1 /* $NetBSD: if_fwip.c,v 1.32 2024/07/05 04:31:51 rin Exp $ */
2 /*-
3 * Copyright (c) 2004
4 * Doug Rabson
5 * Copyright (c) 2002-2003
6 * Hidetoshi Shimokawa. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 *
19 * This product includes software developed by Hidetoshi Shimokawa.
20 *
21 * 4. Neither the name of the author nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 * $FreeBSD: src/sys/dev/firewire/if_fwip.c,v 1.18 2009/02/09 16:58:18 fjoe Exp $
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: if_fwip.c,v 1.32 2024/07/05 04:31:51 rin Exp $");
42
43 #include <sys/param.h>
44 #include <sys/bus.h>
45 #include <sys/device.h>
46 #include <sys/errno.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_ieee1394.h>
55 #include <net/if_types.h>
56
57 #include <dev/ieee1394/firewire.h>
58 #include <dev/ieee1394/firewirereg.h>
59 #include <dev/ieee1394/iec13213.h>
60 #include <dev/ieee1394/if_fwipvar.h>
61
62 /*
63 * We really need a mechanism for allocating regions in the FIFO
64 * address space. We pick a address in the OHCI controller's 'middle'
65 * address space. This means that the controller will automatically
66 * send responses for us, which is fine since we don't have any
67 * important information to put in the response anyway.
68 */
69 #define INET_FIFO 0xfffe00000000LL
70
71 #define FWIPDEBUG if (fwipdebug) aprint_debug_ifnet
72 #define TX_MAX_QUEUE (FWMAXQUEUE - 1)
73
74
75 struct fw_hwaddr {
76 uint32_t sender_unique_ID_hi;
77 uint32_t sender_unique_ID_lo;
78 uint8_t sender_max_rec;
79 uint8_t sspd;
80 uint16_t sender_unicast_FIFO_hi;
81 uint32_t sender_unicast_FIFO_lo;
82 };
83
84
85 static int fwipmatch(device_t, cfdata_t, void *);
86 static void fwipattach(device_t, device_t, void *);
87 static int fwipdetach(device_t, int);
88 static int fwipactivate(device_t, enum devact);
89
90 /* network interface */
91 static void fwip_start(struct ifnet *);
92 static int fwip_ioctl(struct ifnet *, u_long, void *);
93 static int fwip_init(struct ifnet *);
94 static void fwip_stop(struct ifnet *, int);
95
96 static void fwip_post_busreset(void *);
97 static void fwip_output_callback(struct fw_xfer *);
98 static void fwip_async_output(struct fwip_softc *, struct ifnet *);
99 static void fwip_stream_input(struct fw_xferq *);
100 static void fwip_unicast_input(struct fw_xfer *);
101
102 static int fwipdebug = 0;
103 static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */
104 static int tx_speed = 2;
105 static int rx_queue_len = FWMAXQUEUE;
106
107 /*
108 * Setup sysctl(3) MIB, hw.fwip.*
109 *
110 * TBD condition CTLFLAG_PERMANENT on being a module or not
111 */
112 SYSCTL_SETUP(sysctl_fwip, "sysctl fwip(4) subtree setup")
113 {
114 int rc, fwip_node_num;
115 const struct sysctlnode *node;
116
117 if ((rc = sysctl_createv(clog, 0, NULL, &node,
118 CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwip",
119 SYSCTL_DESCR("fwip controls"),
120 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
121 goto err;
122 }
123 fwip_node_num = node->sysctl_num;
124
125 /* fwip RX queue length */
126 if ((rc = sysctl_createv(clog, 0, NULL, &node,
127 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
128 "rx_queue_len", SYSCTL_DESCR("Length of the receive queue"),
129 NULL, 0, &rx_queue_len,
130 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
131 goto err;
132 }
133
134 /* fwip RX queue length */
135 if ((rc = sysctl_createv(clog, 0, NULL, &node,
136 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
137 "if_fwip_debug", SYSCTL_DESCR("fwip driver debug flag"),
138 NULL, 0, &fwipdebug,
139 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
140 goto err;
141 }
142
143 return;
144
145 err:
146 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
147 }
148
149
150 CFATTACH_DECL_NEW(fwip, sizeof(struct fwip_softc),
151 fwipmatch, fwipattach, fwipdetach, fwipactivate);
152
153
154 static int
fwipmatch(device_t parent,cfdata_t cf,void * aux)155 fwipmatch(device_t parent, cfdata_t cf, void *aux)
156 {
157 struct fw_attach_args *fwa = aux;
158
159 if (strcmp(fwa->name, "fwip") == 0)
160 return 1;
161 return 0;
162 }
163
164 static void
fwipattach(device_t parent,device_t self,void * aux)165 fwipattach(device_t parent, device_t self, void *aux)
166 {
167 struct fwip_softc *sc = device_private(self);
168 struct fw_attach_args *fwa = (struct fw_attach_args *)aux;
169 struct fw_hwaddr *hwaddr;
170 struct ifnet *ifp;
171
172 aprint_naive("\n");
173 aprint_normal(": IP over IEEE1394\n");
174
175 sc->sc_fd.dev = self;
176 sc->sc_eth.fwip_ifp = &sc->sc_eth.fwcom.fc_if;
177 hwaddr = (struct fw_hwaddr *)&sc->sc_eth.fwcom.ic_hwaddr;
178
179 ifp = sc->sc_eth.fwip_ifp;
180
181 mutex_init(&sc->sc_fwb.fwb_mtx, MUTEX_DEFAULT, IPL_NET);
182 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
183
184 /* XXX */
185 sc->sc_dma_ch = -1;
186
187 sc->sc_fd.fc = fwa->fc;
188 if (tx_speed < 0)
189 tx_speed = sc->sc_fd.fc->speed;
190
191 sc->sc_fd.post_explore = NULL;
192 sc->sc_fd.post_busreset = fwip_post_busreset;
193 sc->sc_eth.fwip = sc;
194
195 /*
196 * Encode our hardware the way that arp likes it.
197 */
198 hwaddr->sender_unique_ID_hi = htonl(sc->sc_fd.fc->eui.hi);
199 hwaddr->sender_unique_ID_lo = htonl(sc->sc_fd.fc->eui.lo);
200 hwaddr->sender_max_rec = sc->sc_fd.fc->maxrec;
201 hwaddr->sspd = sc->sc_fd.fc->speed;
202 hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
203 hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
204
205 /* fill the rest and attach interface */
206 ifp->if_softc = &sc->sc_eth;
207
208 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
209 ifp->if_start = fwip_start;
210 ifp->if_ioctl = fwip_ioctl;
211 ifp->if_init = fwip_init;
212 ifp->if_stop = fwip_stop;
213 ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
214 IFQ_SET_READY(&ifp->if_snd);
215 IFQ_SET_MAXLEN(&ifp->if_snd, TX_MAX_QUEUE);
216
217 if_attach(ifp);
218 ieee1394_ifattach(ifp, (const struct ieee1394_hwaddr *)hwaddr);
219
220 if (!pmf_device_register(self, NULL, NULL))
221 aprint_error_dev(self, "couldn't establish power handler\n");
222 else
223 pmf_class_network_register(self, ifp);
224
225 FWIPDEBUG(ifp, "interface created\n");
226 return;
227 }
228
229 static int
fwipdetach(device_t self,int flags)230 fwipdetach(device_t self, int flags)
231 {
232 struct fwip_softc *sc = device_private(self);
233 struct ifnet *ifp = sc->sc_eth.fwip_ifp;
234
235 fwip_stop(sc->sc_eth.fwip_ifp, 1);
236 ieee1394_ifdetach(ifp);
237 if_detach(ifp);
238 mutex_destroy(&sc->sc_mtx);
239 mutex_destroy(&sc->sc_fwb.fwb_mtx);
240 return 0;
241 }
242
243 static int
fwipactivate(device_t self,enum devact act)244 fwipactivate(device_t self, enum devact act)
245 {
246 struct fwip_softc *sc = device_private(self);
247
248 switch (act) {
249 case DVACT_DEACTIVATE:
250 if_deactivate(sc->sc_eth.fwip_ifp);
251 return 0;
252 default:
253 return EOPNOTSUPP;
254 }
255 }
256
257 static void
fwip_start(struct ifnet * ifp)258 fwip_start(struct ifnet *ifp)
259 {
260 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
261
262 FWIPDEBUG(ifp, "starting\n");
263
264 if (sc->sc_dma_ch < 0) {
265 struct mbuf *m = NULL;
266
267 FWIPDEBUG(ifp, "not ready\n");
268
269 do {
270 IF_DEQUEUE(&ifp->if_snd, m);
271 m_freem(m);
272 if_statinc(ifp, if_oerrors);
273 } while (m != NULL);
274
275 return;
276 }
277
278 ifp->if_flags |= IFF_OACTIVE;
279
280 if (ifp->if_snd.ifq_len != 0)
281 fwip_async_output(sc, ifp);
282
283 ifp->if_flags &= ~IFF_OACTIVE;
284 }
285
286 static int
fwip_ioctl(struct ifnet * ifp,u_long cmd,void * data)287 fwip_ioctl(struct ifnet *ifp, u_long cmd, void *data)
288 {
289 int s, error = 0;
290
291 s = splnet();
292
293 switch (cmd) {
294 case SIOCSIFFLAGS:
295 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
296 break;
297 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
298 case IFF_RUNNING:
299 fwip_stop(ifp, 0);
300 break;
301 case IFF_UP:
302 fwip_init(ifp);
303 break;
304 default:
305 break;
306 }
307 break;
308
309 case SIOCADDMULTI:
310 case SIOCDELMULTI:
311 break;
312
313 default:
314 error = ieee1394_ioctl(ifp, cmd, data);
315 if (error == ENETRESET)
316 error = 0;
317 break;
318 }
319
320 splx(s);
321
322 return error;
323 }
324
325 static int
fwip_init(struct ifnet * ifp)326 fwip_init(struct ifnet *ifp)
327 {
328 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
329 struct firewire_comm *fc;
330 struct fw_xferq *xferq;
331 struct fw_xfer *xfer;
332 struct mbuf *m;
333 int i;
334
335 FWIPDEBUG(ifp, "initializing\n");
336
337 fc = sc->sc_fd.fc;
338 if (sc->sc_dma_ch < 0) {
339 sc->sc_dma_ch = fw_open_isodma(fc, /* tx */0);
340 if (sc->sc_dma_ch < 0)
341 return ENXIO;
342 xferq = fc->ir[sc->sc_dma_ch];
343 xferq->flag |=
344 FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM;
345 xferq->flag &= ~0xff;
346 xferq->flag |= broadcast_channel & 0xff;
347 /* register fwip_input handler */
348 xferq->sc = (void *) sc;
349 xferq->hand = fwip_stream_input;
350 xferq->bnchunk = rx_queue_len;
351 xferq->bnpacket = 1;
352 xferq->psize = MCLBYTES;
353 xferq->queued = 0;
354 xferq->buf = NULL;
355 xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
356 sizeof(struct fw_bulkxfer) * xferq->bnchunk,
357 M_FW, M_WAITOK);
358 if (xferq->bulkxfer == NULL) {
359 aprint_error_ifnet(ifp, "if_fwip: malloc failed\n");
360 return ENOMEM;
361 }
362 STAILQ_INIT(&xferq->stvalid);
363 STAILQ_INIT(&xferq->stfree);
364 STAILQ_INIT(&xferq->stdma);
365 xferq->stproc = NULL;
366 for (i = 0; i < xferq->bnchunk; i++) {
367 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
368 xferq->bulkxfer[i].mbuf = m;
369 if (m != NULL) {
370 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
371 STAILQ_INSERT_TAIL(&xferq->stfree,
372 &xferq->bulkxfer[i], link);
373 } else
374 aprint_error_ifnet(ifp,
375 "fwip_as_input: m_getcl failed\n");
376 }
377
378 sc->sc_fwb.start = INET_FIFO;
379 sc->sc_fwb.end = INET_FIFO + 16384; /* S3200 packet size */
380
381 /* pre-allocate xfer */
382 STAILQ_INIT(&sc->sc_fwb.xferlist);
383 for (i = 0; i < rx_queue_len; i++) {
384 xfer = fw_xfer_alloc(M_FW);
385 if (xfer == NULL)
386 break;
387 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
388 xfer->recv.payload = mtod(m, uint32_t *);
389 xfer->recv.pay_len = MCLBYTES;
390 xfer->hand = fwip_unicast_input;
391 xfer->fc = fc;
392 xfer->sc = (void *) sc;
393 xfer->mbuf = m;
394 STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
395 }
396 fw_bindadd(fc, &sc->sc_fwb);
397
398 STAILQ_INIT(&sc->sc_xferlist);
399 for (i = 0; i < TX_MAX_QUEUE; i++) {
400 xfer = fw_xfer_alloc(M_FW);
401 if (xfer == NULL)
402 break;
403 xfer->send.spd = tx_speed;
404 xfer->fc = sc->sc_fd.fc;
405 xfer->sc = (void *)sc;
406 xfer->hand = fwip_output_callback;
407 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
408 }
409 } else
410 xferq = fc->ir[sc->sc_dma_ch];
411
412 sc->sc_last_dest.hi = 0;
413 sc->sc_last_dest.lo = 0;
414
415 /* start dma */
416 if ((xferq->flag & FWXFERQ_RUNNING) == 0)
417 fc->irx_enable(fc, sc->sc_dma_ch);
418
419 ifp->if_flags |= IFF_RUNNING;
420 ifp->if_flags &= ~IFF_OACTIVE;
421
422 #if 0
423 /* attempt to start output */
424 fwip_start(ifp);
425 #endif
426 return 0;
427 }
428
429 static void
fwip_stop(struct ifnet * ifp,int disable)430 fwip_stop(struct ifnet *ifp, int disable)
431 {
432 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
433 struct firewire_comm *fc = sc->sc_fd.fc;
434 struct fw_xferq *xferq;
435 struct fw_xfer *xfer, *next;
436 int i;
437
438 if (sc->sc_dma_ch >= 0) {
439 xferq = fc->ir[sc->sc_dma_ch];
440
441 if (xferq->flag & FWXFERQ_RUNNING)
442 fc->irx_disable(fc, sc->sc_dma_ch);
443 xferq->flag &=
444 ~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
445 FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
446 xferq->hand = NULL;
447
448 for (i = 0; i < xferq->bnchunk; i++)
449 m_freem(xferq->bulkxfer[i].mbuf);
450 free(xferq->bulkxfer, M_FW);
451
452 fw_bindremove(fc, &sc->sc_fwb);
453 for (xfer = STAILQ_FIRST(&sc->sc_fwb.xferlist); xfer != NULL;
454 xfer = next) {
455 next = STAILQ_NEXT(xfer, link);
456 fw_xfer_free(xfer);
457 }
458
459 for (xfer = STAILQ_FIRST(&sc->sc_xferlist); xfer != NULL;
460 xfer = next) {
461 next = STAILQ_NEXT(xfer, link);
462 fw_xfer_free(xfer);
463 }
464
465 xferq->bulkxfer = NULL;
466 sc->sc_dma_ch = -1;
467 }
468
469 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
470 }
471
472 static void
fwip_post_busreset(void * arg)473 fwip_post_busreset(void *arg)
474 {
475 struct fwip_softc *sc = arg;
476 struct crom_src *src;
477 struct crom_chunk *root;
478
479 src = sc->sc_fd.fc->crom_src;
480 root = sc->sc_fd.fc->crom_root;
481
482 /* RFC2734 IPv4 over IEEE1394 */
483 memset(&sc->sc_unit4, 0, sizeof(struct crom_chunk));
484 crom_add_chunk(src, root, &sc->sc_unit4, CROM_UDIR);
485 crom_add_entry(&sc->sc_unit4, CSRKEY_SPEC, CSRVAL_IETF);
486 crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_spec4, "IANA");
487 crom_add_entry(&sc->sc_unit4, CSRKEY_VER, 1);
488 crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_ver4, "IPv4");
489
490 /* RFC3146 IPv6 over IEEE1394 */
491 memset(&sc->sc_unit6, 0, sizeof(struct crom_chunk));
492 crom_add_chunk(src, root, &sc->sc_unit6, CROM_UDIR);
493 crom_add_entry(&sc->sc_unit6, CSRKEY_SPEC, CSRVAL_IETF);
494 crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_spec6, "IANA");
495 crom_add_entry(&sc->sc_unit6, CSRKEY_VER, 2);
496 crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_ver6, "IPv6");
497
498 sc->sc_last_dest.hi = 0;
499 sc->sc_last_dest.lo = 0;
500 ieee1394_drain(sc->sc_eth.fwip_ifp);
501 }
502
503 static void
fwip_output_callback(struct fw_xfer * xfer)504 fwip_output_callback(struct fw_xfer *xfer)
505 {
506 struct fwip_softc *sc = (struct fwip_softc *)xfer->sc;
507 struct ifnet *ifp;
508
509 ifp = sc->sc_eth.fwip_ifp;
510 /* XXX error check */
511 FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
512 if (xfer->resp != 0)
513 if_statinc(ifp, if_oerrors);
514
515 m_freem(xfer->mbuf);
516 fw_xfer_unload(xfer);
517
518 mutex_enter(&sc->sc_mtx);
519 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
520 mutex_exit(&sc->sc_mtx);
521
522 /* for queue full */
523 if (ifp->if_snd.ifq_head != NULL)
524 fwip_start(ifp);
525 }
526
527 /* Async. stream output */
528 static void
fwip_async_output(struct fwip_softc * sc,struct ifnet * ifp)529 fwip_async_output(struct fwip_softc *sc, struct ifnet *ifp)
530 {
531 struct firewire_comm *fc = sc->sc_fd.fc;
532 struct mbuf *m;
533 struct m_tag *mtag;
534 struct fw_hwaddr *destfw;
535 struct fw_xfer *xfer;
536 struct fw_xferq *xferq;
537 struct fw_pkt *fp;
538 uint16_t nodeid;
539 int error;
540 int i = 0;
541
542 xfer = NULL;
543 xferq = fc->atq;
544 while ((xferq->queued < xferq->maxq - 1) &&
545 (ifp->if_snd.ifq_head != NULL)) {
546 mutex_enter(&sc->sc_mtx);
547 if (STAILQ_EMPTY(&sc->sc_xferlist)) {
548 mutex_exit(&sc->sc_mtx);
549 #if 0
550 aprint_normal("if_fwip: lack of xfer\n");
551 #endif
552 break;
553 }
554 IF_POLL(&ifp->if_snd, m);
555 if (m == NULL) {
556 mutex_exit(&sc->sc_mtx);
557 break;
558 }
559 xfer = STAILQ_FIRST(&sc->sc_xferlist);
560 STAILQ_REMOVE_HEAD(&sc->sc_xferlist, link);
561 mutex_exit(&sc->sc_mtx);
562
563 /*
564 * Dig out the link-level address which
565 * firewire_output got via arp or neighbour
566 * discovery. If we don't have a link-level address,
567 * just stick the thing on the broadcast channel.
568 */
569 mtag = m_tag_find(m, MTAG_FIREWIRE_HWADDR);
570 if (mtag == NULL)
571 destfw = 0;
572 else
573 destfw = (struct fw_hwaddr *) (mtag + 1);
574
575 /*
576 * Put the mbuf in the xfer early in case we hit an
577 * error case below - fwip_output_callback will free
578 * the mbuf.
579 */
580 xfer->mbuf = m;
581
582 /*
583 * We use the arp result (if any) to add a suitable firewire
584 * packet header before handing off to the bus.
585 */
586 fp = &xfer->send.hdr;
587 nodeid = FWLOCALBUS | fc->nodeid;
588 if ((m->m_flags & M_BCAST) || !destfw) {
589 /*
590 * Broadcast packets are sent as GASP packets with
591 * specifier ID 0x00005e, version 1 on the broadcast
592 * channel. To be conservative, we send at the
593 * slowest possible speed.
594 */
595 uint32_t *p;
596
597 M_PREPEND(m, 2 * sizeof(uint32_t), M_DONTWAIT);
598 p = mtod(m, uint32_t *);
599 fp->mode.stream.len = m->m_pkthdr.len;
600 fp->mode.stream.chtag = broadcast_channel;
601 fp->mode.stream.tcode = FWTCODE_STREAM;
602 fp->mode.stream.sy = 0;
603 xfer->send.spd = 0;
604 p[0] = htonl(nodeid << 16);
605 p[1] = htonl((0x5e << 24) | 1);
606 } else {
607 /*
608 * Unicast packets are sent as block writes to the
609 * target's unicast fifo address. If we can't
610 * find the node address, we just give up. We
611 * could broadcast it but that might overflow
612 * the packet size limitations due to the
613 * extra GASP header. Note: the hardware
614 * address is stored in network byte order to
615 * make life easier for ARP.
616 */
617 struct fw_device *fd;
618 struct fw_eui64 eui;
619
620 eui.hi = ntohl(destfw->sender_unique_ID_hi);
621 eui.lo = ntohl(destfw->sender_unique_ID_lo);
622 if (sc->sc_last_dest.hi != eui.hi ||
623 sc->sc_last_dest.lo != eui.lo) {
624 fd = fw_noderesolve_eui64(fc, &eui);
625 if (!fd) {
626 /* error */
627 if_statinc(ifp, if_oerrors);
628 /* XXX set error code */
629 fwip_output_callback(xfer);
630 continue;
631
632 }
633 sc->sc_last_hdr.mode.wreqb.dst =
634 FWLOCALBUS | fd->dst;
635 sc->sc_last_hdr.mode.wreqb.tlrt = 0;
636 sc->sc_last_hdr.mode.wreqb.tcode =
637 FWTCODE_WREQB;
638 sc->sc_last_hdr.mode.wreqb.pri = 0;
639 sc->sc_last_hdr.mode.wreqb.src = nodeid;
640 sc->sc_last_hdr.mode.wreqb.dest_hi =
641 ntohs(destfw->sender_unicast_FIFO_hi);
642 sc->sc_last_hdr.mode.wreqb.dest_lo =
643 ntohl(destfw->sender_unicast_FIFO_lo);
644 sc->sc_last_hdr.mode.wreqb.extcode = 0;
645 sc->sc_last_dest = eui;
646 }
647
648 fp->mode.wreqb = sc->sc_last_hdr.mode.wreqb;
649 fp->mode.wreqb.len = m->m_pkthdr.len;
650 xfer->send.spd = uimin(destfw->sspd, fc->speed);
651 }
652
653 xfer->send.pay_len = m->m_pkthdr.len;
654
655 error = fw_asyreq(fc, -1, xfer);
656 if (error == EAGAIN) {
657 /*
658 * We ran out of tlabels - requeue the packet
659 * for later transmission.
660 */
661 xfer->mbuf = 0;
662 mutex_enter(&sc->sc_mtx);
663 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
664 mutex_exit(&sc->sc_mtx);
665 break;
666 }
667 IF_DEQUEUE(&ifp->if_snd, m);
668 if (error) {
669 /* error */
670 if_statinc(ifp, if_oerrors);
671 /* XXX set error code */
672 fwip_output_callback(xfer);
673 continue;
674 } else {
675 if_statinc(ifp, if_opackets);
676 i++;
677 }
678 }
679 #if 0
680 if (i > 1)
681 aprint_normal("%d queued\n", i);
682 #endif
683 if (i > 0)
684 xferq->start(fc);
685 }
686
687 /* Async. stream output */
688 static void
fwip_stream_input(struct fw_xferq * xferq)689 fwip_stream_input(struct fw_xferq *xferq)
690 {
691 struct mbuf *m, *m0;
692 struct m_tag *mtag;
693 struct ifnet *ifp;
694 struct fwip_softc *sc;
695 struct fw_bulkxfer *sxfer;
696 struct fw_pkt *fp;
697 uint16_t src;
698 uint32_t *p;
699
700 sc = (struct fwip_softc *)xferq->sc;
701 ifp = sc->sc_eth.fwip_ifp;
702 while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
703 STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
704 fp = mtod(sxfer->mbuf, struct fw_pkt *);
705 if (sc->sc_fd.fc->irx_post != NULL)
706 sc->sc_fd.fc->irx_post(sc->sc_fd.fc, fp->mode.ld);
707 m = sxfer->mbuf;
708
709 /* insert new rbuf */
710 sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
711 if (m0 != NULL) {
712 m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
713 STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
714 } else
715 aprint_error_ifnet(ifp,
716 "fwip_as_input: m_getcl failed\n");
717
718 /*
719 * We must have a GASP header - leave the
720 * encapsulation sanity checks to the generic
721 * code. Remeber that we also have the firewire async
722 * stream header even though that isn't accounted for
723 * in mode.stream.len.
724 */
725 if (sxfer->resp != 0 ||
726 fp->mode.stream.len < 2 * sizeof(uint32_t)) {
727 m_freem(m);
728 if_statinc(ifp, if_ierrors);
729 continue;
730 }
731 m->m_len = m->m_pkthdr.len = fp->mode.stream.len
732 + sizeof(fp->mode.stream);
733
734 /*
735 * If we received the packet on the broadcast channel,
736 * mark it as broadcast, otherwise we assume it must
737 * be multicast.
738 */
739 if (fp->mode.stream.chtag == broadcast_channel)
740 m->m_flags |= M_BCAST;
741 else
742 m->m_flags |= M_MCAST;
743
744 /*
745 * Make sure we recognise the GASP specifier and
746 * version.
747 */
748 p = mtod(m, uint32_t *);
749 if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) !=
750 0x00005e ||
751 (ntohl(p[2]) & 0xffffff) != 1) {
752 FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
753 ntohl(p[1]), ntohl(p[2]));
754 m_freem(m);
755 if_statinc(ifp, if_ierrors);
756 continue;
757 }
758
759 /*
760 * Record the sender ID for possible BPF usage.
761 */
762 src = ntohl(p[1]) >> 16;
763 if (ifp->if_bpf) {
764 mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
765 2 * sizeof(uint32_t), M_NOWAIT);
766 if (mtag) {
767 /* bpf wants it in network byte order */
768 struct fw_device *fd;
769 uint32_t *p2 = (uint32_t *) (mtag + 1);
770
771 fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
772 src & 0x3f);
773 if (fd) {
774 p2[0] = htonl(fd->eui.hi);
775 p2[1] = htonl(fd->eui.lo);
776 } else {
777 p2[0] = 0;
778 p2[1] = 0;
779 }
780 m_tag_prepend(m, mtag);
781 }
782 }
783
784 /*
785 * Trim off the GASP header
786 */
787 m_adj(m, 3*sizeof(uint32_t));
788 m_set_rcvif(m, ifp);
789 ieee1394_input(ifp, m, src);
790 if_statinc(ifp, if_ipackets);
791 }
792 if (STAILQ_FIRST(&xferq->stfree) != NULL)
793 sc->sc_fd.fc->irx_enable(sc->sc_fd.fc, sc->sc_dma_ch);
794 }
795
796 static inline void
fwip_unicast_input_recycle(struct fwip_softc * sc,struct fw_xfer * xfer)797 fwip_unicast_input_recycle(struct fwip_softc *sc, struct fw_xfer *xfer)
798 {
799 struct mbuf *m;
800
801 /*
802 * We have finished with a unicast xfer. Allocate a new
803 * cluster and stick it on the back of the input queue.
804 */
805 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
806 if (m == NULL)
807 aprint_error_dev(sc->sc_fd.dev,
808 "fwip_unicast_input_recycle: m_getcl failed\n");
809 xfer->recv.payload = mtod(m, uint32_t *);
810 xfer->recv.pay_len = MCLBYTES;
811 xfer->mbuf = m;
812 mutex_enter(&sc->sc_fwb.fwb_mtx);
813 STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
814 mutex_exit(&sc->sc_fwb.fwb_mtx);
815 }
816
817 static void
fwip_unicast_input(struct fw_xfer * xfer)818 fwip_unicast_input(struct fw_xfer *xfer)
819 {
820 uint64_t address;
821 struct mbuf *m;
822 struct m_tag *mtag;
823 struct ifnet *ifp;
824 struct fwip_softc *sc;
825 struct fw_pkt *fp;
826 int rtcode;
827
828 sc = (struct fwip_softc *)xfer->sc;
829 ifp = sc->sc_eth.fwip_ifp;
830 m = xfer->mbuf;
831 xfer->mbuf = 0;
832 fp = &xfer->recv.hdr;
833
834 /*
835 * Check the fifo address - we only accept addresses of
836 * exactly INET_FIFO.
837 */
838 address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
839 | fp->mode.wreqb.dest_lo;
840 if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
841 rtcode = FWRCODE_ER_TYPE;
842 } else if (address != INET_FIFO) {
843 rtcode = FWRCODE_ER_ADDR;
844 } else {
845 rtcode = FWRCODE_COMPLETE;
846 }
847
848 /*
849 * Pick up a new mbuf and stick it on the back of the receive
850 * queue.
851 */
852 fwip_unicast_input_recycle(sc, xfer);
853
854 /*
855 * If we've already rejected the packet, give up now.
856 */
857 if (rtcode != FWRCODE_COMPLETE) {
858 m_freem(m);
859 if_statinc(ifp, if_ierrors);
860 return;
861 }
862
863 if (ifp->if_bpf) {
864 /*
865 * Record the sender ID for possible BPF usage.
866 */
867 mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
868 2 * sizeof(uint32_t), M_NOWAIT);
869 if (mtag) {
870 /* bpf wants it in network byte order */
871 struct fw_device *fd;
872 uint32_t *p = (uint32_t *) (mtag + 1);
873
874 fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
875 fp->mode.wreqb.src & 0x3f);
876 if (fd) {
877 p[0] = htonl(fd->eui.hi);
878 p[1] = htonl(fd->eui.lo);
879 } else {
880 p[0] = 0;
881 p[1] = 0;
882 }
883 m_tag_prepend(m, mtag);
884 }
885 }
886
887 /*
888 * Hand off to the generic encapsulation code. We don't use
889 * ifp->if_input so that we can pass the source nodeid as an
890 * argument to facilitate link-level fragment reassembly.
891 */
892 m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
893 m_set_rcvif(m, ifp);
894 ieee1394_input(ifp, m, fp->mode.wreqb.src);
895 if_statinc(ifp, if_ipackets);
896 }
897