRB, V, NewAllocaTy);
2655     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign());
2656     Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2657                              LLVMContext::MD_access_group});
2658     if (AATags)
2659       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2660     Pass.DeadInsts.push_back(&SI);
2661     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2662     return true;
2663   }
2664 
visitStoreInst(StoreInst & SI)2665   bool visitStoreInst(StoreInst &SI) {
2666     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2667     Value *OldOp = SI.getOperand(1);
2668     assert(OldOp == OldPtr);
2669 
2670     AAMDNodes AATags;
2671     SI.getAAMetadata(AATags);
2672 
2673     Value *V = SI.getValueOperand();
2674 
2675     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2676     // alloca that should be re-examined after promoting this alloca.
2677     if (V->getType()->isPointerTy())
2678       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2679         Pass.PostPromotionWorklist.insert(AI);
2680 
2681     if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedSize()) {
2682       assert(!SI.isVolatile());
2683       assert(V->getType()->isIntegerTy() &&
2684              "Only integer type loads and stores are split");
2685       assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2686              "Non-byte-multiple bit width");
2687       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2688       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2689                          "extract");
2690     }
2691 
2692     if (VecTy)
2693       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2694     if (IntTy && V->getType()->isIntegerTy())
2695       return rewriteIntegerStore(V, SI, AATags);
2696 
2697     const bool IsStorePastEnd =
2698         DL.getTypeStoreSize(V->getType()).getFixedSize() > SliceSize;
2699     StoreInst *NewSI;
2700     if (NewBeginOffset == NewAllocaBeginOffset &&
2701         NewEndOffset == NewAllocaEndOffset &&
2702         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2703          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2704           V->getType()->isIntegerTy()))) {
2705       // If this is an integer store past the end of slice (and thus the bytes
2706       // past that point are irrelevant or this is unreachable), truncate the
2707       // value prior to storing.
2708       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2709         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2710           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2711             if (DL.isBigEndian())
2712               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2713                                  "endian_shift");
2714             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2715           }
2716 
2717       V = convertValue(DL, IRB, V, NewAllocaTy);
2718       NewSI =
2719           IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), SI.isVolatile());
2720     } else {
2721       unsigned AS = SI.getPointerAddressSpace();
2722       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2723       NewSI =
2724           IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile());
2725     }
2726     NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2727                              LLVMContext::MD_access_group});
2728     if (AATags)
2729       NewSI->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2730     if (SI.isVolatile())
2731       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2732     if (NewSI->isAtomic())
2733       NewSI->setAlignment(SI.getAlign());
2734     Pass.DeadInsts.push_back(&SI);
2735     deleteIfTriviallyDead(OldOp);
2736 
2737     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2738     return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2739   }
2740 
2741   /// Compute an integer value from splatting an i8 across the given
2742   /// number of bytes.
2743   ///
2744   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2745   /// call this routine.
2746   /// FIXME: Heed the advice above.
2747   ///
2748   /// \param V The i8 value to splat.
2749   /// \param Size The number of bytes in the output (assuming i8 is one byte)
getIntegerSplat(Value * V,unsigned Size)2750   Value *getIntegerSplat(Value *V, unsigned Size) {
2751     assert(Size > 0 && "Expected a positive number of bytes.");
2752     IntegerType *VTy = cast<IntegerType>(V->getType());
2753     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2754     if (Size == 1)
2755       return V;
2756 
2757     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2758     V = IRB.CreateMul(
2759         IRB.CreateZExt(V, SplatIntTy, "zext"),
2760         ConstantExpr::getUDiv(
2761             Constant::getAllOnesValue(SplatIntTy),
2762             ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2763                                   SplatIntTy)),
2764         "isplat");
2765     return V;
2766   }
2767 
2768   /// Compute a vector splat for a given element value.
getVectorSplat(Value * V,unsigned NumElements)2769   Value *getVectorSplat(Value *V, unsigned NumElements) {
2770     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2771     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2772     return V;
2773   }
2774 
visitMemSetInst(MemSetInst & II)2775   bool visitMemSetInst(MemSetInst &II) {
2776     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2777     assert(II.getRawDest() == OldPtr);
2778 
2779     AAMDNodes AATags;
2780     II.getAAMetadata(AATags);
2781 
2782     // If the memset has a variable size, it cannot be split, just adjust the
2783     // pointer to the new alloca.
2784     if (!isa<Constant>(II.getLength())) {
2785       assert(!IsSplit);
2786       assert(NewBeginOffset == BeginOffset);
2787       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2788       II.setDestAlignment(getSliceAlign());
2789 
2790       deleteIfTriviallyDead(OldPtr);
2791       return false;
2792     }
2793 
2794     // Record this instruction for deletion.
2795     Pass.DeadInsts.push_back(&II);
2796 
2797     Type *AllocaTy = NewAI.getAllocatedType();
2798     Type *ScalarTy = AllocaTy->getScalarType();
2799 
2800     const bool CanContinue = [&]() {
2801       if (VecTy || IntTy)
2802         return true;
2803       if (BeginOffset > NewAllocaBeginOffset ||
2804           EndOffset < NewAllocaEndOffset)
2805         return false;
2806       auto *C = cast<ConstantInt>(II.getLength());
2807       if (C->getBitWidth() > 64)
2808         return false;
2809       const auto Len = C->getZExtValue();
2810       auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2811       auto *SrcTy = FixedVectorType::get(Int8Ty, Len);
2812       return canConvertValue(DL, SrcTy, AllocaTy) &&
2813              DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedSize());
2814     }();
2815 
2816     // If this doesn't map cleanly onto the alloca type, and that type isn't
2817     // a single value type, just emit a memset.
2818     if (!CanContinue) {
2819       Type *SizeTy = II.getLength()->getType();
2820       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2821       CallInst *New = IRB.CreateMemSet(
2822           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2823           MaybeAlign(getSliceAlign()), II.isVolatile());
2824       if (AATags)
2825         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2826       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2827       return false;
2828     }
2829 
2830     // If we can represent this as a simple value, we have to build the actual
2831     // value to store, which requires expanding the byte present in memset to
2832     // a sensible representation for the alloca type. This is essentially
2833     // splatting the byte to a sufficiently wide integer, splatting it across
2834     // any desired vector width, and bitcasting to the final type.
2835     Value *V;
2836 
2837     if (VecTy) {
2838       // If this is a memset of a vectorized alloca, insert it.
2839       assert(ElementTy == ScalarTy);
2840 
2841       unsigned BeginIndex = getIndex(NewBeginOffset);
2842       unsigned EndIndex = getIndex(NewEndOffset);
2843       assert(EndIndex > BeginIndex && "Empty vector!");
2844       unsigned NumElements = EndIndex - BeginIndex;
2845       assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() &&
2846              "Too many elements!");
2847 
2848       Value *Splat = getIntegerSplat(
2849           II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedSize() / 8);
2850       Splat = convertValue(DL, IRB, Splat, ElementTy);
2851       if (NumElements > 1)
2852         Splat = getVectorSplat(Splat, NumElements);
2853 
2854       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2855                                          NewAI.getAlign(), "oldload");
2856       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2857     } else if (IntTy) {
2858       // If this is a memset on an alloca where we can widen stores, insert the
2859       // set integer.
2860       assert(!II.isVolatile());
2861 
2862       uint64_t Size = NewEndOffset - NewBeginOffset;
2863       V = getIntegerSplat(II.getValue(), Size);
2864 
2865       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2866                     EndOffset != NewAllocaBeginOffset)) {
2867         Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2868                                            NewAI.getAlign(), "oldload");
2869         Old = convertValue(DL, IRB, Old, IntTy);
2870         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2871         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2872       } else {
2873         assert(V->getType() == IntTy &&
2874                "Wrong type for an alloca wide integer!");
2875       }
2876       V = convertValue(DL, IRB, V, AllocaTy);
2877     } else {
2878       // Established these invariants above.
2879       assert(NewBeginOffset == NewAllocaBeginOffset);
2880       assert(NewEndOffset == NewAllocaEndOffset);
2881 
2882       V = getIntegerSplat(II.getValue(),
2883                           DL.getTypeSizeInBits(ScalarTy).getFixedSize() / 8);
2884       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2885         V = getVectorSplat(
2886             V, cast<FixedVectorType>(AllocaVecTy)->getNumElements());
2887 
2888       V = convertValue(DL, IRB, V, AllocaTy);
2889     }
2890 
2891     StoreInst *New =
2892         IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign(), II.isVolatile());
2893     if (AATags)
2894       New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
2895     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2896     return !II.isVolatile();
2897   }
2898 
visitMemTransferInst(MemTransferInst & II)2899   bool visitMemTransferInst(MemTransferInst &II) {
2900     // Rewriting of memory transfer instructions can be a bit tricky. We break
2901     // them into two categories: split intrinsics and unsplit intrinsics.
2902 
2903     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2904 
2905     AAMDNodes AATags;
2906     II.getAAMetadata(AATags);
2907 
2908     bool IsDest = &II.getRawDestUse() == OldUse;
2909     assert((IsDest && II.getRawDest() == OldPtr) ||
2910            (!IsDest && II.getRawSource() == OldPtr));
2911 
2912     MaybeAlign SliceAlign = getSliceAlign();
2913 
2914     // For unsplit intrinsics, we simply modify the source and destination
2915     // pointers in place. This isn't just an optimization, it is a matter of
2916     // correctness. With unsplit intrinsics we may be dealing with transfers
2917     // within a single alloca before SROA ran, or with transfers that have
2918     // a variable length. We may also be dealing with memmove instead of
2919     // memcpy, and so simply updating the pointers is the necessary for us to
2920     // update both source and dest of a single call.
2921     if (!IsSplittable) {
2922       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2923       if (IsDest) {
2924         II.setDest(AdjustedPtr);
2925         II.setDestAlignment(SliceAlign);
2926       }
2927       else {
2928         II.setSource(AdjustedPtr);
2929         II.setSourceAlignment(SliceAlign);
2930       }
2931 
2932       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2933       deleteIfTriviallyDead(OldPtr);
2934       return false;
2935     }
2936     // For split transfer intrinsics we have an incredibly useful assurance:
2937     // the source and destination do not reside within the same alloca, and at
2938     // least one of them does not escape. This means that we can replace
2939     // memmove with memcpy, and we don't need to worry about all manner of
2940     // downsides to splitting and transforming the operations.
2941 
2942     // If this doesn't map cleanly onto the alloca type, and that type isn't
2943     // a single value type, just emit a memcpy.
2944     bool EmitMemCpy =
2945         !VecTy && !IntTy &&
2946         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2947          SliceSize !=
2948              DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedSize() ||
2949          !NewAI.getAllocatedType()->isSingleValueType());
2950 
2951     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2952     // size hasn't been shrunk based on analysis of the viable range, this is
2953     // a no-op.
2954     if (EmitMemCpy && &OldAI == &NewAI) {
2955       // Ensure the start lines up.
2956       assert(NewBeginOffset == BeginOffset);
2957 
2958       // Rewrite the size as needed.
2959       if (NewEndOffset != EndOffset)
2960         II.setLength(ConstantInt::get(II.getLength()->getType(),
2961                                       NewEndOffset - NewBeginOffset));
2962       return false;
2963     }
2964     // Record this instruction for deletion.
2965     Pass.DeadInsts.push_back(&II);
2966 
2967     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2968     // alloca that should be re-examined after rewriting this instruction.
2969     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2970     if (AllocaInst *AI =
2971             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2972       assert(AI != &OldAI && AI != &NewAI &&
2973              "Splittable transfers cannot reach the same alloca on both ends.");
2974       Pass.Worklist.insert(AI);
2975     }
2976 
2977     Type *OtherPtrTy = OtherPtr->getType();
2978     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2979 
2980     // Compute the relative offset for the other pointer within the transfer.
2981     unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2982     APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2983     Align OtherAlign =
2984         (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne();
2985     OtherAlign =
2986         commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
2987 
2988     if (EmitMemCpy) {
2989       // Compute the other pointer, folding as much as possible to produce
2990       // a single, simple GEP in most cases.
2991       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2992                                 OtherPtr->getName() + ".");
2993 
2994       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2995       Type *SizeTy = II.getLength()->getType();
2996       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2997 
2998       Value *DestPtr, *SrcPtr;
2999       MaybeAlign DestAlign, SrcAlign;
3000       // Note: IsDest is true iff we're copying into the new alloca slice
3001       if (IsDest) {
3002         DestPtr = OurPtr;
3003         DestAlign = SliceAlign;
3004         SrcPtr = OtherPtr;
3005         SrcAlign = OtherAlign;
3006       } else {
3007         DestPtr = OtherPtr;
3008         DestAlign = OtherAlign;
3009         SrcPtr = OurPtr;
3010         SrcAlign = SliceAlign;
3011       }
3012       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
3013                                        Size, II.isVolatile());
3014       if (AATags)
3015         New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3016       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3017       return false;
3018     }
3019 
3020     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
3021                          NewEndOffset == NewAllocaEndOffset;
3022     uint64_t Size = NewEndOffset - NewBeginOffset;
3023     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3024     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3025     unsigned NumElements = EndIndex - BeginIndex;
3026     IntegerType *SubIntTy =
3027         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3028 
3029     // Reset the other pointer type to match the register type we're going to
3030     // use, but using the address space of the original other pointer.
3031     Type *OtherTy;
3032     if (VecTy && !IsWholeAlloca) {
3033       if (NumElements == 1)
3034         OtherTy = VecTy->getElementType();
3035       else
3036         OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements);
3037     } else if (IntTy && !IsWholeAlloca) {
3038       OtherTy = SubIntTy;
3039     } else {
3040       OtherTy = NewAllocaTy;
3041     }
3042     OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3043 
3044     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3045                                    OtherPtr->getName() + ".");
3046     MaybeAlign SrcAlign = OtherAlign;
3047     Value *DstPtr = &NewAI;
3048     MaybeAlign DstAlign = SliceAlign;
3049     if (!IsDest) {
3050       std::swap(SrcPtr, DstPtr);
3051       std::swap(SrcAlign, DstAlign);
3052     }
3053 
3054     Value *Src;
3055     if (VecTy && !IsWholeAlloca && !IsDest) {
3056       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3057                                   NewAI.getAlign(), "load");
3058       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3059     } else if (IntTy && !IsWholeAlloca && !IsDest) {
3060       Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3061                                   NewAI.getAlign(), "load");
3062       Src = convertValue(DL, IRB, Src, IntTy);
3063       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3064       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3065     } else {
3066       LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3067                                              II.isVolatile(), "copyload");
3068       if (AATags)
3069         Load->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3070       Src = Load;
3071     }
3072 
3073     if (VecTy && !IsWholeAlloca && IsDest) {
3074       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3075                                          NewAI.getAlign(), "oldload");
3076       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3077     } else if (IntTy && !IsWholeAlloca && IsDest) {
3078       Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3079                                          NewAI.getAlign(), "oldload");
3080       Old = convertValue(DL, IRB, Old, IntTy);
3081       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3082       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3083       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3084     }
3085 
3086     StoreInst *Store = cast<StoreInst>(
3087         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3088     if (AATags)
3089       Store->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset));
3090     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3091     return !II.isVolatile();
3092   }
3093 
visitIntrinsicInst(IntrinsicInst & II)3094   bool visitIntrinsicInst(IntrinsicInst &II) {
3095     assert((II.isLifetimeStartOrEnd() || II.isDroppable()) &&
3096            "Unexpected intrinsic!");
3097     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3098 
3099     // Record this instruction for deletion.
3100     Pass.DeadInsts.push_back(&II);
3101 
3102     if (II.isDroppable()) {
3103       assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume");
3104       // TODO For now we forget assumed information, this can be improved.
3105       OldPtr->dropDroppableUsesIn(II);
3106       return true;
3107     }
3108 
3109     assert(II.getArgOperand(1) == OldPtr);
3110     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3111     // Therefore, we drop lifetime intrinsics which don't cover the whole
3112     // alloca.
3113     // (In theory, intrinsics which partially cover an alloca could be
3114     // promoted, but PromoteMemToReg doesn't handle that case.)
3115     // FIXME: Check whether the alloca is promotable before dropping the
3116     // lifetime intrinsics?
3117     if (NewBeginOffset != NewAllocaBeginOffset ||
3118         NewEndOffset != NewAllocaEndOffset)
3119       return true;
3120 
3121     ConstantInt *Size =
3122         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3123                          NewEndOffset - NewBeginOffset);
3124     // Lifetime intrinsics always expect an i8* so directly get such a pointer
3125     // for the new alloca slice.
3126     Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3127     Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3128     Value *New;
3129     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3130       New = IRB.CreateLifetimeStart(Ptr, Size);
3131     else
3132       New = IRB.CreateLifetimeEnd(Ptr, Size);
3133 
3134     (void)New;
3135     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3136 
3137     return true;
3138   }
3139 
fixLoadStoreAlign(Instruction & Root)3140   void fixLoadStoreAlign(Instruction &Root) {
3141     // This algorithm implements the same visitor loop as
3142     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3143     // or store found.
3144     SmallPtrSet<Instruction *, 4> Visited;
3145     SmallVector<Instruction *, 4> Uses;
3146     Visited.insert(&Root);
3147     Uses.push_back(&Root);
3148     do {
3149       Instruction *I = Uses.pop_back_val();
3150 
3151       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3152         LI->setAlignment(std::min(LI->getAlign(), getSliceAlign()));
3153         continue;
3154       }
3155       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3156         SI->setAlignment(std::min(SI->getAlign(), getSliceAlign()));
3157         continue;
3158       }
3159 
3160       assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3161              isa<PHINode>(I) || isa<SelectInst>(I) ||
3162              isa<GetElementPtrInst>(I));
3163       for (User *U : I->users())
3164         if (Visited.insert(cast<Instruction>(U)).second)
3165           Uses.push_back(cast<Instruction>(U));
3166     } while (!Uses.empty());
3167   }
3168 
visitPHINode(PHINode & PN)3169   bool visitPHINode(PHINode &PN) {
3170     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3171     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3172     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3173 
3174     // We would like to compute a new pointer in only one place, but have it be
3175     // as local as possible to the PHI. To do that, we re-use the location of
3176     // the old pointer, which necessarily must be in the right position to
3177     // dominate the PHI.
3178     IRBuilderBase::InsertPointGuard Guard(IRB);
3179     if (isa<PHINode>(OldPtr))
3180       IRB.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3181     else
3182       IRB.SetInsertPoint(OldPtr);
3183     IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3184 
3185     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3186     // Replace the operands which were using the old pointer.
3187     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3188 
3189     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3190     deleteIfTriviallyDead(OldPtr);
3191 
3192     // Fix the alignment of any loads or stores using this PHI node.
3193     fixLoadStoreAlign(PN);
3194 
3195     // PHIs can't be promoted on their own, but often can be speculated. We
3196     // check the speculation outside of the rewriter so that we see the
3197     // fully-rewritten alloca.
3198     PHIUsers.insert(&PN);
3199     return true;
3200   }
3201 
visitSelectInst(SelectInst & SI)3202   bool visitSelectInst(SelectInst &SI) {
3203     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3204     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3205            "Pointer isn't an operand!");
3206     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3207     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3208 
3209     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3210     // Replace the operands which were using the old pointer.
3211     if (SI.getOperand(1) == OldPtr)
3212       SI.setOperand(1, NewPtr);
3213     if (SI.getOperand(2) == OldPtr)
3214       SI.setOperand(2, NewPtr);
3215 
3216     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3217     deleteIfTriviallyDead(OldPtr);
3218 
3219     // Fix the alignment of any loads or stores using this select.
3220     fixLoadStoreAlign(SI);
3221 
3222     // Selects can't be promoted on their own, but often can be speculated. We
3223     // check the speculation outside of the rewriter so that we see the
3224     // fully-rewritten alloca.
3225     SelectUsers.insert(&SI);
3226     return true;
3227   }
3228 };
3229 
3230 namespace {
3231 
3232 /// Visitor to rewrite aggregate loads and stores as scalar.
3233 ///
3234 /// This pass aggressively rewrites all aggregate loads and stores on
3235 /// a particular pointer (or any pointer derived from it which we can identify)
3236 /// with scalar loads and stores.
3237 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3238   // Befriend the base class so it can delegate to private visit methods.
3239   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3240 
3241   /// Queue of pointer uses to analyze and potentially rewrite.
3242   SmallVector<Use *, 8> Queue;
3243 
3244   /// Set to prevent us from cycling with phi nodes and loops.
3245   SmallPtrSet<User *, 8> Visited;
3246 
3247   /// The current pointer use being rewritten. This is used to dig up the used
3248   /// value (as opposed to the user).
3249   Use *U = nullptr;
3250 
3251   /// Used to calculate offsets, and hence alignment, of subobjects.
3252   const DataLayout &DL;
3253 
3254 public:
AggLoadStoreRewriter(const DataLayout & DL)3255   AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3256 
3257   /// Rewrite loads and stores through a pointer and all pointers derived from
3258   /// it.
rewrite(Instruction & I)3259   bool rewrite(Instruction &I) {
3260     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3261     enqueueUsers(I);
3262     bool Changed = false;
3263     while (!Queue.empty()) {
3264       U = Queue.pop_back_val();
3265       Changed |= visit(cast<Instruction>(U->getUser()));
3266     }
3267     return Changed;
3268   }
3269 
3270 private:
3271   /// Enqueue all the users of the given instruction for further processing.
3272   /// This uses a set to de-duplicate users.
enqueueUsers(Instruction & I)3273   void enqueueUsers(Instruction &I) {
3274     for (Use &U : I.uses())
3275       if (Visited.insert(U.getUser()).second)
3276         Queue.push_back(&U);
3277   }
3278 
3279   // Conservative default is to not rewrite anything.
visitInstruction(Instruction & I)3280   bool visitInstruction(Instruction &I) { return false; }
3281 
3282   /// Generic recursive split emission class.
3283   template <typename Derived> class OpSplitter {
3284   protected:
3285     /// The builder used to form new instructions.
3286     IRBuilderTy IRB;
3287 
3288     /// The indices which to be used with insert- or extractvalue to select the
3289     /// appropriate value within the aggregate.
3290     SmallVector<unsigned, 4> Indices;
3291 
3292     /// The indices to a GEP instruction which will move Ptr to the correct slot
3293     /// within the aggregate.
3294     SmallVector<Value *, 4> GEPIndices;
3295 
3296     /// The base pointer of the original op, used as a base for GEPing the
3297     /// split operations.
3298     Value *Ptr;
3299 
3300     /// The base pointee type being GEPed into.
3301     Type *BaseTy;
3302 
3303     /// Known alignment of the base pointer.
3304     Align BaseAlign;
3305 
3306     /// To calculate offset of each component so we can correctly deduce
3307     /// alignments.
3308     const DataLayout &DL;
3309 
3310     /// Initialize the splitter with an insertion point, Ptr and start with a
3311     /// single zero GEP index.
OpSplitter(Instruction * InsertionPoint,Value * Ptr,Type * BaseTy,Align BaseAlign,const DataLayout & DL)3312     OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3313                Align BaseAlign, const DataLayout &DL)
3314         : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3315           BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3316 
3317   public:
3318     /// Generic recursive split emission routine.
3319     ///
3320     /// This method recursively splits an aggregate op (load or store) into
3321     /// scalar or vector ops. It splits recursively until it hits a single value
3322     /// and emits that single value operation via the template argument.
3323     ///
3324     /// The logic of this routine relies on GEPs and insertvalue and
3325     /// extractvalue all operating with the same fundamental index list, merely
3326     /// formatted differently (GEPs need actual values).
3327     ///
3328     /// \param Ty  The type being split recursively into smaller ops.
3329     /// \param Agg The aggregate value being built up or stored, depending on
3330     /// whether this is splitting a load or a store respectively.
emitSplitOps(Type * Ty,Value * & Agg,const Twine & Name)3331     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3332       if (Ty->isSingleValueType()) {
3333         unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3334         return static_cast<Derived *>(this)->emitFunc(
3335             Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3336       }
3337 
3338       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3339         unsigned OldSize = Indices.size();
3340         (void)OldSize;
3341         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3342              ++Idx) {
3343           assert(Indices.size() == OldSize && "Did not return to the old size");
3344           Indices.push_back(Idx);
3345           GEPIndices.push_back(IRB.getInt32(Idx));
3346           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3347           GEPIndices.pop_back();
3348           Indices.pop_back();
3349         }
3350         return;
3351       }
3352 
3353       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3354         unsigned OldSize = Indices.size();
3355         (void)OldSize;
3356         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3357              ++Idx) {
3358           assert(Indices.size() == OldSize && "Did not return to the old size");
3359           Indices.push_back(Idx);
3360           GEPIndices.push_back(IRB.getInt32(Idx));
3361           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3362           GEPIndices.pop_back();
3363           Indices.pop_back();
3364         }
3365         return;
3366       }
3367 
3368       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3369     }
3370   };
3371 
3372   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3373     AAMDNodes AATags;
3374 
LoadOpSplitter__anon416367130b11::AggLoadStoreRewriter::LoadOpSplitter3375     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3376                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3377         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3378                                      DL),
3379           AATags(AATags) {}
3380 
3381     /// Emit a leaf load of a single value. This is called at the leaves of the
3382     /// recursive emission to actually load values.
emitFunc__anon416367130b11::AggLoadStoreRewriter::LoadOpSplitter3383     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3384       assert(Ty->isSingleValueType());
3385       // Load the single value and insert it using the indices.
3386       Value *GEP =
3387           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3388       LoadInst *Load =
3389           IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load");
3390 
3391       APInt Offset(
3392           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3393       if (AATags &&
3394           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3395         Load->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3396 
3397       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3398       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3399     }
3400   };
3401 
visitLoadInst(LoadInst & LI)3402   bool visitLoadInst(LoadInst &LI) {
3403     assert(LI.getPointerOperand() == *U);
3404     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3405       return false;
3406 
3407     // We have an aggregate being loaded, split it apart.
3408     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3409     AAMDNodes AATags;
3410     LI.getAAMetadata(AATags);
3411     LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
3412                             getAdjustedAlignment(&LI, 0), DL);
3413     Value *V = UndefValue::get(LI.getType());
3414     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3415     Visited.erase(&LI);
3416     LI.replaceAllUsesWith(V);
3417     LI.eraseFromParent();
3418     return true;
3419   }
3420 
3421   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
StoreOpSplitter__anon416367130b11::AggLoadStoreRewriter::StoreOpSplitter3422     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3423                     AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3424         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3425                                       DL),
3426           AATags(AATags) {}
3427     AAMDNodes AATags;
3428     /// Emit a leaf store of a single value. This is called at the leaves of the
3429     /// recursive emission to actually produce stores.
emitFunc__anon416367130b11::AggLoadStoreRewriter::StoreOpSplitter3430     void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3431       assert(Ty->isSingleValueType());
3432       // Extract the single value and store it using the indices.
3433       //
3434       // The gep and extractvalue values are factored out of the CreateStore
3435       // call to make the output independent of the argument evaluation order.
3436       Value *ExtractValue =
3437           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3438       Value *InBoundsGEP =
3439           IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3440       StoreInst *Store =
3441           IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment);
3442 
3443       APInt Offset(
3444           DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0);
3445       if (AATags &&
3446           GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset))
3447         Store->setAAMetadata(AATags.shift(Offset.getZExtValue()));
3448 
3449       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3450     }
3451   };
3452 
visitStoreInst(StoreInst & SI)3453   bool visitStoreInst(StoreInst &SI) {
3454     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3455       return false;
3456     Value *V = SI.getValueOperand();
3457     if (V->getType()->isSingleValueType())
3458       return false;
3459 
3460     // We have an aggregate being stored, split it apart.
3461     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3462     AAMDNodes AATags;
3463     SI.getAAMetadata(AATags);
3464     StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
3465                              getAdjustedAlignment(&SI, 0), DL);
3466     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3467     Visited.erase(&SI);
3468     SI.eraseFromParent();
3469     return true;
3470   }
3471 
visitBitCastInst(BitCastInst & BC)3472   bool visitBitCastInst(BitCastInst &BC) {
3473     enqueueUsers(BC);
3474     return false;
3475   }
3476 
visitAddrSpaceCastInst(AddrSpaceCastInst & ASC)3477   bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3478     enqueueUsers(ASC);
3479     return false;
3480   }
3481 
3482   // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
foldGEPSelect(GetElementPtrInst & GEPI)3483   bool foldGEPSelect(GetElementPtrInst &GEPI) {
3484     if (!GEPI.hasAllConstantIndices())
3485       return false;
3486 
3487     SelectInst *Sel = cast<SelectInst>(GEPI.getPointerOperand());
3488 
3489     LLVM_DEBUG(dbgs() << "  Rewriting gep(select) -> select(gep):"
3490                       << "\n    original: " << *Sel
3491                       << "\n              " << GEPI);
3492 
3493     IRBuilderTy Builder(&GEPI);
3494     SmallVector<Value *, 4> Index(GEPI.indices());
3495     bool IsInBounds = GEPI.isInBounds();
3496 
3497     Type *Ty = GEPI.getSourceElementType();
3498     Value *True = Sel->getTrueValue();
3499     Value *NTrue =
3500         IsInBounds
3501             ? Builder.CreateInBoundsGEP(Ty, True, Index,
3502                                         True->getName() + ".sroa.gep")
3503             : Builder.CreateGEP(Ty, True, Index, True->getName() + ".sroa.gep");
3504 
3505     Value *False = Sel->getFalseValue();
3506 
3507     Value *NFalse =
3508         IsInBounds
3509             ? Builder.CreateInBoundsGEP(Ty, False, Index,
3510                                         False->getName() + ".sroa.gep")
3511             : Builder.CreateGEP(Ty, False, Index,
3512                                 False->getName() + ".sroa.gep");
3513 
3514     Value *NSel = Builder.CreateSelect(Sel->getCondition(), NTrue, NFalse,
3515                                        Sel->getName() + ".sroa.sel");
3516     Visited.erase(&GEPI);
3517     GEPI.replaceAllUsesWith(NSel);
3518     GEPI.eraseFromParent();
3519     Instruction *NSelI = cast<Instruction>(NSel);
3520     Visited.insert(NSelI);
3521     enqueueUsers(*NSelI);
3522 
3523     LLVM_DEBUG(dbgs() << "\n          to: " << *NTrue
3524                       << "\n              " << *NFalse
3525                       << "\n              " << *NSel << '\n');
3526 
3527     return true;
3528   }
3529 
3530   // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
foldGEPPhi(GetElementPtrInst & GEPI)3531   bool foldGEPPhi(GetElementPtrInst &GEPI) {
3532     if (!GEPI.hasAllConstantIndices())
3533       return false;
3534 
3535     PHINode *PHI = cast<PHINode>(GEPI.getPointerOperand());
3536     if (GEPI.getParent() != PHI->getParent() ||
3537         llvm::any_of(PHI->incoming_values(), [](Value *In)
3538           { Instruction *I = dyn_cast<Instruction>(In);
3539             return !I || isa<GetElementPtrInst>(I) || isa<PHINode>(I) ||
3540                    succ_empty(I->getParent()) ||
3541                    !I->getParent()->isLegalToHoistInto();
3542           }))
3543       return false;
3544 
3545     LLVM_DEBUG(dbgs() << "  Rewriting gep(phi) -> phi(gep):"
3546                       << "\n    original: " << *PHI
3547                       << "\n              " << GEPI
3548                       << "\n          to: ");
3549 
3550     SmallVector<Value *, 4> Index(GEPI.indices());
3551     bool IsInBounds = GEPI.isInBounds();
3552     IRBuilderTy PHIBuilder(GEPI.getParent()->getFirstNonPHI());
3553     PHINode *NewPN = PHIBuilder.CreatePHI(GEPI.getType(),
3554                                           PHI->getNumIncomingValues(),
3555                                           PHI->getName() + ".sroa.phi");
3556     for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
3557       BasicBlock *B = PHI->getIncomingBlock(I);
3558       Value *NewVal = nullptr;
3559       int Idx = NewPN->getBasicBlockIndex(B);
3560       if (Idx >= 0) {
3561         NewVal = NewPN->getIncomingValue(Idx);
3562       } else {
3563         Instruction *In = cast<Instruction>(PHI->getIncomingValue(I));
3564 
3565         IRBuilderTy B(In->getParent(), std::next(In->getIterator()));
3566         Type *Ty = GEPI.getSourceElementType();
3567         NewVal = IsInBounds
3568             ? B.CreateInBoundsGEP(Ty, In, Index, In->getName() + ".sroa.gep")
3569             : B.CreateGEP(Ty, In, Index, In->getName() + ".sroa.gep");
3570       }
3571       NewPN->addIncoming(NewVal, B);
3572     }
3573 
3574     Visited.erase(&GEPI);
3575     GEPI.replaceAllUsesWith(NewPN);
3576     GEPI.eraseFromParent();
3577     Visited.insert(NewPN);
3578     enqueueUsers(*NewPN);
3579 
3580     LLVM_DEBUG(for (Value *In : NewPN->incoming_values())
3581                  dbgs() << "\n              " << *In;
3582                dbgs() << "\n              " << *NewPN << '\n');
3583 
3584     return true;
3585   }
3586 
visitGetElementPtrInst(GetElementPtrInst & GEPI)3587   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3588     if (isa<SelectInst>(GEPI.getPointerOperand()) &&
3589         foldGEPSelect(GEPI))
3590       return true;
3591 
3592     if (isa<PHINode>(GEPI.getPointerOperand()) &&
3593         foldGEPPhi(GEPI))
3594       return true;
3595 
3596     enqueueUsers(GEPI);
3597     return false;
3598   }
3599 
visitPHINode(PHINode & PN)3600   bool visitPHINode(PHINode &PN) {
3601     enqueueUsers(PN);
3602     return false;
3603   }
3604 
visitSelectInst(SelectInst & SI)3605   bool visitSelectInst(SelectInst &SI) {
3606     enqueueUsers(SI);
3607     return false;
3608   }
3609 };
3610 
3611 } // end anonymous namespace
3612 
3613 /// Strip aggregate type wrapping.
3614 ///
3615 /// This removes no-op aggregate types wrapping an underlying type. It will
3616 /// strip as many layers of types as it can without changing either the type
3617 /// size or the allocated size.
stripAggregateTypeWrapping(const DataLayout & DL,Type * Ty)3618 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3619   if (Ty->isSingleValueType())
3620     return Ty;
3621 
3622   uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedSize();
3623   uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedSize();
3624 
3625   Type *InnerTy;
3626   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3627     InnerTy = ArrTy->getElementType();
3628   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3629     const StructLayout *SL = DL.getStructLayout(STy);
3630     unsigned Index = SL->getElementContainingOffset(0);
3631     InnerTy = STy->getElementType(Index);
3632   } else {
3633     return Ty;
3634   }
3635 
3636   if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedSize() ||
3637       TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedSize())
3638     return Ty;
3639 
3640   return stripAggregateTypeWrapping(DL, InnerTy);
3641 }
3642 
3643 /// Try to find a partition of the aggregate type passed in for a given
3644 /// offset and size.
3645 ///
3646 /// This recurses through the aggregate type and tries to compute a subtype
3647 /// based on the offset and size. When the offset and size span a sub-section
3648 /// of an array, it will even compute a new array type for that sub-section,
3649 /// and the same for structs.
3650 ///
3651 /// Note that this routine is very strict and tries to find a partition of the
3652 /// type which produces the *exact* right offset and size. It is not forgiving
3653 /// when the size or offset cause either end of type-based partition to be off.
3654 /// Also, this is a best-effort routine. It is reasonable to give up and not
3655 /// return a type if necessary.
getTypePartition(const DataLayout & DL,Type * Ty,uint64_t Offset,uint64_t Size)3656 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3657                               uint64_t Size) {
3658   if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedSize() == Size)
3659     return stripAggregateTypeWrapping(DL, Ty);
3660   if (Offset > DL.getTypeAllocSize(Ty).getFixedSize() ||
3661       (DL.getTypeAllocSize(Ty).getFixedSize() - Offset) < Size)
3662     return nullptr;
3663 
3664   if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
3665      Type *ElementTy;
3666      uint64_t TyNumElements;
3667      if (auto *AT = dyn_cast<ArrayType>(Ty)) {
3668        ElementTy = AT->getElementType();
3669        TyNumElements = AT->getNumElements();
3670      } else {
3671        // FIXME: This isn't right for vectors with non-byte-sized or
3672        // non-power-of-two sized elements.
3673        auto *VT = cast<FixedVectorType>(Ty);
3674        ElementTy = VT->getElementType();
3675        TyNumElements = VT->getNumElements();
3676     }
3677     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3678     uint64_t NumSkippedElements = Offset / ElementSize;
3679     if (NumSkippedElements >= TyNumElements)
3680       return nullptr;
3681     Offset -= NumSkippedElements * ElementSize;
3682 
3683     // First check if we need to recurse.
3684     if (Offset > 0 || Size < ElementSize) {
3685       // Bail if the partition ends in a different array element.
3686       if ((Offset + Size) > ElementSize)
3687         return nullptr;
3688       // Recurse through the element type trying to peel off offset bytes.
3689       return getTypePartition(DL, ElementTy, Offset, Size);
3690     }
3691     assert(Offset == 0);
3692 
3693     if (Size == ElementSize)
3694       return stripAggregateTypeWrapping(DL, ElementTy);
3695     assert(Size > ElementSize);
3696     uint64_t NumElements = Size / ElementSize;
3697     if (NumElements * ElementSize != Size)
3698       return nullptr;
3699     return ArrayType::get(ElementTy, NumElements);
3700   }
3701 
3702   StructType *STy = dyn_cast<StructType>(Ty);
3703   if (!STy)
3704     return nullptr;
3705 
3706   const StructLayout *SL = DL.getStructLayout(STy);
3707   if (Offset >= SL->getSizeInBytes())
3708     return nullptr;
3709   uint64_t EndOffset = Offset + Size;
3710   if (EndOffset > SL->getSizeInBytes())
3711     return nullptr;
3712 
3713   unsigned Index = SL->getElementContainingOffset(Offset);
3714   Offset -= SL->getElementOffset(Index);
3715 
3716   Type *ElementTy = STy->getElementType(Index);
3717   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedSize();
3718   if (Offset >= ElementSize)
3719     return nullptr; // The offset points into alignment padding.
3720 
3721   // See if any partition must be contained by the element.
3722   if (Offset > 0 || Size < ElementSize) {
3723     if ((Offset + Size) > ElementSize)
3724       return nullptr;
3725     return getTypePartition(DL, ElementTy, Offset, Size);
3726   }
3727   assert(Offset == 0);
3728 
3729   if (Size == ElementSize)
3730     return stripAggregateTypeWrapping(DL, ElementTy);
3731 
3732   StructType::element_iterator EI = STy->element_begin() + Index,
3733                                EE = STy->element_end();
3734   if (EndOffset < SL->getSizeInBytes()) {
3735     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3736     if (Index == EndIndex)
3737       return nullptr; // Within a single element and its padding.
3738 
3739     // Don't try to form "natural" types if the elements don't line up with the
3740     // expected size.
3741     // FIXME: We could potentially recurse down through the last element in the
3742     // sub-struct to find a natural end point.
3743     if (SL->getElementOffset(EndIndex) != EndOffset)
3744       return nullptr;
3745 
3746     assert(Index < EndIndex);
3747     EE = STy->element_begin() + EndIndex;
3748   }
3749 
3750   // Try to build up a sub-structure.
3751   StructType *SubTy =
3752       StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3753   const StructLayout *SubSL = DL.getStructLayout(SubTy);
3754   if (Size != SubSL->getSizeInBytes())
3755     return nullptr; // The sub-struct doesn't have quite the size needed.
3756 
3757   return SubTy;
3758 }
3759 
3760 /// Pre-split loads and stores to simplify rewriting.
3761 ///
3762 /// We want to break up the splittable load+store pairs as much as
3763 /// possible. This is important to do as a preprocessing step, as once we
3764 /// start rewriting the accesses to partitions of the alloca we lose the
3765 /// necessary information to correctly split apart paired loads and stores
3766 /// which both point into this alloca. The case to consider is something like
3767 /// the following:
3768 ///
3769 ///   %a = alloca [12 x i8]
3770 ///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3771 ///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3772 ///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3773 ///   %iptr1 = bitcast i8* %gep1 to i64*
3774 ///   %iptr2 = bitcast i8* %gep2 to i64*
3775 ///   %fptr1 = bitcast i8* %gep1 to float*
3776 ///   %fptr2 = bitcast i8* %gep2 to float*
3777 ///   %fptr3 = bitcast i8* %gep3 to float*
3778 ///   store float 0.0, float* %fptr1
3779 ///   store float 1.0, float* %fptr2
3780 ///   %v = load i64* %iptr1
3781 ///   store i64 %v, i64* %iptr2
3782 ///   %f1 = load float* %fptr2
3783 ///   %f2 = load float* %fptr3
3784 ///
3785 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3786 /// promote everything so we recover the 2 SSA values that should have been
3787 /// there all along.
3788 ///
3789 /// \returns true if any changes are made.
presplitLoadsAndStores(AllocaInst & AI,AllocaSlices & AS)3790 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3791   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3792 
3793   // Track the loads and stores which are candidates for pre-splitting here, in
3794   // the order they first appear during the partition scan. These give stable
3795   // iteration order and a basis for tracking which loads and stores we
3796   // actually split.
3797   SmallVector<LoadInst *, 4> Loads;
3798   SmallVector<StoreInst *, 4> Stores;
3799 
3800   // We need to accumulate the splits required of each load or store where we
3801   // can find them via a direct lookup. This is important to cross-check loads
3802   // and stores against each other. We also track the slice so that we can kill
3803   // all the slices that end up split.
3804   struct SplitOffsets {
3805     Slice *S;
3806     std::vector<uint64_t> Splits;
3807   };
3808   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3809 
3810   // Track loads out of this alloca which cannot, for any reason, be pre-split.
3811   // This is important as we also cannot pre-split stores of those loads!
3812   // FIXME: This is all pretty gross. It means that we can be more aggressive
3813   // in pre-splitting when the load feeding the store happens to come from
3814   // a separate alloca. Put another way, the effectiveness of SROA would be
3815   // decreased by a frontend which just concatenated all of its local allocas
3816   // into one big flat alloca. But defeating such patterns is exactly the job
3817   // SROA is tasked with! Sadly, to not have this discrepancy we would have
3818   // change store pre-splitting to actually force pre-splitting of the load
3819   // that feeds it *and all stores*. That makes pre-splitting much harder, but
3820   // maybe it would make it more principled?
3821   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3822 
3823   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3824   for (auto &P : AS.partitions()) {
3825     for (Slice &S : P) {
3826       Instruction *I = cast<Instruction>(S.getUse()->getUser());
3827       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3828         // If this is a load we have to track that it can't participate in any
3829         // pre-splitting. If this is a store of a load we have to track that
3830         // that load also can't participate in any pre-splitting.
3831         if (auto *LI = dyn_cast<LoadInst>(I))
3832           UnsplittableLoads.insert(LI);
3833         else if (auto *SI = dyn_cast<StoreInst>(I))
3834           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3835             UnsplittableLoads.insert(LI);
3836         continue;
3837       }
3838       assert(P.endOffset() > S.beginOffset() &&
3839              "Empty or backwards partition!");
3840 
3841       // Determine if this is a pre-splittable slice.
3842       if (auto *LI = dyn_cast<LoadInst>(I)) {
3843         assert(!LI->isVolatile() && "Cannot split volatile loads!");
3844 
3845         // The load must be used exclusively to store into other pointers for
3846         // us to be able to arbitrarily pre-split it. The stores must also be
3847         // simple to avoid changing semantics.
3848         auto IsLoadSimplyStored = [](LoadInst *LI) {
3849           for (User *LU : LI->users()) {
3850             auto *SI = dyn_cast<StoreInst>(LU);
3851             if (!SI || !SI->isSimple())
3852               return false;
3853           }
3854           return true;
3855         };
3856         if (!IsLoadSimplyStored(LI)) {
3857           UnsplittableLoads.insert(LI);
3858           continue;
3859         }
3860 
3861         Loads.push_back(LI);
3862       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3863         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3864           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3865           continue;
3866         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3867         if (!StoredLoad || !StoredLoad->isSimple())
3868           continue;
3869         assert(!SI->isVolatile() && "Cannot split volatile stores!");
3870 
3871         Stores.push_back(SI);
3872       } else {
3873         // Other uses cannot be pre-split.
3874         continue;
3875       }
3876 
3877       // Record the initial split.
3878       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3879       auto &Offsets = SplitOffsetsMap[I];
3880       assert(Offsets.Splits.empty() &&
3881              "Should not have splits the first time we see an instruction!");
3882       Offsets.S = &S;
3883       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3884     }
3885 
3886     // Now scan the already split slices, and add a split for any of them which
3887     // we're going to pre-split.
3888     for (Slice *S : P.splitSliceTails()) {
3889       auto SplitOffsetsMapI =
3890           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3891       if (SplitOffsetsMapI == SplitOffsetsMap.end())
3892         continue;
3893       auto &Offsets = SplitOffsetsMapI->second;
3894 
3895       assert(Offsets.S == S && "Found a mismatched slice!");
3896       assert(!Offsets.Splits.empty() &&
3897              "Cannot have an empty set of splits on the second partition!");
3898       assert(Offsets.Splits.back() ==
3899                  P.beginOffset() - Offsets.S->beginOffset() &&
3900              "Previous split does not end where this one begins!");
3901 
3902       // Record each split. The last partition's end isn't needed as the size
3903       // of the slice dictates that.
3904       if (S->endOffset() > P.endOffset())
3905         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3906     }
3907   }
3908 
3909   // We may have split loads where some of their stores are split stores. For
3910   // such loads and stores, we can only pre-split them if their splits exactly
3911   // match relative to their starting offset. We have to verify this prior to
3912   // any rewriting.
3913   llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3914     // Lookup the load we are storing in our map of split
3915     // offsets.
3916     auto *LI = cast<LoadInst>(SI->getValueOperand());
3917     // If it was completely unsplittable, then we're done,
3918     // and this store can't be pre-split.
3919     if (UnsplittableLoads.count(LI))
3920       return true;
3921 
3922     auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3923     if (LoadOffsetsI == SplitOffsetsMap.end())
3924       return false; // Unrelated loads are definitely safe.
3925     auto &LoadOffsets = LoadOffsetsI->second;
3926 
3927     // Now lookup the store's offsets.
3928     auto &StoreOffsets = SplitOffsetsMap[SI];
3929 
3930     // If the relative offsets of each split in the load and
3931     // store match exactly, then we can split them and we
3932     // don't need to remove them here.
3933     if (LoadOffsets.Splits == StoreOffsets.Splits)
3934       return false;
3935 
3936     LLVM_DEBUG(dbgs() << "    Mismatched splits for load and store:\n"
3937                       << "      " << *LI << "\n"
3938                       << "      " << *SI << "\n");
3939 
3940     // We've found a store and load that we need to split
3941     // with mismatched relative splits. Just give up on them
3942     // and remove both instructions from our list of
3943     // candidates.
3944     UnsplittableLoads.insert(LI);
3945     return true;
3946   });
3947   // Now we have to go *back* through all the stores, because a later store may
3948   // have caused an earlier store's load to become unsplittable and if it is
3949   // unsplittable for the later store, then we can't rely on it being split in
3950   // the earlier store either.
3951   llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) {
3952     auto *LI = cast<LoadInst>(SI->getValueOperand());
3953     return UnsplittableLoads.count(LI);
3954   });
3955   // Once we've established all the loads that can't be split for some reason,
3956   // filter any that made it into our list out.
3957   llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) {
3958     return UnsplittableLoads.count(LI);
3959   });
3960 
3961   // If no loads or stores are left, there is no pre-splitting to be done for
3962   // this alloca.
3963   if (Loads.empty() && Stores.empty())
3964     return false;
3965 
3966   // From here on, we can't fail and will be building new accesses, so rig up
3967   // an IR builder.
3968   IRBuilderTy IRB(&AI);
3969 
3970   // Collect the new slices which we will merge into the alloca slices.
3971   SmallVector<Slice, 4> NewSlices;
3972 
3973   // Track any allocas we end up splitting loads and stores for so we iterate
3974   // on them.
3975   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3976 
3977   // At this point, we have collected all of the loads and stores we can
3978   // pre-split, and the specific splits needed for them. We actually do the
3979   // splitting in a specific order in order to handle when one of the loads in
3980   // the value operand to one of the stores.
3981   //
3982   // First, we rewrite all of the split loads, and just accumulate each split
3983   // load in a parallel structure. We also build the slices for them and append
3984   // them to the alloca slices.
3985   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3986   std::vector<LoadInst *> SplitLoads;
3987   const DataLayout &DL = AI.getModule()->getDataLayout();
3988   for (LoadInst *LI : Loads) {
3989     SplitLoads.clear();
3990 
3991     IntegerType *Ty = cast<IntegerType>(LI->getType());
3992     uint64_t LoadSize = Ty->getBitWidth() / 8;
3993     assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3994 
3995     auto &Offsets = SplitOffsetsMap[LI];
3996     assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3997            "Slice size should always match load size exactly!");
3998     uint64_t BaseOffset = Offsets.S->beginOffset();
3999     assert(BaseOffset + LoadSize > BaseOffset &&
4000            "Cannot represent alloca access size using 64-bit integers!");
4001 
4002     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
4003     IRB.SetInsertPoint(LI);
4004 
4005     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
4006 
4007     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4008     int Idx = 0, Size = Offsets.Splits.size();
4009     for (;;) {
4010       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4011       auto AS = LI->getPointerAddressSpace();
4012       auto *PartPtrTy = PartTy->getPointerTo(AS);
4013       LoadInst *PLoad = IRB.CreateAlignedLoad(
4014           PartTy,
4015           getAdjustedPtr(IRB, DL, BasePtr,
4016                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4017                          PartPtrTy, BasePtr->getName() + "."),
4018           getAdjustedAlignment(LI, PartOffset),
4019           /*IsVolatile*/ false, LI->getName());
4020       PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4021                                 LLVMContext::MD_access_group});
4022 
4023       // Append this load onto the list of split loads so we can find it later
4024       // to rewrite the stores.
4025       SplitLoads.push_back(PLoad);
4026 
4027       // Now build a new slice for the alloca.
4028       NewSlices.push_back(
4029           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4030                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
4031                 /*IsSplittable*/ false));
4032       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4033                         << ", " << NewSlices.back().endOffset()
4034                         << "): " << *PLoad << "\n");
4035 
4036       // See if we've handled all the splits.
4037       if (Idx >= Size)
4038         break;
4039 
4040       // Setup the next partition.
4041       PartOffset = Offsets.Splits[Idx];
4042       ++Idx;
4043       PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
4044     }
4045 
4046     // Now that we have the split loads, do the slow walk over all uses of the
4047     // load and rewrite them as split stores, or save the split loads to use
4048     // below if the store is going to be split there anyways.
4049     bool DeferredStores = false;
4050     for (User *LU : LI->users()) {
4051       StoreInst *SI = cast<StoreInst>(LU);
4052       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
4053         DeferredStores = true;
4054         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
4055                           << "\n");
4056         continue;
4057       }
4058 
4059       Value *StoreBasePtr = SI->getPointerOperand();
4060       IRB.SetInsertPoint(SI);
4061 
4062       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
4063 
4064       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
4065         LoadInst *PLoad = SplitLoads[Idx];
4066         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
4067         auto *PartPtrTy =
4068             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
4069 
4070         auto AS = SI->getPointerAddressSpace();
4071         StoreInst *PStore = IRB.CreateAlignedStore(
4072             PLoad,
4073             getAdjustedPtr(IRB, DL, StoreBasePtr,
4074                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4075                            PartPtrTy, StoreBasePtr->getName() + "."),
4076             getAdjustedAlignment(SI, PartOffset),
4077             /*IsVolatile*/ false);
4078         PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
4079                                    LLVMContext::MD_access_group});
4080         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
4081       }
4082 
4083       // We want to immediately iterate on any allocas impacted by splitting
4084       // this store, and we have to track any promotable alloca (indicated by
4085       // a direct store) as needing to be resplit because it is no longer
4086       // promotable.
4087       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
4088         ResplitPromotableAllocas.insert(OtherAI);
4089         Worklist.insert(OtherAI);
4090       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4091                      StoreBasePtr->stripInBoundsOffsets())) {
4092         Worklist.insert(OtherAI);
4093       }
4094 
4095       // Mark the original store as dead.
4096       DeadInsts.push_back(SI);
4097     }
4098 
4099     // Save the split loads if there are deferred stores among the users.
4100     if (DeferredStores)
4101       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
4102 
4103     // Mark the original load as dead and kill the original slice.
4104     DeadInsts.push_back(LI);
4105     Offsets.S->kill();
4106   }
4107 
4108   // Second, we rewrite all of the split stores. At this point, we know that
4109   // all loads from this alloca have been split already. For stores of such
4110   // loads, we can simply look up the pre-existing split loads. For stores of
4111   // other loads, we split those loads first and then write split stores of
4112   // them.
4113   for (StoreInst *SI : Stores) {
4114     auto *LI = cast<LoadInst>(SI->getValueOperand());
4115     IntegerType *Ty = cast<IntegerType>(LI->getType());
4116     uint64_t StoreSize = Ty->getBitWidth() / 8;
4117     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
4118 
4119     auto &Offsets = SplitOffsetsMap[SI];
4120     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
4121            "Slice size should always match load size exactly!");
4122     uint64_t BaseOffset = Offsets.S->beginOffset();
4123     assert(BaseOffset + StoreSize > BaseOffset &&
4124            "Cannot represent alloca access size using 64-bit integers!");
4125 
4126     Value *LoadBasePtr = LI->getPointerOperand();
4127     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
4128 
4129     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
4130 
4131     // Check whether we have an already split load.
4132     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
4133     std::vector<LoadInst *> *SplitLoads = nullptr;
4134     if (SplitLoadsMapI != SplitLoadsMap.end()) {
4135       SplitLoads = &SplitLoadsMapI->second;
4136       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
4137              "Too few split loads for the number of splits in the store!");
4138     } else {
4139       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
4140     }
4141 
4142     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
4143     int Idx = 0, Size = Offsets.Splits.size();
4144     for (;;) {
4145       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
4146       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
4147       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
4148 
4149       // Either lookup a split load or create one.
4150       LoadInst *PLoad;
4151       if (SplitLoads) {
4152         PLoad = (*SplitLoads)[Idx];
4153       } else {
4154         IRB.SetInsertPoint(LI);
4155         auto AS = LI->getPointerAddressSpace();
4156         PLoad = IRB.CreateAlignedLoad(
4157             PartTy,
4158             getAdjustedPtr(IRB, DL, LoadBasePtr,
4159                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
4160                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
4161             getAdjustedAlignment(LI, PartOffset),
4162             /*IsVolatile*/ false, LI->getName());
4163       }
4164 
4165       // And store this partition.
4166       IRB.SetInsertPoint(SI);
4167       auto AS = SI->getPointerAddressSpace();
4168       StoreInst *PStore = IRB.CreateAlignedStore(
4169           PLoad,
4170           getAdjustedPtr(IRB, DL, StoreBasePtr,
4171                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
4172                          StorePartPtrTy, StoreBasePtr->getName() + "."),
4173           getAdjustedAlignment(SI, PartOffset),
4174           /*IsVolatile*/ false);
4175 
4176       // Now build a new slice for the alloca.
4177       NewSlices.push_back(
4178           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4179                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4180                 /*IsSplittable*/ false));
4181       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4182                         << ", " << NewSlices.back().endOffset()
4183                         << "): " << *PStore << "\n");
4184       if (!SplitLoads) {
4185         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4186       }
4187 
4188       // See if we've finished all the splits.
4189       if (Idx >= Size)
4190         break;
4191 
4192       // Setup the next partition.
4193       PartOffset = Offsets.Splits[Idx];
4194       ++Idx;
4195       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4196     }
4197 
4198     // We want to immediately iterate on any allocas impacted by splitting
4199     // this load, which is only relevant if it isn't a load of this alloca and
4200     // thus we didn't already split the loads above. We also have to keep track
4201     // of any promotable allocas we split loads on as they can no longer be
4202     // promoted.
4203     if (!SplitLoads) {
4204       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4205         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4206         ResplitPromotableAllocas.insert(OtherAI);
4207         Worklist.insert(OtherAI);
4208       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4209                      LoadBasePtr->stripInBoundsOffsets())) {
4210         assert(OtherAI != &AI && "We can't re-split our own alloca!");
4211         Worklist.insert(OtherAI);
4212       }
4213     }
4214 
4215     // Mark the original store as dead now that we've split it up and kill its
4216     // slice. Note that we leave the original load in place unless this store
4217     // was its only use. It may in turn be split up if it is an alloca load
4218     // for some other alloca, but it may be a normal load. This may introduce
4219     // redundant loads, but where those can be merged the rest of the optimizer
4220     // should handle the merging, and this uncovers SSA splits which is more
4221     // important. In practice, the original loads will almost always be fully
4222     // split and removed eventually, and the splits will be merged by any
4223     // trivial CSE, including instcombine.
4224     if (LI->hasOneUse()) {
4225       assert(*LI->user_begin() == SI && "Single use isn't this store!");
4226       DeadInsts.push_back(LI);
4227     }
4228     DeadInsts.push_back(SI);
4229     Offsets.S->kill();
4230   }
4231 
4232   // Remove the killed slices that have ben pre-split.
4233   llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); });
4234 
4235   // Insert our new slices. This will sort and merge them into the sorted
4236   // sequence.
4237   AS.insert(NewSlices);
4238 
4239   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4240 #ifndef NDEBUG
4241   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4242     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4243 #endif
4244 
4245   // Finally, don't try to promote any allocas that new require re-splitting.
4246   // They have already been added to the worklist above.
4247   llvm::erase_if(PromotableAllocas, [&](AllocaInst *AI) {
4248     return ResplitPromotableAllocas.count(AI);
4249   });
4250 
4251   return true;
4252 }
4253 
4254 /// Rewrite an alloca partition's users.
4255 ///
4256 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4257 /// to rewrite uses of an alloca partition to be conducive for SSA value
4258 /// promotion. If the partition needs a new, more refined alloca, this will
4259 /// build that new alloca, preserving as much type information as possible, and
4260 /// rewrite the uses of the old alloca to point at the new one and have the
4261 /// appropriate new offsets. It also evaluates how successful the rewrite was
4262 /// at enabling promotion and if it was successful queues the alloca to be
4263 /// promoted.
rewritePartition(AllocaInst & AI,AllocaSlices & AS,Partition & P)4264 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4265                                    Partition &P) {
4266   // Try to compute a friendly type for this partition of the alloca. This
4267   // won't always succeed, in which case we fall back to a legal integer type
4268   // or an i8 array of an appropriate size.
4269   Type *SliceTy = nullptr;
4270   const DataLayout &DL = AI.getModule()->getDataLayout();
4271   std::pair<Type *, IntegerType *> CommonUseTy =
4272       findCommonType(P.begin(), P.end(), P.endOffset());
4273   // Do all uses operate on the same type?
4274   if (CommonUseTy.first)
4275     if (DL.getTypeAllocSize(CommonUseTy.first).getFixedSize() >= P.size())
4276       SliceTy = CommonUseTy.first;
4277   // If not, can we find an appropriate subtype in the original allocated type?
4278   if (!SliceTy)
4279     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4280                                                  P.beginOffset(), P.size()))
4281       SliceTy = TypePartitionTy;
4282   // If still not, can we use the largest bitwidth integer type used?
4283   if (!SliceTy && CommonUseTy.second)
4284     if (DL.getTypeAllocSize(CommonUseTy.second).getFixedSize() >= P.size())
4285       SliceTy = CommonUseTy.second;
4286   if ((!SliceTy || (SliceTy->isArrayTy() &&
4287                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4288       DL.isLegalInteger(P.size() * 8))
4289     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4290   if (!SliceTy)
4291     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4292   assert(DL.getTypeAllocSize(SliceTy).getFixedSize() >= P.size());
4293 
4294   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4295 
4296   VectorType *VecTy =
4297       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4298   if (VecTy)
4299     SliceTy = VecTy;
4300 
4301   // Check for the case where we're going to rewrite to a new alloca of the
4302   // exact same type as the original, and with the same access offsets. In that
4303   // case, re-use the existing alloca, but still run through the rewriter to
4304   // perform phi and select speculation.
4305   // P.beginOffset() can be non-zero even with the same type in a case with
4306   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4307   AllocaInst *NewAI;
4308   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4309     NewAI = &AI;
4310     // FIXME: We should be able to bail at this point with "nothing changed".
4311     // FIXME: We might want to defer PHI speculation until after here.
4312     // FIXME: return nullptr;
4313   } else {
4314     // Make sure the alignment is compatible with P.beginOffset().
4315     const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset());
4316     // If we will get at least this much alignment from the type alone, leave
4317     // the alloca's alignment unconstrained.
4318     const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy);
4319     NewAI = new AllocaInst(
4320         SliceTy, AI.getType()->getAddressSpace(), nullptr,
4321         IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment,
4322         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4323     // Copy the old AI debug location over to the new one.
4324     NewAI->setDebugLoc(AI.getDebugLoc());
4325     ++NumNewAllocas;
4326   }
4327 
4328   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4329                     << "[" << P.beginOffset() << "," << P.endOffset()
4330                     << ") to: " << *NewAI << "\n");
4331 
4332   // Track the high watermark on the worklist as it is only relevant for
4333   // promoted allocas. We will reset it to this point if the alloca is not in
4334   // fact scheduled for promotion.
4335   unsigned PPWOldSize = PostPromotionWorklist.size();
4336   unsigned NumUses = 0;
4337   SmallSetVector<PHINode *, 8> PHIUsers;
4338   SmallSetVector<SelectInst *, 8> SelectUsers;
4339 
4340   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4341                                P.endOffset(), IsIntegerPromotable, VecTy,
4342                                PHIUsers, SelectUsers);
4343   bool Promotable = true;
4344   for (Slice *S : P.splitSliceTails()) {
4345     Promotable &= Rewriter.visit(S);
4346     ++NumUses;
4347   }
4348   for (Slice &S : P) {
4349     Promotable &= Rewriter.visit(&S);
4350     ++NumUses;
4351   }
4352 
4353   NumAllocaPartitionUses += NumUses;
4354   MaxUsesPerAllocaPartition.updateMax(NumUses);
4355 
4356   // Now that we've processed all the slices in the new partition, check if any
4357   // PHIs or Selects would block promotion.
4358   for (PHINode *PHI : PHIUsers)
4359     if (!isSafePHIToSpeculate(*PHI)) {
4360       Promotable = false;
4361       PHIUsers.clear();
4362       SelectUsers.clear();
4363       break;
4364     }
4365 
4366   for (SelectInst *Sel : SelectUsers)
4367     if (!isSafeSelectToSpeculate(*Sel)) {
4368       Promotable = false;
4369       PHIUsers.clear();
4370       SelectUsers.clear();
4371       break;
4372     }
4373 
4374   if (Promotable) {
4375     for (Use *U : AS.getDeadUsesIfPromotable()) {
4376       auto *OldInst = dyn_cast<Instruction>(U->get());
4377       Value::dropDroppableUse(*U);
4378       if (OldInst)
4379         if (isInstructionTriviallyDead(OldInst))
4380           DeadInsts.push_back(OldInst);
4381     }
4382     if (PHIUsers.empty() && SelectUsers.empty()) {
4383       // Promote the alloca.
4384       PromotableAllocas.push_back(NewAI);
4385     } else {
4386       // If we have either PHIs or Selects to speculate, add them to those
4387       // worklists and re-queue the new alloca so that we promote in on the
4388       // next iteration.
4389       for (PHINode *PHIUser : PHIUsers)
4390         SpeculatablePHIs.insert(PHIUser);
4391       for (SelectInst *SelectUser : SelectUsers)
4392         SpeculatableSelects.insert(SelectUser);
4393       Worklist.insert(NewAI);
4394     }
4395   } else {
4396     // Drop any post-promotion work items if promotion didn't happen.
4397     while (PostPromotionWorklist.size() > PPWOldSize)
4398       PostPromotionWorklist.pop_back();
4399 
4400     // We couldn't promote and we didn't create a new partition, nothing
4401     // happened.
4402     if (NewAI == &AI)
4403       return nullptr;
4404 
4405     // If we can't promote the alloca, iterate on it to check for new
4406     // refinements exposed by splitting the current alloca. Don't iterate on an
4407     // alloca which didn't actually change and didn't get promoted.
4408     Worklist.insert(NewAI);
4409   }
4410 
4411   return NewAI;
4412 }
4413 
4414 /// Walks the slices of an alloca and form partitions based on them,
4415 /// rewriting each of their uses.
splitAlloca(AllocaInst & AI,AllocaSlices & AS)4416 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4417   if (AS.begin() == AS.end())
4418     return false;
4419 
4420   unsigned NumPartitions = 0;
4421   bool Changed = false;
4422   const DataLayout &DL = AI.getModule()->getDataLayout();
4423 
4424   // First try to pre-split loads and stores.
4425   Changed |= presplitLoadsAndStores(AI, AS);
4426 
4427   // Now that we have identified any pre-splitting opportunities,
4428   // mark loads and stores unsplittable except for the following case.
4429   // We leave a slice splittable if all other slices are disjoint or fully
4430   // included in the slice, such as whole-alloca loads and stores.
4431   // If we fail to split these during pre-splitting, we want to force them
4432   // to be rewritten into a partition.
4433   bool IsSorted = true;
4434 
4435   uint64_t AllocaSize =
4436       DL.getTypeAllocSize(AI.getAllocatedType()).getFixedSize();
4437   const uint64_t MaxBitVectorSize = 1024;
4438   if (AllocaSize <= MaxBitVectorSize) {
4439     // If a byte boundary is included in any load or store, a slice starting or
4440     // ending at the boundary is not splittable.
4441     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4442     for (Slice &S : AS)
4443       for (unsigned O = S.beginOffset() + 1;
4444            O < S.endOffset() && O < AllocaSize; O++)
4445         SplittableOffset.reset(O);
4446 
4447     for (Slice &S : AS) {
4448       if (!S.isSplittable())
4449         continue;
4450 
4451       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4452           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4453         continue;
4454 
4455       if (isa<LoadInst>(S.getUse()->getUser()) ||
4456           isa<StoreInst>(S.getUse()->getUser())) {
4457         S.makeUnsplittable();
4458         IsSorted = false;
4459       }
4460     }
4461   }
4462   else {
4463     // We only allow whole-alloca splittable loads and stores
4464     // for a large alloca to avoid creating too large BitVector.
4465     for (Slice &S : AS) {
4466       if (!S.isSplittable())
4467         continue;
4468 
4469       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4470         continue;
4471 
4472       if (isa<LoadInst>(S.getUse()->getUser()) ||
4473           isa<StoreInst>(S.getUse()->getUser())) {
4474         S.makeUnsplittable();
4475         IsSorted = false;
4476       }
4477     }
4478   }
4479 
4480   if (!IsSorted)
4481     llvm::sort(AS);
4482 
4483   /// Describes the allocas introduced by rewritePartition in order to migrate
4484   /// the debug info.
4485   struct Fragment {
4486     AllocaInst *Alloca;
4487     uint64_t Offset;
4488     uint64_t Size;
4489     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4490       : Alloca(AI), Offset(O), Size(S) {}
4491   };
4492   SmallVector<Fragment, 4> Fragments;
4493 
4494   // Rewrite each partition.
4495   for (auto &P : AS.partitions()) {
4496     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4497       Changed = true;
4498       if (NewAI != &AI) {
4499         uint64_t SizeOfByte = 8;
4500         uint64_t AllocaSize =
4501             DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedSize();
4502         // Don't include any padding.
4503         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4504         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4505       }
4506     }
4507     ++NumPartitions;
4508   }
4509 
4510   NumAllocaPartitions += NumPartitions;
4511   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4512 
4513   // Migrate debug information from the old alloca to the new alloca(s)
4514   // and the individual partitions.
4515   TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4516   for (DbgVariableIntrinsic *DbgDeclare : DbgDeclares) {
4517     auto *Expr = DbgDeclare->getExpression();
4518     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4519     uint64_t AllocaSize =
4520         DL.getTypeSizeInBits(AI.getAllocatedType()).getFixedSize();
4521     for (auto Fragment : Fragments) {
4522       // Create a fragment expression describing the new partition or reuse AI's
4523       // expression if there is only one partition.
4524       auto *FragmentExpr = Expr;
4525       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4526         // If this alloca is already a scalar replacement of a larger aggregate,
4527         // Fragment.Offset describes the offset inside the scalar.
4528         auto ExprFragment = Expr->getFragmentInfo();
4529         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4530         uint64_t Start = Offset + Fragment.Offset;
4531         uint64_t Size = Fragment.Size;
4532         if (ExprFragment) {
4533           uint64_t AbsEnd =
4534               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4535           if (Start >= AbsEnd)
4536             // No need to describe a SROAed padding.
4537             continue;
4538           Size = std::min(Size, AbsEnd - Start);
4539         }
4540         // The new, smaller fragment is stenciled out from the old fragment.
4541         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4542           assert(Start >= OrigFragment->OffsetInBits &&
4543                  "new fragment is outside of original fragment");
4544           Start -= OrigFragment->OffsetInBits;
4545         }
4546 
4547         // The alloca may be larger than the variable.
4548         auto VarSize = DbgDeclare->getVariable()->getSizeInBits();
4549         if (VarSize) {
4550           if (Size > *VarSize)
4551             Size = *VarSize;
4552           if (Size == 0 || Start + Size > *VarSize)
4553             continue;
4554         }
4555 
4556         // Avoid creating a fragment expression that covers the entire variable.
4557         if (!VarSize || *VarSize != Size) {
4558           if (auto E =
4559                   DIExpression::createFragmentExpression(Expr, Start, Size))
4560             FragmentExpr = *E;
4561           else
4562             continue;
4563         }
4564       }
4565 
4566       // Remove any existing intrinsics on the new alloca describing
4567       // the variable fragment.
4568       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca)) {
4569         auto SameVariableFragment = [](const DbgVariableIntrinsic *LHS,
4570                                        const DbgVariableIntrinsic *RHS) {
4571           return LHS->getVariable() == RHS->getVariable() &&
4572                  LHS->getDebugLoc()->getInlinedAt() ==
4573                      RHS->getDebugLoc()->getInlinedAt();
4574         };
4575         if (SameVariableFragment(OldDII, DbgDeclare))
4576           OldDII->eraseFromParent();
4577       }
4578 
4579       DIB.insertDeclare(Fragment.Alloca, DbgDeclare->getVariable(), FragmentExpr,
4580                         DbgDeclare->getDebugLoc(), &AI);
4581     }
4582   }
4583   return Changed;
4584 }
4585 
4586 /// Clobber a use with undef, deleting the used value if it becomes dead.
clobberUse(Use & U)4587 void SROA::clobberUse(Use &U) {
4588   Value *OldV = U;
4589   // Replace the use with an undef value.
4590   U = UndefValue::get(OldV->getType());
4591 
4592   // Check for this making an instruction dead. We have to garbage collect
4593   // all the dead instructions to ensure the uses of any alloca end up being
4594   // minimal.
4595   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4596     if (isInstructionTriviallyDead(OldI)) {
4597       DeadInsts.push_back(OldI);
4598     }
4599 }
4600 
4601 /// Analyze an alloca for SROA.
4602 ///
4603 /// This analyzes the alloca to ensure we can reason about it, builds
4604 /// the slices of the alloca, and then hands it off to be split and
4605 /// rewritten as needed.
runOnAlloca(AllocaInst & AI)4606 bool SROA::runOnAlloca(AllocaInst &AI) {
4607   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4608   ++NumAllocasAnalyzed;
4609 
4610   // Special case dead allocas, as they're trivial.
4611   if (AI.use_empty()) {
4612     AI.eraseFromParent();
4613     return true;
4614   }
4615   const DataLayout &DL = AI.getModule()->getDataLayout();
4616 
4617   // Skip alloca forms that this analysis can't handle.
4618   auto *AT = AI.getAllocatedType();
4619   if (AI.isArrayAllocation() || !AT->isSized() || isa<ScalableVectorType>(AT) ||
4620       DL.getTypeAllocSize(AT).getFixedSize() == 0)
4621     return false;
4622 
4623   bool Changed = false;
4624 
4625   // First, split any FCA loads and stores touching this alloca to promote
4626   // better splitting and promotion opportunities.
4627   AggLoadStoreRewriter AggRewriter(DL);
4628   Changed |= AggRewriter.rewrite(AI);
4629 
4630   // Build the slices using a recursive instruction-visiting builder.
4631   AllocaSlices AS(DL, AI);
4632   LLVM_DEBUG(AS.print(dbgs()));
4633   if (AS.isEscaped())
4634     return Changed;
4635 
4636   // Delete all the dead users of this alloca before splitting and rewriting it.
4637   for (Instruction *DeadUser : AS.getDeadUsers()) {
4638     // Free up everything used by this instruction.
4639     for (Use &DeadOp : DeadUser->operands())
4640       clobberUse(DeadOp);
4641 
4642     // Now replace the uses of this instruction.
4643     DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4644 
4645     // And mark it for deletion.
4646     DeadInsts.push_back(DeadUser);
4647     Changed = true;
4648   }
4649   for (Use *DeadOp : AS.getDeadOperands()) {
4650     clobberUse(*DeadOp);
4651     Changed = true;
4652   }
4653 
4654   // No slices to split. Leave the dead alloca for a later pass to clean up.
4655   if (AS.begin() == AS.end())
4656     return Changed;
4657 
4658   Changed |= splitAlloca(AI, AS);
4659 
4660   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4661   while (!SpeculatablePHIs.empty())
4662     speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4663 
4664   LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4665   while (!SpeculatableSelects.empty())
4666     speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4667 
4668   return Changed;
4669 }
4670 
4671 /// Delete the dead instructions accumulated in this run.
4672 ///
4673 /// Recursively deletes the dead instructions we've accumulated. This is done
4674 /// at the very end to maximize locality of the recursive delete and to
4675 /// minimize the problems of invalidated instruction pointers as such pointers
4676 /// are used heavily in the intermediate stages of the algorithm.
4677 ///
4678 /// We also record the alloca instructions deleted here so that they aren't
4679 /// subsequently handed to mem2reg to promote.
deleteDeadInstructions(SmallPtrSetImpl<AllocaInst * > & DeletedAllocas)4680 bool SROA::deleteDeadInstructions(
4681     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4682   bool Changed = false;
4683   while (!DeadInsts.empty()) {
4684     Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
4685     if (!I) continue;
4686     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4687 
4688     // If the instruction is an alloca, find the possible dbg.declare connected
4689     // to it, and remove it too. We must do this before calling RAUW or we will
4690     // not be able to find it.
4691     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4692       DeletedAllocas.insert(AI);
4693       for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4694         OldDII->eraseFromParent();
4695     }
4696 
4697     I->replaceAllUsesWith(UndefValue::get(I->getType()));
4698 
4699     for (Use &Operand : I->operands())
4700       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4701         // Zero out the operand and see if it becomes trivially dead.
4702         Operand = nullptr;
4703         if (isInstructionTriviallyDead(U))
4704           DeadInsts.push_back(U);
4705       }
4706 
4707     ++NumDeleted;
4708     I->eraseFromParent();
4709     Changed = true;
4710   }
4711   return Changed;
4712 }
4713 
4714 /// Promote the allocas, using the best available technique.
4715 ///
4716 /// This attempts to promote whatever allocas have been identified as viable in
4717 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4718 /// This function returns whether any promotion occurred.
promoteAllocas(Function & F)4719 bool SROA::promoteAllocas(Function &F) {
4720   if (PromotableAllocas.empty())
4721     return false;
4722 
4723   NumPromoted += PromotableAllocas.size();
4724 
4725   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4726   PromoteMemToReg(PromotableAllocas, *DT, AC);
4727   PromotableAllocas.clear();
4728   return true;
4729 }
4730 
runImpl(Function & F,DominatorTree & RunDT,AssumptionCache & RunAC)4731 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4732                                 AssumptionCache &RunAC) {
4733   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4734   C = &F.getContext();
4735   DT = &RunDT;
4736   AC = &RunAC;
4737 
4738   BasicBlock &EntryBB = F.getEntryBlock();
4739   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4740        I != E; ++I) {
4741     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4742       if (isa<ScalableVectorType>(AI->getAllocatedType())) {
4743         if (isAllocaPromotable(AI))
4744           PromotableAllocas.push_back(AI);
4745       } else {
4746         Worklist.insert(AI);
4747       }
4748     }
4749   }
4750 
4751   bool Changed = false;
4752   // A set of deleted alloca instruction pointers which should be removed from
4753   // the list of promotable allocas.
4754   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4755 
4756   do {
4757     while (!Worklist.empty()) {
4758       Changed |= runOnAlloca(*Worklist.pop_back_val());
4759       Changed |= deleteDeadInstructions(DeletedAllocas);
4760 
4761       // Remove the deleted allocas from various lists so that we don't try to
4762       // continue processing them.
4763       if (!DeletedAllocas.empty()) {
4764         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4765         Worklist.remove_if(IsInSet);
4766         PostPromotionWorklist.remove_if(IsInSet);
4767         llvm::erase_if(PromotableAllocas, IsInSet);
4768         DeletedAllocas.clear();
4769       }
4770     }
4771 
4772     Changed |= promoteAllocas(F);
4773 
4774     Worklist = PostPromotionWorklist;
4775     PostPromotionWorklist.clear();
4776   } while (!Worklist.empty());
4777 
4778   if (!Changed)
4779     return PreservedAnalyses::all();
4780 
4781   PreservedAnalyses PA;
4782   PA.preserveSet<CFGAnalyses>();
4783   return PA;
4784 }
4785 
run(Function & F,FunctionAnalysisManager & AM)4786 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4787   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4788                  AM.getResult<AssumptionAnalysis>(F));
4789 }
4790 
4791 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4792 ///
4793 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4794 /// SROA pass.
4795 class llvm::sroa::SROALegacyPass : public FunctionPass {
4796   /// The SROA implementation.
4797   SROA Impl;
4798 
4799 public:
4800   static char ID;
4801 
SROALegacyPass()4802   SROALegacyPass() : FunctionPass(ID) {
4803     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4804   }
4805 
runOnFunction(Function & F)4806   bool runOnFunction(Function &F) override {
4807     if (skipFunction(F))
4808       return false;
4809 
4810     auto PA = Impl.runImpl(
4811         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4812         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4813     return !PA.areAllPreserved();
4814   }
4815 
getAnalysisUsage(AnalysisUsage & AU) const4816   void getAnalysisUsage(AnalysisUsage &AU) const override {
4817     AU.addRequired<AssumptionCacheTracker>();
4818     AU.addRequired<DominatorTreeWrapperPass>();
4819     AU.addPreserved<GlobalsAAWrapperPass>();
4820     AU.setPreservesCFG();
4821   }
4822 
getPassName() const4823   StringRef getPassName() const override { return "SROA"; }
4824 };
4825 
4826 char SROALegacyPass::ID = 0;
4827 
createSROAPass()4828 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4829 
4830 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4831                       "Scalar Replacement Of Aggregates", false, false)
4832 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4833 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4834 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4835                     false, false)
4836