1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/FloatingPointMode.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/Analysis/AssumeBundleQueries.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/IntrinsicsAArch64.h"
49 #include "llvm/IR/IntrinsicsAMDGPU.h"
50 #include "llvm/IR/IntrinsicsARM.h"
51 #include "llvm/IR/IntrinsicsHexagon.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Statepoint.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/KnownBits.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
70 #include "llvm/Transforms/InstCombine/InstCombiner.h"
71 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <cstring>
78 #include <utility>
79 #include <vector>
80
81 using namespace llvm;
82 using namespace PatternMatch;
83
84 #define DEBUG_TYPE "instcombine"
85
86 STATISTIC(NumSimplified, "Number of library calls simplified");
87
88 static cl::opt<unsigned> GuardWideningWindow(
89 "instcombine-guard-widening-window",
90 cl::init(3),
91 cl::desc("How wide an instruction window to bypass looking for "
92 "another guard"));
93
94 namespace llvm {
95 /// enable preservation of attributes in assume like:
96 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
97 extern cl::opt<bool> EnableKnowledgeRetention;
98 } // namespace llvm
99
100 /// Return the specified type promoted as it would be to pass though a va_arg
101 /// area.
getPromotedType(Type * Ty)102 static Type *getPromotedType(Type *Ty) {
103 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
104 if (ITy->getBitWidth() < 32)
105 return Type::getInt32Ty(Ty->getContext());
106 }
107 return Ty;
108 }
109
SimplifyAnyMemTransfer(AnyMemTransferInst * MI)110 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
111 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
112 MaybeAlign CopyDstAlign = MI->getDestAlign();
113 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
114 MI->setDestAlignment(DstAlign);
115 return MI;
116 }
117
118 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
119 MaybeAlign CopySrcAlign = MI->getSourceAlign();
120 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
121 MI->setSourceAlignment(SrcAlign);
122 return MI;
123 }
124
125 // If we have a store to a location which is known constant, we can conclude
126 // that the store must be storing the constant value (else the memory
127 // wouldn't be constant), and this must be a noop.
128 if (AA->pointsToConstantMemory(MI->getDest())) {
129 // Set the size of the copy to 0, it will be deleted on the next iteration.
130 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
131 return MI;
132 }
133
134 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
135 // load/store.
136 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
137 if (!MemOpLength) return nullptr;
138
139 // Source and destination pointer types are always "i8*" for intrinsic. See
140 // if the size is something we can handle with a single primitive load/store.
141 // A single load+store correctly handles overlapping memory in the memmove
142 // case.
143 uint64_t Size = MemOpLength->getLimitedValue();
144 assert(Size && "0-sized memory transferring should be removed already.");
145
146 if (Size > 8 || (Size&(Size-1)))
147 return nullptr; // If not 1/2/4/8 bytes, exit.
148
149 // If it is an atomic and alignment is less than the size then we will
150 // introduce the unaligned memory access which will be later transformed
151 // into libcall in CodeGen. This is not evident performance gain so disable
152 // it now.
153 if (isa<AtomicMemTransferInst>(MI))
154 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
155 return nullptr;
156
157 // Use an integer load+store unless we can find something better.
158 unsigned SrcAddrSp =
159 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
160 unsigned DstAddrSp =
161 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
162
163 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
164 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
165 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
166
167 // If the memcpy has metadata describing the members, see if we can get the
168 // TBAA tag describing our copy.
169 MDNode *CopyMD = nullptr;
170 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
171 CopyMD = M;
172 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
173 if (M->getNumOperands() == 3 && M->getOperand(0) &&
174 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
175 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
176 M->getOperand(1) &&
177 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
178 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
179 Size &&
180 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
181 CopyMD = cast<MDNode>(M->getOperand(2));
182 }
183
184 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
185 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
186 LoadInst *L = Builder.CreateLoad(IntType, Src);
187 // Alignment from the mem intrinsic will be better, so use it.
188 L->setAlignment(*CopySrcAlign);
189 if (CopyMD)
190 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
191 MDNode *LoopMemParallelMD =
192 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
193 if (LoopMemParallelMD)
194 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
195 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
196 if (AccessGroupMD)
197 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
198
199 StoreInst *S = Builder.CreateStore(L, Dest);
200 // Alignment from the mem intrinsic will be better, so use it.
201 S->setAlignment(*CopyDstAlign);
202 if (CopyMD)
203 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
204 if (LoopMemParallelMD)
205 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
206 if (AccessGroupMD)
207 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
208
209 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
210 // non-atomics can be volatile
211 L->setVolatile(MT->isVolatile());
212 S->setVolatile(MT->isVolatile());
213 }
214 if (isa<AtomicMemTransferInst>(MI)) {
215 // atomics have to be unordered
216 L->setOrdering(AtomicOrdering::Unordered);
217 S->setOrdering(AtomicOrdering::Unordered);
218 }
219
220 // Set the size of the copy to 0, it will be deleted on the next iteration.
221 MI->setLength(Constant::getNullValue(MemOpLength->getType()));
222 return MI;
223 }
224
SimplifyAnyMemSet(AnyMemSetInst * MI)225 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
226 const Align KnownAlignment =
227 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
228 MaybeAlign MemSetAlign = MI->getDestAlign();
229 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
230 MI->setDestAlignment(KnownAlignment);
231 return MI;
232 }
233
234 // If we have a store to a location which is known constant, we can conclude
235 // that the store must be storing the constant value (else the memory
236 // wouldn't be constant), and this must be a noop.
237 if (AA->pointsToConstantMemory(MI->getDest())) {
238 // Set the size of the copy to 0, it will be deleted on the next iteration.
239 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
240 return MI;
241 }
242
243 // Extract the length and alignment and fill if they are constant.
244 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
245 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
246 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
247 return nullptr;
248 const uint64_t Len = LenC->getLimitedValue();
249 assert(Len && "0-sized memory setting should be removed already.");
250 const Align Alignment = assumeAligned(MI->getDestAlignment());
251
252 // If it is an atomic and alignment is less than the size then we will
253 // introduce the unaligned memory access which will be later transformed
254 // into libcall in CodeGen. This is not evident performance gain so disable
255 // it now.
256 if (isa<AtomicMemSetInst>(MI))
257 if (Alignment < Len)
258 return nullptr;
259
260 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
261 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
262 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
263
264 Value *Dest = MI->getDest();
265 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
266 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
267 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
268
269 // Extract the fill value and store.
270 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
271 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
272 MI->isVolatile());
273 S->setAlignment(Alignment);
274 if (isa<AtomicMemSetInst>(MI))
275 S->setOrdering(AtomicOrdering::Unordered);
276
277 // Set the size of the copy to 0, it will be deleted on the next iteration.
278 MI->setLength(Constant::getNullValue(LenC->getType()));
279 return MI;
280 }
281
282 return nullptr;
283 }
284
285 // TODO, Obvious Missing Transforms:
286 // * Narrow width by halfs excluding zero/undef lanes
simplifyMaskedLoad(IntrinsicInst & II)287 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
288 Value *LoadPtr = II.getArgOperand(0);
289 const Align Alignment =
290 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
291
292 // If the mask is all ones or undefs, this is a plain vector load of the 1st
293 // argument.
294 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
295 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
296 "unmaskedload");
297 L->copyMetadata(II);
298 return L;
299 }
300
301 // If we can unconditionally load from this address, replace with a
302 // load/select idiom. TODO: use DT for context sensitive query
303 if (isDereferenceablePointer(LoadPtr, II.getType(),
304 II.getModule()->getDataLayout(), &II, nullptr)) {
305 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
306 "unmaskedload");
307 LI->copyMetadata(II);
308 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
309 }
310
311 return nullptr;
312 }
313
314 // TODO, Obvious Missing Transforms:
315 // * Single constant active lane -> store
316 // * Narrow width by halfs excluding zero/undef lanes
simplifyMaskedStore(IntrinsicInst & II)317 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
318 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
319 if (!ConstMask)
320 return nullptr;
321
322 // If the mask is all zeros, this instruction does nothing.
323 if (ConstMask->isNullValue())
324 return eraseInstFromFunction(II);
325
326 // If the mask is all ones, this is a plain vector store of the 1st argument.
327 if (ConstMask->isAllOnesValue()) {
328 Value *StorePtr = II.getArgOperand(1);
329 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
330 StoreInst *S =
331 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
332 S->copyMetadata(II);
333 return S;
334 }
335
336 if (isa<ScalableVectorType>(ConstMask->getType()))
337 return nullptr;
338
339 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
340 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
341 APInt UndefElts(DemandedElts.getBitWidth(), 0);
342 if (Value *V =
343 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
344 return replaceOperand(II, 0, V);
345
346 return nullptr;
347 }
348
349 // TODO, Obvious Missing Transforms:
350 // * Single constant active lane load -> load
351 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
352 // * Adjacent vector addresses -> masked.load
353 // * Narrow width by halfs excluding zero/undef lanes
354 // * Vector splat address w/known mask -> scalar load
355 // * Vector incrementing address -> vector masked load
simplifyMaskedGather(IntrinsicInst & II)356 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
357 return nullptr;
358 }
359
360 // TODO, Obvious Missing Transforms:
361 // * Single constant active lane -> store
362 // * Adjacent vector addresses -> masked.store
363 // * Narrow store width by halfs excluding zero/undef lanes
364 // * Vector splat address w/known mask -> scalar store
365 // * Vector incrementing address -> vector masked store
simplifyMaskedScatter(IntrinsicInst & II)366 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
367 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
368 if (!ConstMask)
369 return nullptr;
370
371 // If the mask is all zeros, a scatter does nothing.
372 if (ConstMask->isNullValue())
373 return eraseInstFromFunction(II);
374
375 if (isa<ScalableVectorType>(ConstMask->getType()))
376 return nullptr;
377
378 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
379 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
380 APInt UndefElts(DemandedElts.getBitWidth(), 0);
381 if (Value *V =
382 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
383 return replaceOperand(II, 0, V);
384 if (Value *V =
385 SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
386 return replaceOperand(II, 1, V);
387
388 return nullptr;
389 }
390
391 /// This function transforms launder.invariant.group and strip.invariant.group
392 /// like:
393 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
394 /// launder(strip(%x)) -> launder(%x)
395 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
396 /// strip(launder(%x)) -> strip(%x)
397 /// This is legal because it preserves the most recent information about
398 /// the presence or absence of invariant.group.
simplifyInvariantGroupIntrinsic(IntrinsicInst & II,InstCombinerImpl & IC)399 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
400 InstCombinerImpl &IC) {
401 auto *Arg = II.getArgOperand(0);
402 auto *StrippedArg = Arg->stripPointerCasts();
403 auto *StrippedInvariantGroupsArg = StrippedArg;
404 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
405 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
406 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
407 break;
408 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
409 }
410 if (StrippedArg == StrippedInvariantGroupsArg)
411 return nullptr; // No launders/strips to remove.
412
413 Value *Result = nullptr;
414
415 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
416 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
417 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
418 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
419 else
420 llvm_unreachable(
421 "simplifyInvariantGroupIntrinsic only handles launder and strip");
422 if (Result->getType()->getPointerAddressSpace() !=
423 II.getType()->getPointerAddressSpace())
424 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
425 if (Result->getType() != II.getType())
426 Result = IC.Builder.CreateBitCast(Result, II.getType());
427
428 return cast<Instruction>(Result);
429 }
430
foldCttzCtlz(IntrinsicInst & II,InstCombinerImpl & IC)431 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
432 assert((II.getIntrinsicID() == Intrinsic::cttz ||
433 II.getIntrinsicID() == Intrinsic::ctlz) &&
434 "Expected cttz or ctlz intrinsic");
435 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
436 Value *Op0 = II.getArgOperand(0);
437 Value *Op1 = II.getArgOperand(1);
438 Value *X;
439 // ctlz(bitreverse(x)) -> cttz(x)
440 // cttz(bitreverse(x)) -> ctlz(x)
441 if (match(Op0, m_BitReverse(m_Value(X)))) {
442 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
443 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
444 return CallInst::Create(F, {X, II.getArgOperand(1)});
445 }
446
447 if (IsTZ) {
448 // cttz(-x) -> cttz(x)
449 if (match(Op0, m_Neg(m_Value(X))))
450 return IC.replaceOperand(II, 0, X);
451
452 // cttz(sext(x)) -> cttz(zext(x))
453 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
454 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
455 auto *CttzZext =
456 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
457 return IC.replaceInstUsesWith(II, CttzZext);
458 }
459
460 // Zext doesn't change the number of trailing zeros, so narrow:
461 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsUndef' parameter is 'true'.
462 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
463 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
464 IC.Builder.getTrue());
465 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
466 return IC.replaceInstUsesWith(II, ZextCttz);
467 }
468
469 // cttz(abs(x)) -> cttz(x)
470 // cttz(nabs(x)) -> cttz(x)
471 Value *Y;
472 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
473 if (SPF == SPF_ABS || SPF == SPF_NABS)
474 return IC.replaceOperand(II, 0, X);
475
476 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
477 return IC.replaceOperand(II, 0, X);
478 }
479
480 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
481
482 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
483 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
484 : Known.countMaxLeadingZeros();
485 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
486 : Known.countMinLeadingZeros();
487
488 // If all bits above (ctlz) or below (cttz) the first known one are known
489 // zero, this value is constant.
490 // FIXME: This should be in InstSimplify because we're replacing an
491 // instruction with a constant.
492 if (PossibleZeros == DefiniteZeros) {
493 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
494 return IC.replaceInstUsesWith(II, C);
495 }
496
497 // If the input to cttz/ctlz is known to be non-zero,
498 // then change the 'ZeroIsUndef' parameter to 'true'
499 // because we know the zero behavior can't affect the result.
500 if (!Known.One.isNullValue() ||
501 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
502 &IC.getDominatorTree())) {
503 if (!match(II.getArgOperand(1), m_One()))
504 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
505 }
506
507 // Add range metadata since known bits can't completely reflect what we know.
508 // TODO: Handle splat vectors.
509 auto *IT = dyn_cast<IntegerType>(Op0->getType());
510 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
511 Metadata *LowAndHigh[] = {
512 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
513 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
514 II.setMetadata(LLVMContext::MD_range,
515 MDNode::get(II.getContext(), LowAndHigh));
516 return &II;
517 }
518
519 return nullptr;
520 }
521
foldCtpop(IntrinsicInst & II,InstCombinerImpl & IC)522 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
523 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
524 "Expected ctpop intrinsic");
525 Type *Ty = II.getType();
526 unsigned BitWidth = Ty->getScalarSizeInBits();
527 Value *Op0 = II.getArgOperand(0);
528 Value *X, *Y;
529
530 // ctpop(bitreverse(x)) -> ctpop(x)
531 // ctpop(bswap(x)) -> ctpop(x)
532 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
533 return IC.replaceOperand(II, 0, X);
534
535 // ctpop(rot(x)) -> ctpop(x)
536 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
537 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
538 X == Y)
539 return IC.replaceOperand(II, 0, X);
540
541 // ctpop(x | -x) -> bitwidth - cttz(x, false)
542 if (Op0->hasOneUse() &&
543 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
544 Function *F =
545 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
546 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
547 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
548 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
549 }
550
551 // ctpop(~x & (x - 1)) -> cttz(x, false)
552 if (match(Op0,
553 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
554 Function *F =
555 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
556 return CallInst::Create(F, {X, IC.Builder.getFalse()});
557 }
558
559 // Zext doesn't change the number of set bits, so narrow:
560 // ctpop (zext X) --> zext (ctpop X)
561 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
562 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
563 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
564 }
565
566 KnownBits Known(BitWidth);
567 IC.computeKnownBits(Op0, Known, 0, &II);
568
569 // If all bits are zero except for exactly one fixed bit, then the result
570 // must be 0 or 1, and we can get that answer by shifting to LSB:
571 // ctpop (X & 32) --> (X & 32) >> 5
572 if ((~Known.Zero).isPowerOf2())
573 return BinaryOperator::CreateLShr(
574 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
575
576 // FIXME: Try to simplify vectors of integers.
577 auto *IT = dyn_cast<IntegerType>(Ty);
578 if (!IT)
579 return nullptr;
580
581 // Add range metadata since known bits can't completely reflect what we know.
582 unsigned MinCount = Known.countMinPopulation();
583 unsigned MaxCount = Known.countMaxPopulation();
584 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
585 Metadata *LowAndHigh[] = {
586 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
587 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
588 II.setMetadata(LLVMContext::MD_range,
589 MDNode::get(II.getContext(), LowAndHigh));
590 return &II;
591 }
592
593 return nullptr;
594 }
595
596 /// Convert a table lookup to shufflevector if the mask is constant.
597 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
598 /// which case we could lower the shufflevector with rev64 instructions
599 /// as it's actually a byte reverse.
simplifyNeonTbl1(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)600 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
601 InstCombiner::BuilderTy &Builder) {
602 // Bail out if the mask is not a constant.
603 auto *C = dyn_cast<Constant>(II.getArgOperand(1));
604 if (!C)
605 return nullptr;
606
607 auto *VecTy = cast<FixedVectorType>(II.getType());
608 unsigned NumElts = VecTy->getNumElements();
609
610 // Only perform this transformation for <8 x i8> vector types.
611 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
612 return nullptr;
613
614 int Indexes[8];
615
616 for (unsigned I = 0; I < NumElts; ++I) {
617 Constant *COp = C->getAggregateElement(I);
618
619 if (!COp || !isa<ConstantInt>(COp))
620 return nullptr;
621
622 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
623
624 // Make sure the mask indices are in range.
625 if ((unsigned)Indexes[I] >= NumElts)
626 return nullptr;
627 }
628
629 auto *V1 = II.getArgOperand(0);
630 auto *V2 = Constant::getNullValue(V1->getType());
631 return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes));
632 }
633
634 // Returns true iff the 2 intrinsics have the same operands, limiting the
635 // comparison to the first NumOperands.
haveSameOperands(const IntrinsicInst & I,const IntrinsicInst & E,unsigned NumOperands)636 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
637 unsigned NumOperands) {
638 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
639 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
640 for (unsigned i = 0; i < NumOperands; i++)
641 if (I.getArgOperand(i) != E.getArgOperand(i))
642 return false;
643 return true;
644 }
645
646 // Remove trivially empty start/end intrinsic ranges, i.e. a start
647 // immediately followed by an end (ignoring debuginfo or other
648 // start/end intrinsics in between). As this handles only the most trivial
649 // cases, tracking the nesting level is not needed:
650 //
651 // call @llvm.foo.start(i1 0)
652 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
653 // call @llvm.foo.end(i1 0)
654 // call @llvm.foo.end(i1 0) ; &I
655 static bool
removeTriviallyEmptyRange(IntrinsicInst & EndI,InstCombinerImpl & IC,std::function<bool (const IntrinsicInst &)> IsStart)656 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
657 std::function<bool(const IntrinsicInst &)> IsStart) {
658 // We start from the end intrinsic and scan backwards, so that InstCombine
659 // has already processed (and potentially removed) all the instructions
660 // before the end intrinsic.
661 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
662 for (; BI != BE; ++BI) {
663 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
664 if (isa<DbgInfoIntrinsic>(I) ||
665 I->getIntrinsicID() == EndI.getIntrinsicID())
666 continue;
667 if (IsStart(*I)) {
668 if (haveSameOperands(EndI, *I, EndI.getNumArgOperands())) {
669 IC.eraseInstFromFunction(*I);
670 IC.eraseInstFromFunction(EndI);
671 return true;
672 }
673 // Skip start intrinsics that don't pair with this end intrinsic.
674 continue;
675 }
676 }
677 break;
678 }
679
680 return false;
681 }
682
visitVAEndInst(VAEndInst & I)683 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
684 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
685 return I.getIntrinsicID() == Intrinsic::vastart ||
686 I.getIntrinsicID() == Intrinsic::vacopy;
687 });
688 return nullptr;
689 }
690
canonicalizeConstantArg0ToArg1(CallInst & Call)691 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
692 assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
693 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
694 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
695 Call.setArgOperand(0, Arg1);
696 Call.setArgOperand(1, Arg0);
697 return &Call;
698 }
699 return nullptr;
700 }
701
702 /// Creates a result tuple for an overflow intrinsic \p II with a given
703 /// \p Result and a constant \p Overflow value.
createOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)704 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
705 Constant *Overflow) {
706 Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
707 StructType *ST = cast<StructType>(II->getType());
708 Constant *Struct = ConstantStruct::get(ST, V);
709 return InsertValueInst::Create(Struct, Result, 0);
710 }
711
712 Instruction *
foldIntrinsicWithOverflowCommon(IntrinsicInst * II)713 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
714 WithOverflowInst *WO = cast<WithOverflowInst>(II);
715 Value *OperationResult = nullptr;
716 Constant *OverflowResult = nullptr;
717 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
718 WO->getRHS(), *WO, OperationResult, OverflowResult))
719 return createOverflowTuple(WO, OperationResult, OverflowResult);
720 return nullptr;
721 }
722
getKnownSign(Value * Op,Instruction * CxtI,const DataLayout & DL,AssumptionCache * AC,DominatorTree * DT)723 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
724 const DataLayout &DL, AssumptionCache *AC,
725 DominatorTree *DT) {
726 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
727 if (Known.isNonNegative())
728 return false;
729 if (Known.isNegative())
730 return true;
731
732 return isImpliedByDomCondition(
733 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
734 }
735
736 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
737 /// can only be one of two possible constant values -- turn that into a select
738 /// of constants.
foldClampRangeOfTwo(IntrinsicInst * II,InstCombiner::BuilderTy & Builder)739 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
740 InstCombiner::BuilderTy &Builder) {
741 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
742 Value *X;
743 const APInt *C0, *C1;
744 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
745 return nullptr;
746
747 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
748 switch (II->getIntrinsicID()) {
749 case Intrinsic::smax:
750 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
751 Pred = ICmpInst::ICMP_SGT;
752 break;
753 case Intrinsic::smin:
754 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
755 Pred = ICmpInst::ICMP_SLT;
756 break;
757 case Intrinsic::umax:
758 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
759 Pred = ICmpInst::ICMP_UGT;
760 break;
761 case Intrinsic::umin:
762 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
763 Pred = ICmpInst::ICMP_ULT;
764 break;
765 default:
766 llvm_unreachable("Expected min/max intrinsic");
767 }
768 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
769 return nullptr;
770
771 // max (min X, 42), 41 --> X > 41 ? 42 : 41
772 // min (max X, 42), 43 --> X < 43 ? 42 : 43
773 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
774 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
775 }
776
777 /// CallInst simplification. This mostly only handles folding of intrinsic
778 /// instructions. For normal calls, it allows visitCallBase to do the heavy
779 /// lifting.
visitCallInst(CallInst & CI)780 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
781 // Don't try to simplify calls without uses. It will not do anything useful,
782 // but will result in the following folds being skipped.
783 if (!CI.use_empty())
784 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
785 return replaceInstUsesWith(CI, V);
786
787 if (isFreeCall(&CI, &TLI))
788 return visitFree(CI);
789
790 // If the caller function is nounwind, mark the call as nounwind, even if the
791 // callee isn't.
792 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
793 CI.setDoesNotThrow();
794 return &CI;
795 }
796
797 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
798 if (!II) return visitCallBase(CI);
799
800 // For atomic unordered mem intrinsics if len is not a positive or
801 // not a multiple of element size then behavior is undefined.
802 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
803 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
804 if (NumBytes->getSExtValue() < 0 ||
805 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
806 CreateNonTerminatorUnreachable(AMI);
807 assert(AMI->getType()->isVoidTy() &&
808 "non void atomic unordered mem intrinsic");
809 return eraseInstFromFunction(*AMI);
810 }
811
812 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
813 // instead of in visitCallBase.
814 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
815 bool Changed = false;
816
817 // memmove/cpy/set of zero bytes is a noop.
818 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
819 if (NumBytes->isNullValue())
820 return eraseInstFromFunction(CI);
821
822 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
823 if (CI->getZExtValue() == 1) {
824 // Replace the instruction with just byte operations. We would
825 // transform other cases to loads/stores, but we don't know if
826 // alignment is sufficient.
827 }
828 }
829
830 // No other transformations apply to volatile transfers.
831 if (auto *M = dyn_cast<MemIntrinsic>(MI))
832 if (M->isVolatile())
833 return nullptr;
834
835 // If we have a memmove and the source operation is a constant global,
836 // then the source and dest pointers can't alias, so we can change this
837 // into a call to memcpy.
838 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
839 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
840 if (GVSrc->isConstant()) {
841 Module *M = CI.getModule();
842 Intrinsic::ID MemCpyID =
843 isa<AtomicMemMoveInst>(MMI)
844 ? Intrinsic::memcpy_element_unordered_atomic
845 : Intrinsic::memcpy;
846 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
847 CI.getArgOperand(1)->getType(),
848 CI.getArgOperand(2)->getType() };
849 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
850 Changed = true;
851 }
852 }
853
854 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
855 // memmove(x,x,size) -> noop.
856 if (MTI->getSource() == MTI->getDest())
857 return eraseInstFromFunction(CI);
858 }
859
860 // If we can determine a pointer alignment that is bigger than currently
861 // set, update the alignment.
862 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
863 if (Instruction *I = SimplifyAnyMemTransfer(MTI))
864 return I;
865 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
866 if (Instruction *I = SimplifyAnyMemSet(MSI))
867 return I;
868 }
869
870 if (Changed) return II;
871 }
872
873 // For fixed width vector result intrinsics, use the generic demanded vector
874 // support.
875 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
876 auto VWidth = IIFVTy->getNumElements();
877 APInt UndefElts(VWidth, 0);
878 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
879 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
880 if (V != II)
881 return replaceInstUsesWith(*II, V);
882 return II;
883 }
884 }
885
886 if (II->isCommutative()) {
887 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
888 return NewCall;
889 }
890
891 Intrinsic::ID IID = II->getIntrinsicID();
892 switch (IID) {
893 case Intrinsic::objectsize:
894 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
895 return replaceInstUsesWith(CI, V);
896 return nullptr;
897 case Intrinsic::abs: {
898 Value *IIOperand = II->getArgOperand(0);
899 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
900
901 // abs(-x) -> abs(x)
902 // TODO: Copy nsw if it was present on the neg?
903 Value *X;
904 if (match(IIOperand, m_Neg(m_Value(X))))
905 return replaceOperand(*II, 0, X);
906 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
907 return replaceOperand(*II, 0, X);
908 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
909 return replaceOperand(*II, 0, X);
910
911 if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) {
912 // abs(x) -> x if x >= 0
913 if (!*Sign)
914 return replaceInstUsesWith(*II, IIOperand);
915
916 // abs(x) -> -x if x < 0
917 if (IntMinIsPoison)
918 return BinaryOperator::CreateNSWNeg(IIOperand);
919 return BinaryOperator::CreateNeg(IIOperand);
920 }
921
922 // abs (sext X) --> zext (abs X*)
923 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
924 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
925 Value *NarrowAbs =
926 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
927 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
928 }
929
930 // Match a complicated way to check if a number is odd/even:
931 // abs (srem X, 2) --> and X, 1
932 const APInt *C;
933 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
934 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
935
936 break;
937 }
938 case Intrinsic::umax:
939 case Intrinsic::umin: {
940 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
941 Value *X, *Y;
942 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
943 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
944 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
945 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
946 }
947 Constant *C;
948 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
949 I0->hasOneUse()) {
950 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
951 if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) {
952 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
953 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
954 }
955 }
956 // If both operands of unsigned min/max are sign-extended, it is still ok
957 // to narrow the operation.
958 LLVM_FALLTHROUGH;
959 }
960 case Intrinsic::smax:
961 case Intrinsic::smin: {
962 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
963 Value *X, *Y;
964 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
965 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
966 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
967 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
968 }
969
970 Constant *C;
971 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
972 I0->hasOneUse()) {
973 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
974 if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) {
975 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
976 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
977 }
978 }
979
980 if (match(I0, m_Not(m_Value(X)))) {
981 // max (not X), (not Y) --> not (min X, Y)
982 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
983 if (match(I1, m_Not(m_Value(Y))) &&
984 (I0->hasOneUse() || I1->hasOneUse())) {
985 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
986 return BinaryOperator::CreateNot(InvMaxMin);
987 }
988 // max (not X), C --> not(min X, ~C)
989 if (match(I1, m_Constant(C)) && I0->hasOneUse()) {
990 Constant *NotC = ConstantExpr::getNot(C);
991 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotC);
992 return BinaryOperator::CreateNot(InvMaxMin);
993 }
994 }
995
996 // smax(X, -X) --> abs(X)
997 // smin(X, -X) --> -abs(X)
998 // umax(X, -X) --> -abs(X)
999 // umin(X, -X) --> abs(X)
1000 if (isKnownNegation(I0, I1)) {
1001 // We can choose either operand as the input to abs(), but if we can
1002 // eliminate the only use of a value, that's better for subsequent
1003 // transforms/analysis.
1004 if (I0->hasOneUse() && !I1->hasOneUse())
1005 std::swap(I0, I1);
1006
1007 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1008 // operation and potentially its negation.
1009 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1010 Value *Abs = Builder.CreateBinaryIntrinsic(
1011 Intrinsic::abs, I0,
1012 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1013
1014 // We don't have a "nabs" intrinsic, so negate if needed based on the
1015 // max/min operation.
1016 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1017 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1018 return replaceInstUsesWith(CI, Abs);
1019 }
1020
1021 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1022 return Sel;
1023
1024 break;
1025 }
1026 case Intrinsic::bswap: {
1027 Value *IIOperand = II->getArgOperand(0);
1028 Value *X = nullptr;
1029
1030 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1031 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1032 unsigned C = X->getType()->getScalarSizeInBits() -
1033 IIOperand->getType()->getScalarSizeInBits();
1034 Value *CV = ConstantInt::get(X->getType(), C);
1035 Value *V = Builder.CreateLShr(X, CV);
1036 return new TruncInst(V, IIOperand->getType());
1037 }
1038 break;
1039 }
1040 case Intrinsic::masked_load:
1041 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1042 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1043 break;
1044 case Intrinsic::masked_store:
1045 return simplifyMaskedStore(*II);
1046 case Intrinsic::masked_gather:
1047 return simplifyMaskedGather(*II);
1048 case Intrinsic::masked_scatter:
1049 return simplifyMaskedScatter(*II);
1050 case Intrinsic::launder_invariant_group:
1051 case Intrinsic::strip_invariant_group:
1052 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1053 return replaceInstUsesWith(*II, SkippedBarrier);
1054 break;
1055 case Intrinsic::powi:
1056 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1057 // 0 and 1 are handled in instsimplify
1058 // powi(x, -1) -> 1/x
1059 if (Power->isMinusOne())
1060 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1061 II->getArgOperand(0), II);
1062 // powi(x, 2) -> x*x
1063 if (Power->equalsInt(2))
1064 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1065 II->getArgOperand(0), II);
1066 }
1067 break;
1068
1069 case Intrinsic::cttz:
1070 case Intrinsic::ctlz:
1071 if (auto *I = foldCttzCtlz(*II, *this))
1072 return I;
1073 break;
1074
1075 case Intrinsic::ctpop:
1076 if (auto *I = foldCtpop(*II, *this))
1077 return I;
1078 break;
1079
1080 case Intrinsic::fshl:
1081 case Intrinsic::fshr: {
1082 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1083 Type *Ty = II->getType();
1084 unsigned BitWidth = Ty->getScalarSizeInBits();
1085 Constant *ShAmtC;
1086 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) &&
1087 !ShAmtC->containsConstantExpression()) {
1088 // Canonicalize a shift amount constant operand to modulo the bit-width.
1089 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1090 Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
1091 if (ModuloC != ShAmtC)
1092 return replaceOperand(*II, 2, ModuloC);
1093
1094 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1095 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1096 "Shift amount expected to be modulo bitwidth");
1097
1098 // Canonicalize funnel shift right by constant to funnel shift left. This
1099 // is not entirely arbitrary. For historical reasons, the backend may
1100 // recognize rotate left patterns but miss rotate right patterns.
1101 if (IID == Intrinsic::fshr) {
1102 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1103 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1104 Module *Mod = II->getModule();
1105 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1106 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1107 }
1108 assert(IID == Intrinsic::fshl &&
1109 "All funnel shifts by simple constants should go left");
1110
1111 // fshl(X, 0, C) --> shl X, C
1112 // fshl(X, undef, C) --> shl X, C
1113 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1114 return BinaryOperator::CreateShl(Op0, ShAmtC);
1115
1116 // fshl(0, X, C) --> lshr X, (BW-C)
1117 // fshl(undef, X, C) --> lshr X, (BW-C)
1118 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1119 return BinaryOperator::CreateLShr(Op1,
1120 ConstantExpr::getSub(WidthC, ShAmtC));
1121
1122 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1123 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1124 Module *Mod = II->getModule();
1125 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1126 return CallInst::Create(Bswap, { Op0 });
1127 }
1128 }
1129
1130 // Left or right might be masked.
1131 if (SimplifyDemandedInstructionBits(*II))
1132 return &CI;
1133
1134 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1135 // so only the low bits of the shift amount are demanded if the bitwidth is
1136 // a power-of-2.
1137 if (!isPowerOf2_32(BitWidth))
1138 break;
1139 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
1140 KnownBits Op2Known(BitWidth);
1141 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
1142 return &CI;
1143 break;
1144 }
1145 case Intrinsic::uadd_with_overflow:
1146 case Intrinsic::sadd_with_overflow: {
1147 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1148 return I;
1149
1150 // Given 2 constant operands whose sum does not overflow:
1151 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
1152 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
1153 Value *X;
1154 const APInt *C0, *C1;
1155 Value *Arg0 = II->getArgOperand(0);
1156 Value *Arg1 = II->getArgOperand(1);
1157 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
1158 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
1159 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
1160 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
1161 bool Overflow;
1162 APInt NewC =
1163 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
1164 if (!Overflow)
1165 return replaceInstUsesWith(
1166 *II, Builder.CreateBinaryIntrinsic(
1167 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
1168 }
1169 break;
1170 }
1171
1172 case Intrinsic::umul_with_overflow:
1173 case Intrinsic::smul_with_overflow:
1174 case Intrinsic::usub_with_overflow:
1175 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1176 return I;
1177 break;
1178
1179 case Intrinsic::ssub_with_overflow: {
1180 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1181 return I;
1182
1183 Constant *C;
1184 Value *Arg0 = II->getArgOperand(0);
1185 Value *Arg1 = II->getArgOperand(1);
1186 // Given a constant C that is not the minimum signed value
1187 // for an integer of a given bit width:
1188 //
1189 // ssubo X, C -> saddo X, -C
1190 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
1191 Value *NegVal = ConstantExpr::getNeg(C);
1192 // Build a saddo call that is equivalent to the discovered
1193 // ssubo call.
1194 return replaceInstUsesWith(
1195 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
1196 Arg0, NegVal));
1197 }
1198
1199 break;
1200 }
1201
1202 case Intrinsic::uadd_sat:
1203 case Intrinsic::sadd_sat:
1204 case Intrinsic::usub_sat:
1205 case Intrinsic::ssub_sat: {
1206 SaturatingInst *SI = cast<SaturatingInst>(II);
1207 Type *Ty = SI->getType();
1208 Value *Arg0 = SI->getLHS();
1209 Value *Arg1 = SI->getRHS();
1210
1211 // Make use of known overflow information.
1212 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
1213 Arg0, Arg1, SI);
1214 switch (OR) {
1215 case OverflowResult::MayOverflow:
1216 break;
1217 case OverflowResult::NeverOverflows:
1218 if (SI->isSigned())
1219 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
1220 else
1221 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
1222 case OverflowResult::AlwaysOverflowsLow: {
1223 unsigned BitWidth = Ty->getScalarSizeInBits();
1224 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
1225 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
1226 }
1227 case OverflowResult::AlwaysOverflowsHigh: {
1228 unsigned BitWidth = Ty->getScalarSizeInBits();
1229 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
1230 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
1231 }
1232 }
1233
1234 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
1235 Constant *C;
1236 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
1237 C->isNotMinSignedValue()) {
1238 Value *NegVal = ConstantExpr::getNeg(C);
1239 return replaceInstUsesWith(
1240 *II, Builder.CreateBinaryIntrinsic(
1241 Intrinsic::sadd_sat, Arg0, NegVal));
1242 }
1243
1244 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
1245 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
1246 // if Val and Val2 have the same sign
1247 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
1248 Value *X;
1249 const APInt *Val, *Val2;
1250 APInt NewVal;
1251 bool IsUnsigned =
1252 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
1253 if (Other->getIntrinsicID() == IID &&
1254 match(Arg1, m_APInt(Val)) &&
1255 match(Other->getArgOperand(0), m_Value(X)) &&
1256 match(Other->getArgOperand(1), m_APInt(Val2))) {
1257 if (IsUnsigned)
1258 NewVal = Val->uadd_sat(*Val2);
1259 else if (Val->isNonNegative() == Val2->isNonNegative()) {
1260 bool Overflow;
1261 NewVal = Val->sadd_ov(*Val2, Overflow);
1262 if (Overflow) {
1263 // Both adds together may add more than SignedMaxValue
1264 // without saturating the final result.
1265 break;
1266 }
1267 } else {
1268 // Cannot fold saturated addition with different signs.
1269 break;
1270 }
1271
1272 return replaceInstUsesWith(
1273 *II, Builder.CreateBinaryIntrinsic(
1274 IID, X, ConstantInt::get(II->getType(), NewVal)));
1275 }
1276 }
1277 break;
1278 }
1279
1280 case Intrinsic::minnum:
1281 case Intrinsic::maxnum:
1282 case Intrinsic::minimum:
1283 case Intrinsic::maximum: {
1284 Value *Arg0 = II->getArgOperand(0);
1285 Value *Arg1 = II->getArgOperand(1);
1286 Value *X, *Y;
1287 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
1288 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
1289 // If both operands are negated, invert the call and negate the result:
1290 // min(-X, -Y) --> -(max(X, Y))
1291 // max(-X, -Y) --> -(min(X, Y))
1292 Intrinsic::ID NewIID;
1293 switch (IID) {
1294 case Intrinsic::maxnum:
1295 NewIID = Intrinsic::minnum;
1296 break;
1297 case Intrinsic::minnum:
1298 NewIID = Intrinsic::maxnum;
1299 break;
1300 case Intrinsic::maximum:
1301 NewIID = Intrinsic::minimum;
1302 break;
1303 case Intrinsic::minimum:
1304 NewIID = Intrinsic::maximum;
1305 break;
1306 default:
1307 llvm_unreachable("unexpected intrinsic ID");
1308 }
1309 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
1310 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
1311 FNeg->copyIRFlags(II);
1312 return FNeg;
1313 }
1314
1315 // m(m(X, C2), C1) -> m(X, C)
1316 const APFloat *C1, *C2;
1317 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
1318 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
1319 ((match(M->getArgOperand(0), m_Value(X)) &&
1320 match(M->getArgOperand(1), m_APFloat(C2))) ||
1321 (match(M->getArgOperand(1), m_Value(X)) &&
1322 match(M->getArgOperand(0), m_APFloat(C2))))) {
1323 APFloat Res(0.0);
1324 switch (IID) {
1325 case Intrinsic::maxnum:
1326 Res = maxnum(*C1, *C2);
1327 break;
1328 case Intrinsic::minnum:
1329 Res = minnum(*C1, *C2);
1330 break;
1331 case Intrinsic::maximum:
1332 Res = maximum(*C1, *C2);
1333 break;
1334 case Intrinsic::minimum:
1335 Res = minimum(*C1, *C2);
1336 break;
1337 default:
1338 llvm_unreachable("unexpected intrinsic ID");
1339 }
1340 Instruction *NewCall = Builder.CreateBinaryIntrinsic(
1341 IID, X, ConstantFP::get(Arg0->getType(), Res), II);
1342 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
1343 // was a simplification (so Arg0 and its original flags could
1344 // propagate?)
1345 NewCall->andIRFlags(M);
1346 return replaceInstUsesWith(*II, NewCall);
1347 }
1348 }
1349
1350 Value *ExtSrc0;
1351 Value *ExtSrc1;
1352
1353 // minnum (fpext x), (fpext y) -> minnum x, y
1354 // maxnum (fpext x), (fpext y) -> maxnum x, y
1355 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc0)))) &&
1356 match(II->getArgOperand(1), m_OneUse(m_FPExt(m_Value(ExtSrc1)))) &&
1357 ExtSrc0->getType() == ExtSrc1->getType()) {
1358 Function *F = Intrinsic::getDeclaration(
1359 II->getModule(), II->getIntrinsicID(), {ExtSrc0->getType()});
1360 CallInst *NewCall = Builder.CreateCall(F, { ExtSrc0, ExtSrc1 });
1361 NewCall->copyFastMathFlags(II);
1362 NewCall->takeName(II);
1363 return new FPExtInst(NewCall, II->getType());
1364 }
1365
1366 break;
1367 }
1368 case Intrinsic::fmuladd: {
1369 // Canonicalize fast fmuladd to the separate fmul + fadd.
1370 if (II->isFast()) {
1371 BuilderTy::FastMathFlagGuard Guard(Builder);
1372 Builder.setFastMathFlags(II->getFastMathFlags());
1373 Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
1374 II->getArgOperand(1));
1375 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
1376 Add->takeName(II);
1377 return replaceInstUsesWith(*II, Add);
1378 }
1379
1380 // Try to simplify the underlying FMul.
1381 if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
1382 II->getFastMathFlags(),
1383 SQ.getWithInstruction(II))) {
1384 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1385 FAdd->copyFastMathFlags(II);
1386 return FAdd;
1387 }
1388
1389 LLVM_FALLTHROUGH;
1390 }
1391 case Intrinsic::fma: {
1392 // fma fneg(x), fneg(y), z -> fma x, y, z
1393 Value *Src0 = II->getArgOperand(0);
1394 Value *Src1 = II->getArgOperand(1);
1395 Value *X, *Y;
1396 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
1397 replaceOperand(*II, 0, X);
1398 replaceOperand(*II, 1, Y);
1399 return II;
1400 }
1401
1402 // fma fabs(x), fabs(x), z -> fma x, x, z
1403 if (match(Src0, m_FAbs(m_Value(X))) &&
1404 match(Src1, m_FAbs(m_Specific(X)))) {
1405 replaceOperand(*II, 0, X);
1406 replaceOperand(*II, 1, X);
1407 return II;
1408 }
1409
1410 // Try to simplify the underlying FMul. We can only apply simplifications
1411 // that do not require rounding.
1412 if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
1413 II->getFastMathFlags(),
1414 SQ.getWithInstruction(II))) {
1415 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1416 FAdd->copyFastMathFlags(II);
1417 return FAdd;
1418 }
1419
1420 // fma x, y, 0 -> fmul x, y
1421 // This is always valid for -0.0, but requires nsz for +0.0 as
1422 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
1423 if (match(II->getArgOperand(2), m_NegZeroFP()) ||
1424 (match(II->getArgOperand(2), m_PosZeroFP()) &&
1425 II->getFastMathFlags().noSignedZeros()))
1426 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
1427
1428 break;
1429 }
1430 case Intrinsic::copysign: {
1431 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
1432 if (SignBitMustBeZero(Sign, &TLI)) {
1433 // If we know that the sign argument is positive, reduce to FABS:
1434 // copysign Mag, +Sign --> fabs Mag
1435 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1436 return replaceInstUsesWith(*II, Fabs);
1437 }
1438 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
1439 const APFloat *C;
1440 if (match(Sign, m_APFloat(C)) && C->isNegative()) {
1441 // If we know that the sign argument is negative, reduce to FNABS:
1442 // copysign Mag, -Sign --> fneg (fabs Mag)
1443 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1444 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
1445 }
1446
1447 // Propagate sign argument through nested calls:
1448 // copysign Mag, (copysign ?, X) --> copysign Mag, X
1449 Value *X;
1450 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
1451 return replaceOperand(*II, 1, X);
1452
1453 // Peek through changes of magnitude's sign-bit. This call rewrites those:
1454 // copysign (fabs X), Sign --> copysign X, Sign
1455 // copysign (fneg X), Sign --> copysign X, Sign
1456 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
1457 return replaceOperand(*II, 0, X);
1458
1459 break;
1460 }
1461 case Intrinsic::fabs: {
1462 Value *Cond, *TVal, *FVal;
1463 if (match(II->getArgOperand(0),
1464 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
1465 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
1466 if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
1467 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
1468 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
1469 return SelectInst::Create(Cond, AbsT, AbsF);
1470 }
1471 // fabs (select Cond, -FVal, FVal) --> fabs FVal
1472 if (match(TVal, m_FNeg(m_Specific(FVal))))
1473 return replaceOperand(*II, 0, FVal);
1474 // fabs (select Cond, TVal, -TVal) --> fabs TVal
1475 if (match(FVal, m_FNeg(m_Specific(TVal))))
1476 return replaceOperand(*II, 0, TVal);
1477 }
1478
1479 LLVM_FALLTHROUGH;
1480 }
1481 case Intrinsic::ceil:
1482 case Intrinsic::floor:
1483 case Intrinsic::round:
1484 case Intrinsic::roundeven:
1485 case Intrinsic::nearbyint:
1486 case Intrinsic::rint:
1487 case Intrinsic::trunc: {
1488 Value *ExtSrc;
1489 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
1490 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
1491 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
1492 return new FPExtInst(NarrowII, II->getType());
1493 }
1494 break;
1495 }
1496 case Intrinsic::cos:
1497 case Intrinsic::amdgcn_cos: {
1498 Value *X;
1499 Value *Src = II->getArgOperand(0);
1500 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
1501 // cos(-x) -> cos(x)
1502 // cos(fabs(x)) -> cos(x)
1503 return replaceOperand(*II, 0, X);
1504 }
1505 break;
1506 }
1507 case Intrinsic::sin: {
1508 Value *X;
1509 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
1510 // sin(-x) --> -sin(x)
1511 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
1512 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
1513 FNeg->copyFastMathFlags(II);
1514 return FNeg;
1515 }
1516 break;
1517 }
1518
1519 case Intrinsic::arm_neon_vtbl1:
1520 case Intrinsic::aarch64_neon_tbl1:
1521 if (Value *V = simplifyNeonTbl1(*II, Builder))
1522 return replaceInstUsesWith(*II, V);
1523 break;
1524
1525 case Intrinsic::arm_neon_vmulls:
1526 case Intrinsic::arm_neon_vmullu:
1527 case Intrinsic::aarch64_neon_smull:
1528 case Intrinsic::aarch64_neon_umull: {
1529 Value *Arg0 = II->getArgOperand(0);
1530 Value *Arg1 = II->getArgOperand(1);
1531
1532 // Handle mul by zero first:
1533 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1534 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1535 }
1536
1537 // Check for constant LHS & RHS - in this case we just simplify.
1538 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
1539 IID == Intrinsic::aarch64_neon_umull);
1540 VectorType *NewVT = cast<VectorType>(II->getType());
1541 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
1542 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
1543 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
1544 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
1545
1546 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
1547 }
1548
1549 // Couldn't simplify - canonicalize constant to the RHS.
1550 std::swap(Arg0, Arg1);
1551 }
1552
1553 // Handle mul by one:
1554 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
1555 if (ConstantInt *Splat =
1556 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
1557 if (Splat->isOne())
1558 return CastInst::CreateIntegerCast(Arg0, II->getType(),
1559 /*isSigned=*/!Zext);
1560
1561 break;
1562 }
1563 case Intrinsic::arm_neon_aesd:
1564 case Intrinsic::arm_neon_aese:
1565 case Intrinsic::aarch64_crypto_aesd:
1566 case Intrinsic::aarch64_crypto_aese: {
1567 Value *DataArg = II->getArgOperand(0);
1568 Value *KeyArg = II->getArgOperand(1);
1569
1570 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
1571 Value *Data, *Key;
1572 if (match(KeyArg, m_ZeroInt()) &&
1573 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
1574 replaceOperand(*II, 0, Data);
1575 replaceOperand(*II, 1, Key);
1576 return II;
1577 }
1578 break;
1579 }
1580 case Intrinsic::hexagon_V6_vandvrt:
1581 case Intrinsic::hexagon_V6_vandvrt_128B: {
1582 // Simplify Q -> V -> Q conversion.
1583 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1584 Intrinsic::ID ID0 = Op0->getIntrinsicID();
1585 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
1586 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
1587 break;
1588 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
1589 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
1590 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
1591 // Check if every byte has common bits in Bytes and Mask.
1592 uint64_t C = Bytes1 & Mask1;
1593 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
1594 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
1595 }
1596 break;
1597 }
1598 case Intrinsic::stackrestore: {
1599 // If the save is right next to the restore, remove the restore. This can
1600 // happen when variable allocas are DCE'd.
1601 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1602 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
1603 // Skip over debug info.
1604 if (SS->getNextNonDebugInstruction() == II) {
1605 return eraseInstFromFunction(CI);
1606 }
1607 }
1608 }
1609
1610 // Scan down this block to see if there is another stack restore in the
1611 // same block without an intervening call/alloca.
1612 BasicBlock::iterator BI(II);
1613 Instruction *TI = II->getParent()->getTerminator();
1614 bool CannotRemove = false;
1615 for (++BI; &*BI != TI; ++BI) {
1616 if (isa<AllocaInst>(BI)) {
1617 CannotRemove = true;
1618 break;
1619 }
1620 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
1621 if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) {
1622 // If there is a stackrestore below this one, remove this one.
1623 if (II2->getIntrinsicID() == Intrinsic::stackrestore)
1624 return eraseInstFromFunction(CI);
1625
1626 // Bail if we cross over an intrinsic with side effects, such as
1627 // llvm.stacksave, or llvm.read_register.
1628 if (II2->mayHaveSideEffects()) {
1629 CannotRemove = true;
1630 break;
1631 }
1632 } else {
1633 // If we found a non-intrinsic call, we can't remove the stack
1634 // restore.
1635 CannotRemove = true;
1636 break;
1637 }
1638 }
1639 }
1640
1641 // If the stack restore is in a return, resume, or unwind block and if there
1642 // are no allocas or calls between the restore and the return, nuke the
1643 // restore.
1644 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1645 return eraseInstFromFunction(CI);
1646 break;
1647 }
1648 case Intrinsic::lifetime_end:
1649 // Asan needs to poison memory to detect invalid access which is possible
1650 // even for empty lifetime range.
1651 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
1652 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
1653 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
1654 break;
1655
1656 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
1657 return I.getIntrinsicID() == Intrinsic::lifetime_start;
1658 }))
1659 return nullptr;
1660 break;
1661 case Intrinsic::assume: {
1662 Value *IIOperand = II->getArgOperand(0);
1663 SmallVector<OperandBundleDef, 4> OpBundles;
1664 II->getOperandBundlesAsDefs(OpBundles);
1665
1666 /// This will remove the boolean Condition from the assume given as
1667 /// argument and remove the assume if it becomes useless.
1668 /// always returns nullptr for use as a return values.
1669 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
1670 assert(isa<AssumeInst>(Assume));
1671 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
1672 return eraseInstFromFunction(CI);
1673 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
1674 return nullptr;
1675 };
1676 // Remove an assume if it is followed by an identical assume.
1677 // TODO: Do we need this? Unless there are conflicting assumptions, the
1678 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
1679 Instruction *Next = II->getNextNonDebugInstruction();
1680 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
1681 return RemoveConditionFromAssume(Next);
1682
1683 // Canonicalize assume(a && b) -> assume(a); assume(b);
1684 // Note: New assumption intrinsics created here are registered by
1685 // the InstCombineIRInserter object.
1686 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
1687 Value *AssumeIntrinsic = II->getCalledOperand();
1688 Value *A, *B;
1689 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
1690 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
1691 II->getName());
1692 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
1693 return eraseInstFromFunction(*II);
1694 }
1695 // assume(!(a || b)) -> assume(!a); assume(!b);
1696 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
1697 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
1698 Builder.CreateNot(A), OpBundles, II->getName());
1699 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
1700 Builder.CreateNot(B), II->getName());
1701 return eraseInstFromFunction(*II);
1702 }
1703
1704 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1705 // (if assume is valid at the load)
1706 CmpInst::Predicate Pred;
1707 Instruction *LHS;
1708 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
1709 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
1710 LHS->getType()->isPointerTy() &&
1711 isValidAssumeForContext(II, LHS, &DT)) {
1712 MDNode *MD = MDNode::get(II->getContext(), None);
1713 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
1714 return RemoveConditionFromAssume(II);
1715
1716 // TODO: apply nonnull return attributes to calls and invokes
1717 // TODO: apply range metadata for range check patterns?
1718 }
1719
1720 // Convert nonnull assume like:
1721 // %A = icmp ne i32* %PTR, null
1722 // call void @llvm.assume(i1 %A)
1723 // into
1724 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
1725 if (EnableKnowledgeRetention &&
1726 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
1727 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
1728 if (auto *Replacement = buildAssumeFromKnowledge(
1729 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
1730
1731 Replacement->insertBefore(Next);
1732 AC.registerAssumption(Replacement);
1733 return RemoveConditionFromAssume(II);
1734 }
1735 }
1736
1737 // Convert alignment assume like:
1738 // %B = ptrtoint i32* %A to i64
1739 // %C = and i64 %B, Constant
1740 // %D = icmp eq i64 %C, 0
1741 // call void @llvm.assume(i1 %D)
1742 // into
1743 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
1744 uint64_t AlignMask;
1745 if (EnableKnowledgeRetention &&
1746 match(IIOperand,
1747 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
1748 m_Zero())) &&
1749 Pred == CmpInst::ICMP_EQ) {
1750 if (isPowerOf2_64(AlignMask + 1)) {
1751 uint64_t Offset = 0;
1752 match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
1753 if (match(A, m_PtrToInt(m_Value(A)))) {
1754 /// Note: this doesn't preserve the offset information but merges
1755 /// offset and alignment.
1756 /// TODO: we can generate a GEP instead of merging the alignment with
1757 /// the offset.
1758 RetainedKnowledge RK{Attribute::Alignment,
1759 (unsigned)MinAlign(Offset, AlignMask + 1), A};
1760 if (auto *Replacement =
1761 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
1762
1763 Replacement->insertAfter(II);
1764 AC.registerAssumption(Replacement);
1765 }
1766 return RemoveConditionFromAssume(II);
1767 }
1768 }
1769 }
1770
1771 /// Canonicalize Knowledge in operand bundles.
1772 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
1773 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
1774 auto &BOI = II->bundle_op_info_begin()[Idx];
1775 RetainedKnowledge RK =
1776 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
1777 if (BOI.End - BOI.Begin > 2)
1778 continue; // Prevent reducing knowledge in an align with offset since
1779 // extracting a RetainedKnowledge form them looses offset
1780 // information
1781 RetainedKnowledge CanonRK =
1782 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
1783 &getAssumptionCache(),
1784 &getDominatorTree());
1785 if (CanonRK == RK)
1786 continue;
1787 if (!CanonRK) {
1788 if (BOI.End - BOI.Begin > 0) {
1789 Worklist.pushValue(II->op_begin()[BOI.Begin]);
1790 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
1791 }
1792 continue;
1793 }
1794 assert(RK.AttrKind == CanonRK.AttrKind);
1795 if (BOI.End - BOI.Begin > 0)
1796 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
1797 if (BOI.End - BOI.Begin > 1)
1798 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
1799 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
1800 if (RK.WasOn)
1801 Worklist.pushValue(RK.WasOn);
1802 return II;
1803 }
1804 }
1805
1806 // If there is a dominating assume with the same condition as this one,
1807 // then this one is redundant, and should be removed.
1808 KnownBits Known(1);
1809 computeKnownBits(IIOperand, Known, 0, II);
1810 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
1811 return eraseInstFromFunction(*II);
1812
1813 // Update the cache of affected values for this assumption (we might be
1814 // here because we just simplified the condition).
1815 AC.updateAffectedValues(cast<AssumeInst>(II));
1816 break;
1817 }
1818 case Intrinsic::experimental_guard: {
1819 // Is this guard followed by another guard? We scan forward over a small
1820 // fixed window of instructions to handle common cases with conditions
1821 // computed between guards.
1822 Instruction *NextInst = II->getNextNonDebugInstruction();
1823 for (unsigned i = 0; i < GuardWideningWindow; i++) {
1824 // Note: Using context-free form to avoid compile time blow up
1825 if (!isSafeToSpeculativelyExecute(NextInst))
1826 break;
1827 NextInst = NextInst->getNextNonDebugInstruction();
1828 }
1829 Value *NextCond = nullptr;
1830 if (match(NextInst,
1831 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
1832 Value *CurrCond = II->getArgOperand(0);
1833
1834 // Remove a guard that it is immediately preceded by an identical guard.
1835 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
1836 if (CurrCond != NextCond) {
1837 Instruction *MoveI = II->getNextNonDebugInstruction();
1838 while (MoveI != NextInst) {
1839 auto *Temp = MoveI;
1840 MoveI = MoveI->getNextNonDebugInstruction();
1841 Temp->moveBefore(II);
1842 }
1843 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
1844 }
1845 eraseInstFromFunction(*NextInst);
1846 return II;
1847 }
1848 break;
1849 }
1850 case Intrinsic::experimental_vector_insert: {
1851 Value *Vec = II->getArgOperand(0);
1852 Value *SubVec = II->getArgOperand(1);
1853 Value *Idx = II->getArgOperand(2);
1854 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
1855 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
1856 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
1857
1858 // Only canonicalize if the destination vector, Vec, and SubVec are all
1859 // fixed vectors.
1860 if (DstTy && VecTy && SubVecTy) {
1861 unsigned DstNumElts = DstTy->getNumElements();
1862 unsigned VecNumElts = VecTy->getNumElements();
1863 unsigned SubVecNumElts = SubVecTy->getNumElements();
1864 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
1865
1866 // The result of this call is undefined if IdxN is not a constant multiple
1867 // of the SubVec's minimum vector length OR the insertion overruns Vec.
1868 if (IdxN % SubVecNumElts != 0 || IdxN + SubVecNumElts > VecNumElts) {
1869 replaceInstUsesWith(CI, UndefValue::get(CI.getType()));
1870 return eraseInstFromFunction(CI);
1871 }
1872
1873 // An insert that entirely overwrites Vec with SubVec is a nop.
1874 if (VecNumElts == SubVecNumElts) {
1875 replaceInstUsesWith(CI, SubVec);
1876 return eraseInstFromFunction(CI);
1877 }
1878
1879 // Widen SubVec into a vector of the same width as Vec, since
1880 // shufflevector requires the two input vectors to be the same width.
1881 // Elements beyond the bounds of SubVec within the widened vector are
1882 // undefined.
1883 SmallVector<int, 8> WidenMask;
1884 unsigned i;
1885 for (i = 0; i != SubVecNumElts; ++i)
1886 WidenMask.push_back(i);
1887 for (; i != VecNumElts; ++i)
1888 WidenMask.push_back(UndefMaskElem);
1889
1890 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
1891
1892 SmallVector<int, 8> Mask;
1893 for (unsigned i = 0; i != IdxN; ++i)
1894 Mask.push_back(i);
1895 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
1896 Mask.push_back(i);
1897 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
1898 Mask.push_back(i);
1899
1900 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
1901 replaceInstUsesWith(CI, Shuffle);
1902 return eraseInstFromFunction(CI);
1903 }
1904 break;
1905 }
1906 case Intrinsic::experimental_vector_extract: {
1907 Value *Vec = II->getArgOperand(0);
1908 Value *Idx = II->getArgOperand(1);
1909
1910 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
1911 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
1912
1913 // Only canonicalize if the the destination vector and Vec are fixed
1914 // vectors.
1915 if (DstTy && VecTy) {
1916 unsigned DstNumElts = DstTy->getNumElements();
1917 unsigned VecNumElts = VecTy->getNumElements();
1918 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
1919
1920 // The result of this call is undefined if IdxN is not a constant multiple
1921 // of the result type's minimum vector length OR the extraction overruns
1922 // Vec.
1923 if (IdxN % DstNumElts != 0 || IdxN + DstNumElts > VecNumElts) {
1924 replaceInstUsesWith(CI, UndefValue::get(CI.getType()));
1925 return eraseInstFromFunction(CI);
1926 }
1927
1928 // Extracting the entirety of Vec is a nop.
1929 if (VecNumElts == DstNumElts) {
1930 replaceInstUsesWith(CI, Vec);
1931 return eraseInstFromFunction(CI);
1932 }
1933
1934 SmallVector<int, 8> Mask;
1935 for (unsigned i = 0; i != DstNumElts; ++i)
1936 Mask.push_back(IdxN + i);
1937
1938 Value *Shuffle =
1939 Builder.CreateShuffleVector(Vec, UndefValue::get(VecTy), Mask);
1940 replaceInstUsesWith(CI, Shuffle);
1941 return eraseInstFromFunction(CI);
1942 }
1943 break;
1944 }
1945 case Intrinsic::vector_reduce_or:
1946 case Intrinsic::vector_reduce_and: {
1947 // Canonicalize logical or/and reductions:
1948 // Or reduction for i1 is represented as:
1949 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
1950 // %res = cmp ne iReduxWidth %val, 0
1951 // And reduction for i1 is represented as:
1952 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
1953 // %res = cmp eq iReduxWidth %val, 11111
1954 Value *Arg = II->getArgOperand(0);
1955 Type *RetTy = II->getType();
1956 if (RetTy == Builder.getInt1Ty())
1957 if (auto *FVTy = dyn_cast<FixedVectorType>(Arg->getType())) {
1958 Value *Res = Builder.CreateBitCast(
1959 Arg, Builder.getIntNTy(FVTy->getNumElements()));
1960 if (IID == Intrinsic::vector_reduce_and) {
1961 Res = Builder.CreateICmpEQ(
1962 Res, ConstantInt::getAllOnesValue(Res->getType()));
1963 } else {
1964 assert(IID == Intrinsic::vector_reduce_or &&
1965 "Expected or reduction.");
1966 Res = Builder.CreateIsNotNull(Res);
1967 }
1968 replaceInstUsesWith(CI, Res);
1969 return eraseInstFromFunction(CI);
1970 }
1971 break;
1972 }
1973 default: {
1974 // Handle target specific intrinsics
1975 Optional<Instruction *> V = targetInstCombineIntrinsic(*II);
1976 if (V.hasValue())
1977 return V.getValue();
1978 break;
1979 }
1980 }
1981 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
1982 // context, so it is handled in visitCallBase and we should trigger it.
1983 return visitCallBase(*II);
1984 }
1985
1986 // Fence instruction simplification
visitFenceInst(FenceInst & FI)1987 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
1988 // Remove identical consecutive fences.
1989 Instruction *Next = FI.getNextNonDebugInstruction();
1990 if (auto *NFI = dyn_cast<FenceInst>(Next))
1991 if (FI.isIdenticalTo(NFI))
1992 return eraseInstFromFunction(FI);
1993 return nullptr;
1994 }
1995
1996 // InvokeInst simplification
visitInvokeInst(InvokeInst & II)1997 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
1998 return visitCallBase(II);
1999 }
2000
2001 // CallBrInst simplification
visitCallBrInst(CallBrInst & CBI)2002 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
2003 return visitCallBase(CBI);
2004 }
2005
2006 /// If this cast does not affect the value passed through the varargs area, we
2007 /// can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallBase & Call,const DataLayout & DL,const CastInst * const CI,const int ix)2008 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
2009 const DataLayout &DL,
2010 const CastInst *const CI,
2011 const int ix) {
2012 if (!CI->isLosslessCast())
2013 return false;
2014
2015 // If this is a GC intrinsic, avoid munging types. We need types for
2016 // statepoint reconstruction in SelectionDAG.
2017 // TODO: This is probably something which should be expanded to all
2018 // intrinsics since the entire point of intrinsics is that
2019 // they are understandable by the optimizer.
2020 if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
2021 isa<GCResultInst>(Call))
2022 return false;
2023
2024 // The size of ByVal or InAlloca arguments is derived from the type, so we
2025 // can't change to a type with a different size. If the size were
2026 // passed explicitly we could avoid this check.
2027 if (!Call.isPassPointeeByValueArgument(ix))
2028 return true;
2029
2030 Type* SrcTy =
2031 cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
2032 Type *DstTy = Call.isByValArgument(ix)
2033 ? Call.getParamByValType(ix)
2034 : cast<PointerType>(CI->getType())->getElementType();
2035 if (!SrcTy->isSized() || !DstTy->isSized())
2036 return false;
2037 if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
2038 return false;
2039 return true;
2040 }
2041
tryOptimizeCall(CallInst * CI)2042 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
2043 if (!CI->getCalledFunction()) return nullptr;
2044
2045 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2046 replaceInstUsesWith(*From, With);
2047 };
2048 auto InstCombineErase = [this](Instruction *I) {
2049 eraseInstFromFunction(*I);
2050 };
2051 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
2052 InstCombineErase);
2053 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
2054 ++NumSimplified;
2055 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2056 }
2057
2058 return nullptr;
2059 }
2060
findInitTrampolineFromAlloca(Value * TrampMem)2061 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2062 // Strip off at most one level of pointer casts, looking for an alloca. This
2063 // is good enough in practice and simpler than handling any number of casts.
2064 Value *Underlying = TrampMem->stripPointerCasts();
2065 if (Underlying != TrampMem &&
2066 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2067 return nullptr;
2068 if (!isa<AllocaInst>(Underlying))
2069 return nullptr;
2070
2071 IntrinsicInst *InitTrampoline = nullptr;
2072 for (User *U : TrampMem->users()) {
2073 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2074 if (!II)
2075 return nullptr;
2076 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2077 if (InitTrampoline)
2078 // More than one init_trampoline writes to this value. Give up.
2079 return nullptr;
2080 InitTrampoline = II;
2081 continue;
2082 }
2083 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
2084 // Allow any number of calls to adjust.trampoline.
2085 continue;
2086 return nullptr;
2087 }
2088
2089 // No call to init.trampoline found.
2090 if (!InitTrampoline)
2091 return nullptr;
2092
2093 // Check that the alloca is being used in the expected way.
2094 if (InitTrampoline->getOperand(0) != TrampMem)
2095 return nullptr;
2096
2097 return InitTrampoline;
2098 }
2099
findInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)2100 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
2101 Value *TrampMem) {
2102 // Visit all the previous instructions in the basic block, and try to find a
2103 // init.trampoline which has a direct path to the adjust.trampoline.
2104 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
2105 E = AdjustTramp->getParent()->begin();
2106 I != E;) {
2107 Instruction *Inst = &*--I;
2108 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2109 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
2110 II->getOperand(0) == TrampMem)
2111 return II;
2112 if (Inst->mayWriteToMemory())
2113 return nullptr;
2114 }
2115 return nullptr;
2116 }
2117
2118 // Given a call to llvm.adjust.trampoline, find and return the corresponding
2119 // call to llvm.init.trampoline if the call to the trampoline can be optimized
2120 // to a direct call to a function. Otherwise return NULL.
findInitTrampoline(Value * Callee)2121 static IntrinsicInst *findInitTrampoline(Value *Callee) {
2122 Callee = Callee->stripPointerCasts();
2123 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
2124 if (!AdjustTramp ||
2125 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
2126 return nullptr;
2127
2128 Value *TrampMem = AdjustTramp->getOperand(0);
2129
2130 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
2131 return IT;
2132 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
2133 return IT;
2134 return nullptr;
2135 }
2136
annotateAnyAllocSite(CallBase & Call,const TargetLibraryInfo * TLI)2137 void InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
2138 unsigned NumArgs = Call.getNumArgOperands();
2139 ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0));
2140 ConstantInt *Op1C =
2141 (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1));
2142 // Bail out if the allocation size is zero (or an invalid alignment of zero
2143 // with aligned_alloc).
2144 if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue()))
2145 return;
2146
2147 if (isMallocLikeFn(&Call, TLI) && Op0C) {
2148 if (isOpNewLikeFn(&Call, TLI))
2149 Call.addAttribute(AttributeList::ReturnIndex,
2150 Attribute::getWithDereferenceableBytes(
2151 Call.getContext(), Op0C->getZExtValue()));
2152 else
2153 Call.addAttribute(AttributeList::ReturnIndex,
2154 Attribute::getWithDereferenceableOrNullBytes(
2155 Call.getContext(), Op0C->getZExtValue()));
2156 } else if (isAlignedAllocLikeFn(&Call, TLI)) {
2157 if (Op1C)
2158 Call.addAttribute(AttributeList::ReturnIndex,
2159 Attribute::getWithDereferenceableOrNullBytes(
2160 Call.getContext(), Op1C->getZExtValue()));
2161 // Add alignment attribute if alignment is a power of two constant.
2162 if (Op0C && Op0C->getValue().ult(llvm::Value::MaximumAlignment) &&
2163 isKnownNonZero(Call.getOperand(1), DL, 0, &AC, &Call, &DT)) {
2164 uint64_t AlignmentVal = Op0C->getZExtValue();
2165 if (llvm::isPowerOf2_64(AlignmentVal)) {
2166 Call.removeAttribute(AttributeList::ReturnIndex, Attribute::Alignment);
2167 Call.addAttribute(AttributeList::ReturnIndex,
2168 Attribute::getWithAlignment(Call.getContext(),
2169 Align(AlignmentVal)));
2170 }
2171 }
2172 } else if (isReallocLikeFn(&Call, TLI) && Op1C) {
2173 Call.addAttribute(AttributeList::ReturnIndex,
2174 Attribute::getWithDereferenceableOrNullBytes(
2175 Call.getContext(), Op1C->getZExtValue()));
2176 } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) {
2177 bool Overflow;
2178 const APInt &N = Op0C->getValue();
2179 APInt Size = N.umul_ov(Op1C->getValue(), Overflow);
2180 if (!Overflow)
2181 Call.addAttribute(AttributeList::ReturnIndex,
2182 Attribute::getWithDereferenceableOrNullBytes(
2183 Call.getContext(), Size.getZExtValue()));
2184 } else if (isStrdupLikeFn(&Call, TLI)) {
2185 uint64_t Len = GetStringLength(Call.getOperand(0));
2186 if (Len) {
2187 // strdup
2188 if (NumArgs == 1)
2189 Call.addAttribute(AttributeList::ReturnIndex,
2190 Attribute::getWithDereferenceableOrNullBytes(
2191 Call.getContext(), Len));
2192 // strndup
2193 else if (NumArgs == 2 && Op1C)
2194 Call.addAttribute(
2195 AttributeList::ReturnIndex,
2196 Attribute::getWithDereferenceableOrNullBytes(
2197 Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1)));
2198 }
2199 }
2200 }
2201
2202 /// Improvements for call, callbr and invoke instructions.
visitCallBase(CallBase & Call)2203 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
2204 if (isAllocationFn(&Call, &TLI))
2205 annotateAnyAllocSite(Call, &TLI);
2206
2207 bool Changed = false;
2208
2209 // Mark any parameters that are known to be non-null with the nonnull
2210 // attribute. This is helpful for inlining calls to functions with null
2211 // checks on their arguments.
2212 SmallVector<unsigned, 4> ArgNos;
2213 unsigned ArgNo = 0;
2214
2215 for (Value *V : Call.args()) {
2216 if (V->getType()->isPointerTy() &&
2217 !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
2218 isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
2219 ArgNos.push_back(ArgNo);
2220 ArgNo++;
2221 }
2222
2223 assert(ArgNo == Call.arg_size() && "sanity check");
2224
2225 if (!ArgNos.empty()) {
2226 AttributeList AS = Call.getAttributes();
2227 LLVMContext &Ctx = Call.getContext();
2228 AS = AS.addParamAttribute(Ctx, ArgNos,
2229 Attribute::get(Ctx, Attribute::NonNull));
2230 Call.setAttributes(AS);
2231 Changed = true;
2232 }
2233
2234 // If the callee is a pointer to a function, attempt to move any casts to the
2235 // arguments of the call/callbr/invoke.
2236 Value *Callee = Call.getCalledOperand();
2237 if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
2238 return nullptr;
2239
2240 if (Function *CalleeF = dyn_cast<Function>(Callee)) {
2241 // Remove the convergent attr on calls when the callee is not convergent.
2242 if (Call.isConvergent() && !CalleeF->isConvergent() &&
2243 !CalleeF->isIntrinsic()) {
2244 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
2245 << "\n");
2246 Call.setNotConvergent();
2247 return &Call;
2248 }
2249
2250 // If the call and callee calling conventions don't match, and neither one
2251 // of the calling conventions is compatible with C calling convention
2252 // this call must be unreachable, as the call is undefined.
2253 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
2254 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
2255 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
2256 !(Call.getCallingConv() == llvm::CallingConv::C &&
2257 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
2258 // Only do this for calls to a function with a body. A prototype may
2259 // not actually end up matching the implementation's calling conv for a
2260 // variety of reasons (e.g. it may be written in assembly).
2261 !CalleeF->isDeclaration()) {
2262 Instruction *OldCall = &Call;
2263 CreateNonTerminatorUnreachable(OldCall);
2264 // If OldCall does not return void then replaceInstUsesWith undef.
2265 // This allows ValueHandlers and custom metadata to adjust itself.
2266 if (!OldCall->getType()->isVoidTy())
2267 replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
2268 if (isa<CallInst>(OldCall))
2269 return eraseInstFromFunction(*OldCall);
2270
2271 // We cannot remove an invoke or a callbr, because it would change thexi
2272 // CFG, just change the callee to a null pointer.
2273 cast<CallBase>(OldCall)->setCalledFunction(
2274 CalleeF->getFunctionType(),
2275 Constant::getNullValue(CalleeF->getType()));
2276 return nullptr;
2277 }
2278 }
2279
2280 if ((isa<ConstantPointerNull>(Callee) &&
2281 !NullPointerIsDefined(Call.getFunction())) ||
2282 isa<UndefValue>(Callee)) {
2283 // If Call does not return void then replaceInstUsesWith undef.
2284 // This allows ValueHandlers and custom metadata to adjust itself.
2285 if (!Call.getType()->isVoidTy())
2286 replaceInstUsesWith(Call, UndefValue::get(Call.getType()));
2287
2288 if (Call.isTerminator()) {
2289 // Can't remove an invoke or callbr because we cannot change the CFG.
2290 return nullptr;
2291 }
2292
2293 // This instruction is not reachable, just remove it.
2294 CreateNonTerminatorUnreachable(&Call);
2295 return eraseInstFromFunction(Call);
2296 }
2297
2298 if (IntrinsicInst *II = findInitTrampoline(Callee))
2299 return transformCallThroughTrampoline(Call, *II);
2300
2301 PointerType *PTy = cast<PointerType>(Callee->getType());
2302 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2303 if (FTy->isVarArg()) {
2304 int ix = FTy->getNumParams();
2305 // See if we can optimize any arguments passed through the varargs area of
2306 // the call.
2307 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
2308 I != E; ++I, ++ix) {
2309 CastInst *CI = dyn_cast<CastInst>(*I);
2310 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
2311 replaceUse(*I, CI->getOperand(0));
2312
2313 // Update the byval type to match the argument type.
2314 if (Call.isByValArgument(ix)) {
2315 Call.removeParamAttr(ix, Attribute::ByVal);
2316 Call.addParamAttr(
2317 ix, Attribute::getWithByValType(
2318 Call.getContext(),
2319 CI->getOperand(0)->getType()->getPointerElementType()));
2320 }
2321 Changed = true;
2322 }
2323 }
2324 }
2325
2326 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
2327 InlineAsm *IA = cast<InlineAsm>(Callee);
2328 if (!IA->canThrow()) {
2329 // Normal inline asm calls cannot throw - mark them
2330 // 'nounwind'.
2331 Call.setDoesNotThrow();
2332 Changed = true;
2333 }
2334 }
2335
2336 // Try to optimize the call if possible, we require DataLayout for most of
2337 // this. None of these calls are seen as possibly dead so go ahead and
2338 // delete the instruction now.
2339 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
2340 Instruction *I = tryOptimizeCall(CI);
2341 // If we changed something return the result, etc. Otherwise let
2342 // the fallthrough check.
2343 if (I) return eraseInstFromFunction(*I);
2344 }
2345
2346 if (!Call.use_empty() && !Call.isMustTailCall())
2347 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
2348 Type *CallTy = Call.getType();
2349 Type *RetArgTy = ReturnedArg->getType();
2350 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
2351 return replaceInstUsesWith(
2352 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
2353 }
2354
2355 if (isAllocLikeFn(&Call, &TLI))
2356 return visitAllocSite(Call);
2357
2358 // Handle intrinsics which can be used in both call and invoke context.
2359 switch (Call.getIntrinsicID()) {
2360 case Intrinsic::experimental_gc_statepoint: {
2361 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
2362 SmallPtrSet<Value *, 32> LiveGcValues;
2363 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
2364 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
2365
2366 // Remove the relocation if unused.
2367 if (GCR.use_empty()) {
2368 eraseInstFromFunction(GCR);
2369 continue;
2370 }
2371
2372 Value *DerivedPtr = GCR.getDerivedPtr();
2373 Value *BasePtr = GCR.getBasePtr();
2374
2375 // Undef is undef, even after relocation.
2376 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
2377 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
2378 eraseInstFromFunction(GCR);
2379 continue;
2380 }
2381
2382 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
2383 // The relocation of null will be null for most any collector.
2384 // TODO: provide a hook for this in GCStrategy. There might be some
2385 // weird collector this property does not hold for.
2386 if (isa<ConstantPointerNull>(DerivedPtr)) {
2387 // Use null-pointer of gc_relocate's type to replace it.
2388 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
2389 eraseInstFromFunction(GCR);
2390 continue;
2391 }
2392
2393 // isKnownNonNull -> nonnull attribute
2394 if (!GCR.hasRetAttr(Attribute::NonNull) &&
2395 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
2396 GCR.addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
2397 // We discovered new fact, re-check users.
2398 Worklist.pushUsersToWorkList(GCR);
2399 }
2400 }
2401
2402 // If we have two copies of the same pointer in the statepoint argument
2403 // list, canonicalize to one. This may let us common gc.relocates.
2404 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
2405 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
2406 auto *OpIntTy = GCR.getOperand(2)->getType();
2407 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
2408 }
2409
2410 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
2411 // Canonicalize on the type from the uses to the defs
2412
2413 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
2414 LiveGcValues.insert(BasePtr);
2415 LiveGcValues.insert(DerivedPtr);
2416 }
2417 Optional<OperandBundleUse> Bundle =
2418 GCSP.getOperandBundle(LLVMContext::OB_gc_live);
2419 unsigned NumOfGCLives = LiveGcValues.size();
2420 if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size())
2421 break;
2422 // We can reduce the size of gc live bundle.
2423 DenseMap<Value *, unsigned> Val2Idx;
2424 std::vector<Value *> NewLiveGc;
2425 for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) {
2426 Value *V = Bundle->Inputs[I];
2427 if (Val2Idx.count(V))
2428 continue;
2429 if (LiveGcValues.count(V)) {
2430 Val2Idx[V] = NewLiveGc.size();
2431 NewLiveGc.push_back(V);
2432 } else
2433 Val2Idx[V] = NumOfGCLives;
2434 }
2435 // Update all gc.relocates
2436 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
2437 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
2438 Value *BasePtr = GCR.getBasePtr();
2439 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
2440 "Missed live gc for base pointer");
2441 auto *OpIntTy1 = GCR.getOperand(1)->getType();
2442 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
2443 Value *DerivedPtr = GCR.getDerivedPtr();
2444 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
2445 "Missed live gc for derived pointer");
2446 auto *OpIntTy2 = GCR.getOperand(2)->getType();
2447 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
2448 }
2449 // Create new statepoint instruction.
2450 OperandBundleDef NewBundle("gc-live", NewLiveGc);
2451 return CallBase::Create(&Call, NewBundle);
2452 }
2453 default: { break; }
2454 }
2455
2456 return Changed ? &Call : nullptr;
2457 }
2458
2459 /// If the callee is a constexpr cast of a function, attempt to move the cast to
2460 /// the arguments of the call/callbr/invoke.
transformConstExprCastCall(CallBase & Call)2461 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
2462 auto *Callee =
2463 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
2464 if (!Callee)
2465 return false;
2466
2467 // If this is a call to a thunk function, don't remove the cast. Thunks are
2468 // used to transparently forward all incoming parameters and outgoing return
2469 // values, so it's important to leave the cast in place.
2470 if (Callee->hasFnAttribute("thunk"))
2471 return false;
2472
2473 // If this is a musttail call, the callee's prototype must match the caller's
2474 // prototype with the exception of pointee types. The code below doesn't
2475 // implement that, so we can't do this transform.
2476 // TODO: Do the transform if it only requires adding pointer casts.
2477 if (Call.isMustTailCall())
2478 return false;
2479
2480 Instruction *Caller = &Call;
2481 const AttributeList &CallerPAL = Call.getAttributes();
2482
2483 // Okay, this is a cast from a function to a different type. Unless doing so
2484 // would cause a type conversion of one of our arguments, change this call to
2485 // be a direct call with arguments casted to the appropriate types.
2486 FunctionType *FT = Callee->getFunctionType();
2487 Type *OldRetTy = Caller->getType();
2488 Type *NewRetTy = FT->getReturnType();
2489
2490 // Check to see if we are changing the return type...
2491 if (OldRetTy != NewRetTy) {
2492
2493 if (NewRetTy->isStructTy())
2494 return false; // TODO: Handle multiple return values.
2495
2496 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
2497 if (Callee->isDeclaration())
2498 return false; // Cannot transform this return value.
2499
2500 if (!Caller->use_empty() &&
2501 // void -> non-void is handled specially
2502 !NewRetTy->isVoidTy())
2503 return false; // Cannot transform this return value.
2504 }
2505
2506 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
2507 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
2508 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
2509 return false; // Attribute not compatible with transformed value.
2510 }
2511
2512 // If the callbase is an invoke/callbr instruction, and the return value is
2513 // used by a PHI node in a successor, we cannot change the return type of
2514 // the call because there is no place to put the cast instruction (without
2515 // breaking the critical edge). Bail out in this case.
2516 if (!Caller->use_empty()) {
2517 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
2518 for (User *U : II->users())
2519 if (PHINode *PN = dyn_cast<PHINode>(U))
2520 if (PN->getParent() == II->getNormalDest() ||
2521 PN->getParent() == II->getUnwindDest())
2522 return false;
2523 // FIXME: Be conservative for callbr to avoid a quadratic search.
2524 if (isa<CallBrInst>(Caller))
2525 return false;
2526 }
2527 }
2528
2529 unsigned NumActualArgs = Call.arg_size();
2530 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
2531
2532 // Prevent us turning:
2533 // declare void @takes_i32_inalloca(i32* inalloca)
2534 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
2535 //
2536 // into:
2537 // call void @takes_i32_inalloca(i32* null)
2538 //
2539 // Similarly, avoid folding away bitcasts of byval calls.
2540 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
2541 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) ||
2542 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
2543 return false;
2544
2545 auto AI = Call.arg_begin();
2546 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
2547 Type *ParamTy = FT->getParamType(i);
2548 Type *ActTy = (*AI)->getType();
2549
2550 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
2551 return false; // Cannot transform this parameter value.
2552
2553 if (AttrBuilder(CallerPAL.getParamAttributes(i))
2554 .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
2555 return false; // Attribute not compatible with transformed value.
2556
2557 if (Call.isInAllocaArgument(i))
2558 return false; // Cannot transform to and from inalloca.
2559
2560 if (CallerPAL.hasParamAttribute(i, Attribute::SwiftError))
2561 return false;
2562
2563 // If the parameter is passed as a byval argument, then we have to have a
2564 // sized type and the sized type has to have the same size as the old type.
2565 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
2566 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
2567 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
2568 return false;
2569
2570 Type *CurElTy = Call.getParamByValType(i);
2571 if (DL.getTypeAllocSize(CurElTy) !=
2572 DL.getTypeAllocSize(ParamPTy->getElementType()))
2573 return false;
2574 }
2575 }
2576
2577 if (Callee->isDeclaration()) {
2578 // Do not delete arguments unless we have a function body.
2579 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
2580 return false;
2581
2582 // If the callee is just a declaration, don't change the varargsness of the
2583 // call. We don't want to introduce a varargs call where one doesn't
2584 // already exist.
2585 PointerType *APTy = cast<PointerType>(Call.getCalledOperand()->getType());
2586 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
2587 return false;
2588
2589 // If both the callee and the cast type are varargs, we still have to make
2590 // sure the number of fixed parameters are the same or we have the same
2591 // ABI issues as if we introduce a varargs call.
2592 if (FT->isVarArg() &&
2593 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
2594 FT->getNumParams() !=
2595 cast<FunctionType>(APTy->getElementType())->getNumParams())
2596 return false;
2597 }
2598
2599 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
2600 !CallerPAL.isEmpty()) {
2601 // In this case we have more arguments than the new function type, but we
2602 // won't be dropping them. Check that these extra arguments have attributes
2603 // that are compatible with being a vararg call argument.
2604 unsigned SRetIdx;
2605 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
2606 SRetIdx > FT->getNumParams())
2607 return false;
2608 }
2609
2610 // Okay, we decided that this is a safe thing to do: go ahead and start
2611 // inserting cast instructions as necessary.
2612 SmallVector<Value *, 8> Args;
2613 SmallVector<AttributeSet, 8> ArgAttrs;
2614 Args.reserve(NumActualArgs);
2615 ArgAttrs.reserve(NumActualArgs);
2616
2617 // Get any return attributes.
2618 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
2619
2620 // If the return value is not being used, the type may not be compatible
2621 // with the existing attributes. Wipe out any problematic attributes.
2622 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
2623
2624 LLVMContext &Ctx = Call.getContext();
2625 AI = Call.arg_begin();
2626 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
2627 Type *ParamTy = FT->getParamType(i);
2628
2629 Value *NewArg = *AI;
2630 if ((*AI)->getType() != ParamTy)
2631 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
2632 Args.push_back(NewArg);
2633
2634 // Add any parameter attributes.
2635 if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
2636 AttrBuilder AB(CallerPAL.getParamAttributes(i));
2637 AB.addByValAttr(NewArg->getType()->getPointerElementType());
2638 ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
2639 } else
2640 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
2641 }
2642
2643 // If the function takes more arguments than the call was taking, add them
2644 // now.
2645 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
2646 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
2647 ArgAttrs.push_back(AttributeSet());
2648 }
2649
2650 // If we are removing arguments to the function, emit an obnoxious warning.
2651 if (FT->getNumParams() < NumActualArgs) {
2652 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
2653 if (FT->isVarArg()) {
2654 // Add all of the arguments in their promoted form to the arg list.
2655 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
2656 Type *PTy = getPromotedType((*AI)->getType());
2657 Value *NewArg = *AI;
2658 if (PTy != (*AI)->getType()) {
2659 // Must promote to pass through va_arg area!
2660 Instruction::CastOps opcode =
2661 CastInst::getCastOpcode(*AI, false, PTy, false);
2662 NewArg = Builder.CreateCast(opcode, *AI, PTy);
2663 }
2664 Args.push_back(NewArg);
2665
2666 // Add any parameter attributes.
2667 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
2668 }
2669 }
2670 }
2671
2672 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
2673
2674 if (NewRetTy->isVoidTy())
2675 Caller->setName(""); // Void type should not have a name.
2676
2677 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
2678 "missing argument attributes");
2679 AttributeList NewCallerPAL = AttributeList::get(
2680 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
2681
2682 SmallVector<OperandBundleDef, 1> OpBundles;
2683 Call.getOperandBundlesAsDefs(OpBundles);
2684
2685 CallBase *NewCall;
2686 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2687 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
2688 II->getUnwindDest(), Args, OpBundles);
2689 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
2690 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
2691 CBI->getIndirectDests(), Args, OpBundles);
2692 } else {
2693 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
2694 cast<CallInst>(NewCall)->setTailCallKind(
2695 cast<CallInst>(Caller)->getTailCallKind());
2696 }
2697 NewCall->takeName(Caller);
2698 NewCall->setCallingConv(Call.getCallingConv());
2699 NewCall->setAttributes(NewCallerPAL);
2700
2701 // Preserve prof metadata if any.
2702 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
2703
2704 // Insert a cast of the return type as necessary.
2705 Instruction *NC = NewCall;
2706 Value *NV = NC;
2707 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
2708 if (!NV->getType()->isVoidTy()) {
2709 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
2710 NC->setDebugLoc(Caller->getDebugLoc());
2711
2712 // If this is an invoke/callbr instruction, we should insert it after the
2713 // first non-phi instruction in the normal successor block.
2714 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2715 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
2716 InsertNewInstBefore(NC, *I);
2717 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
2718 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
2719 InsertNewInstBefore(NC, *I);
2720 } else {
2721 // Otherwise, it's a call, just insert cast right after the call.
2722 InsertNewInstBefore(NC, *Caller);
2723 }
2724 Worklist.pushUsersToWorkList(*Caller);
2725 } else {
2726 NV = UndefValue::get(Caller->getType());
2727 }
2728 }
2729
2730 if (!Caller->use_empty())
2731 replaceInstUsesWith(*Caller, NV);
2732 else if (Caller->hasValueHandle()) {
2733 if (OldRetTy == NV->getType())
2734 ValueHandleBase::ValueIsRAUWd(Caller, NV);
2735 else
2736 // We cannot call ValueIsRAUWd with a different type, and the
2737 // actual tracked value will disappear.
2738 ValueHandleBase::ValueIsDeleted(Caller);
2739 }
2740
2741 eraseInstFromFunction(*Caller);
2742 return true;
2743 }
2744
2745 /// Turn a call to a function created by init_trampoline / adjust_trampoline
2746 /// intrinsic pair into a direct call to the underlying function.
2747 Instruction *
transformCallThroughTrampoline(CallBase & Call,IntrinsicInst & Tramp)2748 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
2749 IntrinsicInst &Tramp) {
2750 Value *Callee = Call.getCalledOperand();
2751 Type *CalleeTy = Callee->getType();
2752 FunctionType *FTy = Call.getFunctionType();
2753 AttributeList Attrs = Call.getAttributes();
2754
2755 // If the call already has the 'nest' attribute somewhere then give up -
2756 // otherwise 'nest' would occur twice after splicing in the chain.
2757 if (Attrs.hasAttrSomewhere(Attribute::Nest))
2758 return nullptr;
2759
2760 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
2761 FunctionType *NestFTy = NestF->getFunctionType();
2762
2763 AttributeList NestAttrs = NestF->getAttributes();
2764 if (!NestAttrs.isEmpty()) {
2765 unsigned NestArgNo = 0;
2766 Type *NestTy = nullptr;
2767 AttributeSet NestAttr;
2768
2769 // Look for a parameter marked with the 'nest' attribute.
2770 for (FunctionType::param_iterator I = NestFTy->param_begin(),
2771 E = NestFTy->param_end();
2772 I != E; ++NestArgNo, ++I) {
2773 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
2774 if (AS.hasAttribute(Attribute::Nest)) {
2775 // Record the parameter type and any other attributes.
2776 NestTy = *I;
2777 NestAttr = AS;
2778 break;
2779 }
2780 }
2781
2782 if (NestTy) {
2783 std::vector<Value*> NewArgs;
2784 std::vector<AttributeSet> NewArgAttrs;
2785 NewArgs.reserve(Call.arg_size() + 1);
2786 NewArgAttrs.reserve(Call.arg_size());
2787
2788 // Insert the nest argument into the call argument list, which may
2789 // mean appending it. Likewise for attributes.
2790
2791 {
2792 unsigned ArgNo = 0;
2793 auto I = Call.arg_begin(), E = Call.arg_end();
2794 do {
2795 if (ArgNo == NestArgNo) {
2796 // Add the chain argument and attributes.
2797 Value *NestVal = Tramp.getArgOperand(2);
2798 if (NestVal->getType() != NestTy)
2799 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
2800 NewArgs.push_back(NestVal);
2801 NewArgAttrs.push_back(NestAttr);
2802 }
2803
2804 if (I == E)
2805 break;
2806
2807 // Add the original argument and attributes.
2808 NewArgs.push_back(*I);
2809 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
2810
2811 ++ArgNo;
2812 ++I;
2813 } while (true);
2814 }
2815
2816 // The trampoline may have been bitcast to a bogus type (FTy).
2817 // Handle this by synthesizing a new function type, equal to FTy
2818 // with the chain parameter inserted.
2819
2820 std::vector<Type*> NewTypes;
2821 NewTypes.reserve(FTy->getNumParams()+1);
2822
2823 // Insert the chain's type into the list of parameter types, which may
2824 // mean appending it.
2825 {
2826 unsigned ArgNo = 0;
2827 FunctionType::param_iterator I = FTy->param_begin(),
2828 E = FTy->param_end();
2829
2830 do {
2831 if (ArgNo == NestArgNo)
2832 // Add the chain's type.
2833 NewTypes.push_back(NestTy);
2834
2835 if (I == E)
2836 break;
2837
2838 // Add the original type.
2839 NewTypes.push_back(*I);
2840
2841 ++ArgNo;
2842 ++I;
2843 } while (true);
2844 }
2845
2846 // Replace the trampoline call with a direct call. Let the generic
2847 // code sort out any function type mismatches.
2848 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
2849 FTy->isVarArg());
2850 Constant *NewCallee =
2851 NestF->getType() == PointerType::getUnqual(NewFTy) ?
2852 NestF : ConstantExpr::getBitCast(NestF,
2853 PointerType::getUnqual(NewFTy));
2854 AttributeList NewPAL =
2855 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
2856 Attrs.getRetAttributes(), NewArgAttrs);
2857
2858 SmallVector<OperandBundleDef, 1> OpBundles;
2859 Call.getOperandBundlesAsDefs(OpBundles);
2860
2861 Instruction *NewCaller;
2862 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
2863 NewCaller = InvokeInst::Create(NewFTy, NewCallee,
2864 II->getNormalDest(), II->getUnwindDest(),
2865 NewArgs, OpBundles);
2866 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
2867 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
2868 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
2869 NewCaller =
2870 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
2871 CBI->getIndirectDests(), NewArgs, OpBundles);
2872 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
2873 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
2874 } else {
2875 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
2876 cast<CallInst>(NewCaller)->setTailCallKind(
2877 cast<CallInst>(Call).getTailCallKind());
2878 cast<CallInst>(NewCaller)->setCallingConv(
2879 cast<CallInst>(Call).getCallingConv());
2880 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
2881 }
2882 NewCaller->setDebugLoc(Call.getDebugLoc());
2883
2884 return NewCaller;
2885 }
2886 }
2887
2888 // Replace the trampoline call with a direct call. Since there is no 'nest'
2889 // parameter, there is no need to adjust the argument list. Let the generic
2890 // code sort out any function type mismatches.
2891 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
2892 Call.setCalledFunction(FTy, NewCallee);
2893 return &Call;
2894 }
2895