1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Metadata.h"
14 #include "LLVMContextImpl.h"
15 #include "MetadataImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRange.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/TrackingMDRef.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/IR/ValueHandle.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MathExtras.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstddef>
54 #include <cstdint>
55 #include <iterator>
56 #include <tuple>
57 #include <type_traits>
58 #include <utility>
59 #include <vector>
60
61 using namespace llvm;
62
MetadataAsValue(Type * Ty,Metadata * MD)63 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
64 : Value(Ty, MetadataAsValueVal), MD(MD) {
65 track();
66 }
67
~MetadataAsValue()68 MetadataAsValue::~MetadataAsValue() {
69 getType()->getContext().pImpl->MetadataAsValues.erase(MD);
70 untrack();
71 }
72
73 /// Canonicalize metadata arguments to intrinsics.
74 ///
75 /// To support bitcode upgrades (and assembly semantic sugar) for \a
76 /// MetadataAsValue, we need to canonicalize certain metadata.
77 ///
78 /// - nullptr is replaced by an empty MDNode.
79 /// - An MDNode with a single null operand is replaced by an empty MDNode.
80 /// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
81 ///
82 /// This maintains readability of bitcode from when metadata was a type of
83 /// value, and these bridges were unnecessary.
canonicalizeMetadataForValue(LLVMContext & Context,Metadata * MD)84 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
85 Metadata *MD) {
86 if (!MD)
87 // !{}
88 return MDNode::get(Context, None);
89
90 // Return early if this isn't a single-operand MDNode.
91 auto *N = dyn_cast<MDNode>(MD);
92 if (!N || N->getNumOperands() != 1)
93 return MD;
94
95 if (!N->getOperand(0))
96 // !{}
97 return MDNode::get(Context, None);
98
99 if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
100 // Look through the MDNode.
101 return C;
102
103 return MD;
104 }
105
get(LLVMContext & Context,Metadata * MD)106 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
107 MD = canonicalizeMetadataForValue(Context, MD);
108 auto *&Entry = Context.pImpl->MetadataAsValues[MD];
109 if (!Entry)
110 Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
111 return Entry;
112 }
113
getIfExists(LLVMContext & Context,Metadata * MD)114 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
115 Metadata *MD) {
116 MD = canonicalizeMetadataForValue(Context, MD);
117 auto &Store = Context.pImpl->MetadataAsValues;
118 return Store.lookup(MD);
119 }
120
handleChangedMetadata(Metadata * MD)121 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
122 LLVMContext &Context = getContext();
123 MD = canonicalizeMetadataForValue(Context, MD);
124 auto &Store = Context.pImpl->MetadataAsValues;
125
126 // Stop tracking the old metadata.
127 Store.erase(this->MD);
128 untrack();
129 this->MD = nullptr;
130
131 // Start tracking MD, or RAUW if necessary.
132 auto *&Entry = Store[MD];
133 if (Entry) {
134 replaceAllUsesWith(Entry);
135 delete this;
136 return;
137 }
138
139 this->MD = MD;
140 track();
141 Entry = this;
142 }
143
track()144 void MetadataAsValue::track() {
145 if (MD)
146 MetadataTracking::track(&MD, *MD, *this);
147 }
148
untrack()149 void MetadataAsValue::untrack() {
150 if (MD)
151 MetadataTracking::untrack(MD);
152 }
153
track(void * Ref,Metadata & MD,OwnerTy Owner)154 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
155 assert(Ref && "Expected live reference");
156 assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
157 "Reference without owner must be direct");
158 if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
159 R->addRef(Ref, Owner);
160 return true;
161 }
162 if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
163 assert(!PH->Use && "Placeholders can only be used once");
164 assert(!Owner && "Unexpected callback to owner");
165 PH->Use = static_cast<Metadata **>(Ref);
166 return true;
167 }
168 return false;
169 }
170
untrack(void * Ref,Metadata & MD)171 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
172 assert(Ref && "Expected live reference");
173 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
174 R->dropRef(Ref);
175 else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
176 PH->Use = nullptr;
177 }
178
retrack(void * Ref,Metadata & MD,void * New)179 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
180 assert(Ref && "Expected live reference");
181 assert(New && "Expected live reference");
182 assert(Ref != New && "Expected change");
183 if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
184 R->moveRef(Ref, New, MD);
185 return true;
186 }
187 assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
188 "Unexpected move of an MDOperand");
189 assert(!isReplaceable(MD) &&
190 "Expected un-replaceable metadata, since we didn't move a reference");
191 return false;
192 }
193
isReplaceable(const Metadata & MD)194 bool MetadataTracking::isReplaceable(const Metadata &MD) {
195 return ReplaceableMetadataImpl::isReplaceable(MD);
196 }
197
getAllArgListUsers()198 SmallVector<Metadata *, 4> ReplaceableMetadataImpl::getAllArgListUsers() {
199 SmallVector<Metadata *, 4> MDUsers;
200 for (auto Pair : UseMap) {
201 OwnerTy Owner = Pair.second.first;
202 if (!Owner.is<Metadata *>())
203 continue;
204 Metadata *OwnerMD = Owner.get<Metadata *>();
205 if (OwnerMD->getMetadataID() == Metadata::DIArgListKind)
206 MDUsers.push_back(OwnerMD);
207 }
208 return MDUsers;
209 }
210
addRef(void * Ref,OwnerTy Owner)211 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
212 bool WasInserted =
213 UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
214 .second;
215 (void)WasInserted;
216 assert(WasInserted && "Expected to add a reference");
217
218 ++NextIndex;
219 assert(NextIndex != 0 && "Unexpected overflow");
220 }
221
dropRef(void * Ref)222 void ReplaceableMetadataImpl::dropRef(void *Ref) {
223 bool WasErased = UseMap.erase(Ref);
224 (void)WasErased;
225 assert(WasErased && "Expected to drop a reference");
226 }
227
moveRef(void * Ref,void * New,const Metadata & MD)228 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
229 const Metadata &MD) {
230 auto I = UseMap.find(Ref);
231 assert(I != UseMap.end() && "Expected to move a reference");
232 auto OwnerAndIndex = I->second;
233 UseMap.erase(I);
234 bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
235 (void)WasInserted;
236 assert(WasInserted && "Expected to add a reference");
237
238 // Check that the references are direct if there's no owner.
239 (void)MD;
240 assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
241 "Reference without owner must be direct");
242 assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
243 "Reference without owner must be direct");
244 }
245
replaceAllUsesWith(Metadata * MD)246 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
247 if (UseMap.empty())
248 return;
249
250 // Copy out uses since UseMap will get touched below.
251 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
252 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
253 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
254 return L.second.second < R.second.second;
255 });
256 for (const auto &Pair : Uses) {
257 // Check that this Ref hasn't disappeared after RAUW (when updating a
258 // previous Ref).
259 if (!UseMap.count(Pair.first))
260 continue;
261
262 OwnerTy Owner = Pair.second.first;
263 if (!Owner) {
264 // Update unowned tracking references directly.
265 Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
266 Ref = MD;
267 if (MD)
268 MetadataTracking::track(Ref);
269 UseMap.erase(Pair.first);
270 continue;
271 }
272
273 // Check for MetadataAsValue.
274 if (Owner.is<MetadataAsValue *>()) {
275 Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
276 continue;
277 }
278
279 // There's a Metadata owner -- dispatch.
280 Metadata *OwnerMD = Owner.get<Metadata *>();
281 switch (OwnerMD->getMetadataID()) {
282 #define HANDLE_METADATA_LEAF(CLASS) \
283 case Metadata::CLASS##Kind: \
284 cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
285 continue;
286 #include "llvm/IR/Metadata.def"
287 default:
288 llvm_unreachable("Invalid metadata subclass");
289 }
290 }
291 assert(UseMap.empty() && "Expected all uses to be replaced");
292 }
293
resolveAllUses(bool ResolveUsers)294 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
295 if (UseMap.empty())
296 return;
297
298 if (!ResolveUsers) {
299 UseMap.clear();
300 return;
301 }
302
303 // Copy out uses since UseMap could get touched below.
304 using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
305 SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
306 llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
307 return L.second.second < R.second.second;
308 });
309 UseMap.clear();
310 for (const auto &Pair : Uses) {
311 auto Owner = Pair.second.first;
312 if (!Owner)
313 continue;
314 if (Owner.is<MetadataAsValue *>())
315 continue;
316
317 // Resolve MDNodes that point at this.
318 auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
319 if (!OwnerMD)
320 continue;
321 if (OwnerMD->isResolved())
322 continue;
323 OwnerMD->decrementUnresolvedOperandCount();
324 }
325 }
326
getOrCreate(Metadata & MD)327 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
328 if (auto *N = dyn_cast<MDNode>(&MD))
329 return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses();
330 return dyn_cast<ValueAsMetadata>(&MD);
331 }
332
getIfExists(Metadata & MD)333 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
334 if (auto *N = dyn_cast<MDNode>(&MD))
335 return N->isResolved() ? nullptr : N->Context.getReplaceableUses();
336 return dyn_cast<ValueAsMetadata>(&MD);
337 }
338
isReplaceable(const Metadata & MD)339 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
340 if (auto *N = dyn_cast<MDNode>(&MD))
341 return !N->isResolved();
342 return dyn_cast<ValueAsMetadata>(&MD);
343 }
344
getLocalFunctionMetadata(Value * V)345 static DISubprogram *getLocalFunctionMetadata(Value *V) {
346 assert(V && "Expected value");
347 if (auto *A = dyn_cast<Argument>(V)) {
348 if (auto *Fn = A->getParent())
349 return Fn->getSubprogram();
350 return nullptr;
351 }
352
353 if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
354 if (auto *Fn = BB->getParent())
355 return Fn->getSubprogram();
356 return nullptr;
357 }
358
359 return nullptr;
360 }
361
get(Value * V)362 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
363 assert(V && "Unexpected null Value");
364
365 auto &Context = V->getContext();
366 auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
367 if (!Entry) {
368 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
369 "Expected constant or function-local value");
370 assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
371 V->IsUsedByMD = true;
372 if (auto *C = dyn_cast<Constant>(V))
373 Entry = new ConstantAsMetadata(C);
374 else
375 Entry = new LocalAsMetadata(V);
376 }
377
378 return Entry;
379 }
380
getIfExists(Value * V)381 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
382 assert(V && "Unexpected null Value");
383 return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
384 }
385
handleDeletion(Value * V)386 void ValueAsMetadata::handleDeletion(Value *V) {
387 assert(V && "Expected valid value");
388
389 auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
390 auto I = Store.find(V);
391 if (I == Store.end())
392 return;
393
394 // Remove old entry from the map.
395 ValueAsMetadata *MD = I->second;
396 assert(MD && "Expected valid metadata");
397 assert(MD->getValue() == V && "Expected valid mapping");
398 Store.erase(I);
399
400 // Delete the metadata.
401 MD->replaceAllUsesWith(nullptr);
402 delete MD;
403 }
404
handleRAUW(Value * From,Value * To)405 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
406 assert(From && "Expected valid value");
407 assert(To && "Expected valid value");
408 assert(From != To && "Expected changed value");
409 assert(From->getType() == To->getType() && "Unexpected type change");
410
411 LLVMContext &Context = From->getType()->getContext();
412 auto &Store = Context.pImpl->ValuesAsMetadata;
413 auto I = Store.find(From);
414 if (I == Store.end()) {
415 assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
416 return;
417 }
418
419 // Remove old entry from the map.
420 assert(From->IsUsedByMD && "Expected From to be used by metadata");
421 From->IsUsedByMD = false;
422 ValueAsMetadata *MD = I->second;
423 assert(MD && "Expected valid metadata");
424 assert(MD->getValue() == From && "Expected valid mapping");
425 Store.erase(I);
426
427 if (isa<LocalAsMetadata>(MD)) {
428 if (auto *C = dyn_cast<Constant>(To)) {
429 // Local became a constant.
430 MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
431 delete MD;
432 return;
433 }
434 if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
435 getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
436 // DISubprogram changed.
437 MD->replaceAllUsesWith(nullptr);
438 delete MD;
439 return;
440 }
441 } else if (!isa<Constant>(To)) {
442 // Changed to function-local value.
443 MD->replaceAllUsesWith(nullptr);
444 delete MD;
445 return;
446 }
447
448 auto *&Entry = Store[To];
449 if (Entry) {
450 // The target already exists.
451 MD->replaceAllUsesWith(Entry);
452 delete MD;
453 return;
454 }
455
456 // Update MD in place (and update the map entry).
457 assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
458 To->IsUsedByMD = true;
459 MD->V = To;
460 Entry = MD;
461 }
462
463 //===----------------------------------------------------------------------===//
464 // MDString implementation.
465 //
466
get(LLVMContext & Context,StringRef Str)467 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
468 auto &Store = Context.pImpl->MDStringCache;
469 auto I = Store.try_emplace(Str);
470 auto &MapEntry = I.first->getValue();
471 if (!I.second)
472 return &MapEntry;
473 MapEntry.Entry = &*I.first;
474 return &MapEntry;
475 }
476
getString() const477 StringRef MDString::getString() const {
478 assert(Entry && "Expected to find string map entry");
479 return Entry->first();
480 }
481
482 //===----------------------------------------------------------------------===//
483 // MDNode implementation.
484 //
485
486 // Assert that the MDNode types will not be unaligned by the objects
487 // prepended to them.
488 #define HANDLE_MDNODE_LEAF(CLASS) \
489 static_assert( \
490 alignof(uint64_t) >= alignof(CLASS), \
491 "Alignment is insufficient after objects prepended to " #CLASS);
492 #include "llvm/IR/Metadata.def"
493
operator new(size_t Size,unsigned NumOps)494 void *MDNode::operator new(size_t Size, unsigned NumOps) {
495 size_t OpSize = NumOps * sizeof(MDOperand);
496 // uint64_t is the most aligned type we need support (ensured by static_assert
497 // above)
498 OpSize = alignTo(OpSize, alignof(uint64_t));
499 void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
500 MDOperand *O = static_cast<MDOperand *>(Ptr);
501 for (MDOperand *E = O - NumOps; O != E; --O)
502 (void)new (O - 1) MDOperand;
503 return Ptr;
504 }
505
506 // Repress memory sanitization, due to use-after-destroy by operator
507 // delete. Bug report 24578 identifies this issue.
operator delete(void * Mem)508 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE void MDNode::operator delete(void *Mem) {
509 MDNode *N = static_cast<MDNode *>(Mem);
510 size_t OpSize = N->NumOperands * sizeof(MDOperand);
511 OpSize = alignTo(OpSize, alignof(uint64_t));
512
513 MDOperand *O = static_cast<MDOperand *>(Mem);
514 for (MDOperand *E = O - N->NumOperands; O != E; --O)
515 (O - 1)->~MDOperand();
516 ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
517 }
518
MDNode(LLVMContext & Context,unsigned ID,StorageType Storage,ArrayRef<Metadata * > Ops1,ArrayRef<Metadata * > Ops2)519 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
520 ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
521 : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
522 NumUnresolved(0), Context(Context) {
523 unsigned Op = 0;
524 for (Metadata *MD : Ops1)
525 setOperand(Op++, MD);
526 for (Metadata *MD : Ops2)
527 setOperand(Op++, MD);
528
529 if (!isUniqued())
530 return;
531
532 // Count the unresolved operands. If there are any, RAUW support will be
533 // added lazily on first reference.
534 countUnresolvedOperands();
535 }
536
clone() const537 TempMDNode MDNode::clone() const {
538 switch (getMetadataID()) {
539 default:
540 llvm_unreachable("Invalid MDNode subclass");
541 #define HANDLE_MDNODE_LEAF(CLASS) \
542 case CLASS##Kind: \
543 return cast<CLASS>(this)->cloneImpl();
544 #include "llvm/IR/Metadata.def"
545 }
546 }
547
isOperandUnresolved(Metadata * Op)548 static bool isOperandUnresolved(Metadata *Op) {
549 if (auto *N = dyn_cast_or_null<MDNode>(Op))
550 return !N->isResolved();
551 return false;
552 }
553
countUnresolvedOperands()554 void MDNode::countUnresolvedOperands() {
555 assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
556 assert(isUniqued() && "Expected this to be uniqued");
557 NumUnresolved = count_if(operands(), isOperandUnresolved);
558 }
559
makeUniqued()560 void MDNode::makeUniqued() {
561 assert(isTemporary() && "Expected this to be temporary");
562 assert(!isResolved() && "Expected this to be unresolved");
563
564 // Enable uniquing callbacks.
565 for (auto &Op : mutable_operands())
566 Op.reset(Op.get(), this);
567
568 // Make this 'uniqued'.
569 Storage = Uniqued;
570 countUnresolvedOperands();
571 if (!NumUnresolved) {
572 dropReplaceableUses();
573 assert(isResolved() && "Expected this to be resolved");
574 }
575
576 assert(isUniqued() && "Expected this to be uniqued");
577 }
578
makeDistinct()579 void MDNode::makeDistinct() {
580 assert(isTemporary() && "Expected this to be temporary");
581 assert(!isResolved() && "Expected this to be unresolved");
582
583 // Drop RAUW support and store as a distinct node.
584 dropReplaceableUses();
585 storeDistinctInContext();
586
587 assert(isDistinct() && "Expected this to be distinct");
588 assert(isResolved() && "Expected this to be resolved");
589 }
590
resolve()591 void MDNode::resolve() {
592 assert(isUniqued() && "Expected this to be uniqued");
593 assert(!isResolved() && "Expected this to be unresolved");
594
595 NumUnresolved = 0;
596 dropReplaceableUses();
597
598 assert(isResolved() && "Expected this to be resolved");
599 }
600
dropReplaceableUses()601 void MDNode::dropReplaceableUses() {
602 assert(!NumUnresolved && "Unexpected unresolved operand");
603
604 // Drop any RAUW support.
605 if (Context.hasReplaceableUses())
606 Context.takeReplaceableUses()->resolveAllUses();
607 }
608
resolveAfterOperandChange(Metadata * Old,Metadata * New)609 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
610 assert(isUniqued() && "Expected this to be uniqued");
611 assert(NumUnresolved != 0 && "Expected unresolved operands");
612
613 // Check if an operand was resolved.
614 if (!isOperandUnresolved(Old)) {
615 if (isOperandUnresolved(New))
616 // An operand was un-resolved!
617 ++NumUnresolved;
618 } else if (!isOperandUnresolved(New))
619 decrementUnresolvedOperandCount();
620 }
621
decrementUnresolvedOperandCount()622 void MDNode::decrementUnresolvedOperandCount() {
623 assert(!isResolved() && "Expected this to be unresolved");
624 if (isTemporary())
625 return;
626
627 assert(isUniqued() && "Expected this to be uniqued");
628 if (--NumUnresolved)
629 return;
630
631 // Last unresolved operand has just been resolved.
632 dropReplaceableUses();
633 assert(isResolved() && "Expected this to become resolved");
634 }
635
resolveCycles()636 void MDNode::resolveCycles() {
637 if (isResolved())
638 return;
639
640 // Resolve this node immediately.
641 resolve();
642
643 // Resolve all operands.
644 for (const auto &Op : operands()) {
645 auto *N = dyn_cast_or_null<MDNode>(Op);
646 if (!N)
647 continue;
648
649 assert(!N->isTemporary() &&
650 "Expected all forward declarations to be resolved");
651 if (!N->isResolved())
652 N->resolveCycles();
653 }
654 }
655
hasSelfReference(MDNode * N)656 static bool hasSelfReference(MDNode *N) {
657 return llvm::is_contained(N->operands(), N);
658 }
659
replaceWithPermanentImpl()660 MDNode *MDNode::replaceWithPermanentImpl() {
661 switch (getMetadataID()) {
662 default:
663 // If this type isn't uniquable, replace with a distinct node.
664 return replaceWithDistinctImpl();
665
666 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
667 case CLASS##Kind: \
668 break;
669 #include "llvm/IR/Metadata.def"
670 }
671
672 // Even if this type is uniquable, self-references have to be distinct.
673 if (hasSelfReference(this))
674 return replaceWithDistinctImpl();
675 return replaceWithUniquedImpl();
676 }
677
replaceWithUniquedImpl()678 MDNode *MDNode::replaceWithUniquedImpl() {
679 // Try to uniquify in place.
680 MDNode *UniquedNode = uniquify();
681
682 if (UniquedNode == this) {
683 makeUniqued();
684 return this;
685 }
686
687 // Collision, so RAUW instead.
688 replaceAllUsesWith(UniquedNode);
689 deleteAsSubclass();
690 return UniquedNode;
691 }
692
replaceWithDistinctImpl()693 MDNode *MDNode::replaceWithDistinctImpl() {
694 makeDistinct();
695 return this;
696 }
697
recalculateHash()698 void MDTuple::recalculateHash() {
699 setHash(MDTupleInfo::KeyTy::calculateHash(this));
700 }
701
dropAllReferences()702 void MDNode::dropAllReferences() {
703 for (unsigned I = 0, E = NumOperands; I != E; ++I)
704 setOperand(I, nullptr);
705 if (Context.hasReplaceableUses()) {
706 Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
707 (void)Context.takeReplaceableUses();
708 }
709 }
710
handleChangedOperand(void * Ref,Metadata * New)711 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
712 unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
713 assert(Op < getNumOperands() && "Expected valid operand");
714
715 if (!isUniqued()) {
716 // This node is not uniqued. Just set the operand and be done with it.
717 setOperand(Op, New);
718 return;
719 }
720
721 // This node is uniqued.
722 eraseFromStore();
723
724 Metadata *Old = getOperand(Op);
725 setOperand(Op, New);
726
727 // Drop uniquing for self-reference cycles and deleted constants.
728 if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
729 if (!isResolved())
730 resolve();
731 storeDistinctInContext();
732 return;
733 }
734
735 // Re-unique the node.
736 auto *Uniqued = uniquify();
737 if (Uniqued == this) {
738 if (!isResolved())
739 resolveAfterOperandChange(Old, New);
740 return;
741 }
742
743 // Collision.
744 if (!isResolved()) {
745 // Still unresolved, so RAUW.
746 //
747 // First, clear out all operands to prevent any recursion (similar to
748 // dropAllReferences(), but we still need the use-list).
749 for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
750 setOperand(O, nullptr);
751 if (Context.hasReplaceableUses())
752 Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
753 deleteAsSubclass();
754 return;
755 }
756
757 // Store in non-uniqued form if RAUW isn't possible.
758 storeDistinctInContext();
759 }
760
deleteAsSubclass()761 void MDNode::deleteAsSubclass() {
762 switch (getMetadataID()) {
763 default:
764 llvm_unreachable("Invalid subclass of MDNode");
765 #define HANDLE_MDNODE_LEAF(CLASS) \
766 case CLASS##Kind: \
767 delete cast<CLASS>(this); \
768 break;
769 #include "llvm/IR/Metadata.def"
770 }
771 }
772
773 template <class T, class InfoT>
uniquifyImpl(T * N,DenseSet<T *,InfoT> & Store)774 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
775 if (T *U = getUniqued(Store, N))
776 return U;
777
778 Store.insert(N);
779 return N;
780 }
781
782 template <class NodeTy> struct MDNode::HasCachedHash {
783 using Yes = char[1];
784 using No = char[2];
785 template <class U, U Val> struct SFINAE {};
786
787 template <class U>
788 static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
789 template <class U> static No &check(...);
790
791 static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
792 };
793
uniquify()794 MDNode *MDNode::uniquify() {
795 assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
796
797 // Try to insert into uniquing store.
798 switch (getMetadataID()) {
799 default:
800 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
801 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
802 case CLASS##Kind: { \
803 CLASS *SubclassThis = cast<CLASS>(this); \
804 std::integral_constant<bool, HasCachedHash<CLASS>::value> \
805 ShouldRecalculateHash; \
806 dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
807 return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
808 }
809 #include "llvm/IR/Metadata.def"
810 }
811 }
812
eraseFromStore()813 void MDNode::eraseFromStore() {
814 switch (getMetadataID()) {
815 default:
816 llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
817 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
818 case CLASS##Kind: \
819 getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
820 break;
821 #include "llvm/IR/Metadata.def"
822 }
823 }
824
getImpl(LLVMContext & Context,ArrayRef<Metadata * > MDs,StorageType Storage,bool ShouldCreate)825 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
826 StorageType Storage, bool ShouldCreate) {
827 unsigned Hash = 0;
828 if (Storage == Uniqued) {
829 MDTupleInfo::KeyTy Key(MDs);
830 if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
831 return N;
832 if (!ShouldCreate)
833 return nullptr;
834 Hash = Key.getHash();
835 } else {
836 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
837 }
838
839 return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
840 Storage, Context.pImpl->MDTuples);
841 }
842
deleteTemporary(MDNode * N)843 void MDNode::deleteTemporary(MDNode *N) {
844 assert(N->isTemporary() && "Expected temporary node");
845 N->replaceAllUsesWith(nullptr);
846 N->deleteAsSubclass();
847 }
848
storeDistinctInContext()849 void MDNode::storeDistinctInContext() {
850 assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
851 assert(!NumUnresolved && "Unexpected unresolved nodes");
852 Storage = Distinct;
853 assert(isResolved() && "Expected this to be resolved");
854
855 // Reset the hash.
856 switch (getMetadataID()) {
857 default:
858 llvm_unreachable("Invalid subclass of MDNode");
859 #define HANDLE_MDNODE_LEAF(CLASS) \
860 case CLASS##Kind: { \
861 std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
862 dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
863 break; \
864 }
865 #include "llvm/IR/Metadata.def"
866 }
867
868 getContext().pImpl->DistinctMDNodes.push_back(this);
869 }
870
replaceOperandWith(unsigned I,Metadata * New)871 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
872 if (getOperand(I) == New)
873 return;
874
875 if (!isUniqued()) {
876 setOperand(I, New);
877 return;
878 }
879
880 handleChangedOperand(mutable_begin() + I, New);
881 }
882
setOperand(unsigned I,Metadata * New)883 void MDNode::setOperand(unsigned I, Metadata *New) {
884 assert(I < NumOperands);
885 mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
886 }
887
888 /// Get a node or a self-reference that looks like it.
889 ///
890 /// Special handling for finding self-references, for use by \a
891 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
892 /// when self-referencing nodes were still uniqued. If the first operand has
893 /// the same operands as \c Ops, return the first operand instead.
getOrSelfReference(LLVMContext & Context,ArrayRef<Metadata * > Ops)894 static MDNode *getOrSelfReference(LLVMContext &Context,
895 ArrayRef<Metadata *> Ops) {
896 if (!Ops.empty())
897 if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
898 if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
899 for (unsigned I = 1, E = Ops.size(); I != E; ++I)
900 if (Ops[I] != N->getOperand(I))
901 return MDNode::get(Context, Ops);
902 return N;
903 }
904
905 return MDNode::get(Context, Ops);
906 }
907
concatenate(MDNode * A,MDNode * B)908 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
909 if (!A)
910 return B;
911 if (!B)
912 return A;
913
914 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
915 MDs.insert(B->op_begin(), B->op_end());
916
917 // FIXME: This preserves long-standing behaviour, but is it really the right
918 // behaviour? Or was that an unintended side-effect of node uniquing?
919 return getOrSelfReference(A->getContext(), MDs.getArrayRef());
920 }
921
intersect(MDNode * A,MDNode * B)922 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
923 if (!A || !B)
924 return nullptr;
925
926 SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
927 SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
928 MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); });
929
930 // FIXME: This preserves long-standing behaviour, but is it really the right
931 // behaviour? Or was that an unintended side-effect of node uniquing?
932 return getOrSelfReference(A->getContext(), MDs.getArrayRef());
933 }
934
getMostGenericAliasScope(MDNode * A,MDNode * B)935 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
936 if (!A || !B)
937 return nullptr;
938
939 // Take the intersection of domains then union the scopes
940 // within those domains
941 SmallPtrSet<const MDNode *, 16> ADomains;
942 SmallPtrSet<const MDNode *, 16> IntersectDomains;
943 SmallSetVector<Metadata *, 4> MDs;
944 for (const MDOperand &MDOp : A->operands())
945 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
946 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
947 ADomains.insert(Domain);
948
949 for (const MDOperand &MDOp : B->operands())
950 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
951 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
952 if (ADomains.contains(Domain)) {
953 IntersectDomains.insert(Domain);
954 MDs.insert(MDOp);
955 }
956
957 for (const MDOperand &MDOp : A->operands())
958 if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
959 if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
960 if (IntersectDomains.contains(Domain))
961 MDs.insert(MDOp);
962
963 return MDs.empty() ? nullptr
964 : getOrSelfReference(A->getContext(), MDs.getArrayRef());
965 }
966
getMostGenericFPMath(MDNode * A,MDNode * B)967 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
968 if (!A || !B)
969 return nullptr;
970
971 APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
972 APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
973 if (AVal < BVal)
974 return A;
975 return B;
976 }
977
isContiguous(const ConstantRange & A,const ConstantRange & B)978 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
979 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
980 }
981
canBeMerged(const ConstantRange & A,const ConstantRange & B)982 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
983 return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
984 }
985
tryMergeRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)986 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
987 ConstantInt *Low, ConstantInt *High) {
988 ConstantRange NewRange(Low->getValue(), High->getValue());
989 unsigned Size = EndPoints.size();
990 APInt LB = EndPoints[Size - 2]->getValue();
991 APInt LE = EndPoints[Size - 1]->getValue();
992 ConstantRange LastRange(LB, LE);
993 if (canBeMerged(NewRange, LastRange)) {
994 ConstantRange Union = LastRange.unionWith(NewRange);
995 Type *Ty = High->getType();
996 EndPoints[Size - 2] =
997 cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
998 EndPoints[Size - 1] =
999 cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
1000 return true;
1001 }
1002 return false;
1003 }
1004
addRange(SmallVectorImpl<ConstantInt * > & EndPoints,ConstantInt * Low,ConstantInt * High)1005 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
1006 ConstantInt *Low, ConstantInt *High) {
1007 if (!EndPoints.empty())
1008 if (tryMergeRange(EndPoints, Low, High))
1009 return;
1010
1011 EndPoints.push_back(Low);
1012 EndPoints.push_back(High);
1013 }
1014
getMostGenericRange(MDNode * A,MDNode * B)1015 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
1016 // Given two ranges, we want to compute the union of the ranges. This
1017 // is slightly complicated by having to combine the intervals and merge
1018 // the ones that overlap.
1019
1020 if (!A || !B)
1021 return nullptr;
1022
1023 if (A == B)
1024 return A;
1025
1026 // First, walk both lists in order of the lower boundary of each interval.
1027 // At each step, try to merge the new interval to the last one we adedd.
1028 SmallVector<ConstantInt *, 4> EndPoints;
1029 int AI = 0;
1030 int BI = 0;
1031 int AN = A->getNumOperands() / 2;
1032 int BN = B->getNumOperands() / 2;
1033 while (AI < AN && BI < BN) {
1034 ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
1035 ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
1036
1037 if (ALow->getValue().slt(BLow->getValue())) {
1038 addRange(EndPoints, ALow,
1039 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1040 ++AI;
1041 } else {
1042 addRange(EndPoints, BLow,
1043 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1044 ++BI;
1045 }
1046 }
1047 while (AI < AN) {
1048 addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
1049 mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1050 ++AI;
1051 }
1052 while (BI < BN) {
1053 addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
1054 mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1055 ++BI;
1056 }
1057
1058 // If we have more than 2 ranges (4 endpoints) we have to try to merge
1059 // the last and first ones.
1060 unsigned Size = EndPoints.size();
1061 if (Size > 4) {
1062 ConstantInt *FB = EndPoints[0];
1063 ConstantInt *FE = EndPoints[1];
1064 if (tryMergeRange(EndPoints, FB, FE)) {
1065 for (unsigned i = 0; i < Size - 2; ++i) {
1066 EndPoints[i] = EndPoints[i + 2];
1067 }
1068 EndPoints.resize(Size - 2);
1069 }
1070 }
1071
1072 // If in the end we have a single range, it is possible that it is now the
1073 // full range. Just drop the metadata in that case.
1074 if (EndPoints.size() == 2) {
1075 ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1076 if (Range.isFullSet())
1077 return nullptr;
1078 }
1079
1080 SmallVector<Metadata *, 4> MDs;
1081 MDs.reserve(EndPoints.size());
1082 for (auto *I : EndPoints)
1083 MDs.push_back(ConstantAsMetadata::get(I));
1084 return MDNode::get(A->getContext(), MDs);
1085 }
1086
getMostGenericAlignmentOrDereferenceable(MDNode * A,MDNode * B)1087 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1088 if (!A || !B)
1089 return nullptr;
1090
1091 ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1092 ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1093 if (AVal->getZExtValue() < BVal->getZExtValue())
1094 return A;
1095 return B;
1096 }
1097
1098 //===----------------------------------------------------------------------===//
1099 // NamedMDNode implementation.
1100 //
1101
getNMDOps(void * Operands)1102 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1103 return *(SmallVector<TrackingMDRef, 4> *)Operands;
1104 }
1105
NamedMDNode(const Twine & N)1106 NamedMDNode::NamedMDNode(const Twine &N)
1107 : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
1108
~NamedMDNode()1109 NamedMDNode::~NamedMDNode() {
1110 dropAllReferences();
1111 delete &getNMDOps(Operands);
1112 }
1113
getNumOperands() const1114 unsigned NamedMDNode::getNumOperands() const {
1115 return (unsigned)getNMDOps(Operands).size();
1116 }
1117
getOperand(unsigned i) const1118 MDNode *NamedMDNode::getOperand(unsigned i) const {
1119 assert(i < getNumOperands() && "Invalid Operand number!");
1120 auto *N = getNMDOps(Operands)[i].get();
1121 return cast_or_null<MDNode>(N);
1122 }
1123
addOperand(MDNode * M)1124 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1125
setOperand(unsigned I,MDNode * New)1126 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1127 assert(I < getNumOperands() && "Invalid operand number");
1128 getNMDOps(Operands)[I].reset(New);
1129 }
1130
eraseFromParent()1131 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1132
clearOperands()1133 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
1134
getName() const1135 StringRef NamedMDNode::getName() const { return StringRef(Name); }
1136
1137 //===----------------------------------------------------------------------===//
1138 // Instruction Metadata method implementations.
1139 //
1140
lookup(unsigned ID) const1141 MDNode *MDAttachments::lookup(unsigned ID) const {
1142 for (const auto &A : Attachments)
1143 if (A.MDKind == ID)
1144 return A.Node;
1145 return nullptr;
1146 }
1147
get(unsigned ID,SmallVectorImpl<MDNode * > & Result) const1148 void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const {
1149 for (const auto &A : Attachments)
1150 if (A.MDKind == ID)
1151 Result.push_back(A.Node);
1152 }
1153
getAll(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1154 void MDAttachments::getAll(
1155 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1156 for (const auto &A : Attachments)
1157 Result.emplace_back(A.MDKind, A.Node);
1158
1159 // Sort the resulting array so it is stable with respect to metadata IDs. We
1160 // need to preserve the original insertion order though.
1161 if (Result.size() > 1)
1162 llvm::stable_sort(Result, less_first());
1163 }
1164
set(unsigned ID,MDNode * MD)1165 void MDAttachments::set(unsigned ID, MDNode *MD) {
1166 erase(ID);
1167 if (MD)
1168 insert(ID, *MD);
1169 }
1170
insert(unsigned ID,MDNode & MD)1171 void MDAttachments::insert(unsigned ID, MDNode &MD) {
1172 Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1173 }
1174
erase(unsigned ID)1175 bool MDAttachments::erase(unsigned ID) {
1176 if (empty())
1177 return false;
1178
1179 // Common case is one value.
1180 if (Attachments.size() == 1 && Attachments.back().MDKind == ID) {
1181 Attachments.pop_back();
1182 return true;
1183 }
1184
1185 auto OldSize = Attachments.size();
1186 llvm::erase_if(Attachments,
1187 [ID](const Attachment &A) { return A.MDKind == ID; });
1188 return OldSize != Attachments.size();
1189 }
1190
getMetadata(unsigned KindID) const1191 MDNode *Value::getMetadata(unsigned KindID) const {
1192 if (!hasMetadata())
1193 return nullptr;
1194 const auto &Info = getContext().pImpl->ValueMetadata[this];
1195 assert(!Info.empty() && "bit out of sync with hash table");
1196 return Info.lookup(KindID);
1197 }
1198
getMetadata(StringRef Kind) const1199 MDNode *Value::getMetadata(StringRef Kind) const {
1200 if (!hasMetadata())
1201 return nullptr;
1202 const auto &Info = getContext().pImpl->ValueMetadata[this];
1203 assert(!Info.empty() && "bit out of sync with hash table");
1204 return Info.lookup(getContext().getMDKindID(Kind));
1205 }
1206
getMetadata(unsigned KindID,SmallVectorImpl<MDNode * > & MDs) const1207 void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const {
1208 if (hasMetadata())
1209 getContext().pImpl->ValueMetadata[this].get(KindID, MDs);
1210 }
1211
getMetadata(StringRef Kind,SmallVectorImpl<MDNode * > & MDs) const1212 void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const {
1213 if (hasMetadata())
1214 getMetadata(getContext().getMDKindID(Kind), MDs);
1215 }
1216
getAllMetadata(SmallVectorImpl<std::pair<unsigned,MDNode * >> & MDs) const1217 void Value::getAllMetadata(
1218 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1219 if (hasMetadata()) {
1220 assert(getContext().pImpl->ValueMetadata.count(this) &&
1221 "bit out of sync with hash table");
1222 const auto &Info = getContext().pImpl->ValueMetadata.find(this)->second;
1223 assert(!Info.empty() && "Shouldn't have called this");
1224 Info.getAll(MDs);
1225 }
1226 }
1227
setMetadata(unsigned KindID,MDNode * Node)1228 void Value::setMetadata(unsigned KindID, MDNode *Node) {
1229 assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1230
1231 // Handle the case when we're adding/updating metadata on a value.
1232 if (Node) {
1233 auto &Info = getContext().pImpl->ValueMetadata[this];
1234 assert(!Info.empty() == HasMetadata && "bit out of sync with hash table");
1235 if (Info.empty())
1236 HasMetadata = true;
1237 Info.set(KindID, Node);
1238 return;
1239 }
1240
1241 // Otherwise, we're removing metadata from an instruction.
1242 assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) &&
1243 "bit out of sync with hash table");
1244 if (!HasMetadata)
1245 return; // Nothing to remove!
1246 auto &Info = getContext().pImpl->ValueMetadata[this];
1247
1248 // Handle removal of an existing value.
1249 Info.erase(KindID);
1250 if (!Info.empty())
1251 return;
1252 getContext().pImpl->ValueMetadata.erase(this);
1253 HasMetadata = false;
1254 }
1255
setMetadata(StringRef Kind,MDNode * Node)1256 void Value::setMetadata(StringRef Kind, MDNode *Node) {
1257 if (!Node && !HasMetadata)
1258 return;
1259 setMetadata(getContext().getMDKindID(Kind), Node);
1260 }
1261
addMetadata(unsigned KindID,MDNode & MD)1262 void Value::addMetadata(unsigned KindID, MDNode &MD) {
1263 assert(isa<Instruction>(this) || isa<GlobalObject>(this));
1264 if (!HasMetadata)
1265 HasMetadata = true;
1266 getContext().pImpl->ValueMetadata[this].insert(KindID, MD);
1267 }
1268
addMetadata(StringRef Kind,MDNode & MD)1269 void Value::addMetadata(StringRef Kind, MDNode &MD) {
1270 addMetadata(getContext().getMDKindID(Kind), MD);
1271 }
1272
eraseMetadata(unsigned KindID)1273 bool Value::eraseMetadata(unsigned KindID) {
1274 // Nothing to unset.
1275 if (!HasMetadata)
1276 return false;
1277
1278 auto &Store = getContext().pImpl->ValueMetadata[this];
1279 bool Changed = Store.erase(KindID);
1280 if (Store.empty())
1281 clearMetadata();
1282 return Changed;
1283 }
1284
clearMetadata()1285 void Value::clearMetadata() {
1286 if (!HasMetadata)
1287 return;
1288 assert(getContext().pImpl->ValueMetadata.count(this) &&
1289 "bit out of sync with hash table");
1290 getContext().pImpl->ValueMetadata.erase(this);
1291 HasMetadata = false;
1292 }
1293
setMetadata(StringRef Kind,MDNode * Node)1294 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1295 if (!Node && !hasMetadata())
1296 return;
1297 setMetadata(getContext().getMDKindID(Kind), Node);
1298 }
1299
getMetadataImpl(StringRef Kind) const1300 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1301 return getMetadataImpl(getContext().getMDKindID(Kind));
1302 }
1303
dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs)1304 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1305 if (!Value::hasMetadata())
1306 return; // Nothing to remove!
1307
1308 if (KnownIDs.empty()) {
1309 // Just drop our entry at the store.
1310 clearMetadata();
1311 return;
1312 }
1313
1314 SmallSet<unsigned, 4> KnownSet;
1315 KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1316
1317 auto &MetadataStore = getContext().pImpl->ValueMetadata;
1318 auto &Info = MetadataStore[this];
1319 assert(!Info.empty() && "bit out of sync with hash table");
1320 Info.remove_if([&KnownSet](const MDAttachments::Attachment &I) {
1321 return !KnownSet.count(I.MDKind);
1322 });
1323
1324 if (Info.empty()) {
1325 // Drop our entry at the store.
1326 clearMetadata();
1327 }
1328 }
1329
setMetadata(unsigned KindID,MDNode * Node)1330 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1331 if (!Node && !hasMetadata())
1332 return;
1333
1334 // Handle 'dbg' as a special case since it is not stored in the hash table.
1335 if (KindID == LLVMContext::MD_dbg) {
1336 DbgLoc = DebugLoc(Node);
1337 return;
1338 }
1339
1340 Value::setMetadata(KindID, Node);
1341 }
1342
addAnnotationMetadata(StringRef Name)1343 void Instruction::addAnnotationMetadata(StringRef Name) {
1344 MDBuilder MDB(getContext());
1345
1346 auto *Existing = getMetadata(LLVMContext::MD_annotation);
1347 SmallVector<Metadata *, 4> Names;
1348 bool AppendName = true;
1349 if (Existing) {
1350 auto *Tuple = cast<MDTuple>(Existing);
1351 for (auto &N : Tuple->operands()) {
1352 if (cast<MDString>(N.get())->getString() == Name)
1353 AppendName = false;
1354 Names.push_back(N.get());
1355 }
1356 }
1357 if (AppendName)
1358 Names.push_back(MDB.createString(Name));
1359
1360 MDNode *MD = MDTuple::get(getContext(), Names);
1361 setMetadata(LLVMContext::MD_annotation, MD);
1362 }
1363
setAAMetadata(const AAMDNodes & N)1364 void Instruction::setAAMetadata(const AAMDNodes &N) {
1365 setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1366 setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
1367 setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1368 setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1369 }
1370
getMetadataImpl(unsigned KindID) const1371 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1372 // Handle 'dbg' as a special case since it is not stored in the hash table.
1373 if (KindID == LLVMContext::MD_dbg)
1374 return DbgLoc.getAsMDNode();
1375 return Value::getMetadata(KindID);
1376 }
1377
getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned,MDNode * >> & Result) const1378 void Instruction::getAllMetadataImpl(
1379 SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1380 Result.clear();
1381
1382 // Handle 'dbg' as a special case since it is not stored in the hash table.
1383 if (DbgLoc) {
1384 Result.push_back(
1385 std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1386 }
1387 Value::getAllMetadata(Result);
1388 }
1389
extractProfMetadata(uint64_t & TrueVal,uint64_t & FalseVal) const1390 bool Instruction::extractProfMetadata(uint64_t &TrueVal,
1391 uint64_t &FalseVal) const {
1392 assert(
1393 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) &&
1394 "Looking for branch weights on something besides branch or select");
1395
1396 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1397 if (!ProfileData || ProfileData->getNumOperands() != 3)
1398 return false;
1399
1400 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1401 if (!ProfDataName || !ProfDataName->getString().equals("branch_weights"))
1402 return false;
1403
1404 auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
1405 auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
1406 if (!CITrue || !CIFalse)
1407 return false;
1408
1409 TrueVal = CITrue->getValue().getZExtValue();
1410 FalseVal = CIFalse->getValue().getZExtValue();
1411
1412 return true;
1413 }
1414
extractProfTotalWeight(uint64_t & TotalVal) const1415 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
1416 assert(
1417 (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select ||
1418 getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke ||
1419 getOpcode() == Instruction::IndirectBr ||
1420 getOpcode() == Instruction::Switch) &&
1421 "Looking for branch weights on something besides branch");
1422
1423 TotalVal = 0;
1424 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1425 if (!ProfileData)
1426 return false;
1427
1428 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1429 if (!ProfDataName)
1430 return false;
1431
1432 if (ProfDataName->getString().equals("branch_weights")) {
1433 TotalVal = 0;
1434 for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
1435 auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i));
1436 if (!V)
1437 return false;
1438 TotalVal += V->getValue().getZExtValue();
1439 }
1440 return true;
1441 } else if (ProfDataName->getString().equals("VP") &&
1442 ProfileData->getNumOperands() > 3) {
1443 TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2))
1444 ->getValue()
1445 .getZExtValue();
1446 return true;
1447 }
1448 return false;
1449 }
1450
copyMetadata(const GlobalObject * Other,unsigned Offset)1451 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1452 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1453 Other->getAllMetadata(MDs);
1454 for (auto &MD : MDs) {
1455 // We need to adjust the type metadata offset.
1456 if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1457 auto *OffsetConst = cast<ConstantInt>(
1458 cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1459 Metadata *TypeId = MD.second->getOperand(1);
1460 auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1461 OffsetConst->getType(), OffsetConst->getValue() + Offset));
1462 addMetadata(LLVMContext::MD_type,
1463 *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1464 continue;
1465 }
1466 // If an offset adjustment was specified we need to modify the DIExpression
1467 // to prepend the adjustment:
1468 // !DIExpression(DW_OP_plus, Offset, [original expr])
1469 auto *Attachment = MD.second;
1470 if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
1471 DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
1472 DIExpression *E = nullptr;
1473 if (!GV) {
1474 auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
1475 GV = GVE->getVariable();
1476 E = GVE->getExpression();
1477 }
1478 ArrayRef<uint64_t> OrigElements;
1479 if (E)
1480 OrigElements = E->getElements();
1481 std::vector<uint64_t> Elements(OrigElements.size() + 2);
1482 Elements[0] = dwarf::DW_OP_plus_uconst;
1483 Elements[1] = Offset;
1484 llvm::copy(OrigElements, Elements.begin() + 2);
1485 E = DIExpression::get(getContext(), Elements);
1486 Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
1487 }
1488 addMetadata(MD.first, *Attachment);
1489 }
1490 }
1491
addTypeMetadata(unsigned Offset,Metadata * TypeID)1492 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1493 addMetadata(
1494 LLVMContext::MD_type,
1495 *MDTuple::get(getContext(),
1496 {ConstantAsMetadata::get(ConstantInt::get(
1497 Type::getInt64Ty(getContext()), Offset)),
1498 TypeID}));
1499 }
1500
setVCallVisibilityMetadata(VCallVisibility Visibility)1501 void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) {
1502 // Remove any existing vcall visibility metadata first in case we are
1503 // updating.
1504 eraseMetadata(LLVMContext::MD_vcall_visibility);
1505 addMetadata(LLVMContext::MD_vcall_visibility,
1506 *MDNode::get(getContext(),
1507 {ConstantAsMetadata::get(ConstantInt::get(
1508 Type::getInt64Ty(getContext()), Visibility))}));
1509 }
1510
getVCallVisibility() const1511 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
1512 if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
1513 uint64_t Val = cast<ConstantInt>(
1514 cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
1515 ->getZExtValue();
1516 assert(Val <= 2 && "unknown vcall visibility!");
1517 return (VCallVisibility)Val;
1518 }
1519 return VCallVisibility::VCallVisibilityPublic;
1520 }
1521
setSubprogram(DISubprogram * SP)1522 void Function::setSubprogram(DISubprogram *SP) {
1523 setMetadata(LLVMContext::MD_dbg, SP);
1524 }
1525
getSubprogram() const1526 DISubprogram *Function::getSubprogram() const {
1527 return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1528 }
1529
isDebugInfoForProfiling() const1530 bool Function::isDebugInfoForProfiling() const {
1531 if (DISubprogram *SP = getSubprogram()) {
1532 if (DICompileUnit *CU = SP->getUnit()) {
1533 return CU->getDebugInfoForProfiling();
1534 }
1535 }
1536 return false;
1537 }
1538
addDebugInfo(DIGlobalVariableExpression * GV)1539 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
1540 addMetadata(LLVMContext::MD_dbg, *GV);
1541 }
1542
getDebugInfo(SmallVectorImpl<DIGlobalVariableExpression * > & GVs) const1543 void GlobalVariable::getDebugInfo(
1544 SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
1545 SmallVector<MDNode *, 1> MDs;
1546 getMetadata(LLVMContext::MD_dbg, MDs);
1547 for (MDNode *MD : MDs)
1548 GVs.push_back(cast<DIGlobalVariableExpression>(MD));
1549 }
1550