xref: /netbsd-src/sys/external/bsd/drm2/dist/drm/amd/display/dc/clk_mgr/dcn21/amdgpu_rn_clk_mgr.c (revision 2b73d18af7a98bc9907041875c671f63165f1d3e)
1 /*	$NetBSD: amdgpu_rn_clk_mgr.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $	*/
2 
3 /*
4  * Copyright 2018 Advanced Micro Devices, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: AMD
25  *
26  */
27 
28 #include <sys/cdefs.h>
29 __KERNEL_RCSID(0, "$NetBSD: amdgpu_rn_clk_mgr.c,v 1.3 2021/12/19 12:21:29 riastradh Exp $");
30 
31 #include "dccg.h"
32 #include "clk_mgr_internal.h"
33 
34 
35 #include "dcn20/dcn20_clk_mgr.h"
36 #include "rn_clk_mgr.h"
37 
38 
39 #include "dce100/dce_clk_mgr.h"
40 #include "rn_clk_mgr_vbios_smu.h"
41 #include "reg_helper.h"
42 #include "core_types.h"
43 #include "dm_helpers.h"
44 
45 #include "atomfirmware.h"
46 #include "clk/clk_10_0_2_offset.h"
47 #include "clk/clk_10_0_2_sh_mask.h"
48 #include "renoir_ip_offset.h"
49 
50 
51 /* Constants */
52 
53 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
54 
55 /* Macros */
56 
57 #define REG(reg_name) \
58 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
59 
60 
61 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
rn_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)62 int rn_get_active_display_cnt_wa(
63 		struct dc *dc,
64 		struct dc_state *context)
65 {
66 	int i, display_count;
67 	bool tmds_present = false;
68 
69 	display_count = 0;
70 	for (i = 0; i < context->stream_count; i++) {
71 		const struct dc_stream_state *stream = context->streams[i];
72 
73 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
74 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
75 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
76 			tmds_present = true;
77 	}
78 
79 	for (i = 0; i < dc->link_count; i++) {
80 		const struct dc_link *link = dc->links[i];
81 
82 		/*
83 		 * Only notify active stream or virtual stream.
84 		 * Need to notify virtual stream to work around
85 		 * headless case. HPD does not fire when system is in
86 		 * S0i2.
87 		 */
88 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
89 		if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
90 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
91 			display_count++;
92 	}
93 
94 	/* WA for hang on HDMI after display off back back on*/
95 	if (display_count == 0 && tmds_present)
96 		display_count = 1;
97 
98 	return display_count;
99 }
100 
rn_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)101 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
102 			struct dc_state *context,
103 			bool safe_to_lower)
104 {
105 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
106 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
107 	struct dc *dc = clk_mgr_base->ctx->dc;
108 	int display_count;
109 	bool update_dppclk = false;
110 	bool update_dispclk = false;
111 	bool dpp_clock_lowered = false;
112 
113 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
114 
115 	if (dc->work_arounds.skip_clock_update)
116 		return;
117 
118 	/*
119 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
120 	 * also if safe to lower is false, we just go in the higher state
121 	 */
122 	if (safe_to_lower) {
123 		/* check that we're not already in lower */
124 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
125 
126 			display_count = rn_get_active_display_cnt_wa(dc, context);
127 			/* if we can go lower, go lower */
128 			if (display_count == 0) {
129 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
130 				/* update power state */
131 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
132 			}
133 		}
134 	} else {
135 		/* check that we're not already in D0 */
136 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
137 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
138 			/* update power state */
139 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
140 		}
141 	}
142 
143 	if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr_base->clks.phyclk_khz)) {
144 		clk_mgr_base->clks.phyclk_khz = new_clocks->phyclk_khz;
145 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
146 	}
147 
148 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
149 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
150 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
151 	}
152 
153 	if (should_set_clock(safe_to_lower,
154 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
155 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
156 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
157 	}
158 
159 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
160 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
161 		if (new_clocks->dppclk_khz < 100000)
162 			new_clocks->dppclk_khz = 100000;
163 	}
164 
165 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
166 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
167 			dpp_clock_lowered = true;
168 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
169 		update_dppclk = true;
170 	}
171 
172 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
173 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
174 		rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
175 
176 		update_dispclk = true;
177 	}
178 
179 	if (dpp_clock_lowered) {
180 		// increase per DPP DTO before lowering global dppclk
181 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
182 		rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
183 	} else {
184 		// increase global DPPCLK before lowering per DPP DTO
185 		if (update_dppclk || update_dispclk)
186 			rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
187 		// always update dtos unless clock is lowered and not safe to lower
188 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
189 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
190 	}
191 
192 	if (update_dispclk &&
193 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
194 		/*update dmcu for wait_loop count*/
195 		dmcu->funcs->set_psr_wait_loop(dmcu,
196 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
197 	}
198 }
199 
200 
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)201 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
202 {
203 	/* get FbMult value */
204 	struct fixed31_32 pll_req;
205 	unsigned int fbmult_frac_val = 0;
206 	unsigned int fbmult_int_val = 0;
207 
208 
209 	/*
210 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
211 	 * to leverage the fix point operations available in driver
212 	 */
213 
214 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
215 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
216 
217 	pll_req = dc_fixpt_from_int(fbmult_int_val);
218 
219 	/*
220 	 * since fractional part is only 16 bit in register definition but is 32 bit
221 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
222 	 */
223 	pll_req.value |= fbmult_frac_val << 16;
224 
225 	/* multiply by REFCLK period */
226 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
227 
228 	/* integer part is now VCO frequency in kHz */
229 	return dc_fixpt_floor(pll_req);
230 }
231 
rn_dump_clk_registers_internal(struct rn_clk_internal * internal,struct clk_mgr * clk_mgr_base)232 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
233 {
234 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
235 
236 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
237 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
238 
239 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
240 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
241 
242 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
243 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
244 
245 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
246 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
247 
248 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
249 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
250 }
251 
252 /* This function collect raw clk register values */
rn_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)253 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
254 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
255 {
256 	struct rn_clk_internal internal = {0};
257 	const char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
258 	unsigned int chars_printed = 0;
259 	unsigned int remaining_buffer = log_info->bufSize;
260 
261 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
262 
263 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
264 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
265 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
266 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
267 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
268 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
269 
270 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
271 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
272 		regs_and_bypass->dppclk_bypass = 0;
273 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
274 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
275 		regs_and_bypass->dcfclk_bypass = 0;
276 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
277 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
278 		regs_and_bypass->dispclk_bypass = 0;
279 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
280 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
281 		regs_and_bypass->dprefclk_bypass = 0;
282 
283 	if (log_info->enabled) {
284 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
285 		remaining_buffer -= chars_printed;
286 		*log_info->sum_chars_printed += chars_printed;
287 		log_info->pBuf += chars_printed;
288 
289 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
290 			regs_and_bypass->dcfclk,
291 			regs_and_bypass->dcf_deep_sleep_divider,
292 			regs_and_bypass->dcf_deep_sleep_allow,
293 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
294 		remaining_buffer -= chars_printed;
295 		*log_info->sum_chars_printed += chars_printed;
296 		log_info->pBuf += chars_printed;
297 
298 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
299 			regs_and_bypass->dprefclk,
300 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
301 		remaining_buffer -= chars_printed;
302 		*log_info->sum_chars_printed += chars_printed;
303 		log_info->pBuf += chars_printed;
304 
305 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
306 			regs_and_bypass->dispclk,
307 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
308 		remaining_buffer -= chars_printed;
309 		*log_info->sum_chars_printed += chars_printed;
310 		log_info->pBuf += chars_printed;
311 
312 		//split
313 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
314 		remaining_buffer -= chars_printed;
315 		*log_info->sum_chars_printed += chars_printed;
316 		log_info->pBuf += chars_printed;
317 
318 		// REGISTER VALUES
319 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
320 		remaining_buffer -= chars_printed;
321 		*log_info->sum_chars_printed += chars_printed;
322 		log_info->pBuf += chars_printed;
323 
324 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
325 				internal.CLK1_CLK3_CURRENT_CNT);
326 		remaining_buffer -= chars_printed;
327 		*log_info->sum_chars_printed += chars_printed;
328 		log_info->pBuf += chars_printed;
329 
330 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
331 					internal.CLK1_CLK3_DS_CNTL);
332 		remaining_buffer -= chars_printed;
333 		*log_info->sum_chars_printed += chars_printed;
334 		log_info->pBuf += chars_printed;
335 
336 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
337 					internal.CLK1_CLK3_ALLOW_DS);
338 		remaining_buffer -= chars_printed;
339 		*log_info->sum_chars_printed += chars_printed;
340 		log_info->pBuf += chars_printed;
341 
342 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
343 					internal.CLK1_CLK2_CURRENT_CNT);
344 		remaining_buffer -= chars_printed;
345 		*log_info->sum_chars_printed += chars_printed;
346 		log_info->pBuf += chars_printed;
347 
348 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
349 					internal.CLK1_CLK0_CURRENT_CNT);
350 		remaining_buffer -= chars_printed;
351 		*log_info->sum_chars_printed += chars_printed;
352 		log_info->pBuf += chars_printed;
353 
354 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
355 					internal.CLK1_CLK1_CURRENT_CNT);
356 		remaining_buffer -= chars_printed;
357 		*log_info->sum_chars_printed += chars_printed;
358 		log_info->pBuf += chars_printed;
359 
360 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
361 					internal.CLK1_CLK3_BYPASS_CNTL);
362 		remaining_buffer -= chars_printed;
363 		*log_info->sum_chars_printed += chars_printed;
364 		log_info->pBuf += chars_printed;
365 
366 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
367 					internal.CLK1_CLK2_BYPASS_CNTL);
368 		remaining_buffer -= chars_printed;
369 		*log_info->sum_chars_printed += chars_printed;
370 		log_info->pBuf += chars_printed;
371 
372 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
373 					internal.CLK1_CLK0_BYPASS_CNTL);
374 		remaining_buffer -= chars_printed;
375 		*log_info->sum_chars_printed += chars_printed;
376 		log_info->pBuf += chars_printed;
377 
378 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
379 					internal.CLK1_CLK1_BYPASS_CNTL);
380 		remaining_buffer -= chars_printed;
381 		*log_info->sum_chars_printed += chars_printed;
382 		log_info->pBuf += chars_printed;
383 	}
384 }
385 
386 /* This function produce translated logical clk state values*/
rn_get_clk_states(struct clk_mgr * clk_mgr_base,struct clk_states * s)387 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
388 {
389 	struct clk_state_registers_and_bypass sb = { 0 };
390 	struct clk_log_info log_info = { 0 };
391 
392 	rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
393 
394 	s->dprefclk_khz = sb.dprefclk * 1000;
395 }
396 
rn_enable_pme_wa(struct clk_mgr * clk_mgr_base)397 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
398 {
399 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
400 
401 	rn_vbios_smu_enable_pme_wa(clk_mgr);
402 }
403 
rn_init_clocks(struct clk_mgr * clk_mgr)404 void rn_init_clocks(struct clk_mgr *clk_mgr)
405 {
406 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
407 	// Assumption is that boot state always supports pstate
408 	clk_mgr->clks.p_state_change_support = true;
409 	clk_mgr->clks.prev_p_state_change_support = true;
410 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
411 }
412 
build_watermark_ranges(struct clk_bw_params * bw_params,struct pp_smu_wm_range_sets * ranges)413 void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
414 {
415 	int i, num_valid_sets;
416 
417 	num_valid_sets = 0;
418 
419 	for (i = 0; i < WM_SET_COUNT; i++) {
420 		/* skip empty entries, the smu array has no holes*/
421 		if (!bw_params->wm_table.entries[i].valid)
422 			continue;
423 
424 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
425 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
426 		/* We will not select WM based on fclk, so leave it as unconstrained */
427 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
428 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
429 		/* dcfclk wil be used to select WM*/
430 
431 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
432 			if (i == 0)
433 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
434 			else {
435 				/* add 1 to make it non-overlapping with next lvl */
436 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
437 			}
438 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
439 
440 		} else {
441 			/* unconstrained for memory retraining */
442 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
443 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
444 
445 			/* Modify previous watermark range to cover up to max */
446 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
447 		}
448 		num_valid_sets++;
449 	}
450 
451 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
452 	ranges->num_reader_wm_sets = num_valid_sets;
453 
454 	/* modify the min and max to make sure we cover the whole range*/
455 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
456 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
457 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
458 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
459 
460 	/* This is for writeback only, does not matter currently as no writeback support*/
461 	ranges->num_writer_wm_sets = 1;
462 	ranges->writer_wm_sets[0].wm_inst = WM_A;
463 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
464 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
465 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
466 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
467 
468 }
469 
rn_notify_wm_ranges(struct clk_mgr * clk_mgr_base)470 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
471 {
472 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
473 	struct pp_smu_wm_range_sets ranges = {0};
474 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
475 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
476 
477 	if (!debug->disable_pplib_wm_range) {
478 		build_watermark_ranges(clk_mgr_base->bw_params, &ranges);
479 
480 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
481 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
482 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &ranges);
483 	}
484 
485 }
486 
rn_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)487 static bool rn_are_clock_states_equal(struct dc_clocks *a,
488 		struct dc_clocks *b)
489 {
490 	if (a->dispclk_khz != b->dispclk_khz)
491 		return false;
492 	else if (a->dppclk_khz != b->dppclk_khz)
493 		return false;
494 	else if (a->dcfclk_khz != b->dcfclk_khz)
495 		return false;
496 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
497 		return false;
498 
499 	return true;
500 }
501 
502 
503 static struct clk_mgr_funcs dcn21_funcs = {
504 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
505 	.update_clocks = rn_update_clocks,
506 	.init_clocks = rn_init_clocks,
507 	.enable_pme_wa = rn_enable_pme_wa,
508 	.are_clock_states_equal = rn_are_clock_states_equal,
509 	.notify_wm_ranges = rn_notify_wm_ranges
510 };
511 
512 struct clk_bw_params rn_bw_params = {
513 	.vram_type = Ddr4MemType,
514 	.num_channels = 1,
515 	.clk_table = {
516 		.entries = {
517 			{
518 				.voltage = 0,
519 				.dcfclk_mhz = 400,
520 				.fclk_mhz = 400,
521 				.memclk_mhz = 800,
522 				.socclk_mhz = 0,
523 			},
524 			{
525 				.voltage = 0,
526 				.dcfclk_mhz = 483,
527 				.fclk_mhz = 800,
528 				.memclk_mhz = 1600,
529 				.socclk_mhz = 0,
530 			},
531 			{
532 				.voltage = 0,
533 				.dcfclk_mhz = 602,
534 				.fclk_mhz = 1067,
535 				.memclk_mhz = 1067,
536 				.socclk_mhz = 0,
537 			},
538 			{
539 				.voltage = 0,
540 				.dcfclk_mhz = 738,
541 				.fclk_mhz = 1333,
542 				.memclk_mhz = 1600,
543 				.socclk_mhz = 0,
544 			},
545 		},
546 
547 		.num_entries = 4,
548 	},
549 
550 };
551 
552 struct wm_table ddr4_wm_table = {
553 	.entries = {
554 		{
555 			.wm_inst = WM_A,
556 			.wm_type = WM_TYPE_PSTATE_CHG,
557 			.pstate_latency_us = 11.72,
558 			.sr_exit_time_us = 6.09,
559 			.sr_enter_plus_exit_time_us = 7.14,
560 			.valid = true,
561 		},
562 		{
563 			.wm_inst = WM_B,
564 			.wm_type = WM_TYPE_PSTATE_CHG,
565 			.pstate_latency_us = 11.72,
566 			.sr_exit_time_us = 10.12,
567 			.sr_enter_plus_exit_time_us = 11.48,
568 			.valid = true,
569 		},
570 		{
571 			.wm_inst = WM_C,
572 			.wm_type = WM_TYPE_PSTATE_CHG,
573 			.pstate_latency_us = 11.72,
574 			.sr_exit_time_us = 10.12,
575 			.sr_enter_plus_exit_time_us = 11.48,
576 			.valid = true,
577 		},
578 		{
579 			.wm_inst = WM_D,
580 			.wm_type = WM_TYPE_PSTATE_CHG,
581 			.pstate_latency_us = 11.72,
582 			.sr_exit_time_us = 10.12,
583 			.sr_enter_plus_exit_time_us = 11.48,
584 			.valid = true,
585 		},
586 	}
587 };
588 
589 struct wm_table lpddr4_wm_table = {
590 	.entries = {
591 		{
592 			.wm_inst = WM_A,
593 			.wm_type = WM_TYPE_PSTATE_CHG,
594 			.pstate_latency_us = 11.65333,
595 			.sr_exit_time_us = 5.32,
596 			.sr_enter_plus_exit_time_us = 6.38,
597 			.valid = true,
598 		},
599 		{
600 			.wm_inst = WM_B,
601 			.wm_type = WM_TYPE_PSTATE_CHG,
602 			.pstate_latency_us = 11.65333,
603 			.sr_exit_time_us = 9.82,
604 			.sr_enter_plus_exit_time_us = 11.196,
605 			.valid = true,
606 		},
607 		{
608 			.wm_inst = WM_C,
609 			.wm_type = WM_TYPE_PSTATE_CHG,
610 			.pstate_latency_us = 11.65333,
611 			.sr_exit_time_us = 9.89,
612 			.sr_enter_plus_exit_time_us = 11.24,
613 			.valid = true,
614 		},
615 		{
616 			.wm_inst = WM_D,
617 			.wm_type = WM_TYPE_PSTATE_CHG,
618 			.pstate_latency_us = 11.65333,
619 			.sr_exit_time_us = 9.748,
620 			.sr_enter_plus_exit_time_us = 11.102,
621 			.valid = true,
622 		},
623 	}
624 };
625 
626 
find_dcfclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)627 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
628 {
629 	int i;
630 
631 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
632 		if (clock_table->DcfClocks[i].Vol == voltage)
633 			return clock_table->DcfClocks[i].Freq;
634 	}
635 
636 	ASSERT(0);
637 	return 0;
638 }
639 
rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params * bw_params,struct dpm_clocks * clock_table,struct integrated_info * bios_info)640 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
641 {
642 	int i, j = 0;
643 
644 	j = -1;
645 
646 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
647 
648 	/* Find lowest DPM, FCLK is filled in reverse order*/
649 
650 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
651 		if (clock_table->FClocks[i].Freq != 0) {
652 			j = i;
653 			break;
654 		}
655 	}
656 
657 	if (j == -1) {
658 		/* clock table is all 0s, just use our own hardcode */
659 		ASSERT(0);
660 		return;
661 	}
662 
663 	bw_params->clk_table.num_entries = j + 1;
664 
665 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
666 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
667 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
668 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
669 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
670 	}
671 
672 	bw_params->vram_type = bios_info->memory_type;
673 	bw_params->num_channels = bios_info->ma_channel_number;
674 
675 	for (i = 0; i < WM_SET_COUNT; i++) {
676 		bw_params->wm_table.entries[i].wm_inst = i;
677 
678 		if (i >= bw_params->clk_table.num_entries) {
679 			bw_params->wm_table.entries[i].valid = false;
680 			continue;
681 		}
682 
683 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
684 		bw_params->wm_table.entries[i].valid = true;
685 	}
686 
687 	if (bw_params->vram_type == LpDdr4MemType) {
688 		/*
689 		 * WM set D will be re-purposed for memory retraining
690 		 */
691 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
692 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
693 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
694 		bw_params->wm_table.entries[WM_D].valid = true;
695 	}
696 
697 }
698 
rn_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_internal * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)699 void rn_clk_mgr_construct(
700 		struct dc_context *ctx,
701 		struct clk_mgr_internal *clk_mgr,
702 		struct pp_smu_funcs *pp_smu,
703 		struct dccg *dccg)
704 {
705 	struct dc_debug_options *debug = &ctx->dc->debug;
706 	struct dpm_clocks clock_table = { 0 };
707 
708 	clk_mgr->base.ctx = ctx;
709 	clk_mgr->base.funcs = &dcn21_funcs;
710 
711 	clk_mgr->pp_smu = pp_smu;
712 
713 	clk_mgr->dccg = dccg;
714 	clk_mgr->dfs_bypass_disp_clk = 0;
715 
716 	clk_mgr->dprefclk_ss_percentage = 0;
717 	clk_mgr->dprefclk_ss_divider = 1000;
718 	clk_mgr->ss_on_dprefclk = false;
719 	clk_mgr->dfs_ref_freq_khz = 48000;
720 
721 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
722 
723 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
724 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
725 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
726 	} else {
727 		struct clk_log_info log_info = {0};
728 
729 		/* TODO: Check we get what we expect during bringup */
730 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
731 
732 		/* in case we don't get a value from the register, use default */
733 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
734 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
735 
736 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
737 			rn_bw_params.wm_table = lpddr4_wm_table;
738 		} else {
739 			rn_bw_params.wm_table = ddr4_wm_table;
740 		}
741 		/* Saved clocks configured at boot for debug purposes */
742 		rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
743 	}
744 
745 	clk_mgr->base.dprefclk_khz = 600000;
746 	dce_clock_read_ss_info(clk_mgr);
747 
748 
749 	clk_mgr->base.bw_params = &rn_bw_params;
750 
751 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
752 		pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
753 		if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
754 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
755 		}
756 	}
757 
758 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
759 		/* enable powerfeatures when displaycount goes to 0 */
760 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
761 	}
762 }
763 
764