1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements PGO instrumentation using a minimum spanning tree based
10 // on the following paper:
11 // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
12 // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
13 // Issue 3, pp 313-322
14 // The idea of the algorithm based on the fact that for each node (except for
15 // the entry and exit), the sum of incoming edge counts equals the sum of
16 // outgoing edge counts. The count of edge on spanning tree can be derived from
17 // those edges not on the spanning tree. Knuth proves this method instruments
18 // the minimum number of edges.
19 //
20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree
21 // edges have higher frequencies (more likely to execute). The idea is to
22 // instrument those less frequently executed edges to reduce the runtime
23 // overhead of instrumented binaries.
24 //
25 // This file contains two passes:
26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
27 // count profile, and generates the instrumentation for indirect call
28 // profiling.
29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and
30 // annotates the branch weights. It also reads the indirect call value
31 // profiling records and annotate the indirect call instructions.
32 //
33 // To get the precise counter information, These two passes need to invoke at
34 // the same compilation point (so they see the same IR). For pass
35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
37 // the profile is opened in module level and passed to each PGOUseFunc instance.
38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
39 // in class FuncPGOInstrumentation.
40 //
41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class
42 // BBInfo contains auxiliary information for each BB. These two classes are used
43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure
45 // used in populating profile counters.
46 // The MST implementation is in Class CFGMST (CFGMST.h).
47 //
48 //===----------------------------------------------------------------------===//
49
50 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
51 #include "CFGMST.h"
52 #include "ValueProfileCollector.h"
53 #include "llvm/ADT/APInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/Statistic.h"
58 #include "llvm/ADT/StringRef.h"
59 #include "llvm/ADT/Triple.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/iterator.h"
62 #include "llvm/ADT/iterator_range.h"
63 #include "llvm/Analysis/BlockFrequencyInfo.h"
64 #include "llvm/Analysis/BranchProbabilityInfo.h"
65 #include "llvm/Analysis/CFG.h"
66 #include "llvm/Analysis/EHPersonalities.h"
67 #include "llvm/Analysis/LoopInfo.h"
68 #include "llvm/Analysis/MemoryBuiltins.h"
69 #include "llvm/Analysis/MemoryProfileInfo.h"
70 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
71 #include "llvm/Analysis/ProfileSummaryInfo.h"
72 #include "llvm/Analysis/TargetLibraryInfo.h"
73 #include "llvm/IR/Attributes.h"
74 #include "llvm/IR/BasicBlock.h"
75 #include "llvm/IR/CFG.h"
76 #include "llvm/IR/Comdat.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DiagnosticInfo.h"
80 #include "llvm/IR/Dominators.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GlobalAlias.h"
83 #include "llvm/IR/GlobalValue.h"
84 #include "llvm/IR/GlobalVariable.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstVisitor.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/LLVMContext.h"
93 #include "llvm/IR/MDBuilder.h"
94 #include "llvm/IR/Module.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/ProfDataUtils.h"
97 #include "llvm/IR/ProfileSummary.h"
98 #include "llvm/IR/Type.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/ProfileData/InstrProf.h"
101 #include "llvm/ProfileData/InstrProfReader.h"
102 #include "llvm/Support/BLAKE3.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/CRC.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/DOTGraphTraits.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/Error.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/GraphWriter.h"
112 #include "llvm/Support/HashBuilder.h"
113 #include "llvm/Support/raw_ostream.h"
114 #include "llvm/Transforms/Instrumentation.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/MisExpect.h"
117 #include "llvm/Transforms/Utils/ModuleUtils.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstdint>
121 #include <map>
122 #include <memory>
123 #include <numeric>
124 #include <optional>
125 #include <set>
126 #include <string>
127 #include <unordered_map>
128 #include <utility>
129 #include <vector>
130
131 using namespace llvm;
132 using namespace llvm::memprof;
133 using ProfileCount = Function::ProfileCount;
134 using VPCandidateInfo = ValueProfileCollector::CandidateInfo;
135
136 #define DEBUG_TYPE "pgo-instrumentation"
137
138 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
139 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
140 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
141 STATISTIC(NumOfPGOEdge, "Number of edges.");
142 STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
143 STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
144 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
145 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
146 STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
147 STATISTIC(NumOfMemProfMissing, "Number of functions without memory profile.");
148 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
149 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
150 STATISTIC(NumOfCSPGOSelectInsts,
151 "Number of select instruction instrumented in CSPGO.");
152 STATISTIC(NumOfCSPGOMemIntrinsics,
153 "Number of mem intrinsics instrumented in CSPGO.");
154 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
155 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
156 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
157 STATISTIC(NumOfCSPGOFunc,
158 "Number of functions having valid profile counts in CSPGO.");
159 STATISTIC(NumOfCSPGOMismatch,
160 "Number of functions having mismatch profile in CSPGO.");
161 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
162
163 // Command line option to specify the file to read profile from. This is
164 // mainly used for testing.
165 static cl::opt<std::string>
166 PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
167 cl::value_desc("filename"),
168 cl::desc("Specify the path of profile data file. This is"
169 "mainly for test purpose."));
170 static cl::opt<std::string> PGOTestProfileRemappingFile(
171 "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
172 cl::value_desc("filename"),
173 cl::desc("Specify the path of profile remapping file. This is mainly for "
174 "test purpose."));
175
176 // Command line option to disable value profiling. The default is false:
177 // i.e. value profiling is enabled by default. This is for debug purpose.
178 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
179 cl::Hidden,
180 cl::desc("Disable Value Profiling"));
181
182 // Command line option to set the maximum number of VP annotations to write to
183 // the metadata for a single indirect call callsite.
184 static cl::opt<unsigned> MaxNumAnnotations(
185 "icp-max-annotations", cl::init(3), cl::Hidden,
186 cl::desc("Max number of annotations for a single indirect "
187 "call callsite"));
188
189 // Command line option to set the maximum number of value annotations
190 // to write to the metadata for a single memop intrinsic.
191 static cl::opt<unsigned> MaxNumMemOPAnnotations(
192 "memop-max-annotations", cl::init(4), cl::Hidden,
193 cl::desc("Max number of preicise value annotations for a single memop"
194 "intrinsic"));
195
196 // Command line option to control appending FunctionHash to the name of a COMDAT
197 // function. This is to avoid the hash mismatch caused by the preinliner.
198 static cl::opt<bool> DoComdatRenaming(
199 "do-comdat-renaming", cl::init(false), cl::Hidden,
200 cl::desc("Append function hash to the name of COMDAT function to avoid "
201 "function hash mismatch due to the preinliner"));
202
203 // Command line option to enable/disable the warning about missing profile
204 // information.
205 static cl::opt<bool>
206 PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden,
207 cl::desc("Use this option to turn on/off "
208 "warnings about missing profile data for "
209 "functions."));
210
211 namespace llvm {
212 // Command line option to enable/disable the warning about a hash mismatch in
213 // the profile data.
214 cl::opt<bool>
215 NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
216 cl::desc("Use this option to turn off/on "
217 "warnings about profile cfg mismatch."));
218 } // namespace llvm
219
220 // Command line option to enable/disable the warning about a hash mismatch in
221 // the profile data for Comdat functions, which often turns out to be false
222 // positive due to the pre-instrumentation inline.
223 static cl::opt<bool> NoPGOWarnMismatchComdatWeak(
224 "no-pgo-warn-mismatch-comdat-weak", cl::init(true), cl::Hidden,
225 cl::desc("The option is used to turn on/off "
226 "warnings about hash mismatch for comdat "
227 "or weak functions."));
228
229 // Command line option to enable/disable select instruction instrumentation.
230 static cl::opt<bool>
231 PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
232 cl::desc("Use this option to turn on/off SELECT "
233 "instruction instrumentation. "));
234
235 // Command line option to turn on CFG dot or text dump of raw profile counts
236 static cl::opt<PGOViewCountsType> PGOViewRawCounts(
237 "pgo-view-raw-counts", cl::Hidden,
238 cl::desc("A boolean option to show CFG dag or text "
239 "with raw profile counts from "
240 "profile data. See also option "
241 "-pgo-view-counts. To limit graph "
242 "display to only one function, use "
243 "filtering option -view-bfi-func-name."),
244 cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
245 clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
246 clEnumValN(PGOVCT_Text, "text", "show in text.")));
247
248 // Command line option to enable/disable memop intrinsic call.size profiling.
249 static cl::opt<bool>
250 PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
251 cl::desc("Use this option to turn on/off "
252 "memory intrinsic size profiling."));
253
254 // Emit branch probability as optimization remarks.
255 static cl::opt<bool>
256 EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
257 cl::desc("When this option is on, the annotated "
258 "branch probability will be emitted as "
259 "optimization remarks: -{Rpass|"
260 "pass-remarks}=pgo-instrumentation"));
261
262 static cl::opt<bool> PGOInstrumentEntry(
263 "pgo-instrument-entry", cl::init(false), cl::Hidden,
264 cl::desc("Force to instrument function entry basicblock."));
265
266 static cl::opt<bool> PGOFunctionEntryCoverage(
267 "pgo-function-entry-coverage", cl::Hidden,
268 cl::desc(
269 "Use this option to enable function entry coverage instrumentation."));
270
271 static cl::opt<bool>
272 PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden,
273 cl::desc("Fix function entry count in profile use."));
274
275 static cl::opt<bool> PGOVerifyHotBFI(
276 "pgo-verify-hot-bfi", cl::init(false), cl::Hidden,
277 cl::desc("Print out the non-match BFI count if a hot raw profile count "
278 "becomes non-hot, or a cold raw profile count becomes hot. "
279 "The print is enabled under -Rpass-analysis=pgo, or "
280 "internal option -pass-remakrs-analysis=pgo."));
281
282 static cl::opt<bool> PGOVerifyBFI(
283 "pgo-verify-bfi", cl::init(false), cl::Hidden,
284 cl::desc("Print out mismatched BFI counts after setting profile metadata "
285 "The print is enabled under -Rpass-analysis=pgo, or "
286 "internal option -pass-remakrs-analysis=pgo."));
287
288 static cl::opt<unsigned> PGOVerifyBFIRatio(
289 "pgo-verify-bfi-ratio", cl::init(2), cl::Hidden,
290 cl::desc("Set the threshold for pgo-verify-bfi: only print out "
291 "mismatched BFI if the difference percentage is greater than "
292 "this value (in percentage)."));
293
294 static cl::opt<unsigned> PGOVerifyBFICutoff(
295 "pgo-verify-bfi-cutoff", cl::init(5), cl::Hidden,
296 cl::desc("Set the threshold for pgo-verify-bfi: skip the counts whose "
297 "profile count value is below."));
298
299 static cl::opt<std::string> PGOTraceFuncHash(
300 "pgo-trace-func-hash", cl::init("-"), cl::Hidden,
301 cl::value_desc("function name"),
302 cl::desc("Trace the hash of the function with this name."));
303
304 static cl::opt<unsigned> PGOFunctionSizeThreshold(
305 "pgo-function-size-threshold", cl::Hidden,
306 cl::desc("Do not instrument functions smaller than this threshold."));
307
308 static cl::opt<bool> MatchMemProf(
309 "pgo-match-memprof", cl::init(true), cl::Hidden,
310 cl::desc("Perform matching and annotation of memprof profiles."));
311
312 static cl::opt<unsigned> PGOFunctionCriticalEdgeThreshold(
313 "pgo-critical-edge-threshold", cl::init(20000), cl::Hidden,
314 cl::desc("Do not instrument functions with the number of critical edges "
315 " greater than this threshold."));
316
317 namespace llvm {
318 // Command line option to turn on CFG dot dump after profile annotation.
319 // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts
320 extern cl::opt<PGOViewCountsType> PGOViewCounts;
321
322 // Command line option to specify the name of the function for CFG dump
323 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
324 extern cl::opt<std::string> ViewBlockFreqFuncName;
325
326 extern cl::opt<bool> DebugInfoCorrelate;
327 } // namespace llvm
328
329 static cl::opt<bool>
330 PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden,
331 cl::desc("Use the old CFG function hashing"));
332
333 // Return a string describing the branch condition that can be
334 // used in static branch probability heuristics:
getBranchCondString(Instruction * TI)335 static std::string getBranchCondString(Instruction *TI) {
336 BranchInst *BI = dyn_cast<BranchInst>(TI);
337 if (!BI || !BI->isConditional())
338 return std::string();
339
340 Value *Cond = BI->getCondition();
341 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
342 if (!CI)
343 return std::string();
344
345 std::string result;
346 raw_string_ostream OS(result);
347 OS << CmpInst::getPredicateName(CI->getPredicate()) << "_";
348 CI->getOperand(0)->getType()->print(OS, true);
349
350 Value *RHS = CI->getOperand(1);
351 ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
352 if (CV) {
353 if (CV->isZero())
354 OS << "_Zero";
355 else if (CV->isOne())
356 OS << "_One";
357 else if (CV->isMinusOne())
358 OS << "_MinusOne";
359 else
360 OS << "_Const";
361 }
362 OS.flush();
363 return result;
364 }
365
366 static const char *ValueProfKindDescr[] = {
367 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr,
368 #include "llvm/ProfileData/InstrProfData.inc"
369 };
370
371 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
372 // aware this is an ir_level profile so it can set the version flag.
createIRLevelProfileFlagVar(Module & M,bool IsCS)373 static GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS) {
374 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
375 Type *IntTy64 = Type::getInt64Ty(M.getContext());
376 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
377 if (IsCS)
378 ProfileVersion |= VARIANT_MASK_CSIR_PROF;
379 if (PGOInstrumentEntry)
380 ProfileVersion |= VARIANT_MASK_INSTR_ENTRY;
381 if (DebugInfoCorrelate)
382 ProfileVersion |= VARIANT_MASK_DBG_CORRELATE;
383 if (PGOFunctionEntryCoverage)
384 ProfileVersion |=
385 VARIANT_MASK_BYTE_COVERAGE | VARIANT_MASK_FUNCTION_ENTRY_ONLY;
386 auto IRLevelVersionVariable = new GlobalVariable(
387 M, IntTy64, true, GlobalValue::WeakAnyLinkage,
388 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
389 IRLevelVersionVariable->setVisibility(GlobalValue::HiddenVisibility);
390 Triple TT(M.getTargetTriple());
391 if (TT.supportsCOMDAT()) {
392 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
393 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
394 }
395 return IRLevelVersionVariable;
396 }
397
398 namespace {
399
400 /// The select instruction visitor plays three roles specified
401 /// by the mode. In \c VM_counting mode, it simply counts the number of
402 /// select instructions. In \c VM_instrument mode, it inserts code to count
403 /// the number times TrueValue of select is taken. In \c VM_annotate mode,
404 /// it reads the profile data and annotate the select instruction with metadata.
405 enum VisitMode { VM_counting, VM_instrument, VM_annotate };
406 class PGOUseFunc;
407
408 /// Instruction Visitor class to visit select instructions.
409 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
410 Function &F;
411 unsigned NSIs = 0; // Number of select instructions instrumented.
412 VisitMode Mode = VM_counting; // Visiting mode.
413 unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
414 unsigned TotalNumCtrs = 0; // Total number of counters
415 GlobalVariable *FuncNameVar = nullptr;
416 uint64_t FuncHash = 0;
417 PGOUseFunc *UseFunc = nullptr;
418
SelectInstVisitor__anon0345afe20111::SelectInstVisitor419 SelectInstVisitor(Function &Func) : F(Func) {}
420
countSelects__anon0345afe20111::SelectInstVisitor421 void countSelects(Function &Func) {
422 NSIs = 0;
423 Mode = VM_counting;
424 visit(Func);
425 }
426
427 // Visit the IR stream and instrument all select instructions. \p
428 // Ind is a pointer to the counter index variable; \p TotalNC
429 // is the total number of counters; \p FNV is the pointer to the
430 // PGO function name var; \p FHash is the function hash.
instrumentSelects__anon0345afe20111::SelectInstVisitor431 void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC,
432 GlobalVariable *FNV, uint64_t FHash) {
433 Mode = VM_instrument;
434 CurCtrIdx = Ind;
435 TotalNumCtrs = TotalNC;
436 FuncHash = FHash;
437 FuncNameVar = FNV;
438 visit(Func);
439 }
440
441 // Visit the IR stream and annotate all select instructions.
annotateSelects__anon0345afe20111::SelectInstVisitor442 void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) {
443 Mode = VM_annotate;
444 UseFunc = UF;
445 CurCtrIdx = Ind;
446 visit(Func);
447 }
448
449 void instrumentOneSelectInst(SelectInst &SI);
450 void annotateOneSelectInst(SelectInst &SI);
451
452 // Visit \p SI instruction and perform tasks according to visit mode.
453 void visitSelectInst(SelectInst &SI);
454
455 // Return the number of select instructions. This needs be called after
456 // countSelects().
getNumOfSelectInsts__anon0345afe20111::SelectInstVisitor457 unsigned getNumOfSelectInsts() const { return NSIs; }
458 };
459
460 } // end anonymous namespace
461
462 namespace {
463
464 /// An MST based instrumentation for PGO
465 ///
466 /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO
467 /// in the function level.
468 struct PGOEdge {
469 // This class implements the CFG edges. Note the CFG can be a multi-graph.
470 // So there might be multiple edges with same SrcBB and DestBB.
471 const BasicBlock *SrcBB;
472 const BasicBlock *DestBB;
473 uint64_t Weight;
474 bool InMST = false;
475 bool Removed = false;
476 bool IsCritical = false;
477
PGOEdge__anon0345afe20211::PGOEdge478 PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
479 : SrcBB(Src), DestBB(Dest), Weight(W) {}
480
481 // Return the information string of an edge.
infoString__anon0345afe20211::PGOEdge482 std::string infoString() const {
483 return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
484 (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str();
485 }
486 };
487
488 // This class stores the auxiliary information for each BB.
489 struct BBInfo {
490 BBInfo *Group;
491 uint32_t Index;
492 uint32_t Rank = 0;
493
BBInfo__anon0345afe20211::BBInfo494 BBInfo(unsigned IX) : Group(this), Index(IX) {}
495
496 // Return the information string of this object.
infoString__anon0345afe20211::BBInfo497 std::string infoString() const {
498 return (Twine("Index=") + Twine(Index)).str();
499 }
500
501 // Empty function -- only applicable to UseBBInfo.
addOutEdge__anon0345afe20211::BBInfo502 void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
503
504 // Empty function -- only applicable to UseBBInfo.
addInEdge__anon0345afe20211::BBInfo505 void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
506 };
507
508 // This class implements the CFG edges. Note the CFG can be a multi-graph.
509 template <class Edge, class BBInfo> class FuncPGOInstrumentation {
510 private:
511 Function &F;
512
513 // Is this is context-sensitive instrumentation.
514 bool IsCS;
515
516 // A map that stores the Comdat group in function F.
517 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;
518
519 ValueProfileCollector VPC;
520
521 void computeCFGHash();
522 void renameComdatFunction();
523
524 public:
525 const TargetLibraryInfo &TLI;
526 std::vector<std::vector<VPCandidateInfo>> ValueSites;
527 SelectInstVisitor SIVisitor;
528 std::string FuncName;
529 GlobalVariable *FuncNameVar;
530
531 // CFG hash value for this function.
532 uint64_t FunctionHash = 0;
533
534 // The Minimum Spanning Tree of function CFG.
535 CFGMST<Edge, BBInfo> MST;
536
537 // Collect all the BBs that will be instrumented, and store them in
538 // InstrumentBBs.
539 void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
540
541 // Give an edge, find the BB that will be instrumented.
542 // Return nullptr if there is no BB to be instrumented.
543 BasicBlock *getInstrBB(Edge *E);
544
545 // Return the auxiliary BB information.
getBBInfo(const BasicBlock * BB) const546 BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
547
548 // Return the auxiliary BB information if available.
findBBInfo(const BasicBlock * BB) const549 BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }
550
551 // Dump edges and BB information.
dumpInfo(std::string Str="") const552 void dumpInfo(std::string Str = "") const {
553 MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " +
554 Twine(FunctionHash) + "\t" + Str);
555 }
556
FuncPGOInstrumentation(Function & Func,TargetLibraryInfo & TLI,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers,bool CreateGlobalVar=false,BranchProbabilityInfo * BPI=nullptr,BlockFrequencyInfo * BFI=nullptr,bool IsCS=false,bool InstrumentFuncEntry=true)557 FuncPGOInstrumentation(
558 Function &Func, TargetLibraryInfo &TLI,
559 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
560 bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
561 BlockFrequencyInfo *BFI = nullptr, bool IsCS = false,
562 bool InstrumentFuncEntry = true)
563 : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI),
564 TLI(TLI), ValueSites(IPVK_Last + 1), SIVisitor(Func),
565 MST(F, InstrumentFuncEntry, BPI, BFI) {
566 // This should be done before CFG hash computation.
567 SIVisitor.countSelects(Func);
568 ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize);
569 if (!IsCS) {
570 NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
571 NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
572 NumOfPGOBB += MST.BBInfos.size();
573 ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget);
574 } else {
575 NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
576 NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
577 NumOfCSPGOBB += MST.BBInfos.size();
578 }
579
580 FuncName = getPGOFuncName(F);
581 computeCFGHash();
582 if (!ComdatMembers.empty())
583 renameComdatFunction();
584 LLVM_DEBUG(dumpInfo("after CFGMST"));
585
586 for (auto &E : MST.AllEdges) {
587 if (E->Removed)
588 continue;
589 IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
590 if (!E->InMST)
591 IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
592 }
593
594 if (CreateGlobalVar)
595 FuncNameVar = createPGOFuncNameVar(F, FuncName);
596 }
597 };
598
599 } // end anonymous namespace
600
601 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
602 // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers
603 // of selects, indirect calls, mem ops and edges.
604 template <class Edge, class BBInfo>
computeCFGHash()605 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
606 std::vector<uint8_t> Indexes;
607 JamCRC JC;
608 for (auto &BB : F) {
609 const Instruction *TI = BB.getTerminator();
610 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
611 BasicBlock *Succ = TI->getSuccessor(I);
612 auto BI = findBBInfo(Succ);
613 if (BI == nullptr)
614 continue;
615 uint32_t Index = BI->Index;
616 for (int J = 0; J < 4; J++)
617 Indexes.push_back((uint8_t)(Index >> (J * 8)));
618 }
619 }
620 JC.update(Indexes);
621
622 JamCRC JCH;
623 if (PGOOldCFGHashing) {
624 // Hash format for context sensitive profile. Reserve 4 bits for other
625 // information.
626 FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 |
627 (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 |
628 //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 |
629 (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
630 } else {
631 // The higher 32 bits.
632 auto updateJCH = [&JCH](uint64_t Num) {
633 uint8_t Data[8];
634 support::endian::write64le(Data, Num);
635 JCH.update(Data);
636 };
637 updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts());
638 updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size());
639 updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size());
640 updateJCH((uint64_t)MST.AllEdges.size());
641
642 // Hash format for context sensitive profile. Reserve 4 bits for other
643 // information.
644 FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC();
645 }
646
647 // Reserve bit 60-63 for other information purpose.
648 FunctionHash &= 0x0FFFFFFFFFFFFFFF;
649 if (IsCS)
650 NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
651 LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
652 << " CRC = " << JC.getCRC()
653 << ", Selects = " << SIVisitor.getNumOfSelectInsts()
654 << ", Edges = " << MST.AllEdges.size() << ", ICSites = "
655 << ValueSites[IPVK_IndirectCallTarget].size());
656 if (!PGOOldCFGHashing) {
657 LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size()
658 << ", High32 CRC = " << JCH.getCRC());
659 }
660 LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";);
661
662 if (PGOTraceFuncHash != "-" && F.getName().contains(PGOTraceFuncHash))
663 dbgs() << "Funcname=" << F.getName() << ", Hash=" << FunctionHash
664 << " in building " << F.getParent()->getSourceFileName() << "\n";
665 }
666
667 // Check if we can safely rename this Comdat function.
canRenameComdat(Function & F,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers)668 static bool canRenameComdat(
669 Function &F,
670 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
671 if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
672 return false;
673
674 // FIXME: Current only handle those Comdat groups that only containing one
675 // function.
676 // (1) For a Comdat group containing multiple functions, we need to have a
677 // unique postfix based on the hashes for each function. There is a
678 // non-trivial code refactoring to do this efficiently.
679 // (2) Variables can not be renamed, so we can not rename Comdat function in a
680 // group including global vars.
681 Comdat *C = F.getComdat();
682 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
683 assert(!isa<GlobalAlias>(CM.second));
684 Function *FM = dyn_cast<Function>(CM.second);
685 if (FM != &F)
686 return false;
687 }
688 return true;
689 }
690
691 // Append the CFGHash to the Comdat function name.
692 template <class Edge, class BBInfo>
renameComdatFunction()693 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
694 if (!canRenameComdat(F, ComdatMembers))
695 return;
696 std::string OrigName = F.getName().str();
697 std::string NewFuncName =
698 Twine(F.getName() + "." + Twine(FunctionHash)).str();
699 F.setName(Twine(NewFuncName));
700 GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
701 FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
702 Comdat *NewComdat;
703 Module *M = F.getParent();
704 // For AvailableExternallyLinkage functions, change the linkage to
705 // LinkOnceODR and put them into comdat. This is because after renaming, there
706 // is no backup external copy available for the function.
707 if (!F.hasComdat()) {
708 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
709 NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
710 F.setLinkage(GlobalValue::LinkOnceODRLinkage);
711 F.setComdat(NewComdat);
712 return;
713 }
714
715 // This function belongs to a single function Comdat group.
716 Comdat *OrigComdat = F.getComdat();
717 std::string NewComdatName =
718 Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
719 NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
720 NewComdat->setSelectionKind(OrigComdat->getSelectionKind());
721
722 for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
723 // Must be a function.
724 cast<Function>(CM.second)->setComdat(NewComdat);
725 }
726 }
727
728 // Collect all the BBs that will be instruments and return them in
729 // InstrumentBBs and setup InEdges/OutEdge for UseBBInfo.
730 template <class Edge, class BBInfo>
getInstrumentBBs(std::vector<BasicBlock * > & InstrumentBBs)731 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
732 std::vector<BasicBlock *> &InstrumentBBs) {
733 // Use a worklist as we will update the vector during the iteration.
734 std::vector<Edge *> EdgeList;
735 EdgeList.reserve(MST.AllEdges.size());
736 for (auto &E : MST.AllEdges)
737 EdgeList.push_back(E.get());
738
739 for (auto &E : EdgeList) {
740 BasicBlock *InstrBB = getInstrBB(E);
741 if (InstrBB)
742 InstrumentBBs.push_back(InstrBB);
743 }
744
745 // Set up InEdges/OutEdges for all BBs.
746 for (auto &E : MST.AllEdges) {
747 if (E->Removed)
748 continue;
749 const BasicBlock *SrcBB = E->SrcBB;
750 const BasicBlock *DestBB = E->DestBB;
751 BBInfo &SrcInfo = getBBInfo(SrcBB);
752 BBInfo &DestInfo = getBBInfo(DestBB);
753 SrcInfo.addOutEdge(E.get());
754 DestInfo.addInEdge(E.get());
755 }
756 }
757
758 // Given a CFG E to be instrumented, find which BB to place the instrumented
759 // code. The function will split the critical edge if necessary.
760 template <class Edge, class BBInfo>
getInstrBB(Edge * E)761 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
762 if (E->InMST || E->Removed)
763 return nullptr;
764
765 BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
766 BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
767 // For a fake edge, instrument the real BB.
768 if (SrcBB == nullptr)
769 return DestBB;
770 if (DestBB == nullptr)
771 return SrcBB;
772
773 auto canInstrument = [](BasicBlock *BB) -> BasicBlock * {
774 // There are basic blocks (such as catchswitch) cannot be instrumented.
775 // If the returned first insertion point is the end of BB, skip this BB.
776 if (BB->getFirstInsertionPt() == BB->end())
777 return nullptr;
778 return BB;
779 };
780
781 // Instrument the SrcBB if it has a single successor,
782 // otherwise, the DestBB if this is not a critical edge.
783 Instruction *TI = SrcBB->getTerminator();
784 if (TI->getNumSuccessors() <= 1)
785 return canInstrument(SrcBB);
786 if (!E->IsCritical)
787 return canInstrument(DestBB);
788
789 // Some IndirectBr critical edges cannot be split by the previous
790 // SplitIndirectBrCriticalEdges call. Bail out.
791 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
792 BasicBlock *InstrBB =
793 isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum);
794 if (!InstrBB) {
795 LLVM_DEBUG(
796 dbgs() << "Fail to split critical edge: not instrument this edge.\n");
797 return nullptr;
798 }
799 // For a critical edge, we have to split. Instrument the newly
800 // created BB.
801 IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
802 LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
803 << " --> " << getBBInfo(DestBB).Index << "\n");
804 // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB.
805 MST.addEdge(SrcBB, InstrBB, 0);
806 // Second one: Add new edge of InstrBB->DestBB.
807 Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0);
808 NewEdge1.InMST = true;
809 E->Removed = true;
810
811 return canInstrument(InstrBB);
812 }
813
814 // When generating value profiling calls on Windows routines that make use of
815 // handler funclets for exception processing an operand bundle needs to attached
816 // to the called function. This routine will set \p OpBundles to contain the
817 // funclet information, if any is needed, that should be placed on the generated
818 // value profiling call for the value profile candidate call.
819 static void
populateEHOperandBundle(VPCandidateInfo & Cand,DenseMap<BasicBlock *,ColorVector> & BlockColors,SmallVectorImpl<OperandBundleDef> & OpBundles)820 populateEHOperandBundle(VPCandidateInfo &Cand,
821 DenseMap<BasicBlock *, ColorVector> &BlockColors,
822 SmallVectorImpl<OperandBundleDef> &OpBundles) {
823 auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst);
824 if (!OrigCall)
825 return;
826
827 if (!isa<IntrinsicInst>(OrigCall)) {
828 // The instrumentation call should belong to the same funclet as a
829 // non-intrinsic call, so just copy the operand bundle, if any exists.
830 std::optional<OperandBundleUse> ParentFunclet =
831 OrigCall->getOperandBundle(LLVMContext::OB_funclet);
832 if (ParentFunclet)
833 OpBundles.emplace_back(OperandBundleDef(*ParentFunclet));
834 } else {
835 // Intrinsics or other instructions do not get funclet information from the
836 // front-end. Need to use the BlockColors that was computed by the routine
837 // colorEHFunclets to determine whether a funclet is needed.
838 if (!BlockColors.empty()) {
839 const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second;
840 assert(CV.size() == 1 && "non-unique color for block!");
841 Instruction *EHPad = CV.front()->getFirstNonPHI();
842 if (EHPad->isEHPad())
843 OpBundles.emplace_back("funclet", EHPad);
844 }
845 }
846 }
847
848 // Visit all edge and instrument the edges not in MST, and do value profiling.
849 // Critical edges will be split.
instrumentOneFunc(Function & F,Module * M,TargetLibraryInfo & TLI,BranchProbabilityInfo * BPI,BlockFrequencyInfo * BFI,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers,bool IsCS)850 static void instrumentOneFunc(
851 Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI,
852 BlockFrequencyInfo *BFI,
853 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
854 bool IsCS) {
855 // Split indirectbr critical edges here before computing the MST rather than
856 // later in getInstrBB() to avoid invalidating it.
857 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
858
859 FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(
860 F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry);
861
862 Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
863 auto Name = ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy);
864 auto CFGHash = ConstantInt::get(Type::getInt64Ty(M->getContext()),
865 FuncInfo.FunctionHash);
866 if (PGOFunctionEntryCoverage) {
867 auto &EntryBB = F.getEntryBlock();
868 IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt());
869 // llvm.instrprof.cover(i8* <name>, i64 <hash>, i32 <num-counters>,
870 // i32 <index>)
871 Builder.CreateCall(
872 Intrinsic::getDeclaration(M, Intrinsic::instrprof_cover),
873 {Name, CFGHash, Builder.getInt32(1), Builder.getInt32(0)});
874 return;
875 }
876
877 std::vector<BasicBlock *> InstrumentBBs;
878 FuncInfo.getInstrumentBBs(InstrumentBBs);
879 unsigned NumCounters =
880 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
881
882 uint32_t I = 0;
883 for (auto *InstrBB : InstrumentBBs) {
884 IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
885 assert(Builder.GetInsertPoint() != InstrBB->end() &&
886 "Cannot get the Instrumentation point");
887 // llvm.instrprof.increment(i8* <name>, i64 <hash>, i32 <num-counters>,
888 // i32 <index>)
889 Builder.CreateCall(
890 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
891 {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I++)});
892 }
893
894 // Now instrument select instructions:
895 FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar,
896 FuncInfo.FunctionHash);
897 assert(I == NumCounters);
898
899 if (DisableValueProfiling)
900 return;
901
902 NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size();
903
904 // Intrinsic function calls do not have funclet operand bundles needed for
905 // Windows exception handling attached to them. However, if value profiling is
906 // inserted for one of these calls, then a funclet value will need to be set
907 // on the instrumentation call based on the funclet coloring.
908 DenseMap<BasicBlock *, ColorVector> BlockColors;
909 if (F.hasPersonalityFn() &&
910 isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
911 BlockColors = colorEHFunclets(F);
912
913 // For each VP Kind, walk the VP candidates and instrument each one.
914 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
915 unsigned SiteIndex = 0;
916 if (Kind == IPVK_MemOPSize && !PGOInstrMemOP)
917 continue;
918
919 for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) {
920 LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind]
921 << " site: CallSite Index = " << SiteIndex << "\n");
922
923 IRBuilder<> Builder(Cand.InsertPt);
924 assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() &&
925 "Cannot get the Instrumentation point");
926
927 Value *ToProfile = nullptr;
928 if (Cand.V->getType()->isIntegerTy())
929 ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty());
930 else if (Cand.V->getType()->isPointerTy())
931 ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty());
932 assert(ToProfile && "value profiling Value is of unexpected type");
933
934 SmallVector<OperandBundleDef, 1> OpBundles;
935 populateEHOperandBundle(Cand, BlockColors, OpBundles);
936 Builder.CreateCall(
937 Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
938 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
939 Builder.getInt64(FuncInfo.FunctionHash), ToProfile,
940 Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)},
941 OpBundles);
942 }
943 } // IPVK_First <= Kind <= IPVK_Last
944 }
945
946 namespace {
947
948 // This class represents a CFG edge in profile use compilation.
949 struct PGOUseEdge : public PGOEdge {
950 bool CountValid = false;
951 uint64_t CountValue = 0;
952
PGOUseEdge__anon0345afe20511::PGOUseEdge953 PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
954 : PGOEdge(Src, Dest, W) {}
955
956 // Set edge count value
setEdgeCount__anon0345afe20511::PGOUseEdge957 void setEdgeCount(uint64_t Value) {
958 CountValue = Value;
959 CountValid = true;
960 }
961
962 // Return the information string for this object.
infoString__anon0345afe20511::PGOUseEdge963 std::string infoString() const {
964 if (!CountValid)
965 return PGOEdge::infoString();
966 return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue))
967 .str();
968 }
969 };
970
971 using DirectEdges = SmallVector<PGOUseEdge *, 2>;
972
973 // This class stores the auxiliary information for each BB.
974 struct UseBBInfo : public BBInfo {
975 uint64_t CountValue = 0;
976 bool CountValid;
977 int32_t UnknownCountInEdge = 0;
978 int32_t UnknownCountOutEdge = 0;
979 DirectEdges InEdges;
980 DirectEdges OutEdges;
981
UseBBInfo__anon0345afe20511::UseBBInfo982 UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {}
983
UseBBInfo__anon0345afe20511::UseBBInfo984 UseBBInfo(unsigned IX, uint64_t C)
985 : BBInfo(IX), CountValue(C), CountValid(true) {}
986
987 // Set the profile count value for this BB.
setBBInfoCount__anon0345afe20511::UseBBInfo988 void setBBInfoCount(uint64_t Value) {
989 CountValue = Value;
990 CountValid = true;
991 }
992
993 // Return the information string of this object.
infoString__anon0345afe20511::UseBBInfo994 std::string infoString() const {
995 if (!CountValid)
996 return BBInfo::infoString();
997 return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str();
998 }
999
1000 // Add an OutEdge and update the edge count.
addOutEdge__anon0345afe20511::UseBBInfo1001 void addOutEdge(PGOUseEdge *E) {
1002 OutEdges.push_back(E);
1003 UnknownCountOutEdge++;
1004 }
1005
1006 // Add an InEdge and update the edge count.
addInEdge__anon0345afe20511::UseBBInfo1007 void addInEdge(PGOUseEdge *E) {
1008 InEdges.push_back(E);
1009 UnknownCountInEdge++;
1010 }
1011 };
1012
1013 } // end anonymous namespace
1014
1015 // Sum up the count values for all the edges.
sumEdgeCount(const ArrayRef<PGOUseEdge * > Edges)1016 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
1017 uint64_t Total = 0;
1018 for (const auto &E : Edges) {
1019 if (E->Removed)
1020 continue;
1021 Total += E->CountValue;
1022 }
1023 return Total;
1024 }
1025
1026 namespace {
1027
1028 class PGOUseFunc {
1029 public:
PGOUseFunc(Function & Func,Module * Modu,TargetLibraryInfo & TLI,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers,BranchProbabilityInfo * BPI,BlockFrequencyInfo * BFIin,ProfileSummaryInfo * PSI,bool IsCS,bool InstrumentFuncEntry)1030 PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI,
1031 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
1032 BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin,
1033 ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry)
1034 : F(Func), M(Modu), BFI(BFIin), PSI(PSI),
1035 FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS,
1036 InstrumentFuncEntry),
1037 FreqAttr(FFA_Normal), IsCS(IsCS) {}
1038
1039 // Read counts for the instrumented BB from profile.
1040 bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1041 InstrProfRecord::CountPseudoKind &PseudoKind);
1042
1043 // Read memprof data for the instrumented function from profile.
1044 bool readMemprof(IndexedInstrProfReader *PGOReader);
1045
1046 // Populate the counts for all BBs.
1047 void populateCounters();
1048
1049 // Set the branch weights based on the count values.
1050 void setBranchWeights();
1051
1052 // Annotate the value profile call sites for all value kind.
1053 void annotateValueSites();
1054
1055 // Annotate the value profile call sites for one value kind.
1056 void annotateValueSites(uint32_t Kind);
1057
1058 // Annotate the irreducible loop header weights.
1059 void annotateIrrLoopHeaderWeights();
1060
1061 // The hotness of the function from the profile count.
1062 enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
1063
1064 // Return the function hotness from the profile.
getFuncFreqAttr() const1065 FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
1066
1067 // Return the function hash.
getFuncHash() const1068 uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }
1069
1070 // Return the profile record for this function;
getProfileRecord()1071 InstrProfRecord &getProfileRecord() { return ProfileRecord; }
1072
1073 // Return the auxiliary BB information.
getBBInfo(const BasicBlock * BB) const1074 UseBBInfo &getBBInfo(const BasicBlock *BB) const {
1075 return FuncInfo.getBBInfo(BB);
1076 }
1077
1078 // Return the auxiliary BB information if available.
findBBInfo(const BasicBlock * BB) const1079 UseBBInfo *findBBInfo(const BasicBlock *BB) const {
1080 return FuncInfo.findBBInfo(BB);
1081 }
1082
getFunc() const1083 Function &getFunc() const { return F; }
1084
dumpInfo(std::string Str="") const1085 void dumpInfo(std::string Str = "") const {
1086 FuncInfo.dumpInfo(Str);
1087 }
1088
getProgramMaxCount() const1089 uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
1090 private:
1091 Function &F;
1092 Module *M;
1093 BlockFrequencyInfo *BFI;
1094 ProfileSummaryInfo *PSI;
1095
1096 // This member stores the shared information with class PGOGenFunc.
1097 FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo;
1098
1099 // The maximum count value in the profile. This is only used in PGO use
1100 // compilation.
1101 uint64_t ProgramMaxCount;
1102
1103 // Position of counter that remains to be read.
1104 uint32_t CountPosition = 0;
1105
1106 // Total size of the profile count for this function.
1107 uint32_t ProfileCountSize = 0;
1108
1109 // ProfileRecord for this function.
1110 InstrProfRecord ProfileRecord;
1111
1112 // Function hotness info derived from profile.
1113 FuncFreqAttr FreqAttr;
1114
1115 // Is to use the context sensitive profile.
1116 bool IsCS;
1117
1118 // Find the Instrumented BB and set the value. Return false on error.
1119 bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
1120
1121 // Set the edge counter value for the unknown edge -- there should be only
1122 // one unknown edge.
1123 void setEdgeCount(DirectEdges &Edges, uint64_t Value);
1124
1125 // Return FuncName string;
getFuncName() const1126 std::string getFuncName() const { return FuncInfo.FuncName; }
1127
1128 // Set the hot/cold inline hints based on the count values.
1129 // FIXME: This function should be removed once the functionality in
1130 // the inliner is implemented.
markFunctionAttributes(uint64_t EntryCount,uint64_t MaxCount)1131 void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
1132 if (PSI->isHotCount(EntryCount))
1133 FreqAttr = FFA_Hot;
1134 else if (PSI->isColdCount(MaxCount))
1135 FreqAttr = FFA_Cold;
1136 }
1137 };
1138
1139 } // end anonymous namespace
1140
1141 // Visit all the edges and assign the count value for the instrumented
1142 // edges and the BB. Return false on error.
setInstrumentedCounts(const std::vector<uint64_t> & CountFromProfile)1143 bool PGOUseFunc::setInstrumentedCounts(
1144 const std::vector<uint64_t> &CountFromProfile) {
1145
1146 std::vector<BasicBlock *> InstrumentBBs;
1147 FuncInfo.getInstrumentBBs(InstrumentBBs);
1148 unsigned NumCounters =
1149 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
1150 // The number of counters here should match the number of counters
1151 // in profile. Return if they mismatch.
1152 if (NumCounters != CountFromProfile.size()) {
1153 return false;
1154 }
1155 auto *FuncEntry = &*F.begin();
1156
1157 // Set the profile count to the Instrumented BBs.
1158 uint32_t I = 0;
1159 for (BasicBlock *InstrBB : InstrumentBBs) {
1160 uint64_t CountValue = CountFromProfile[I++];
1161 UseBBInfo &Info = getBBInfo(InstrBB);
1162 // If we reach here, we know that we have some nonzero count
1163 // values in this function. The entry count should not be 0.
1164 // Fix it if necessary.
1165 if (InstrBB == FuncEntry && CountValue == 0)
1166 CountValue = 1;
1167 Info.setBBInfoCount(CountValue);
1168 }
1169 ProfileCountSize = CountFromProfile.size();
1170 CountPosition = I;
1171
1172 // Set the edge count and update the count of unknown edges for BBs.
1173 auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void {
1174 E->setEdgeCount(Value);
1175 this->getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1176 this->getBBInfo(E->DestBB).UnknownCountInEdge--;
1177 };
1178
1179 // Set the profile count the Instrumented edges. There are BBs that not in
1180 // MST but not instrumented. Need to set the edge count value so that we can
1181 // populate the profile counts later.
1182 for (auto &E : FuncInfo.MST.AllEdges) {
1183 if (E->Removed || E->InMST)
1184 continue;
1185 const BasicBlock *SrcBB = E->SrcBB;
1186 UseBBInfo &SrcInfo = getBBInfo(SrcBB);
1187
1188 // If only one out-edge, the edge profile count should be the same as BB
1189 // profile count.
1190 if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1)
1191 setEdgeCount(E.get(), SrcInfo.CountValue);
1192 else {
1193 const BasicBlock *DestBB = E->DestBB;
1194 UseBBInfo &DestInfo = getBBInfo(DestBB);
1195 // If only one in-edge, the edge profile count should be the same as BB
1196 // profile count.
1197 if (DestInfo.CountValid && DestInfo.InEdges.size() == 1)
1198 setEdgeCount(E.get(), DestInfo.CountValue);
1199 }
1200 if (E->CountValid)
1201 continue;
1202 // E's count should have been set from profile. If not, this meenas E skips
1203 // the instrumentation. We set the count to 0.
1204 setEdgeCount(E.get(), 0);
1205 }
1206 return true;
1207 }
1208
1209 // Set the count value for the unknown edge. There should be one and only one
1210 // unknown edge in Edges vector.
setEdgeCount(DirectEdges & Edges,uint64_t Value)1211 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
1212 for (auto &E : Edges) {
1213 if (E->CountValid)
1214 continue;
1215 E->setEdgeCount(Value);
1216
1217 getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1218 getBBInfo(E->DestBB).UnknownCountInEdge--;
1219 return;
1220 }
1221 llvm_unreachable("Cannot find the unknown count edge");
1222 }
1223
1224 // Emit function metadata indicating PGO profile mismatch.
annotateFunctionWithHashMismatch(Function & F,LLVMContext & ctx)1225 static void annotateFunctionWithHashMismatch(Function &F,
1226 LLVMContext &ctx) {
1227 const char MetadataName[] = "instr_prof_hash_mismatch";
1228 SmallVector<Metadata *, 2> Names;
1229 // If this metadata already exists, ignore.
1230 auto *Existing = F.getMetadata(LLVMContext::MD_annotation);
1231 if (Existing) {
1232 MDTuple *Tuple = cast<MDTuple>(Existing);
1233 for (const auto &N : Tuple->operands()) {
1234 if (cast<MDString>(N.get())->getString() == MetadataName)
1235 return;
1236 Names.push_back(N.get());
1237 }
1238 }
1239
1240 MDBuilder MDB(ctx);
1241 Names.push_back(MDB.createString(MetadataName));
1242 MDNode *MD = MDTuple::get(ctx, Names);
1243 F.setMetadata(LLVMContext::MD_annotation, MD);
1244 }
1245
addCallsiteMetadata(Instruction & I,std::vector<uint64_t> & InlinedCallStack,LLVMContext & Ctx)1246 static void addCallsiteMetadata(Instruction &I,
1247 std::vector<uint64_t> &InlinedCallStack,
1248 LLVMContext &Ctx) {
1249 I.setMetadata(LLVMContext::MD_callsite,
1250 buildCallstackMetadata(InlinedCallStack, Ctx));
1251 }
1252
computeStackId(GlobalValue::GUID Function,uint32_t LineOffset,uint32_t Column)1253 static uint64_t computeStackId(GlobalValue::GUID Function, uint32_t LineOffset,
1254 uint32_t Column) {
1255 llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::support::endianness::little>
1256 HashBuilder;
1257 HashBuilder.add(Function, LineOffset, Column);
1258 llvm::BLAKE3Result<8> Hash = HashBuilder.final();
1259 uint64_t Id;
1260 std::memcpy(&Id, Hash.data(), sizeof(Hash));
1261 return Id;
1262 }
1263
computeStackId(const memprof::Frame & Frame)1264 static uint64_t computeStackId(const memprof::Frame &Frame) {
1265 return computeStackId(Frame.Function, Frame.LineOffset, Frame.Column);
1266 }
1267
addCallStack(CallStackTrie & AllocTrie,const AllocationInfo * AllocInfo)1268 static void addCallStack(CallStackTrie &AllocTrie,
1269 const AllocationInfo *AllocInfo) {
1270 SmallVector<uint64_t> StackIds;
1271 for (auto StackFrame : AllocInfo->CallStack)
1272 StackIds.push_back(computeStackId(StackFrame));
1273 auto AllocType = getAllocType(AllocInfo->Info.getMaxAccessCount(),
1274 AllocInfo->Info.getMinSize(),
1275 AllocInfo->Info.getMinLifetime());
1276 AllocTrie.addCallStack(AllocType, StackIds);
1277 }
1278
1279 // Helper to compare the InlinedCallStack computed from an instruction's debug
1280 // info to a list of Frames from profile data (either the allocation data or a
1281 // callsite). For callsites, the StartIndex to use in the Frame array may be
1282 // non-zero.
1283 static bool
stackFrameIncludesInlinedCallStack(ArrayRef<Frame> ProfileCallStack,ArrayRef<uint64_t> InlinedCallStack,unsigned StartIndex=0)1284 stackFrameIncludesInlinedCallStack(ArrayRef<Frame> ProfileCallStack,
1285 ArrayRef<uint64_t> InlinedCallStack,
1286 unsigned StartIndex = 0) {
1287 auto StackFrame = ProfileCallStack.begin() + StartIndex;
1288 auto InlCallStackIter = InlinedCallStack.begin();
1289 for (; StackFrame != ProfileCallStack.end() &&
1290 InlCallStackIter != InlinedCallStack.end();
1291 ++StackFrame, ++InlCallStackIter) {
1292 uint64_t StackId = computeStackId(*StackFrame);
1293 if (StackId != *InlCallStackIter)
1294 return false;
1295 }
1296 // Return true if we found and matched all stack ids from the call
1297 // instruction.
1298 return InlCallStackIter == InlinedCallStack.end();
1299 }
1300
readMemprof(IndexedInstrProfReader * PGOReader)1301 bool PGOUseFunc::readMemprof(IndexedInstrProfReader *PGOReader) {
1302 if (!MatchMemProf)
1303 return true;
1304
1305 auto &Ctx = M->getContext();
1306
1307 auto FuncGUID = Function::getGUID(FuncInfo.FuncName);
1308 Expected<memprof::MemProfRecord> MemProfResult =
1309 PGOReader->getMemProfRecord(FuncGUID);
1310 if (Error E = MemProfResult.takeError()) {
1311 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
1312 auto Err = IPE.get();
1313 bool SkipWarning = false;
1314 LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
1315 << FuncInfo.FuncName << ": ");
1316 if (Err == instrprof_error::unknown_function) {
1317 NumOfMemProfMissing++;
1318 SkipWarning = !PGOWarnMissing;
1319 LLVM_DEBUG(dbgs() << "unknown function");
1320 } else if (Err == instrprof_error::hash_mismatch) {
1321 SkipWarning =
1322 NoPGOWarnMismatch ||
1323 (NoPGOWarnMismatchComdatWeak &&
1324 (F.hasComdat() ||
1325 F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
1326 LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
1327 }
1328
1329 if (SkipWarning)
1330 return;
1331
1332 std::string Msg =
1333 (IPE.message() + Twine(" ") + F.getName().str() + Twine(" Hash = ") +
1334 std::to_string(FuncInfo.FunctionHash))
1335 .str();
1336
1337 Ctx.diagnose(
1338 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
1339 });
1340 return false;
1341 }
1342
1343 // Build maps of the location hash to all profile data with that leaf location
1344 // (allocation info and the callsites).
1345 std::map<uint64_t, std::set<const AllocationInfo *>> LocHashToAllocInfo;
1346 // For the callsites we need to record the index of the associated frame in
1347 // the frame array (see comments below where the map entries are added).
1348 std::map<uint64_t, std::set<std::pair<const SmallVector<Frame> *, unsigned>>>
1349 LocHashToCallSites;
1350 const auto MemProfRec = std::move(MemProfResult.get());
1351 for (auto &AI : MemProfRec.AllocSites) {
1352 // Associate the allocation info with the leaf frame. The later matching
1353 // code will match any inlined call sequences in the IR with a longer prefix
1354 // of call stack frames.
1355 uint64_t StackId = computeStackId(AI.CallStack[0]);
1356 LocHashToAllocInfo[StackId].insert(&AI);
1357 }
1358 for (auto &CS : MemProfRec.CallSites) {
1359 // Need to record all frames from leaf up to and including this function,
1360 // as any of these may or may not have been inlined at this point.
1361 unsigned Idx = 0;
1362 for (auto &StackFrame : CS) {
1363 uint64_t StackId = computeStackId(StackFrame);
1364 LocHashToCallSites[StackId].insert(std::make_pair(&CS, Idx++));
1365 // Once we find this function, we can stop recording.
1366 if (StackFrame.Function == FuncGUID)
1367 break;
1368 }
1369 assert(Idx <= CS.size() && CS[Idx - 1].Function == FuncGUID);
1370 }
1371
1372 auto GetOffset = [](const DILocation *DIL) {
1373 return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
1374 0xffff;
1375 };
1376
1377 // Now walk the instructions, looking up the associated profile data using
1378 // dbug locations.
1379 for (auto &BB : F) {
1380 for (auto &I : BB) {
1381 if (I.isDebugOrPseudoInst())
1382 continue;
1383 // We are only interested in calls (allocation or interior call stack
1384 // context calls).
1385 auto *CI = dyn_cast<CallBase>(&I);
1386 if (!CI)
1387 continue;
1388 auto *CalledFunction = CI->getCalledFunction();
1389 if (CalledFunction && CalledFunction->isIntrinsic())
1390 continue;
1391 // List of call stack ids computed from the location hashes on debug
1392 // locations (leaf to inlined at root).
1393 std::vector<uint64_t> InlinedCallStack;
1394 // Was the leaf location found in one of the profile maps?
1395 bool LeafFound = false;
1396 // If leaf was found in a map, iterators pointing to its location in both
1397 // of the maps. It might exist in neither, one, or both (the latter case
1398 // can happen because we don't currently have discriminators to
1399 // distinguish the case when a single line/col maps to both an allocation
1400 // and another callsite).
1401 std::map<uint64_t, std::set<const AllocationInfo *>>::iterator
1402 AllocInfoIter;
1403 std::map<uint64_t, std::set<std::pair<const SmallVector<Frame> *,
1404 unsigned>>>::iterator CallSitesIter;
1405 for (const DILocation *DIL = I.getDebugLoc(); DIL != nullptr;
1406 DIL = DIL->getInlinedAt()) {
1407 // Use C++ linkage name if possible. Need to compile with
1408 // -fdebug-info-for-profiling to get linkage name.
1409 StringRef Name = DIL->getScope()->getSubprogram()->getLinkageName();
1410 if (Name.empty())
1411 Name = DIL->getScope()->getSubprogram()->getName();
1412 auto CalleeGUID = Function::getGUID(Name);
1413 auto StackId =
1414 computeStackId(CalleeGUID, GetOffset(DIL), DIL->getColumn());
1415 // LeafFound will only be false on the first iteration, since we either
1416 // set it true or break out of the loop below.
1417 if (!LeafFound) {
1418 AllocInfoIter = LocHashToAllocInfo.find(StackId);
1419 CallSitesIter = LocHashToCallSites.find(StackId);
1420 // Check if the leaf is in one of the maps. If not, no need to look
1421 // further at this call.
1422 if (AllocInfoIter == LocHashToAllocInfo.end() &&
1423 CallSitesIter == LocHashToCallSites.end())
1424 break;
1425 LeafFound = true;
1426 }
1427 InlinedCallStack.push_back(StackId);
1428 }
1429 // If leaf not in either of the maps, skip inst.
1430 if (!LeafFound)
1431 continue;
1432
1433 // First add !memprof metadata from allocation info, if we found the
1434 // instruction's leaf location in that map, and if the rest of the
1435 // instruction's locations match the prefix Frame locations on an
1436 // allocation context with the same leaf.
1437 if (AllocInfoIter != LocHashToAllocInfo.end()) {
1438 // Only consider allocations via new, to reduce unnecessary metadata,
1439 // since those are the only allocations that will be targeted initially.
1440 if (!isNewLikeFn(CI, &FuncInfo.TLI))
1441 continue;
1442 // We may match this instruction's location list to multiple MIB
1443 // contexts. Add them to a Trie specialized for trimming the contexts to
1444 // the minimal needed to disambiguate contexts with unique behavior.
1445 CallStackTrie AllocTrie;
1446 for (auto *AllocInfo : AllocInfoIter->second) {
1447 // Check the full inlined call stack against this one.
1448 // If we found and thus matched all frames on the call, include
1449 // this MIB.
1450 if (stackFrameIncludesInlinedCallStack(AllocInfo->CallStack,
1451 InlinedCallStack))
1452 addCallStack(AllocTrie, AllocInfo);
1453 }
1454 // We might not have matched any to the full inlined call stack.
1455 // But if we did, create and attach metadata, or a function attribute if
1456 // all contexts have identical profiled behavior.
1457 if (!AllocTrie.empty()) {
1458 // MemprofMDAttached will be false if a function attribute was
1459 // attached.
1460 bool MemprofMDAttached = AllocTrie.buildAndAttachMIBMetadata(CI);
1461 assert(MemprofMDAttached == I.hasMetadata(LLVMContext::MD_memprof));
1462 if (MemprofMDAttached) {
1463 // Add callsite metadata for the instruction's location list so that
1464 // it simpler later on to identify which part of the MIB contexts
1465 // are from this particular instruction (including during inlining,
1466 // when the callsite metdata will be updated appropriately).
1467 // FIXME: can this be changed to strip out the matching stack
1468 // context ids from the MIB contexts and not add any callsite
1469 // metadata here to save space?
1470 addCallsiteMetadata(I, InlinedCallStack, Ctx);
1471 }
1472 }
1473 continue;
1474 }
1475
1476 // Otherwise, add callsite metadata. If we reach here then we found the
1477 // instruction's leaf location in the callsites map and not the allocation
1478 // map.
1479 assert(CallSitesIter != LocHashToCallSites.end());
1480 for (auto CallStackIdx : CallSitesIter->second) {
1481 // If we found and thus matched all frames on the call, create and
1482 // attach call stack metadata.
1483 if (stackFrameIncludesInlinedCallStack(
1484 *CallStackIdx.first, InlinedCallStack, CallStackIdx.second)) {
1485 addCallsiteMetadata(I, InlinedCallStack, Ctx);
1486 // Only need to find one with a matching call stack and add a single
1487 // callsite metadata.
1488 break;
1489 }
1490 }
1491 }
1492 }
1493
1494 return true;
1495 }
1496
1497 // Read the profile from ProfileFileName and assign the value to the
1498 // instrumented BB and the edges. This function also updates ProgramMaxCount.
1499 // Return true if the profile are successfully read, and false on errors.
readCounters(IndexedInstrProfReader * PGOReader,bool & AllZeros,InstrProfRecord::CountPseudoKind & PseudoKind)1500 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1501 InstrProfRecord::CountPseudoKind &PseudoKind) {
1502 auto &Ctx = M->getContext();
1503 uint64_t MismatchedFuncSum = 0;
1504 Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
1505 FuncInfo.FuncName, FuncInfo.FunctionHash, &MismatchedFuncSum);
1506 if (Error E = Result.takeError()) {
1507 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
1508 auto Err = IPE.get();
1509 bool SkipWarning = false;
1510 LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
1511 << FuncInfo.FuncName << ": ");
1512 if (Err == instrprof_error::unknown_function) {
1513 IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
1514 SkipWarning = !PGOWarnMissing;
1515 LLVM_DEBUG(dbgs() << "unknown function");
1516 } else if (Err == instrprof_error::hash_mismatch ||
1517 Err == instrprof_error::malformed) {
1518 IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
1519 SkipWarning =
1520 NoPGOWarnMismatch ||
1521 (NoPGOWarnMismatchComdatWeak &&
1522 (F.hasComdat() || F.getLinkage() == GlobalValue::WeakAnyLinkage ||
1523 F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
1524 LLVM_DEBUG(dbgs() << "hash mismatch (hash= " << FuncInfo.FunctionHash
1525 << " skip=" << SkipWarning << ")");
1526 // Emit function metadata indicating PGO profile mismatch.
1527 annotateFunctionWithHashMismatch(F, M->getContext());
1528 }
1529
1530 LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
1531 if (SkipWarning)
1532 return;
1533
1534 std::string Msg =
1535 IPE.message() + std::string(" ") + F.getName().str() +
1536 std::string(" Hash = ") + std::to_string(FuncInfo.FunctionHash) +
1537 std::string(" up to ") + std::to_string(MismatchedFuncSum) +
1538 std::string(" count discarded");
1539
1540 Ctx.diagnose(
1541 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
1542 });
1543 return false;
1544 }
1545 ProfileRecord = std::move(Result.get());
1546 PseudoKind = ProfileRecord.getCountPseudoKind();
1547 if (PseudoKind != InstrProfRecord::NotPseudo) {
1548 return true;
1549 }
1550 std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
1551
1552 IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
1553 LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
1554
1555 uint64_t ValueSum = 0;
1556 for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
1557 LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n");
1558 ValueSum += CountFromProfile[I];
1559 }
1560 AllZeros = (ValueSum == 0);
1561
1562 LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n");
1563
1564 getBBInfo(nullptr).UnknownCountOutEdge = 2;
1565 getBBInfo(nullptr).UnknownCountInEdge = 2;
1566
1567 if (!setInstrumentedCounts(CountFromProfile)) {
1568 LLVM_DEBUG(
1569 dbgs() << "Inconsistent number of counts, skipping this function");
1570 Ctx.diagnose(DiagnosticInfoPGOProfile(
1571 M->getName().data(),
1572 Twine("Inconsistent number of counts in ") + F.getName().str()
1573 + Twine(": the profile may be stale or there is a function name collision."),
1574 DS_Warning));
1575 return false;
1576 }
1577 ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
1578 return true;
1579 }
1580
1581 // Populate the counters from instrumented BBs to all BBs.
1582 // In the end of this operation, all BBs should have a valid count value.
populateCounters()1583 void PGOUseFunc::populateCounters() {
1584 bool Changes = true;
1585 unsigned NumPasses = 0;
1586 while (Changes) {
1587 NumPasses++;
1588 Changes = false;
1589
1590 // For efficient traversal, it's better to start from the end as most
1591 // of the instrumented edges are at the end.
1592 for (auto &BB : reverse(F)) {
1593 UseBBInfo *Count = findBBInfo(&BB);
1594 if (Count == nullptr)
1595 continue;
1596 if (!Count->CountValid) {
1597 if (Count->UnknownCountOutEdge == 0) {
1598 Count->CountValue = sumEdgeCount(Count->OutEdges);
1599 Count->CountValid = true;
1600 Changes = true;
1601 } else if (Count->UnknownCountInEdge == 0) {
1602 Count->CountValue = sumEdgeCount(Count->InEdges);
1603 Count->CountValid = true;
1604 Changes = true;
1605 }
1606 }
1607 if (Count->CountValid) {
1608 if (Count->UnknownCountOutEdge == 1) {
1609 uint64_t Total = 0;
1610 uint64_t OutSum = sumEdgeCount(Count->OutEdges);
1611 // If the one of the successor block can early terminate (no-return),
1612 // we can end up with situation where out edge sum count is larger as
1613 // the source BB's count is collected by a post-dominated block.
1614 if (Count->CountValue > OutSum)
1615 Total = Count->CountValue - OutSum;
1616 setEdgeCount(Count->OutEdges, Total);
1617 Changes = true;
1618 }
1619 if (Count->UnknownCountInEdge == 1) {
1620 uint64_t Total = 0;
1621 uint64_t InSum = sumEdgeCount(Count->InEdges);
1622 if (Count->CountValue > InSum)
1623 Total = Count->CountValue - InSum;
1624 setEdgeCount(Count->InEdges, Total);
1625 Changes = true;
1626 }
1627 }
1628 }
1629 }
1630
1631 LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
1632 (void) NumPasses;
1633 #ifndef NDEBUG
1634 // Assert every BB has a valid counter.
1635 for (auto &BB : F) {
1636 auto BI = findBBInfo(&BB);
1637 if (BI == nullptr)
1638 continue;
1639 assert(BI->CountValid && "BB count is not valid");
1640 }
1641 #endif
1642 uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
1643 uint64_t FuncMaxCount = FuncEntryCount;
1644 for (auto &BB : F) {
1645 auto BI = findBBInfo(&BB);
1646 if (BI == nullptr)
1647 continue;
1648 FuncMaxCount = std::max(FuncMaxCount, BI->CountValue);
1649 }
1650
1651 // Fix the obviously inconsistent entry count.
1652 if (FuncMaxCount > 0 && FuncEntryCount == 0)
1653 FuncEntryCount = 1;
1654 F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
1655 markFunctionAttributes(FuncEntryCount, FuncMaxCount);
1656
1657 // Now annotate select instructions
1658 FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition);
1659 assert(CountPosition == ProfileCountSize);
1660
1661 LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
1662 }
1663
1664 // Assign the scaled count values to the BB with multiple out edges.
setBranchWeights()1665 void PGOUseFunc::setBranchWeights() {
1666 // Generate MD_prof metadata for every branch instruction.
1667 LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
1668 << " IsCS=" << IsCS << "\n");
1669 for (auto &BB : F) {
1670 Instruction *TI = BB.getTerminator();
1671 if (TI->getNumSuccessors() < 2)
1672 continue;
1673 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
1674 isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI) ||
1675 isa<CallBrInst>(TI)))
1676 continue;
1677
1678 if (getBBInfo(&BB).CountValue == 0)
1679 continue;
1680
1681 // We have a non-zero Branch BB.
1682 const UseBBInfo &BBCountInfo = getBBInfo(&BB);
1683 unsigned Size = BBCountInfo.OutEdges.size();
1684 SmallVector<uint64_t, 2> EdgeCounts(Size, 0);
1685 uint64_t MaxCount = 0;
1686 for (unsigned s = 0; s < Size; s++) {
1687 const PGOUseEdge *E = BBCountInfo.OutEdges[s];
1688 const BasicBlock *SrcBB = E->SrcBB;
1689 const BasicBlock *DestBB = E->DestBB;
1690 if (DestBB == nullptr)
1691 continue;
1692 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
1693 uint64_t EdgeCount = E->CountValue;
1694 if (EdgeCount > MaxCount)
1695 MaxCount = EdgeCount;
1696 EdgeCounts[SuccNum] = EdgeCount;
1697 }
1698
1699 if (MaxCount)
1700 setProfMetadata(M, TI, EdgeCounts, MaxCount);
1701 else {
1702 // A zero MaxCount can come about when we have a BB with a positive
1703 // count, and whose successor blocks all have 0 count. This can happen
1704 // when there is no exit block and the code exits via a noreturn function.
1705 auto &Ctx = M->getContext();
1706 Ctx.diagnose(DiagnosticInfoPGOProfile(
1707 M->getName().data(),
1708 Twine("Profile in ") + F.getName().str() +
1709 Twine(" partially ignored") +
1710 Twine(", possibly due to the lack of a return path."),
1711 DS_Warning));
1712 }
1713 }
1714 }
1715
isIndirectBrTarget(BasicBlock * BB)1716 static bool isIndirectBrTarget(BasicBlock *BB) {
1717 for (BasicBlock *Pred : predecessors(BB)) {
1718 if (isa<IndirectBrInst>(Pred->getTerminator()))
1719 return true;
1720 }
1721 return false;
1722 }
1723
annotateIrrLoopHeaderWeights()1724 void PGOUseFunc::annotateIrrLoopHeaderWeights() {
1725 LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
1726 // Find irr loop headers
1727 for (auto &BB : F) {
1728 // As a heuristic also annotate indrectbr targets as they have a high chance
1729 // to become an irreducible loop header after the indirectbr tail
1730 // duplication.
1731 if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
1732 Instruction *TI = BB.getTerminator();
1733 const UseBBInfo &BBCountInfo = getBBInfo(&BB);
1734 setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue);
1735 }
1736 }
1737 }
1738
instrumentOneSelectInst(SelectInst & SI)1739 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
1740 if (PGOFunctionEntryCoverage)
1741 return;
1742 Module *M = F.getParent();
1743 IRBuilder<> Builder(&SI);
1744 Type *Int64Ty = Builder.getInt64Ty();
1745 Type *I8PtrTy = Builder.getInt8PtrTy();
1746 auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
1747 Builder.CreateCall(
1748 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
1749 {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
1750 Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
1751 Builder.getInt32(*CurCtrIdx), Step});
1752 ++(*CurCtrIdx);
1753 }
1754
annotateOneSelectInst(SelectInst & SI)1755 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
1756 std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
1757 assert(*CurCtrIdx < CountFromProfile.size() &&
1758 "Out of bound access of counters");
1759 uint64_t SCounts[2];
1760 SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
1761 ++(*CurCtrIdx);
1762 uint64_t TotalCount = 0;
1763 auto BI = UseFunc->findBBInfo(SI.getParent());
1764 if (BI != nullptr)
1765 TotalCount = BI->CountValue;
1766 // False Count
1767 SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
1768 uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
1769 if (MaxCount)
1770 setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
1771 }
1772
visitSelectInst(SelectInst & SI)1773 void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
1774 if (!PGOInstrSelect)
1775 return;
1776 // FIXME: do not handle this yet.
1777 if (SI.getCondition()->getType()->isVectorTy())
1778 return;
1779
1780 switch (Mode) {
1781 case VM_counting:
1782 NSIs++;
1783 return;
1784 case VM_instrument:
1785 instrumentOneSelectInst(SI);
1786 return;
1787 case VM_annotate:
1788 annotateOneSelectInst(SI);
1789 return;
1790 }
1791
1792 llvm_unreachable("Unknown visiting mode");
1793 }
1794
1795 // Traverse all valuesites and annotate the instructions for all value kind.
annotateValueSites()1796 void PGOUseFunc::annotateValueSites() {
1797 if (DisableValueProfiling)
1798 return;
1799
1800 // Create the PGOFuncName meta data.
1801 createPGOFuncNameMetadata(F, FuncInfo.FuncName);
1802
1803 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1804 annotateValueSites(Kind);
1805 }
1806
1807 // Annotate the instructions for a specific value kind.
annotateValueSites(uint32_t Kind)1808 void PGOUseFunc::annotateValueSites(uint32_t Kind) {
1809 assert(Kind <= IPVK_Last);
1810 unsigned ValueSiteIndex = 0;
1811 auto &ValueSites = FuncInfo.ValueSites[Kind];
1812 unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
1813 if (NumValueSites != ValueSites.size()) {
1814 auto &Ctx = M->getContext();
1815 Ctx.diagnose(DiagnosticInfoPGOProfile(
1816 M->getName().data(),
1817 Twine("Inconsistent number of value sites for ") +
1818 Twine(ValueProfKindDescr[Kind]) +
1819 Twine(" profiling in \"") + F.getName().str() +
1820 Twine("\", possibly due to the use of a stale profile."),
1821 DS_Warning));
1822 return;
1823 }
1824
1825 for (VPCandidateInfo &I : ValueSites) {
1826 LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
1827 << "): Index = " << ValueSiteIndex << " out of "
1828 << NumValueSites << "\n");
1829 annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord,
1830 static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
1831 Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations
1832 : MaxNumAnnotations);
1833 ValueSiteIndex++;
1834 }
1835 }
1836
1837 // Collect the set of members for each Comdat in module M and store
1838 // in ComdatMembers.
collectComdatMembers(Module & M,std::unordered_multimap<Comdat *,GlobalValue * > & ComdatMembers)1839 static void collectComdatMembers(
1840 Module &M,
1841 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
1842 if (!DoComdatRenaming)
1843 return;
1844 for (Function &F : M)
1845 if (Comdat *C = F.getComdat())
1846 ComdatMembers.insert(std::make_pair(C, &F));
1847 for (GlobalVariable &GV : M.globals())
1848 if (Comdat *C = GV.getComdat())
1849 ComdatMembers.insert(std::make_pair(C, &GV));
1850 for (GlobalAlias &GA : M.aliases())
1851 if (Comdat *C = GA.getComdat())
1852 ComdatMembers.insert(std::make_pair(C, &GA));
1853 }
1854
1855 // Don't perform PGO instrumeatnion / profile-use.
skipPGO(const Function & F)1856 static bool skipPGO(const Function &F) {
1857 if (F.isDeclaration())
1858 return true;
1859 if (F.hasFnAttribute(llvm::Attribute::NoProfile))
1860 return true;
1861 if (F.hasFnAttribute(llvm::Attribute::SkipProfile))
1862 return true;
1863 if (F.getInstructionCount() < PGOFunctionSizeThreshold)
1864 return true;
1865
1866 // If there are too many critical edges, PGO might cause
1867 // compiler time problem. Skip PGO if the number of
1868 // critical edges execeed the threshold.
1869 unsigned NumCriticalEdges = 0;
1870 for (auto &BB : F) {
1871 const Instruction *TI = BB.getTerminator();
1872 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
1873 if (isCriticalEdge(TI, I))
1874 NumCriticalEdges++;
1875 }
1876 }
1877 if (NumCriticalEdges > PGOFunctionCriticalEdgeThreshold) {
1878 LLVM_DEBUG(dbgs() << "In func " << F.getName()
1879 << ", NumCriticalEdges=" << NumCriticalEdges
1880 << " exceed the threshold. Skip PGO.\n");
1881 return true;
1882 }
1883
1884 return false;
1885 }
1886
InstrumentAllFunctions(Module & M,function_ref<TargetLibraryInfo & (Function &)> LookupTLI,function_ref<BranchProbabilityInfo * (Function &)> LookupBPI,function_ref<BlockFrequencyInfo * (Function &)> LookupBFI,bool IsCS)1887 static bool InstrumentAllFunctions(
1888 Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1889 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1890 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
1891 // For the context-sensitve instrumentation, we should have a separated pass
1892 // (before LTO/ThinLTO linking) to create these variables.
1893 if (!IsCS)
1894 createIRLevelProfileFlagVar(M, /*IsCS=*/false);
1895 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1896 collectComdatMembers(M, ComdatMembers);
1897
1898 for (auto &F : M) {
1899 if (skipPGO(F))
1900 continue;
1901 auto &TLI = LookupTLI(F);
1902 auto *BPI = LookupBPI(F);
1903 auto *BFI = LookupBFI(F);
1904 instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS);
1905 }
1906 return true;
1907 }
1908
1909 PreservedAnalyses
run(Module & M,ModuleAnalysisManager & AM)1910 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) {
1911 createProfileFileNameVar(M, CSInstrName);
1912 // The variable in a comdat may be discarded by LTO. Ensure the declaration
1913 // will be retained.
1914 appendToCompilerUsed(M, createIRLevelProfileFlagVar(M, /*IsCS=*/true));
1915 return PreservedAnalyses::all();
1916 }
1917
run(Module & M,ModuleAnalysisManager & AM)1918 PreservedAnalyses PGOInstrumentationGen::run(Module &M,
1919 ModuleAnalysisManager &AM) {
1920 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1921 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1922 return FAM.getResult<TargetLibraryAnalysis>(F);
1923 };
1924 auto LookupBPI = [&FAM](Function &F) {
1925 return &FAM.getResult<BranchProbabilityAnalysis>(F);
1926 };
1927 auto LookupBFI = [&FAM](Function &F) {
1928 return &FAM.getResult<BlockFrequencyAnalysis>(F);
1929 };
1930
1931 if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS))
1932 return PreservedAnalyses::all();
1933
1934 return PreservedAnalyses::none();
1935 }
1936
1937 // Using the ratio b/w sums of profile count values and BFI count values to
1938 // adjust the func entry count.
fixFuncEntryCount(PGOUseFunc & Func,LoopInfo & LI,BranchProbabilityInfo & NBPI)1939 static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI,
1940 BranchProbabilityInfo &NBPI) {
1941 Function &F = Func.getFunc();
1942 BlockFrequencyInfo NBFI(F, NBPI, LI);
1943 #ifndef NDEBUG
1944 auto BFIEntryCount = F.getEntryCount();
1945 assert(BFIEntryCount && (BFIEntryCount->getCount() > 0) &&
1946 "Invalid BFI Entrycount");
1947 #endif
1948 auto SumCount = APFloat::getZero(APFloat::IEEEdouble());
1949 auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble());
1950 for (auto &BBI : F) {
1951 uint64_t CountValue = 0;
1952 uint64_t BFICountValue = 0;
1953 if (!Func.findBBInfo(&BBI))
1954 continue;
1955 auto BFICount = NBFI.getBlockProfileCount(&BBI);
1956 CountValue = Func.getBBInfo(&BBI).CountValue;
1957 BFICountValue = *BFICount;
1958 SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven);
1959 SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven);
1960 }
1961 if (SumCount.isZero())
1962 return;
1963
1964 assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan &&
1965 "Incorrect sum of BFI counts");
1966 if (SumBFICount.compare(SumCount) == APFloat::cmpEqual)
1967 return;
1968 double Scale = (SumCount / SumBFICount).convertToDouble();
1969 if (Scale < 1.001 && Scale > 0.999)
1970 return;
1971
1972 uint64_t FuncEntryCount = Func.getBBInfo(&*F.begin()).CountValue;
1973 uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale;
1974 if (NewEntryCount == 0)
1975 NewEntryCount = 1;
1976 if (NewEntryCount != FuncEntryCount) {
1977 F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real));
1978 LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName()
1979 << ", entry_count " << FuncEntryCount << " --> "
1980 << NewEntryCount << "\n");
1981 }
1982 }
1983
1984 // Compare the profile count values with BFI count values, and print out
1985 // the non-matching ones.
verifyFuncBFI(PGOUseFunc & Func,LoopInfo & LI,BranchProbabilityInfo & NBPI,uint64_t HotCountThreshold,uint64_t ColdCountThreshold)1986 static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI,
1987 BranchProbabilityInfo &NBPI,
1988 uint64_t HotCountThreshold,
1989 uint64_t ColdCountThreshold) {
1990 Function &F = Func.getFunc();
1991 BlockFrequencyInfo NBFI(F, NBPI, LI);
1992 // bool PrintFunc = false;
1993 bool HotBBOnly = PGOVerifyHotBFI;
1994 std::string Msg;
1995 OptimizationRemarkEmitter ORE(&F);
1996
1997 unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0;
1998 for (auto &BBI : F) {
1999 uint64_t CountValue = 0;
2000 uint64_t BFICountValue = 0;
2001
2002 if (Func.getBBInfo(&BBI).CountValid)
2003 CountValue = Func.getBBInfo(&BBI).CountValue;
2004
2005 BBNum++;
2006 if (CountValue)
2007 NonZeroBBNum++;
2008 auto BFICount = NBFI.getBlockProfileCount(&BBI);
2009 if (BFICount)
2010 BFICountValue = *BFICount;
2011
2012 if (HotBBOnly) {
2013 bool rawIsHot = CountValue >= HotCountThreshold;
2014 bool BFIIsHot = BFICountValue >= HotCountThreshold;
2015 bool rawIsCold = CountValue <= ColdCountThreshold;
2016 bool ShowCount = false;
2017 if (rawIsHot && !BFIIsHot) {
2018 Msg = "raw-Hot to BFI-nonHot";
2019 ShowCount = true;
2020 } else if (rawIsCold && BFIIsHot) {
2021 Msg = "raw-Cold to BFI-Hot";
2022 ShowCount = true;
2023 }
2024 if (!ShowCount)
2025 continue;
2026 } else {
2027 if ((CountValue < PGOVerifyBFICutoff) &&
2028 (BFICountValue < PGOVerifyBFICutoff))
2029 continue;
2030 uint64_t Diff = (BFICountValue >= CountValue)
2031 ? BFICountValue - CountValue
2032 : CountValue - BFICountValue;
2033 if (Diff <= CountValue / 100 * PGOVerifyBFIRatio)
2034 continue;
2035 }
2036 BBMisMatchNum++;
2037
2038 ORE.emit([&]() {
2039 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify",
2040 F.getSubprogram(), &BBI);
2041 Remark << "BB " << ore::NV("Block", BBI.getName())
2042 << " Count=" << ore::NV("Count", CountValue)
2043 << " BFI_Count=" << ore::NV("Count", BFICountValue);
2044 if (!Msg.empty())
2045 Remark << " (" << Msg << ")";
2046 return Remark;
2047 });
2048 }
2049 if (BBMisMatchNum)
2050 ORE.emit([&]() {
2051 return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify",
2052 F.getSubprogram(), &F.getEntryBlock())
2053 << "In Func " << ore::NV("Function", F.getName())
2054 << ": Num_of_BB=" << ore::NV("Count", BBNum)
2055 << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum)
2056 << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum);
2057 });
2058 }
2059
annotateAllFunctions(Module & M,StringRef ProfileFileName,StringRef ProfileRemappingFileName,function_ref<TargetLibraryInfo & (Function &)> LookupTLI,function_ref<BranchProbabilityInfo * (Function &)> LookupBPI,function_ref<BlockFrequencyInfo * (Function &)> LookupBFI,ProfileSummaryInfo * PSI,bool IsCS)2060 static bool annotateAllFunctions(
2061 Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
2062 function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
2063 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
2064 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
2065 ProfileSummaryInfo *PSI, bool IsCS) {
2066 LLVM_DEBUG(dbgs() << "Read in profile counters: ");
2067 auto &Ctx = M.getContext();
2068 // Read the counter array from file.
2069 auto ReaderOrErr =
2070 IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName);
2071 if (Error E = ReaderOrErr.takeError()) {
2072 handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
2073 Ctx.diagnose(
2074 DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
2075 });
2076 return false;
2077 }
2078
2079 std::unique_ptr<IndexedInstrProfReader> PGOReader =
2080 std::move(ReaderOrErr.get());
2081 if (!PGOReader) {
2082 Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
2083 StringRef("Cannot get PGOReader")));
2084 return false;
2085 }
2086 if (!PGOReader->hasCSIRLevelProfile() && IsCS)
2087 return false;
2088
2089 // TODO: might need to change the warning once the clang option is finalized.
2090 if (!PGOReader->isIRLevelProfile() && !PGOReader->hasMemoryProfile()) {
2091 Ctx.diagnose(DiagnosticInfoPGOProfile(
2092 ProfileFileName.data(), "Not an IR level instrumentation profile"));
2093 return false;
2094 }
2095 if (PGOReader->hasSingleByteCoverage()) {
2096 Ctx.diagnose(DiagnosticInfoPGOProfile(
2097 ProfileFileName.data(),
2098 "Cannot use coverage profiles for optimization"));
2099 return false;
2100 }
2101 if (PGOReader->functionEntryOnly()) {
2102 Ctx.diagnose(DiagnosticInfoPGOProfile(
2103 ProfileFileName.data(),
2104 "Function entry profiles are not yet supported for optimization"));
2105 return false;
2106 }
2107
2108 // Add the profile summary (read from the header of the indexed summary) here
2109 // so that we can use it below when reading counters (which checks if the
2110 // function should be marked with a cold or inlinehint attribute).
2111 M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
2112 IsCS ? ProfileSummary::PSK_CSInstr
2113 : ProfileSummary::PSK_Instr);
2114 PSI->refresh();
2115
2116 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
2117 collectComdatMembers(M, ComdatMembers);
2118 std::vector<Function *> HotFunctions;
2119 std::vector<Function *> ColdFunctions;
2120
2121 // If the profile marked as always instrument the entry BB, do the
2122 // same. Note this can be overwritten by the internal option in CFGMST.h
2123 bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled();
2124 if (PGOInstrumentEntry.getNumOccurrences() > 0)
2125 InstrumentFuncEntry = PGOInstrumentEntry;
2126 for (auto &F : M) {
2127 if (skipPGO(F))
2128 continue;
2129 auto &TLI = LookupTLI(F);
2130 auto *BPI = LookupBPI(F);
2131 auto *BFI = LookupBFI(F);
2132 // Split indirectbr critical edges here before computing the MST rather than
2133 // later in getInstrBB() to avoid invalidating it.
2134 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
2135 PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS,
2136 InstrumentFuncEntry);
2137 // Read and match memprof first since we do this via debug info and can
2138 // match even if there is an IR mismatch detected for regular PGO below.
2139 if (PGOReader->hasMemoryProfile())
2140 Func.readMemprof(PGOReader.get());
2141
2142 if (!PGOReader->isIRLevelProfile())
2143 continue;
2144
2145 // When PseudoKind is set to a vaule other than InstrProfRecord::NotPseudo,
2146 // it means the profile for the function is unrepresentative and this
2147 // function is actually hot / warm. We will reset the function hot / cold
2148 // attribute and drop all the profile counters.
2149 InstrProfRecord::CountPseudoKind PseudoKind = InstrProfRecord::NotPseudo;
2150 bool AllZeros = false;
2151 if (!Func.readCounters(PGOReader.get(), AllZeros, PseudoKind))
2152 continue;
2153 if (AllZeros) {
2154 F.setEntryCount(ProfileCount(0, Function::PCT_Real));
2155 if (Func.getProgramMaxCount() != 0)
2156 ColdFunctions.push_back(&F);
2157 continue;
2158 }
2159 if (PseudoKind != InstrProfRecord::NotPseudo) {
2160 // Clear function attribute cold.
2161 if (F.hasFnAttribute(Attribute::Cold))
2162 F.removeFnAttr(Attribute::Cold);
2163 // Set function attribute as hot.
2164 if (PseudoKind == InstrProfRecord::PseudoHot)
2165 F.addFnAttr(Attribute::Hot);
2166 continue;
2167 }
2168 Func.populateCounters();
2169 Func.setBranchWeights();
2170 Func.annotateValueSites();
2171 Func.annotateIrrLoopHeaderWeights();
2172 PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
2173 if (FreqAttr == PGOUseFunc::FFA_Cold)
2174 ColdFunctions.push_back(&F);
2175 else if (FreqAttr == PGOUseFunc::FFA_Hot)
2176 HotFunctions.push_back(&F);
2177 if (PGOViewCounts != PGOVCT_None &&
2178 (ViewBlockFreqFuncName.empty() ||
2179 F.getName().equals(ViewBlockFreqFuncName))) {
2180 LoopInfo LI{DominatorTree(F)};
2181 std::unique_ptr<BranchProbabilityInfo> NewBPI =
2182 std::make_unique<BranchProbabilityInfo>(F, LI);
2183 std::unique_ptr<BlockFrequencyInfo> NewBFI =
2184 std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
2185 if (PGOViewCounts == PGOVCT_Graph)
2186 NewBFI->view();
2187 else if (PGOViewCounts == PGOVCT_Text) {
2188 dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
2189 NewBFI->print(dbgs());
2190 }
2191 }
2192 if (PGOViewRawCounts != PGOVCT_None &&
2193 (ViewBlockFreqFuncName.empty() ||
2194 F.getName().equals(ViewBlockFreqFuncName))) {
2195 if (PGOViewRawCounts == PGOVCT_Graph)
2196 if (ViewBlockFreqFuncName.empty())
2197 WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
2198 else
2199 ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
2200 else if (PGOViewRawCounts == PGOVCT_Text) {
2201 dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
2202 Func.dumpInfo();
2203 }
2204 }
2205
2206 if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) {
2207 LoopInfo LI{DominatorTree(F)};
2208 BranchProbabilityInfo NBPI(F, LI);
2209
2210 // Fix func entry count.
2211 if (PGOFixEntryCount)
2212 fixFuncEntryCount(Func, LI, NBPI);
2213
2214 // Verify BlockFrequency information.
2215 uint64_t HotCountThreshold = 0, ColdCountThreshold = 0;
2216 if (PGOVerifyHotBFI) {
2217 HotCountThreshold = PSI->getOrCompHotCountThreshold();
2218 ColdCountThreshold = PSI->getOrCompColdCountThreshold();
2219 }
2220 verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold);
2221 }
2222 }
2223
2224 // Set function hotness attribute from the profile.
2225 // We have to apply these attributes at the end because their presence
2226 // can affect the BranchProbabilityInfo of any callers, resulting in an
2227 // inconsistent MST between prof-gen and prof-use.
2228 for (auto &F : HotFunctions) {
2229 F->addFnAttr(Attribute::InlineHint);
2230 LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
2231 << "\n");
2232 }
2233 for (auto &F : ColdFunctions) {
2234 // Only set when there is no Attribute::Hot set by the user. For Hot
2235 // attribute, user's annotation has the precedence over the profile.
2236 if (F->hasFnAttribute(Attribute::Hot)) {
2237 auto &Ctx = M.getContext();
2238 std::string Msg = std::string("Function ") + F->getName().str() +
2239 std::string(" is annotated as a hot function but"
2240 " the profile is cold");
2241 Ctx.diagnose(
2242 DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
2243 continue;
2244 }
2245 F->addFnAttr(Attribute::Cold);
2246 LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
2247 << "\n");
2248 }
2249 return true;
2250 }
2251
PGOInstrumentationUse(std::string Filename,std::string RemappingFilename,bool IsCS)2252 PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename,
2253 std::string RemappingFilename,
2254 bool IsCS)
2255 : ProfileFileName(std::move(Filename)),
2256 ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) {
2257 if (!PGOTestProfileFile.empty())
2258 ProfileFileName = PGOTestProfileFile;
2259 if (!PGOTestProfileRemappingFile.empty())
2260 ProfileRemappingFileName = PGOTestProfileRemappingFile;
2261 }
2262
run(Module & M,ModuleAnalysisManager & AM)2263 PreservedAnalyses PGOInstrumentationUse::run(Module &M,
2264 ModuleAnalysisManager &AM) {
2265
2266 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2267 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2268 return FAM.getResult<TargetLibraryAnalysis>(F);
2269 };
2270 auto LookupBPI = [&FAM](Function &F) {
2271 return &FAM.getResult<BranchProbabilityAnalysis>(F);
2272 };
2273 auto LookupBFI = [&FAM](Function &F) {
2274 return &FAM.getResult<BlockFrequencyAnalysis>(F);
2275 };
2276
2277 auto *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
2278
2279 if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName,
2280 LookupTLI, LookupBPI, LookupBFI, PSI, IsCS))
2281 return PreservedAnalyses::all();
2282
2283 return PreservedAnalyses::none();
2284 }
2285
getSimpleNodeName(const BasicBlock * Node)2286 static std::string getSimpleNodeName(const BasicBlock *Node) {
2287 if (!Node->getName().empty())
2288 return std::string(Node->getName());
2289
2290 std::string SimpleNodeName;
2291 raw_string_ostream OS(SimpleNodeName);
2292 Node->printAsOperand(OS, false);
2293 return OS.str();
2294 }
2295
setProfMetadata(Module * M,Instruction * TI,ArrayRef<uint64_t> EdgeCounts,uint64_t MaxCount)2296 void llvm::setProfMetadata(Module *M, Instruction *TI,
2297 ArrayRef<uint64_t> EdgeCounts,
2298 uint64_t MaxCount) {
2299 MDBuilder MDB(M->getContext());
2300 assert(MaxCount > 0 && "Bad max count");
2301 uint64_t Scale = calculateCountScale(MaxCount);
2302 SmallVector<unsigned, 4> Weights;
2303 for (const auto &ECI : EdgeCounts)
2304 Weights.push_back(scaleBranchCount(ECI, Scale));
2305
2306 LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
2307 : Weights) {
2308 dbgs() << W << " ";
2309 } dbgs() << "\n";);
2310
2311 misexpect::checkExpectAnnotations(*TI, Weights, /*IsFrontend=*/false);
2312
2313 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
2314 if (EmitBranchProbability) {
2315 std::string BrCondStr = getBranchCondString(TI);
2316 if (BrCondStr.empty())
2317 return;
2318
2319 uint64_t WSum =
2320 std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
2321 [](uint64_t w1, uint64_t w2) { return w1 + w2; });
2322 uint64_t TotalCount =
2323 std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
2324 [](uint64_t c1, uint64_t c2) { return c1 + c2; });
2325 Scale = calculateCountScale(WSum);
2326 BranchProbability BP(scaleBranchCount(Weights[0], Scale),
2327 scaleBranchCount(WSum, Scale));
2328 std::string BranchProbStr;
2329 raw_string_ostream OS(BranchProbStr);
2330 OS << BP;
2331 OS << " (total count : " << TotalCount << ")";
2332 OS.flush();
2333 Function *F = TI->getParent()->getParent();
2334 OptimizationRemarkEmitter ORE(F);
2335 ORE.emit([&]() {
2336 return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
2337 << BrCondStr << " is true with probability : " << BranchProbStr;
2338 });
2339 }
2340 }
2341
2342 namespace llvm {
2343
setIrrLoopHeaderMetadata(Module * M,Instruction * TI,uint64_t Count)2344 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
2345 MDBuilder MDB(M->getContext());
2346 TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
2347 MDB.createIrrLoopHeaderWeight(Count));
2348 }
2349
2350 template <> struct GraphTraits<PGOUseFunc *> {
2351 using NodeRef = const BasicBlock *;
2352 using ChildIteratorType = const_succ_iterator;
2353 using nodes_iterator = pointer_iterator<Function::const_iterator>;
2354
getEntryNodellvm::GraphTraits2355 static NodeRef getEntryNode(const PGOUseFunc *G) {
2356 return &G->getFunc().front();
2357 }
2358
child_beginllvm::GraphTraits2359 static ChildIteratorType child_begin(const NodeRef N) {
2360 return succ_begin(N);
2361 }
2362
child_endllvm::GraphTraits2363 static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
2364
nodes_beginllvm::GraphTraits2365 static nodes_iterator nodes_begin(const PGOUseFunc *G) {
2366 return nodes_iterator(G->getFunc().begin());
2367 }
2368
nodes_endllvm::GraphTraits2369 static nodes_iterator nodes_end(const PGOUseFunc *G) {
2370 return nodes_iterator(G->getFunc().end());
2371 }
2372 };
2373
2374 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
DOTGraphTraitsllvm::DOTGraphTraits2375 explicit DOTGraphTraits(bool isSimple = false)
2376 : DefaultDOTGraphTraits(isSimple) {}
2377
getGraphNamellvm::DOTGraphTraits2378 static std::string getGraphName(const PGOUseFunc *G) {
2379 return std::string(G->getFunc().getName());
2380 }
2381
getNodeLabelllvm::DOTGraphTraits2382 std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
2383 std::string Result;
2384 raw_string_ostream OS(Result);
2385
2386 OS << getSimpleNodeName(Node) << ":\\l";
2387 UseBBInfo *BI = Graph->findBBInfo(Node);
2388 OS << "Count : ";
2389 if (BI && BI->CountValid)
2390 OS << BI->CountValue << "\\l";
2391 else
2392 OS << "Unknown\\l";
2393
2394 if (!PGOInstrSelect)
2395 return Result;
2396
2397 for (const Instruction &I : *Node) {
2398 if (!isa<SelectInst>(&I))
2399 continue;
2400 // Display scaled counts for SELECT instruction:
2401 OS << "SELECT : { T = ";
2402 uint64_t TC, FC;
2403 bool HasProf = extractBranchWeights(I, TC, FC);
2404 if (!HasProf)
2405 OS << "Unknown, F = Unknown }\\l";
2406 else
2407 OS << TC << ", F = " << FC << " }\\l";
2408 }
2409 return Result;
2410 }
2411 };
2412
2413 } // end namespace llvm
2414