1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sparse conditional constant propagation and merging:
10 //
11 // Specifically, this:
12 // * Assumes values are constant unless proven otherwise
13 // * Assumes BasicBlocks are dead unless proven otherwise
14 // * Proves values to be constant, and replaces them with constants
15 // * Proves conditional branches to be unconditional
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/Transforms/Scalar/SCCP.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/Analysis/DomTreeUpdater.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/InstructionSimplify.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueLattice.h"
36 #include "llvm/Analysis/ValueLatticeUtils.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/InstVisitor.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/InitializePasses.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Scalar.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include "llvm/Transforms/Utils/PredicateInfo.h"
63 #include <cassert>
64 #include <utility>
65 #include <vector>
66
67 using namespace llvm;
68
69 #define DEBUG_TYPE "sccp"
70
71 STATISTIC(NumInstRemoved, "Number of instructions removed");
72 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
73 STATISTIC(NumInstReplaced,
74 "Number of instructions replaced with (simpler) instruction");
75
76 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
77 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
78 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
79 STATISTIC(
80 IPNumInstReplaced,
81 "Number of instructions replaced with (simpler) instruction by IPSCCP");
82
83 // Helper to check if \p LV is either a constant or a constant
84 // range with a single element. This should cover exactly the same cases as the
85 // old ValueLatticeElement::isConstant() and is intended to be used in the
86 // transition to ValueLatticeElement.
isConstant(const ValueLatticeElement & LV)87 static bool isConstant(const ValueLatticeElement &LV) {
88 return LV.isConstant() ||
89 (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
90 }
91
92 // Helper to check if \p LV is either overdefined or a constant range with more
93 // than a single element. This should cover exactly the same cases as the old
94 // ValueLatticeElement::isOverdefined() and is intended to be used in the
95 // transition to ValueLatticeElement.
isOverdefined(const ValueLatticeElement & LV)96 static bool isOverdefined(const ValueLatticeElement &LV) {
97 return !LV.isUnknownOrUndef() && !isConstant(LV);
98 }
99
100
101
102
tryToReplaceWithConstant(SCCPSolver & Solver,Value * V)103 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
104 Constant *Const = nullptr;
105 if (V->getType()->isStructTy()) {
106 std::vector<ValueLatticeElement> IVs = Solver.getStructLatticeValueFor(V);
107 if (any_of(IVs,
108 [](const ValueLatticeElement &LV) { return isOverdefined(LV); }))
109 return false;
110 std::vector<Constant *> ConstVals;
111 auto *ST = cast<StructType>(V->getType());
112 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
113 ValueLatticeElement V = IVs[i];
114 ConstVals.push_back(isConstant(V)
115 ? Solver.getConstant(V)
116 : UndefValue::get(ST->getElementType(i)));
117 }
118 Const = ConstantStruct::get(ST, ConstVals);
119 } else {
120 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
121 if (isOverdefined(IV))
122 return false;
123
124 Const =
125 isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
126 }
127 assert(Const && "Constant is nullptr here!");
128
129 // Replacing `musttail` instructions with constant breaks `musttail` invariant
130 // unless the call itself can be removed.
131 // Calls with "clang.arc.attachedcall" implicitly use the return value and
132 // those uses cannot be updated with a constant.
133 CallBase *CB = dyn_cast<CallBase>(V);
134 if (CB && ((CB->isMustTailCall() && !CB->isSafeToRemove()) ||
135 CB->getOperandBundle(LLVMContext::OB_clang_arc_attachedcall))) {
136 Function *F = CB->getCalledFunction();
137
138 // Don't zap returns of the callee
139 if (F)
140 Solver.addToMustPreserveReturnsInFunctions(F);
141
142 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
143 << " as a constant\n");
144 return false;
145 }
146
147 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
148
149 // Replaces all of the uses of a variable with uses of the constant.
150 V->replaceAllUsesWith(Const);
151 return true;
152 }
153
simplifyInstsInBlock(SCCPSolver & Solver,BasicBlock & BB,SmallPtrSetImpl<Value * > & InsertedValues,Statistic & InstRemovedStat,Statistic & InstReplacedStat)154 static bool simplifyInstsInBlock(SCCPSolver &Solver, BasicBlock &BB,
155 SmallPtrSetImpl<Value *> &InsertedValues,
156 Statistic &InstRemovedStat,
157 Statistic &InstReplacedStat) {
158 bool MadeChanges = false;
159 for (Instruction &Inst : make_early_inc_range(BB)) {
160 if (Inst.getType()->isVoidTy())
161 continue;
162 if (tryToReplaceWithConstant(Solver, &Inst)) {
163 if (Inst.isSafeToRemove())
164 Inst.eraseFromParent();
165 // Hey, we just changed something!
166 MadeChanges = true;
167 ++InstRemovedStat;
168 } else if (isa<SExtInst>(&Inst)) {
169 Value *ExtOp = Inst.getOperand(0);
170 if (isa<Constant>(ExtOp) || InsertedValues.count(ExtOp))
171 continue;
172 const ValueLatticeElement &IV = Solver.getLatticeValueFor(ExtOp);
173 if (!IV.isConstantRange(/*UndefAllowed=*/false))
174 continue;
175 if (IV.getConstantRange().isAllNonNegative()) {
176 auto *ZExt = new ZExtInst(ExtOp, Inst.getType(), "", &Inst);
177 InsertedValues.insert(ZExt);
178 Inst.replaceAllUsesWith(ZExt);
179 Solver.removeLatticeValueFor(&Inst);
180 Inst.eraseFromParent();
181 InstReplacedStat++;
182 MadeChanges = true;
183 }
184 }
185 }
186 return MadeChanges;
187 }
188
189 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
190 // and return true if the function was modified.
runSCCP(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI)191 static bool runSCCP(Function &F, const DataLayout &DL,
192 const TargetLibraryInfo *TLI) {
193 LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
194 SCCPSolver Solver(
195 DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; },
196 F.getContext());
197
198 // Mark the first block of the function as being executable.
199 Solver.markBlockExecutable(&F.front());
200
201 // Mark all arguments to the function as being overdefined.
202 for (Argument &AI : F.args())
203 Solver.markOverdefined(&AI);
204
205 // Solve for constants.
206 bool ResolvedUndefs = true;
207 while (ResolvedUndefs) {
208 Solver.solve();
209 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
210 ResolvedUndefs = Solver.resolvedUndefsIn(F);
211 }
212
213 bool MadeChanges = false;
214
215 // If we decided that there are basic blocks that are dead in this function,
216 // delete their contents now. Note that we cannot actually delete the blocks,
217 // as we cannot modify the CFG of the function.
218
219 SmallPtrSet<Value *, 32> InsertedValues;
220 for (BasicBlock &BB : F) {
221 if (!Solver.isBlockExecutable(&BB)) {
222 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
223
224 ++NumDeadBlocks;
225 NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB).first;
226
227 MadeChanges = true;
228 continue;
229 }
230
231 MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
232 NumInstRemoved, NumInstReplaced);
233 }
234
235 return MadeChanges;
236 }
237
run(Function & F,FunctionAnalysisManager & AM)238 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
239 const DataLayout &DL = F.getParent()->getDataLayout();
240 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
241 if (!runSCCP(F, DL, &TLI))
242 return PreservedAnalyses::all();
243
244 auto PA = PreservedAnalyses();
245 PA.preserveSet<CFGAnalyses>();
246 return PA;
247 }
248
249 namespace {
250
251 //===--------------------------------------------------------------------===//
252 //
253 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
254 /// Sparse Conditional Constant Propagator.
255 ///
256 class SCCPLegacyPass : public FunctionPass {
257 public:
258 // Pass identification, replacement for typeid
259 static char ID;
260
SCCPLegacyPass()261 SCCPLegacyPass() : FunctionPass(ID) {
262 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
263 }
264
getAnalysisUsage(AnalysisUsage & AU) const265 void getAnalysisUsage(AnalysisUsage &AU) const override {
266 AU.addRequired<TargetLibraryInfoWrapperPass>();
267 AU.addPreserved<GlobalsAAWrapperPass>();
268 AU.setPreservesCFG();
269 }
270
271 // runOnFunction - Run the Sparse Conditional Constant Propagation
272 // algorithm, and return true if the function was modified.
runOnFunction(Function & F)273 bool runOnFunction(Function &F) override {
274 if (skipFunction(F))
275 return false;
276 const DataLayout &DL = F.getParent()->getDataLayout();
277 const TargetLibraryInfo *TLI =
278 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
279 return runSCCP(F, DL, TLI);
280 }
281 };
282
283 } // end anonymous namespace
284
285 char SCCPLegacyPass::ID = 0;
286
287 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
288 "Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)289 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
290 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
291 "Sparse Conditional Constant Propagation", false, false)
292
293 // createSCCPPass - This is the public interface to this file.
294 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
295
findReturnsToZap(Function & F,SmallVector<ReturnInst *,8> & ReturnsToZap,SCCPSolver & Solver)296 static void findReturnsToZap(Function &F,
297 SmallVector<ReturnInst *, 8> &ReturnsToZap,
298 SCCPSolver &Solver) {
299 // We can only do this if we know that nothing else can call the function.
300 if (!Solver.isArgumentTrackedFunction(&F))
301 return;
302
303 if (Solver.mustPreserveReturn(&F)) {
304 LLVM_DEBUG(
305 dbgs()
306 << "Can't zap returns of the function : " << F.getName()
307 << " due to present musttail or \"clang.arc.attachedcall\" call of "
308 "it\n");
309 return;
310 }
311
312 assert(
313 all_of(F.users(),
314 [&Solver](User *U) {
315 if (isa<Instruction>(U) &&
316 !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
317 return true;
318 // Non-callsite uses are not impacted by zapping. Also, constant
319 // uses (like blockaddresses) could stuck around, without being
320 // used in the underlying IR, meaning we do not have lattice
321 // values for them.
322 if (!isa<CallBase>(U))
323 return true;
324 if (U->getType()->isStructTy()) {
325 return all_of(Solver.getStructLatticeValueFor(U),
326 [](const ValueLatticeElement &LV) {
327 return !isOverdefined(LV);
328 });
329 }
330 return !isOverdefined(Solver.getLatticeValueFor(U));
331 }) &&
332 "We can only zap functions where all live users have a concrete value");
333
334 for (BasicBlock &BB : F) {
335 if (CallInst *CI = BB.getTerminatingMustTailCall()) {
336 LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
337 << "musttail call : " << *CI << "\n");
338 (void)CI;
339 return;
340 }
341
342 if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
343 if (!isa<UndefValue>(RI->getOperand(0)))
344 ReturnsToZap.push_back(RI);
345 }
346 }
347
removeNonFeasibleEdges(const SCCPSolver & Solver,BasicBlock * BB,DomTreeUpdater & DTU)348 static bool removeNonFeasibleEdges(const SCCPSolver &Solver, BasicBlock *BB,
349 DomTreeUpdater &DTU) {
350 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
351 bool HasNonFeasibleEdges = false;
352 for (BasicBlock *Succ : successors(BB)) {
353 if (Solver.isEdgeFeasible(BB, Succ))
354 FeasibleSuccessors.insert(Succ);
355 else
356 HasNonFeasibleEdges = true;
357 }
358
359 // All edges feasible, nothing to do.
360 if (!HasNonFeasibleEdges)
361 return false;
362
363 // SCCP can only determine non-feasible edges for br, switch and indirectbr.
364 Instruction *TI = BB->getTerminator();
365 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
366 isa<IndirectBrInst>(TI)) &&
367 "Terminator must be a br, switch or indirectbr");
368
369 if (FeasibleSuccessors.size() == 1) {
370 // Replace with an unconditional branch to the only feasible successor.
371 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
372 SmallVector<DominatorTree::UpdateType, 8> Updates;
373 bool HaveSeenOnlyFeasibleSuccessor = false;
374 for (BasicBlock *Succ : successors(BB)) {
375 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
376 // Don't remove the edge to the only feasible successor the first time
377 // we see it. We still do need to remove any multi-edges to it though.
378 HaveSeenOnlyFeasibleSuccessor = true;
379 continue;
380 }
381
382 Succ->removePredecessor(BB);
383 Updates.push_back({DominatorTree::Delete, BB, Succ});
384 }
385
386 BranchInst::Create(OnlyFeasibleSuccessor, BB);
387 TI->eraseFromParent();
388 DTU.applyUpdatesPermissive(Updates);
389 } else if (FeasibleSuccessors.size() > 1) {
390 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
391 SmallVector<DominatorTree::UpdateType, 8> Updates;
392 for (auto CI = SI->case_begin(); CI != SI->case_end();) {
393 if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
394 ++CI;
395 continue;
396 }
397
398 BasicBlock *Succ = CI->getCaseSuccessor();
399 Succ->removePredecessor(BB);
400 Updates.push_back({DominatorTree::Delete, BB, Succ});
401 SI.removeCase(CI);
402 // Don't increment CI, as we removed a case.
403 }
404
405 DTU.applyUpdatesPermissive(Updates);
406 } else {
407 llvm_unreachable("Must have at least one feasible successor");
408 }
409 return true;
410 }
411
runIPSCCP(Module & M,const DataLayout & DL,std::function<const TargetLibraryInfo & (Function &)> GetTLI,function_ref<AnalysisResultsForFn (Function &)> getAnalysis)412 bool llvm::runIPSCCP(
413 Module &M, const DataLayout &DL,
414 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
415 function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
416 SCCPSolver Solver(DL, GetTLI, M.getContext());
417
418 // Loop over all functions, marking arguments to those with their addresses
419 // taken or that are external as overdefined.
420 for (Function &F : M) {
421 if (F.isDeclaration())
422 continue;
423
424 Solver.addAnalysis(F, getAnalysis(F));
425
426 // Determine if we can track the function's return values. If so, add the
427 // function to the solver's set of return-tracked functions.
428 if (canTrackReturnsInterprocedurally(&F))
429 Solver.addTrackedFunction(&F);
430
431 // Determine if we can track the function's arguments. If so, add the
432 // function to the solver's set of argument-tracked functions.
433 if (canTrackArgumentsInterprocedurally(&F)) {
434 Solver.addArgumentTrackedFunction(&F);
435 continue;
436 }
437
438 // Assume the function is called.
439 Solver.markBlockExecutable(&F.front());
440
441 // Assume nothing about the incoming arguments.
442 for (Argument &AI : F.args())
443 Solver.markOverdefined(&AI);
444 }
445
446 // Determine if we can track any of the module's global variables. If so, add
447 // the global variables we can track to the solver's set of tracked global
448 // variables.
449 for (GlobalVariable &G : M.globals()) {
450 G.removeDeadConstantUsers();
451 if (canTrackGlobalVariableInterprocedurally(&G))
452 Solver.trackValueOfGlobalVariable(&G);
453 }
454
455 // Solve for constants.
456 bool ResolvedUndefs = true;
457 Solver.solve();
458 while (ResolvedUndefs) {
459 LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
460 ResolvedUndefs = false;
461 for (Function &F : M) {
462 if (Solver.resolvedUndefsIn(F))
463 ResolvedUndefs = true;
464 }
465 if (ResolvedUndefs)
466 Solver.solve();
467 }
468
469 bool MadeChanges = false;
470
471 // Iterate over all of the instructions in the module, replacing them with
472 // constants if we have found them to be of constant values.
473
474 for (Function &F : M) {
475 if (F.isDeclaration())
476 continue;
477
478 SmallVector<BasicBlock *, 512> BlocksToErase;
479
480 if (Solver.isBlockExecutable(&F.front())) {
481 bool ReplacedPointerArg = false;
482 for (Argument &Arg : F.args()) {
483 if (!Arg.use_empty() && tryToReplaceWithConstant(Solver, &Arg)) {
484 ReplacedPointerArg |= Arg.getType()->isPointerTy();
485 ++IPNumArgsElimed;
486 }
487 }
488
489 // If we replaced an argument, the argmemonly and
490 // inaccessiblemem_or_argmemonly attributes do not hold any longer. Remove
491 // them from both the function and callsites.
492 if (ReplacedPointerArg) {
493 AttrBuilder AttributesToRemove;
494 AttributesToRemove.addAttribute(Attribute::ArgMemOnly);
495 AttributesToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
496 F.removeAttributes(AttributeList::FunctionIndex, AttributesToRemove);
497
498 for (User *U : F.users()) {
499 auto *CB = dyn_cast<CallBase>(U);
500 if (!CB || CB->getCalledFunction() != &F)
501 continue;
502
503 CB->removeAttributes(AttributeList::FunctionIndex,
504 AttributesToRemove);
505 }
506 }
507 }
508
509 SmallPtrSet<Value *, 32> InsertedValues;
510 for (BasicBlock &BB : F) {
511 if (!Solver.isBlockExecutable(&BB)) {
512 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
513 ++NumDeadBlocks;
514
515 MadeChanges = true;
516
517 if (&BB != &F.front())
518 BlocksToErase.push_back(&BB);
519 continue;
520 }
521
522 MadeChanges |= simplifyInstsInBlock(Solver, BB, InsertedValues,
523 IPNumInstRemoved, IPNumInstReplaced);
524 }
525
526 DomTreeUpdater DTU = Solver.getDTU(F);
527 // Change dead blocks to unreachable. We do it after replacing constants
528 // in all executable blocks, because changeToUnreachable may remove PHI
529 // nodes in executable blocks we found values for. The function's entry
530 // block is not part of BlocksToErase, so we have to handle it separately.
531 for (BasicBlock *BB : BlocksToErase) {
532 NumInstRemoved +=
533 changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
534 /*PreserveLCSSA=*/false, &DTU);
535 }
536 if (!Solver.isBlockExecutable(&F.front()))
537 NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
538 /*UseLLVMTrap=*/false,
539 /*PreserveLCSSA=*/false, &DTU);
540
541 for (BasicBlock &BB : F)
542 MadeChanges |= removeNonFeasibleEdges(Solver, &BB, DTU);
543
544 for (BasicBlock *DeadBB : BlocksToErase)
545 DTU.deleteBB(DeadBB);
546
547 for (BasicBlock &BB : F) {
548 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
549 Instruction *Inst = &*BI++;
550 if (Solver.getPredicateInfoFor(Inst)) {
551 if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
552 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
553 Value *Op = II->getOperand(0);
554 Inst->replaceAllUsesWith(Op);
555 Inst->eraseFromParent();
556 }
557 }
558 }
559 }
560 }
561 }
562
563 // If we inferred constant or undef return values for a function, we replaced
564 // all call uses with the inferred value. This means we don't need to bother
565 // actually returning anything from the function. Replace all return
566 // instructions with return undef.
567 //
568 // Do this in two stages: first identify the functions we should process, then
569 // actually zap their returns. This is important because we can only do this
570 // if the address of the function isn't taken. In cases where a return is the
571 // last use of a function, the order of processing functions would affect
572 // whether other functions are optimizable.
573 SmallVector<ReturnInst*, 8> ReturnsToZap;
574
575 for (const auto &I : Solver.getTrackedRetVals()) {
576 Function *F = I.first;
577 const ValueLatticeElement &ReturnValue = I.second;
578
579 // If there is a known constant range for the return value, add !range
580 // metadata to the function's call sites.
581 if (ReturnValue.isConstantRange() &&
582 !ReturnValue.getConstantRange().isSingleElement()) {
583 // Do not add range metadata if the return value may include undef.
584 if (ReturnValue.isConstantRangeIncludingUndef())
585 continue;
586
587 auto &CR = ReturnValue.getConstantRange();
588 for (User *User : F->users()) {
589 auto *CB = dyn_cast<CallBase>(User);
590 if (!CB || CB->getCalledFunction() != F)
591 continue;
592
593 // Limit to cases where the return value is guaranteed to be neither
594 // poison nor undef. Poison will be outside any range and currently
595 // values outside of the specified range cause immediate undefined
596 // behavior.
597 if (!isGuaranteedNotToBeUndefOrPoison(CB, nullptr, CB))
598 continue;
599
600 // Do not touch existing metadata for now.
601 // TODO: We should be able to take the intersection of the existing
602 // metadata and the inferred range.
603 if (CB->getMetadata(LLVMContext::MD_range))
604 continue;
605
606 LLVMContext &Context = CB->getParent()->getContext();
607 Metadata *RangeMD[] = {
608 ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
609 ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
610 CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
611 }
612 continue;
613 }
614 if (F->getReturnType()->isVoidTy())
615 continue;
616 if (isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
617 findReturnsToZap(*F, ReturnsToZap, Solver);
618 }
619
620 for (auto F : Solver.getMRVFunctionsTracked()) {
621 assert(F->getReturnType()->isStructTy() &&
622 "The return type should be a struct");
623 StructType *STy = cast<StructType>(F->getReturnType());
624 if (Solver.isStructLatticeConstant(F, STy))
625 findReturnsToZap(*F, ReturnsToZap, Solver);
626 }
627
628 // Zap all returns which we've identified as zap to change.
629 SmallSetVector<Function *, 8> FuncZappedReturn;
630 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
631 Function *F = ReturnsToZap[i]->getParent()->getParent();
632 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
633 // Record all functions that are zapped.
634 FuncZappedReturn.insert(F);
635 }
636
637 // Remove the returned attribute for zapped functions and the
638 // corresponding call sites.
639 for (Function *F : FuncZappedReturn) {
640 for (Argument &A : F->args())
641 F->removeParamAttr(A.getArgNo(), Attribute::Returned);
642 for (Use &U : F->uses()) {
643 // Skip over blockaddr users.
644 if (isa<BlockAddress>(U.getUser()))
645 continue;
646 CallBase *CB = cast<CallBase>(U.getUser());
647 for (Use &Arg : CB->args())
648 CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
649 }
650 }
651
652 // If we inferred constant or undef values for globals variables, we can
653 // delete the global and any stores that remain to it.
654 for (auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
655 GlobalVariable *GV = I.first;
656 if (isOverdefined(I.second))
657 continue;
658 LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
659 << "' is constant!\n");
660 while (!GV->use_empty()) {
661 StoreInst *SI = cast<StoreInst>(GV->user_back());
662 SI->eraseFromParent();
663 MadeChanges = true;
664 }
665 M.getGlobalList().erase(GV);
666 ++IPNumGlobalConst;
667 }
668
669 return MadeChanges;
670 }
671