xref: /netbsd-src/sys/arch/sandpoint/stand/altboot/skg.c (revision bb6df0b9c35e420f32a76cf78175fd7f3016a7bf)
1 /* $NetBSD: skg.c,v 1.5 2017/08/03 19:51:00 phx Exp $ */
2 
3 /*-
4  * Copyright (c) 2010 Frank Wille.
5  * All rights reserved.
6  *
7  * Written by Frank Wille for The NetBSD Project.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <sys/param.h>
32 
33 #include <netinet/in.h>
34 #include <netinet/in_systm.h>
35 
36 #include <lib/libsa/stand.h>
37 #include <lib/libsa/net.h>
38 
39 #include "globals.h"
40 
41 /*
42  * - reverse endian access every CSR.
43  * - no vtophys() translation, vaddr_t == paddr_t.
44  * - PIPT writeback cache aware.
45  */
46 #define CSR_WRITE_1(l, r, v)	out8((l)->csr+(r), (v))
47 #define CSR_READ_1(l, r)	in8((l)->csr+(r))
48 #define CSR_WRITE_2(l, r, v)	out16rb((l)->csr+(r), (v))
49 #define CSR_READ_2(l, r)	in16rb((l)->csr+(r))
50 #define CSR_WRITE_4(l, r, v)	out32rb((l)->csr+(r), (v))
51 #define CSR_READ_4(l, r)	in32rb((l)->csr+(r))
52 #define VTOPHYS(va)		(uint32_t)(va)
53 #define DEVTOV(pa)		(uint32_t)(pa)
54 #define wbinv(adr, siz)		_wbinv(VTOPHYS(adr), (uint32_t)(siz))
55 #define inv(adr, siz)		_inv(VTOPHYS(adr), (uint32_t)(siz))
56 #define DELAY(n)		delay(n)
57 #define ALLOC(T,A)		(T *)allocaligned(sizeof(T),(A))
58 
59 struct desc {
60 	uint32_t xd0, xd1, xd2, xd3, xd4;
61 	uint32_t rsrvd[3];
62 };
63 #define CTL_LS			0x20000000
64 #define CTL_FS			0x40000000
65 #define CTL_OWN			0x80000000
66 #define CTL_DEFOPC		0x00550000
67 #define FRAMEMASK		0x0000ffff
68 #define RXSTAT_RXOK		0x00000100
69 
70 #define SK_CSR			0x0004
71 #define  CSR_SW_RESET		0x0001
72 #define  CSR_SW_UNRESET		0x0002
73 #define  CSR_MASTER_RESET	0x0004
74 #define  CSR_MASTER_UNRESET	0x0008
75 #define SK_IMR			0x000c
76 #define SK_BMU_RX_CSR0		0x0060
77 #define SK_BMU_TXS_CSR0		0x0068
78 #define SK_MAC0			0x0100
79 #define SK_MAC1			0x0108
80 #define SK_GPIO			0x015c
81 #define SK_RAMCTL		0x01a0
82 #define SK_TXAR1_COUNTERCTL	0x0210
83 #define  TXARCTL_ON		0x02
84 #define  TXARCTL_FSYNC_ON       0x80
85 #define SK_RXQ1_CURADDR_LO	0x0420
86 #define SK_RXQ1_CURADDR_HI	0x0424
87 #define SK_RXQ1_BMU_CSR		0x0434
88 #define  RXBMU_CLR_IRQ_EOF		0x00000002
89 #define  RXBMU_RX_START			0x00000010
90 #define  RXBMU_RX_STOP			0x00000020
91 #define  RXBMU_POLL_ON			0x00000080
92 #define  RXBMU_TRANSFER_SM_UNRESET	0x00000200
93 #define  RXBMU_DESCWR_SM_UNRESET	0x00000800
94 #define  RXBMU_DESCRD_SM_UNRESET	0x00002000
95 #define  RXBMU_SUPERVISOR_SM_UNRESET	0x00008000
96 #define  RXBMU_PFI_SM_UNRESET		0x00020000
97 #define  RXBMU_FIFO_UNRESET		0x00080000
98 #define  RXBMU_DESC_UNRESET		0x00200000
99 #define SK_TXQS1_CURADDR_LO	0x0620
100 #define SK_TXQS1_CURADDR_HI	0x0624
101 #define SK_TXQS1_BMU_CSR	0x0634
102 #define  TXBMU_CLR_IRQ_EOF		0x00000002
103 #define  TXBMU_TX_START			0x00000010
104 #define  TXBMU_TX_STOP			0x00000020
105 #define  TXBMU_POLL_ON			0x00000080
106 #define  TXBMU_TRANSFER_SM_UNRESET	0x00000200
107 #define  TXBMU_DESCWR_SM_UNRESET	0x00000800
108 #define  TXBMU_DESCRD_SM_UNRESET	0x00002000
109 #define  TXBMU_SUPERVISOR_SM_UNRESET	0x00008000
110 #define  TXBMU_PFI_SM_UNRESET		0x00020000
111 #define  TXBMU_FIFO_UNRESET		0x00080000
112 #define  TXBMU_DESC_UNRESET		0x00200000
113 #define SK_RXRB1_START		0x0800
114 #define SK_RXRB1_END		0x0804
115 #define SK_RXRB1_WR_PTR		0x0808
116 #define SK_RXRB1_RD_PTR		0x080c
117 #define SK_RXRB1_CTLTST		0x0828
118 #define  RBCTL_UNRESET		0x02
119 #define  RBCTL_ON		0x08
120 #define  RBCTL_STORENFWD_ON	0x20
121 #define SK_TXRBS1_START		0x0a00
122 #define SK_TXRBS1_END		0x0a04
123 #define SK_TXRBS1_WR_PTR	0x0a08
124 #define SK_TXRBS1_RD_PTR	0x0a0c
125 #define SK_TXRBS1_CTLTST	0x0a28
126 #define SK_RXMF1_CTRL_TEST	0x0c48
127 #define  RFCTL_OPERATION_ON	0x00000008
128 #define  RFCTL_RESET_CLEAR	0x00000002
129 #define SK_TXMF1_CTRL_TEST	0x0D48
130 #define  TFCTL_OPERATION_ON	0x00000008
131 #define  TFCTL_RESET_CLEAR	0x00000002
132 #define SK_GMAC_CTRL		0x0f00
133 #define  GMAC_LOOP_OFF		0x00000010
134 #define  GMAC_PAUSE_ON		0x00000008
135 #define  GMAC_RESET_CLEAR	0x00000002
136 #define  GMAC_RESET_SET		0x00000001
137 #define SK_GPHY_CTRL		0x0f04
138 #define  GPHY_INT_POL_HI	0x08000000
139 #define  GPHY_DIS_FC		0x02000000
140 #define  GPHY_DIS_SLEEP		0x01000000
141 #define  GPHY_ENA_XC		0x00040000
142 #define  GPHY_ENA_PAUSE		0x00002000
143 #define  GPHY_RESET_CLEAR	0x00000002
144 #define  GPHY_RESET_SET		0x00000001
145 #define  GPHY_ANEG_ALL		0x0009c000
146 #define  GPHY_COPPER		0x00f00000
147 #define SK_LINK_CTRL		0x0f10
148 #define  LINK_RESET_CLEAR	0x0002
149 #define  LINK_RESET_SET		0x0001
150 
151 #define YUKON_GPCR		0x2804
152 #define  GPCR_TXEN		0x1000
153 #define  GPCR_RXEN		0x0800
154 #define YUKON_SA1		0x281c
155 #define YUKON_SA2		0x2828
156 #define YUKON_SMICR		0x2880
157 #define  SMICR_PHYAD(x)		(((x) & 0x1f) << 11)
158 #define  SMICR_REGAD(x)		(((x) & 0x1f) << 6)
159 #define  SMICR_OP_READ		0x0020
160 #define  SMICR_OP_WRITE		0x0000
161 #define  SMICR_READ_VALID	0x0010
162 #define  SMICR_BUSY		0x0008
163 #define YUKON_SMIDR		0x2884
164 
165 #define MII_PSSR		0x11	/* MAKPHY status register */
166 #define  PSSR_DUPLEX		0x2000	/* FDX */
167 #define  PSSR_RESOLVED		0x0800	/* speed and duplex resolved */
168 #define  PSSR_LINK		0x0400  /* link indication */
169 #define  PSSR_SPEED(x)		(((x) >> 14) & 0x3)
170 #define  SPEED10		0
171 #define  SPEED100		1
172 #define  SPEED1000 		2
173 
174 #define FRAMESIZE	1536
175 
176 struct local {
177 	struct desc txd[2];
178 	struct desc rxd[2];
179 	uint8_t rxstore[2][FRAMESIZE];
180 	unsigned csr, rx, tx, phy;
181 	uint16_t pssr, anlpar;
182 };
183 
184 static int mii_read(struct local *, int, int);
185 static void mii_write(struct local *, int, int, int);
186 static void mii_initphy(struct local *);
187 static void mii_dealan(struct local *, unsigned);
188 
189 int
skg_match(unsigned tag,void * data)190 skg_match(unsigned tag, void *data)
191 {
192 	unsigned v;
193 
194 	v = pcicfgread(tag, PCI_ID_REG);
195 	switch (v) {
196 	case PCI_DEVICE(0x1148, 0x4320):
197 	case PCI_DEVICE(0x11ab, 0x4320):
198 		return 1;
199 	}
200 	return 0;
201 }
202 
203 void *
skg_init(unsigned tag,void * data)204 skg_init(unsigned tag, void *data)
205 {
206 	struct local *l;
207 	struct desc *txd, *rxd;
208 	uint8_t *en;
209 	unsigned i;
210 	uint16_t reg;
211 
212 	l = ALLOC(struct local, 32);	/* desc alignment */
213 	memset(l, 0, sizeof(struct local));
214 	l->csr = DEVTOV(pcicfgread(tag, 0x10)); /* use mem space */
215 
216 	/* make sure the descriptor bytes are not reversed */
217 	i = pcicfgread(tag, 0x44);
218 	pcicfgwrite(tag, 0x44, i & ~4);
219 
220 	/* reset the chip */
221 	CSR_WRITE_2(l, SK_CSR, CSR_SW_RESET);
222 	CSR_WRITE_2(l, SK_CSR, CSR_MASTER_RESET);
223 	CSR_WRITE_2(l, SK_LINK_CTRL, LINK_RESET_SET);
224 	DELAY(1000);
225 	CSR_WRITE_2(l, SK_CSR, CSR_SW_UNRESET);
226 	DELAY(2);
227 	CSR_WRITE_2(l, SK_CSR, CSR_MASTER_UNRESET);
228 	CSR_WRITE_2(l, SK_LINK_CTRL, LINK_RESET_CLEAR);
229 	CSR_WRITE_4(l, SK_RAMCTL, 2);	/* enable RAM interface */
230 
231 	mii_initphy(l);
232 
233 	/* read ethernet address */
234 	en = data;
235 	if (brdtype == BRD_SYNOLOGY)
236 		read_mac_from_flash(en);
237 	else
238 		for (i = 0; i < 6; i++)
239 			en[i] = CSR_READ_1(l, SK_MAC0 + i);
240 	printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
241 	    en[0], en[1], en[2], en[3], en[4], en[5]);
242 	DPRINTF(("PHY %d (%04x.%04x)\n", l->phy,
243 	    mii_read(l, l->phy, 2), mii_read(l, l->phy, 3)));
244 
245 	/* set station address */
246 	for (i = 0; i < 3; i++)
247 		CSR_WRITE_2(l, YUKON_SA1 + i * 4,
248 		    (en[i * 2] << 8) | en[i * 2 + 1]);
249 
250 	/* configure RX and TX MAC FIFO */
251 	CSR_WRITE_1(l, SK_RXMF1_CTRL_TEST, RFCTL_RESET_CLEAR);
252 	CSR_WRITE_4(l, SK_RXMF1_CTRL_TEST, RFCTL_OPERATION_ON);
253 	CSR_WRITE_1(l, SK_TXMF1_CTRL_TEST, TFCTL_RESET_CLEAR);
254 	CSR_WRITE_4(l, SK_TXMF1_CTRL_TEST, TFCTL_OPERATION_ON);
255 
256 	mii_dealan(l, 5);
257 
258 	switch (PSSR_SPEED(l->pssr)) {
259 	case SPEED1000:
260 		printf("1000Mbps");
261 		break;
262 	case SPEED100:
263 		printf("100Mbps");
264 		break;
265 	case SPEED10:
266 		printf("10Mbps");
267 		break;
268 	}
269 	if (l->pssr & PSSR_DUPLEX)
270 		printf("-FDX");
271 	printf("\n");
272 
273 	/* configure RAM buffers, assuming 64k RAM */
274 	CSR_WRITE_4(l, SK_RXRB1_CTLTST, RBCTL_UNRESET);
275 	CSR_WRITE_4(l, SK_RXRB1_START, 0);
276 	CSR_WRITE_4(l, SK_RXRB1_WR_PTR, 0);
277 	CSR_WRITE_4(l, SK_RXRB1_RD_PTR, 0);
278 	CSR_WRITE_4(l, SK_RXRB1_END, 0xfff);
279 	CSR_WRITE_4(l, SK_RXRB1_CTLTST, RBCTL_ON);
280 	CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_UNRESET);
281 	CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_STORENFWD_ON);
282 	CSR_WRITE_4(l, SK_TXRBS1_START, 0x1000);
283 	CSR_WRITE_4(l, SK_TXRBS1_WR_PTR, 0x1000);
284 	CSR_WRITE_4(l, SK_TXRBS1_RD_PTR, 0x1000);
285 	CSR_WRITE_4(l, SK_TXRBS1_END, 0x1fff);
286 	CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_ON);
287 
288 	/* setup descriptors and BMU */
289 	CSR_WRITE_1(l, SK_TXAR1_COUNTERCTL, TXARCTL_ON|TXARCTL_FSYNC_ON);
290 
291 	txd = &l->txd[0];
292 	txd[0].xd1 = htole32(VTOPHYS(&txd[1]));
293 	txd[1].xd1 = htole32(VTOPHYS(&txd[0]));
294 	rxd = &l->rxd[0];
295 	rxd[0].xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN);
296 	rxd[0].xd1 = htole32(VTOPHYS(&rxd[1]));
297 	rxd[0].xd2 = htole32(VTOPHYS(l->rxstore[0]));
298 	rxd[1].xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN);
299 	rxd[1].xd1 = htole32(VTOPHYS(&rxd[0]));
300 	rxd[1].xd2 = htole32(VTOPHYS(l->rxstore[1]));
301 	wbinv(l, sizeof(struct local));
302 
303 	CSR_WRITE_4(l, SK_RXQ1_BMU_CSR,
304 	    RXBMU_TRANSFER_SM_UNRESET|RXBMU_DESCWR_SM_UNRESET|
305 	    RXBMU_DESCRD_SM_UNRESET|RXBMU_SUPERVISOR_SM_UNRESET|
306 	    RXBMU_PFI_SM_UNRESET|RXBMU_FIFO_UNRESET|
307 	    RXBMU_DESC_UNRESET);
308 	CSR_WRITE_4(l, SK_RXQ1_CURADDR_LO, VTOPHYS(rxd));
309 	CSR_WRITE_4(l, SK_RXQ1_CURADDR_HI, 0);
310 
311 	CSR_WRITE_4(l, SK_TXQS1_BMU_CSR,
312 	    TXBMU_TRANSFER_SM_UNRESET|TXBMU_DESCWR_SM_UNRESET|
313 	    TXBMU_DESCRD_SM_UNRESET|TXBMU_SUPERVISOR_SM_UNRESET|
314 	    TXBMU_PFI_SM_UNRESET|TXBMU_FIFO_UNRESET|
315 	    TXBMU_DESC_UNRESET|TXBMU_POLL_ON);
316 	CSR_WRITE_4(l, SK_TXQS1_CURADDR_LO, VTOPHYS(txd));
317 	CSR_WRITE_4(l, SK_TXQS1_CURADDR_HI, 0);
318 
319 	CSR_WRITE_4(l, SK_IMR, 0);
320 	CSR_WRITE_4(l, SK_RXQ1_BMU_CSR, RXBMU_RX_START);
321 	reg = CSR_READ_2(l, YUKON_GPCR);
322 	reg |= GPCR_TXEN | GPCR_RXEN;
323 	CSR_WRITE_2(l, YUKON_GPCR, reg);
324 
325 	return l;
326 }
327 
328 int
skg_send(void * dev,char * buf,unsigned len)329 skg_send(void *dev, char *buf, unsigned len)
330 {
331 	struct local *l = dev;
332 	volatile struct desc *txd;
333 	unsigned loop;
334 
335 	wbinv(buf, len);
336 	txd = &l->txd[l->tx];
337 	txd->xd2 = htole32(VTOPHYS(buf));
338 	txd->xd0 = htole32((len & FRAMEMASK)|CTL_DEFOPC|CTL_FS|CTL_LS|CTL_OWN);
339 	wbinv(txd, sizeof(struct desc));
340 	CSR_WRITE_4(l, SK_BMU_TXS_CSR0, TXBMU_TX_START);
341 	loop = 100;
342 	do {
343 		if ((le32toh(txd->xd0) & CTL_OWN) == 0)
344 			goto done;
345 		DELAY(10);
346 		inv(txd, sizeof(struct desc));
347 	} while (--loop > 0);
348 	printf("xmit failed\n");
349 	return -1;
350   done:
351 	l->tx ^= 1;
352 	return len;
353 }
354 
355 int
skg_recv(void * dev,char * buf,unsigned maxlen,unsigned timo)356 skg_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
357 {
358 	struct local *l = dev;
359 	volatile struct desc *rxd;
360 	unsigned bound, ctl, rxstat, len;
361 	uint8_t *ptr;
362 
363 	bound = 1000 * timo;
364 #if 0
365 printf("recving with %u sec. timeout\n", timo);
366 #endif
367   again:
368 	rxd = &l->rxd[l->rx];
369 	do {
370 		inv(rxd, sizeof(struct desc));
371 		ctl = le32toh(rxd->xd0);
372 		if ((ctl & CTL_OWN) == 0)
373 			goto gotone;
374 		DELAY(1000);	/* 1 milli second */
375 	} while (--bound > 0);
376 	errno = 0;
377 	return -1;
378   gotone:
379   	rxstat = le32toh(rxd->xd4);
380 	if ((rxstat & RXSTAT_RXOK) == 0) {
381 		rxd->xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN);
382 		wbinv(rxd, sizeof(struct desc));
383 		l->rx ^= 1;
384 		goto again;
385 	}
386 	len = ctl & FRAMEMASK;
387 	if (len > maxlen)
388 		len = maxlen;
389 	ptr = l->rxstore[l->rx];
390 	inv(ptr, len);
391 	memcpy(buf, ptr, len);
392 	rxd->xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN);
393 	wbinv(rxd, sizeof(struct desc));
394 	l->rx ^= 1;
395 	return len;
396 }
397 
398 static int
mii_read(struct local * l,int phy,int reg)399 mii_read(struct local *l, int phy, int reg)
400 {
401 	unsigned loop, v;
402 
403 	CSR_WRITE_2(l, YUKON_SMICR, SMICR_PHYAD(phy) | SMICR_REGAD(reg) |
404 	    SMICR_OP_READ);
405 	loop = 1000;
406 	do {
407 		DELAY(1);
408 		v = CSR_READ_2(l, YUKON_SMICR);
409 	} while ((v & SMICR_READ_VALID) == 0 && --loop);
410 	if (loop == 0) {
411 		printf("mii_read timeout!\n");
412 		return 0;
413 	}
414 	return CSR_READ_2(l, YUKON_SMIDR);
415 }
416 
417 static void
mii_write(struct local * l,int phy,int reg,int data)418 mii_write(struct local *l, int phy, int reg, int data)
419 {
420 	unsigned loop, v;
421 
422 	CSR_WRITE_2(l, YUKON_SMIDR, data);
423 	CSR_WRITE_2(l, YUKON_SMICR, SMICR_PHYAD(phy) | SMICR_REGAD(reg) |
424 	    SMICR_OP_WRITE);
425 	loop = 1000;
426 	do {
427 		DELAY(1);
428 		v = CSR_READ_2(l, YUKON_SMICR);
429 	} while ((v & SMICR_BUSY) != 0 && --loop);
430 	if (loop == 0)
431 		printf("mii_write timeout!\n");
432 }
433 
434 #define MII_BMCR	0x00	/* Basic mode control register (rw) */
435 #define  BMCR_AUTOEN	0x1000	/* autonegotiation enable */
436 #define  BMCR_STARTNEG	0x0200	/* restart autonegotiation */
437 #define MII_BMSR	0x01	/* Basic mode status register (ro) */
438 #define  BMSR_ACOMP	0x0020	/* Autonegotiation complete */
439 #define  BMSR_LINK	0x0004	/* Link status */
440 #define MII_ANAR	0x04	/* Autonegotiation advertisement (rw) */
441 #define  ANAR_FC	0x0400	/* local device supports PAUSE */
442 #define  ANAR_TX_FD	0x0100	/* local device supports 100bTx FD */
443 #define  ANAR_TX	0x0080	/* local device supports 100bTx */
444 #define  ANAR_10_FD	0x0040	/* local device supports 10bT FD */
445 #define  ANAR_10	0x0020	/* local device supports 10bT */
446 #define  ANAR_CSMA	0x0001	/* protocol selector CSMA/CD */
447 #define MII_ANLPAR	0x05	/* Autonegotiation lnk partner abilities (rw) */
448 #define MII_GTCR	0x09	/* 1000baseT control */
449 #define  GANA_1000TFDX	0x0200	/* advertise 1000baseT FDX */
450 #define  GANA_1000THDX	0x0100	/* advertise 1000baseT HDX */
451 #define MII_GTSR	0x0a	/* 1000baseT status */
452 #define  GLPA_1000TFDX	0x0800	/* link partner 1000baseT FDX capable */
453 #define  GLPA_1000THDX	0x0400	/* link partner 1000baseT HDX capable */
454 
455 static void
mii_initphy(struct local * l)456 mii_initphy(struct local *l)
457 {
458 	unsigned val;
459 
460 	l->phy = 0;
461 
462 	/* take PHY out of reset */
463 	val = CSR_READ_4(l, SK_GPIO);
464 	CSR_WRITE_4(l, SK_GPIO, (val | 0x2000000) & ~0x200);
465 
466 	/* GMAC and GPHY reset */
467 	CSR_WRITE_4(l, SK_GPHY_CTRL, GPHY_RESET_SET);
468 	CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_SET);
469 	DELAY(1000);
470 	CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_CLEAR);
471 	CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_SET);
472 	DELAY(1000);
473 
474 	val = GPHY_INT_POL_HI | GPHY_DIS_FC | GPHY_DIS_SLEEP | GPHY_ENA_XC |
475 	    GPHY_ANEG_ALL | GPHY_ENA_PAUSE | GPHY_COPPER;
476 	CSR_WRITE_4(l, SK_GPHY_CTRL, val | GPHY_RESET_SET);
477 	DELAY(1000);
478 	CSR_WRITE_4(l, SK_GPHY_CTRL, val | GPHY_RESET_CLEAR);
479 	CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_LOOP_OFF | GMAC_PAUSE_ON |
480 	    GMAC_RESET_CLEAR);
481 }
482 
483 static void
mii_dealan(struct local * l,unsigned timo)484 mii_dealan(struct local *l, unsigned timo)
485 {
486 	unsigned bmsr, bound;
487 
488 	mii_write(l, l->phy, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
489 	    ANAR_10 | ANAR_CSMA | ANAR_FC);
490 	mii_write(l, l->phy, MII_GTCR, GANA_1000TFDX | GANA_1000THDX);
491 	mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
492 	l->anlpar = 0;
493 	bound = getsecs() + timo;
494 	do {
495 		bmsr = mii_read(l, l->phy, MII_BMSR) |
496 		   mii_read(l, l->phy, MII_BMSR); /* read twice */
497 		if ((bmsr & BMSR_LINK) && (bmsr & BMSR_ACOMP)) {
498 			l->pssr = mii_read(l, l->phy, MII_PSSR);
499 			l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
500 			if ((l->pssr & PSSR_RESOLVED) == 0)
501 				continue;
502 			break;
503 		}
504 		DELAY(10 * 1000);
505 	} while (getsecs() < bound);
506 }
507